linux/drivers/gpu/drm/i915/i915_request.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/prefetch.h>
  26#include <linux/dma-fence-array.h>
  27#include <linux/sched.h>
  28#include <linux/sched/clock.h>
  29#include <linux/sched/signal.h>
  30
  31#include "i915_drv.h"
  32
  33static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  34{
  35        return "i915";
  36}
  37
  38static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  39{
  40        /*
  41         * The timeline struct (as part of the ppgtt underneath a context)
  42         * may be freed when the request is no longer in use by the GPU.
  43         * We could extend the life of a context to beyond that of all
  44         * fences, possibly keeping the hw resource around indefinitely,
  45         * or we just give them a false name. Since
  46         * dma_fence_ops.get_timeline_name is a debug feature, the occasional
  47         * lie seems justifiable.
  48         */
  49        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  50                return "signaled";
  51
  52        return to_request(fence)->timeline->common->name;
  53}
  54
  55static bool i915_fence_signaled(struct dma_fence *fence)
  56{
  57        return i915_request_completed(to_request(fence));
  58}
  59
  60static bool i915_fence_enable_signaling(struct dma_fence *fence)
  61{
  62        if (i915_fence_signaled(fence))
  63                return false;
  64
  65        intel_engine_enable_signaling(to_request(fence), true);
  66        return !i915_fence_signaled(fence);
  67}
  68
  69static signed long i915_fence_wait(struct dma_fence *fence,
  70                                   bool interruptible,
  71                                   signed long timeout)
  72{
  73        return i915_request_wait(to_request(fence), interruptible, timeout);
  74}
  75
  76static void i915_fence_release(struct dma_fence *fence)
  77{
  78        struct i915_request *rq = to_request(fence);
  79
  80        /*
  81         * The request is put onto a RCU freelist (i.e. the address
  82         * is immediately reused), mark the fences as being freed now.
  83         * Otherwise the debugobjects for the fences are only marked as
  84         * freed when the slab cache itself is freed, and so we would get
  85         * caught trying to reuse dead objects.
  86         */
  87        i915_sw_fence_fini(&rq->submit);
  88
  89        kmem_cache_free(rq->i915->requests, rq);
  90}
  91
  92const struct dma_fence_ops i915_fence_ops = {
  93        .get_driver_name = i915_fence_get_driver_name,
  94        .get_timeline_name = i915_fence_get_timeline_name,
  95        .enable_signaling = i915_fence_enable_signaling,
  96        .signaled = i915_fence_signaled,
  97        .wait = i915_fence_wait,
  98        .release = i915_fence_release,
  99};
 100
 101static inline void
 102i915_request_remove_from_client(struct i915_request *request)
 103{
 104        struct drm_i915_file_private *file_priv;
 105
 106        file_priv = request->file_priv;
 107        if (!file_priv)
 108                return;
 109
 110        spin_lock(&file_priv->mm.lock);
 111        if (request->file_priv) {
 112                list_del(&request->client_link);
 113                request->file_priv = NULL;
 114        }
 115        spin_unlock(&file_priv->mm.lock);
 116}
 117
 118static struct i915_dependency *
 119i915_dependency_alloc(struct drm_i915_private *i915)
 120{
 121        return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
 122}
 123
 124static void
 125i915_dependency_free(struct drm_i915_private *i915,
 126                     struct i915_dependency *dep)
 127{
 128        kmem_cache_free(i915->dependencies, dep);
 129}
 130
 131static void
 132__i915_priotree_add_dependency(struct i915_priotree *pt,
 133                               struct i915_priotree *signal,
 134                               struct i915_dependency *dep,
 135                               unsigned long flags)
 136{
 137        INIT_LIST_HEAD(&dep->dfs_link);
 138        list_add(&dep->wait_link, &signal->waiters_list);
 139        list_add(&dep->signal_link, &pt->signalers_list);
 140        dep->signaler = signal;
 141        dep->flags = flags;
 142}
 143
 144static int
 145i915_priotree_add_dependency(struct drm_i915_private *i915,
 146                             struct i915_priotree *pt,
 147                             struct i915_priotree *signal)
 148{
 149        struct i915_dependency *dep;
 150
 151        dep = i915_dependency_alloc(i915);
 152        if (!dep)
 153                return -ENOMEM;
 154
 155        __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
 156        return 0;
 157}
 158
 159static void
 160i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
 161{
 162        struct i915_dependency *dep, *next;
 163
 164        GEM_BUG_ON(!list_empty(&pt->link));
 165
 166        /*
 167         * Everyone we depended upon (the fences we wait to be signaled)
 168         * should retire before us and remove themselves from our list.
 169         * However, retirement is run independently on each timeline and
 170         * so we may be called out-of-order.
 171         */
 172        list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
 173                GEM_BUG_ON(!i915_priotree_signaled(dep->signaler));
 174                GEM_BUG_ON(!list_empty(&dep->dfs_link));
 175
 176                list_del(&dep->wait_link);
 177                if (dep->flags & I915_DEPENDENCY_ALLOC)
 178                        i915_dependency_free(i915, dep);
 179        }
 180
 181        /* Remove ourselves from everyone who depends upon us */
 182        list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
 183                GEM_BUG_ON(dep->signaler != pt);
 184                GEM_BUG_ON(!list_empty(&dep->dfs_link));
 185
 186                list_del(&dep->signal_link);
 187                if (dep->flags & I915_DEPENDENCY_ALLOC)
 188                        i915_dependency_free(i915, dep);
 189        }
 190}
 191
 192static void
 193i915_priotree_init(struct i915_priotree *pt)
 194{
 195        INIT_LIST_HEAD(&pt->signalers_list);
 196        INIT_LIST_HEAD(&pt->waiters_list);
 197        INIT_LIST_HEAD(&pt->link);
 198        pt->priority = I915_PRIORITY_INVALID;
 199}
 200
 201static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
 202{
 203        struct intel_engine_cs *engine;
 204        enum intel_engine_id id;
 205        int ret;
 206
 207        /* Carefully retire all requests without writing to the rings */
 208        ret = i915_gem_wait_for_idle(i915,
 209                                     I915_WAIT_INTERRUPTIBLE |
 210                                     I915_WAIT_LOCKED);
 211        if (ret)
 212                return ret;
 213
 214        /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
 215        for_each_engine(engine, i915, id) {
 216                struct i915_gem_timeline *timeline;
 217                struct intel_timeline *tl = engine->timeline;
 218
 219                if (!i915_seqno_passed(seqno, tl->seqno)) {
 220                        /* Flush any waiters before we reuse the seqno */
 221                        intel_engine_disarm_breadcrumbs(engine);
 222                        GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
 223                }
 224
 225                /* Check we are idle before we fiddle with hw state! */
 226                GEM_BUG_ON(!intel_engine_is_idle(engine));
 227                GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
 228
 229                /* Finally reset hw state */
 230                intel_engine_init_global_seqno(engine, seqno);
 231                tl->seqno = seqno;
 232
 233                list_for_each_entry(timeline, &i915->gt.timelines, link)
 234                        memset(timeline->engine[id].global_sync, 0,
 235                               sizeof(timeline->engine[id].global_sync));
 236        }
 237
 238        return 0;
 239}
 240
 241int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
 242{
 243        struct drm_i915_private *i915 = to_i915(dev);
 244
 245        lockdep_assert_held(&i915->drm.struct_mutex);
 246
 247        if (seqno == 0)
 248                return -EINVAL;
 249
 250        /* HWS page needs to be set less than what we will inject to ring */
 251        return reset_all_global_seqno(i915, seqno - 1);
 252}
 253
 254static void mark_busy(struct drm_i915_private *i915)
 255{
 256        if (i915->gt.awake)
 257                return;
 258
 259        GEM_BUG_ON(!i915->gt.active_requests);
 260
 261        intel_runtime_pm_get_noresume(i915);
 262
 263        /*
 264         * It seems that the DMC likes to transition between the DC states a lot
 265         * when there are no connected displays (no active power domains) during
 266         * command submission.
 267         *
 268         * This activity has negative impact on the performance of the chip with
 269         * huge latencies observed in the interrupt handler and elsewhere.
 270         *
 271         * Work around it by grabbing a GT IRQ power domain whilst there is any
 272         * GT activity, preventing any DC state transitions.
 273         */
 274        intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
 275
 276        i915->gt.awake = true;
 277        if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
 278                i915->gt.epoch = 1;
 279
 280        intel_enable_gt_powersave(i915);
 281        i915_update_gfx_val(i915);
 282        if (INTEL_GEN(i915) >= 6)
 283                gen6_rps_busy(i915);
 284        i915_pmu_gt_unparked(i915);
 285
 286        intel_engines_unpark(i915);
 287
 288        i915_queue_hangcheck(i915);
 289
 290        queue_delayed_work(i915->wq,
 291                           &i915->gt.retire_work,
 292                           round_jiffies_up_relative(HZ));
 293}
 294
 295static int reserve_engine(struct intel_engine_cs *engine)
 296{
 297        struct drm_i915_private *i915 = engine->i915;
 298        u32 active = ++engine->timeline->inflight_seqnos;
 299        u32 seqno = engine->timeline->seqno;
 300        int ret;
 301
 302        /* Reservation is fine until we need to wrap around */
 303        if (unlikely(add_overflows(seqno, active))) {
 304                ret = reset_all_global_seqno(i915, 0);
 305                if (ret) {
 306                        engine->timeline->inflight_seqnos--;
 307                        return ret;
 308                }
 309        }
 310
 311        if (!i915->gt.active_requests++)
 312                mark_busy(i915);
 313
 314        return 0;
 315}
 316
 317static void unreserve_engine(struct intel_engine_cs *engine)
 318{
 319        struct drm_i915_private *i915 = engine->i915;
 320
 321        if (!--i915->gt.active_requests) {
 322                /* Cancel the mark_busy() from our reserve_engine() */
 323                GEM_BUG_ON(!i915->gt.awake);
 324                mod_delayed_work(i915->wq,
 325                                 &i915->gt.idle_work,
 326                                 msecs_to_jiffies(100));
 327        }
 328
 329        GEM_BUG_ON(!engine->timeline->inflight_seqnos);
 330        engine->timeline->inflight_seqnos--;
 331}
 332
 333void i915_gem_retire_noop(struct i915_gem_active *active,
 334                          struct i915_request *request)
 335{
 336        /* Space left intentionally blank */
 337}
 338
 339static void advance_ring(struct i915_request *request)
 340{
 341        unsigned int tail;
 342
 343        /*
 344         * We know the GPU must have read the request to have
 345         * sent us the seqno + interrupt, so use the position
 346         * of tail of the request to update the last known position
 347         * of the GPU head.
 348         *
 349         * Note this requires that we are always called in request
 350         * completion order.
 351         */
 352        if (list_is_last(&request->ring_link, &request->ring->request_list)) {
 353                /*
 354                 * We may race here with execlists resubmitting this request
 355                 * as we retire it. The resubmission will move the ring->tail
 356                 * forwards (to request->wa_tail). We either read the
 357                 * current value that was written to hw, or the value that
 358                 * is just about to be. Either works, if we miss the last two
 359                 * noops - they are safe to be replayed on a reset.
 360                 */
 361                tail = READ_ONCE(request->ring->tail);
 362        } else {
 363                tail = request->postfix;
 364        }
 365        list_del(&request->ring_link);
 366
 367        request->ring->head = tail;
 368}
 369
 370static void free_capture_list(struct i915_request *request)
 371{
 372        struct i915_capture_list *capture;
 373
 374        capture = request->capture_list;
 375        while (capture) {
 376                struct i915_capture_list *next = capture->next;
 377
 378                kfree(capture);
 379                capture = next;
 380        }
 381}
 382
 383static void i915_request_retire(struct i915_request *request)
 384{
 385        struct intel_engine_cs *engine = request->engine;
 386        struct i915_gem_active *active, *next;
 387
 388        lockdep_assert_held(&request->i915->drm.struct_mutex);
 389        GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
 390        GEM_BUG_ON(!i915_request_completed(request));
 391        GEM_BUG_ON(!request->i915->gt.active_requests);
 392
 393        trace_i915_request_retire(request);
 394
 395        spin_lock_irq(&engine->timeline->lock);
 396        list_del_init(&request->link);
 397        spin_unlock_irq(&engine->timeline->lock);
 398
 399        unreserve_engine(request->engine);
 400        advance_ring(request);
 401
 402        free_capture_list(request);
 403
 404        /*
 405         * Walk through the active list, calling retire on each. This allows
 406         * objects to track their GPU activity and mark themselves as idle
 407         * when their *last* active request is completed (updating state
 408         * tracking lists for eviction, active references for GEM, etc).
 409         *
 410         * As the ->retire() may free the node, we decouple it first and
 411         * pass along the auxiliary information (to avoid dereferencing
 412         * the node after the callback).
 413         */
 414        list_for_each_entry_safe(active, next, &request->active_list, link) {
 415                /*
 416                 * In microbenchmarks or focusing upon time inside the kernel,
 417                 * we may spend an inordinate amount of time simply handling
 418                 * the retirement of requests and processing their callbacks.
 419                 * Of which, this loop itself is particularly hot due to the
 420                 * cache misses when jumping around the list of i915_gem_active.
 421                 * So we try to keep this loop as streamlined as possible and
 422                 * also prefetch the next i915_gem_active to try and hide
 423                 * the likely cache miss.
 424                 */
 425                prefetchw(next);
 426
 427                INIT_LIST_HEAD(&active->link);
 428                RCU_INIT_POINTER(active->request, NULL);
 429
 430                active->retire(active, request);
 431        }
 432
 433        i915_request_remove_from_client(request);
 434
 435        /* Retirement decays the ban score as it is a sign of ctx progress */
 436        atomic_dec_if_positive(&request->ctx->ban_score);
 437
 438        /*
 439         * The backing object for the context is done after switching to the
 440         * *next* context. Therefore we cannot retire the previous context until
 441         * the next context has already started running. However, since we
 442         * cannot take the required locks at i915_request_submit() we
 443         * defer the unpinning of the active context to now, retirement of
 444         * the subsequent request.
 445         */
 446        if (engine->last_retired_context)
 447                engine->context_unpin(engine, engine->last_retired_context);
 448        engine->last_retired_context = request->ctx;
 449
 450        spin_lock_irq(&request->lock);
 451        if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags))
 452                dma_fence_signal_locked(&request->fence);
 453        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 454                intel_engine_cancel_signaling(request);
 455        if (request->waitboost) {
 456                GEM_BUG_ON(!atomic_read(&request->i915->gt_pm.rps.num_waiters));
 457                atomic_dec(&request->i915->gt_pm.rps.num_waiters);
 458        }
 459        spin_unlock_irq(&request->lock);
 460
 461        i915_priotree_fini(request->i915, &request->priotree);
 462        i915_request_put(request);
 463}
 464
 465void i915_request_retire_upto(struct i915_request *rq)
 466{
 467        struct intel_engine_cs *engine = rq->engine;
 468        struct i915_request *tmp;
 469
 470        lockdep_assert_held(&rq->i915->drm.struct_mutex);
 471        GEM_BUG_ON(!i915_request_completed(rq));
 472
 473        if (list_empty(&rq->link))
 474                return;
 475
 476        do {
 477                tmp = list_first_entry(&engine->timeline->requests,
 478                                       typeof(*tmp), link);
 479
 480                i915_request_retire(tmp);
 481        } while (tmp != rq);
 482}
 483
 484static u32 timeline_get_seqno(struct intel_timeline *tl)
 485{
 486        return ++tl->seqno;
 487}
 488
 489void __i915_request_submit(struct i915_request *request)
 490{
 491        struct intel_engine_cs *engine = request->engine;
 492        struct intel_timeline *timeline;
 493        u32 seqno;
 494
 495        GEM_BUG_ON(!irqs_disabled());
 496        lockdep_assert_held(&engine->timeline->lock);
 497
 498        /* Transfer from per-context onto the global per-engine timeline */
 499        timeline = engine->timeline;
 500        GEM_BUG_ON(timeline == request->timeline);
 501        GEM_BUG_ON(request->global_seqno);
 502
 503        seqno = timeline_get_seqno(timeline);
 504        GEM_BUG_ON(!seqno);
 505        GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
 506
 507        /* We may be recursing from the signal callback of another i915 fence */
 508        spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 509        request->global_seqno = seqno;
 510        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 511                intel_engine_enable_signaling(request, false);
 512        spin_unlock(&request->lock);
 513
 514        engine->emit_breadcrumb(request,
 515                                request->ring->vaddr + request->postfix);
 516
 517        spin_lock(&request->timeline->lock);
 518        list_move_tail(&request->link, &timeline->requests);
 519        spin_unlock(&request->timeline->lock);
 520
 521        trace_i915_request_execute(request);
 522
 523        wake_up_all(&request->execute);
 524}
 525
 526void i915_request_submit(struct i915_request *request)
 527{
 528        struct intel_engine_cs *engine = request->engine;
 529        unsigned long flags;
 530
 531        /* Will be called from irq-context when using foreign fences. */
 532        spin_lock_irqsave(&engine->timeline->lock, flags);
 533
 534        __i915_request_submit(request);
 535
 536        spin_unlock_irqrestore(&engine->timeline->lock, flags);
 537}
 538
 539void __i915_request_unsubmit(struct i915_request *request)
 540{
 541        struct intel_engine_cs *engine = request->engine;
 542        struct intel_timeline *timeline;
 543
 544        GEM_BUG_ON(!irqs_disabled());
 545        lockdep_assert_held(&engine->timeline->lock);
 546
 547        /*
 548         * Only unwind in reverse order, required so that the per-context list
 549         * is kept in seqno/ring order.
 550         */
 551        GEM_BUG_ON(!request->global_seqno);
 552        GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
 553        GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
 554                                     request->global_seqno));
 555        engine->timeline->seqno--;
 556
 557        /* We may be recursing from the signal callback of another i915 fence */
 558        spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 559        request->global_seqno = 0;
 560        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 561                intel_engine_cancel_signaling(request);
 562        spin_unlock(&request->lock);
 563
 564        /* Transfer back from the global per-engine timeline to per-context */
 565        timeline = request->timeline;
 566        GEM_BUG_ON(timeline == engine->timeline);
 567
 568        spin_lock(&timeline->lock);
 569        list_move(&request->link, &timeline->requests);
 570        spin_unlock(&timeline->lock);
 571
 572        /*
 573         * We don't need to wake_up any waiters on request->execute, they
 574         * will get woken by any other event or us re-adding this request
 575         * to the engine timeline (__i915_request_submit()). The waiters
 576         * should be quite adapt at finding that the request now has a new
 577         * global_seqno to the one they went to sleep on.
 578         */
 579}
 580
 581void i915_request_unsubmit(struct i915_request *request)
 582{
 583        struct intel_engine_cs *engine = request->engine;
 584        unsigned long flags;
 585
 586        /* Will be called from irq-context when using foreign fences. */
 587        spin_lock_irqsave(&engine->timeline->lock, flags);
 588
 589        __i915_request_unsubmit(request);
 590
 591        spin_unlock_irqrestore(&engine->timeline->lock, flags);
 592}
 593
 594static int __i915_sw_fence_call
 595submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 596{
 597        struct i915_request *request =
 598                container_of(fence, typeof(*request), submit);
 599
 600        switch (state) {
 601        case FENCE_COMPLETE:
 602                trace_i915_request_submit(request);
 603                /*
 604                 * We need to serialize use of the submit_request() callback
 605                 * with its hotplugging performed during an emergency
 606                 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
 607                 * critical section in order to force i915_gem_set_wedged() to
 608                 * wait until the submit_request() is completed before
 609                 * proceeding.
 610                 */
 611                rcu_read_lock();
 612                request->engine->submit_request(request);
 613                rcu_read_unlock();
 614                break;
 615
 616        case FENCE_FREE:
 617                i915_request_put(request);
 618                break;
 619        }
 620
 621        return NOTIFY_DONE;
 622}
 623
 624/**
 625 * i915_request_alloc - allocate a request structure
 626 *
 627 * @engine: engine that we wish to issue the request on.
 628 * @ctx: context that the request will be associated with.
 629 *
 630 * Returns a pointer to the allocated request if successful,
 631 * or an error code if not.
 632 */
 633struct i915_request *
 634i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
 635{
 636        struct drm_i915_private *i915 = engine->i915;
 637        struct i915_request *rq;
 638        struct intel_ring *ring;
 639        int ret;
 640
 641        lockdep_assert_held(&i915->drm.struct_mutex);
 642
 643        /*
 644         * Preempt contexts are reserved for exclusive use to inject a
 645         * preemption context switch. They are never to be used for any trivial
 646         * request!
 647         */
 648        GEM_BUG_ON(ctx == i915->preempt_context);
 649
 650        /*
 651         * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
 652         * EIO if the GPU is already wedged.
 653         */
 654        if (i915_terminally_wedged(&i915->gpu_error))
 655                return ERR_PTR(-EIO);
 656
 657        /*
 658         * Pinning the contexts may generate requests in order to acquire
 659         * GGTT space, so do this first before we reserve a seqno for
 660         * ourselves.
 661         */
 662        ring = engine->context_pin(engine, ctx);
 663        if (IS_ERR(ring))
 664                return ERR_CAST(ring);
 665        GEM_BUG_ON(!ring);
 666
 667        ret = reserve_engine(engine);
 668        if (ret)
 669                goto err_unpin;
 670
 671        ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
 672        if (ret)
 673                goto err_unreserve;
 674
 675        /* Move the oldest request to the slab-cache (if not in use!) */
 676        rq = list_first_entry_or_null(&engine->timeline->requests,
 677                                      typeof(*rq), link);
 678        if (rq && i915_request_completed(rq))
 679                i915_request_retire(rq);
 680
 681        /*
 682         * Beware: Dragons be flying overhead.
 683         *
 684         * We use RCU to look up requests in flight. The lookups may
 685         * race with the request being allocated from the slab freelist.
 686         * That is the request we are writing to here, may be in the process
 687         * of being read by __i915_gem_active_get_rcu(). As such,
 688         * we have to be very careful when overwriting the contents. During
 689         * the RCU lookup, we change chase the request->engine pointer,
 690         * read the request->global_seqno and increment the reference count.
 691         *
 692         * The reference count is incremented atomically. If it is zero,
 693         * the lookup knows the request is unallocated and complete. Otherwise,
 694         * it is either still in use, or has been reallocated and reset
 695         * with dma_fence_init(). This increment is safe for release as we
 696         * check that the request we have a reference to and matches the active
 697         * request.
 698         *
 699         * Before we increment the refcount, we chase the request->engine
 700         * pointer. We must not call kmem_cache_zalloc() or else we set
 701         * that pointer to NULL and cause a crash during the lookup. If
 702         * we see the request is completed (based on the value of the
 703         * old engine and seqno), the lookup is complete and reports NULL.
 704         * If we decide the request is not completed (new engine or seqno),
 705         * then we grab a reference and double check that it is still the
 706         * active request - which it won't be and restart the lookup.
 707         *
 708         * Do not use kmem_cache_zalloc() here!
 709         */
 710        rq = kmem_cache_alloc(i915->requests,
 711                              GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 712        if (unlikely(!rq)) {
 713                /* Ratelimit ourselves to prevent oom from malicious clients */
 714                ret = i915_gem_wait_for_idle(i915,
 715                                             I915_WAIT_LOCKED |
 716                                             I915_WAIT_INTERRUPTIBLE);
 717                if (ret)
 718                        goto err_unreserve;
 719
 720                /*
 721                 * We've forced the client to stall and catch up with whatever
 722                 * backlog there might have been. As we are assuming that we
 723                 * caused the mempressure, now is an opportune time to
 724                 * recover as much memory from the request pool as is possible.
 725                 * Having already penalized the client to stall, we spend
 726                 * a little extra time to re-optimise page allocation.
 727                 */
 728                kmem_cache_shrink(i915->requests);
 729                rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
 730
 731                rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
 732                if (!rq) {
 733                        ret = -ENOMEM;
 734                        goto err_unreserve;
 735                }
 736        }
 737
 738        rq->timeline = i915_gem_context_lookup_timeline(ctx, engine);
 739        GEM_BUG_ON(rq->timeline == engine->timeline);
 740
 741        spin_lock_init(&rq->lock);
 742        dma_fence_init(&rq->fence,
 743                       &i915_fence_ops,
 744                       &rq->lock,
 745                       rq->timeline->fence_context,
 746                       timeline_get_seqno(rq->timeline));
 747
 748        /* We bump the ref for the fence chain */
 749        i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
 750        init_waitqueue_head(&rq->execute);
 751
 752        i915_priotree_init(&rq->priotree);
 753
 754        INIT_LIST_HEAD(&rq->active_list);
 755        rq->i915 = i915;
 756        rq->engine = engine;
 757        rq->ctx = ctx;
 758        rq->ring = ring;
 759
 760        /* No zalloc, must clear what we need by hand */
 761        rq->global_seqno = 0;
 762        rq->signaling.wait.seqno = 0;
 763        rq->file_priv = NULL;
 764        rq->batch = NULL;
 765        rq->capture_list = NULL;
 766        rq->waitboost = false;
 767
 768        /*
 769         * Reserve space in the ring buffer for all the commands required to
 770         * eventually emit this request. This is to guarantee that the
 771         * i915_request_add() call can't fail. Note that the reserve may need
 772         * to be redone if the request is not actually submitted straight
 773         * away, e.g. because a GPU scheduler has deferred it.
 774         */
 775        rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
 776        GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
 777
 778        /*
 779         * Record the position of the start of the request so that
 780         * should we detect the updated seqno part-way through the
 781         * GPU processing the request, we never over-estimate the
 782         * position of the head.
 783         */
 784        rq->head = rq->ring->emit;
 785
 786        /* Unconditionally invalidate GPU caches and TLBs. */
 787        ret = engine->emit_flush(rq, EMIT_INVALIDATE);
 788        if (ret)
 789                goto err_unwind;
 790
 791        ret = engine->request_alloc(rq);
 792        if (ret)
 793                goto err_unwind;
 794
 795        /* Check that we didn't interrupt ourselves with a new request */
 796        GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
 797        return rq;
 798
 799err_unwind:
 800        rq->ring->emit = rq->head;
 801
 802        /* Make sure we didn't add ourselves to external state before freeing */
 803        GEM_BUG_ON(!list_empty(&rq->active_list));
 804        GEM_BUG_ON(!list_empty(&rq->priotree.signalers_list));
 805        GEM_BUG_ON(!list_empty(&rq->priotree.waiters_list));
 806
 807        kmem_cache_free(i915->requests, rq);
 808err_unreserve:
 809        unreserve_engine(engine);
 810err_unpin:
 811        engine->context_unpin(engine, ctx);
 812        return ERR_PTR(ret);
 813}
 814
 815static int
 816i915_request_await_request(struct i915_request *to, struct i915_request *from)
 817{
 818        int ret;
 819
 820        GEM_BUG_ON(to == from);
 821        GEM_BUG_ON(to->timeline == from->timeline);
 822
 823        if (i915_request_completed(from))
 824                return 0;
 825
 826        if (to->engine->schedule) {
 827                ret = i915_priotree_add_dependency(to->i915,
 828                                                   &to->priotree,
 829                                                   &from->priotree);
 830                if (ret < 0)
 831                        return ret;
 832        }
 833
 834        if (to->engine == from->engine) {
 835                ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
 836                                                       &from->submit,
 837                                                       I915_FENCE_GFP);
 838                return ret < 0 ? ret : 0;
 839        }
 840
 841        if (to->engine->semaphore.sync_to) {
 842                u32 seqno;
 843
 844                GEM_BUG_ON(!from->engine->semaphore.signal);
 845
 846                seqno = i915_request_global_seqno(from);
 847                if (!seqno)
 848                        goto await_dma_fence;
 849
 850                if (seqno <= to->timeline->global_sync[from->engine->id])
 851                        return 0;
 852
 853                trace_i915_gem_ring_sync_to(to, from);
 854                ret = to->engine->semaphore.sync_to(to, from);
 855                if (ret)
 856                        return ret;
 857
 858                to->timeline->global_sync[from->engine->id] = seqno;
 859                return 0;
 860        }
 861
 862await_dma_fence:
 863        ret = i915_sw_fence_await_dma_fence(&to->submit,
 864                                            &from->fence, 0,
 865                                            I915_FENCE_GFP);
 866        return ret < 0 ? ret : 0;
 867}
 868
 869int
 870i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
 871{
 872        struct dma_fence **child = &fence;
 873        unsigned int nchild = 1;
 874        int ret;
 875
 876        /*
 877         * Note that if the fence-array was created in signal-on-any mode,
 878         * we should *not* decompose it into its individual fences. However,
 879         * we don't currently store which mode the fence-array is operating
 880         * in. Fortunately, the only user of signal-on-any is private to
 881         * amdgpu and we should not see any incoming fence-array from
 882         * sync-file being in signal-on-any mode.
 883         */
 884        if (dma_fence_is_array(fence)) {
 885                struct dma_fence_array *array = to_dma_fence_array(fence);
 886
 887                child = array->fences;
 888                nchild = array->num_fences;
 889                GEM_BUG_ON(!nchild);
 890        }
 891
 892        do {
 893                fence = *child++;
 894                if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 895                        continue;
 896
 897                /*
 898                 * Requests on the same timeline are explicitly ordered, along
 899                 * with their dependencies, by i915_request_add() which ensures
 900                 * that requests are submitted in-order through each ring.
 901                 */
 902                if (fence->context == rq->fence.context)
 903                        continue;
 904
 905                /* Squash repeated waits to the same timelines */
 906                if (fence->context != rq->i915->mm.unordered_timeline &&
 907                    intel_timeline_sync_is_later(rq->timeline, fence))
 908                        continue;
 909
 910                if (dma_fence_is_i915(fence))
 911                        ret = i915_request_await_request(rq, to_request(fence));
 912                else
 913                        ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
 914                                                            I915_FENCE_TIMEOUT,
 915                                                            I915_FENCE_GFP);
 916                if (ret < 0)
 917                        return ret;
 918
 919                /* Record the latest fence used against each timeline */
 920                if (fence->context != rq->i915->mm.unordered_timeline)
 921                        intel_timeline_sync_set(rq->timeline, fence);
 922        } while (--nchild);
 923
 924        return 0;
 925}
 926
 927/**
 928 * i915_request_await_object - set this request to (async) wait upon a bo
 929 * @to: request we are wishing to use
 930 * @obj: object which may be in use on another ring.
 931 * @write: whether the wait is on behalf of a writer
 932 *
 933 * This code is meant to abstract object synchronization with the GPU.
 934 * Conceptually we serialise writes between engines inside the GPU.
 935 * We only allow one engine to write into a buffer at any time, but
 936 * multiple readers. To ensure each has a coherent view of memory, we must:
 937 *
 938 * - If there is an outstanding write request to the object, the new
 939 *   request must wait for it to complete (either CPU or in hw, requests
 940 *   on the same ring will be naturally ordered).
 941 *
 942 * - If we are a write request (pending_write_domain is set), the new
 943 *   request must wait for outstanding read requests to complete.
 944 *
 945 * Returns 0 if successful, else propagates up the lower layer error.
 946 */
 947int
 948i915_request_await_object(struct i915_request *to,
 949                          struct drm_i915_gem_object *obj,
 950                          bool write)
 951{
 952        struct dma_fence *excl;
 953        int ret = 0;
 954
 955        if (write) {
 956                struct dma_fence **shared;
 957                unsigned int count, i;
 958
 959                ret = reservation_object_get_fences_rcu(obj->resv,
 960                                                        &excl, &count, &shared);
 961                if (ret)
 962                        return ret;
 963
 964                for (i = 0; i < count; i++) {
 965                        ret = i915_request_await_dma_fence(to, shared[i]);
 966                        if (ret)
 967                                break;
 968
 969                        dma_fence_put(shared[i]);
 970                }
 971
 972                for (; i < count; i++)
 973                        dma_fence_put(shared[i]);
 974                kfree(shared);
 975        } else {
 976                excl = reservation_object_get_excl_rcu(obj->resv);
 977        }
 978
 979        if (excl) {
 980                if (ret == 0)
 981                        ret = i915_request_await_dma_fence(to, excl);
 982
 983                dma_fence_put(excl);
 984        }
 985
 986        return ret;
 987}
 988
 989/*
 990 * NB: This function is not allowed to fail. Doing so would mean the the
 991 * request is not being tracked for completion but the work itself is
 992 * going to happen on the hardware. This would be a Bad Thing(tm).
 993 */
 994void __i915_request_add(struct i915_request *request, bool flush_caches)
 995{
 996        struct intel_engine_cs *engine = request->engine;
 997        struct intel_ring *ring = request->ring;
 998        struct intel_timeline *timeline = request->timeline;
 999        struct i915_request *prev;
1000        u32 *cs;
1001        int err;
1002
1003        lockdep_assert_held(&request->i915->drm.struct_mutex);
1004        trace_i915_request_add(request);
1005
1006        /*
1007         * Make sure that no request gazumped us - if it was allocated after
1008         * our i915_request_alloc() and called __i915_request_add() before
1009         * us, the timeline will hold its seqno which is later than ours.
1010         */
1011        GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1012
1013        /*
1014         * To ensure that this call will not fail, space for its emissions
1015         * should already have been reserved in the ring buffer. Let the ring
1016         * know that it is time to use that space up.
1017         */
1018        request->reserved_space = 0;
1019
1020        /*
1021         * Emit any outstanding flushes - execbuf can fail to emit the flush
1022         * after having emitted the batchbuffer command. Hence we need to fix
1023         * things up similar to emitting the lazy request. The difference here
1024         * is that the flush _must_ happen before the next request, no matter
1025         * what.
1026         */
1027        if (flush_caches) {
1028                err = engine->emit_flush(request, EMIT_FLUSH);
1029
1030                /* Not allowed to fail! */
1031                WARN(err, "engine->emit_flush() failed: %d!\n", err);
1032        }
1033
1034        /*
1035         * Record the position of the start of the breadcrumb so that
1036         * should we detect the updated seqno part-way through the
1037         * GPU processing the request, we never over-estimate the
1038         * position of the ring's HEAD.
1039         */
1040        cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1041        GEM_BUG_ON(IS_ERR(cs));
1042        request->postfix = intel_ring_offset(request, cs);
1043
1044        /*
1045         * Seal the request and mark it as pending execution. Note that
1046         * we may inspect this state, without holding any locks, during
1047         * hangcheck. Hence we apply the barrier to ensure that we do not
1048         * see a more recent value in the hws than we are tracking.
1049         */
1050
1051        prev = i915_gem_active_raw(&timeline->last_request,
1052                                   &request->i915->drm.struct_mutex);
1053        if (prev && !i915_request_completed(prev)) {
1054                i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1055                                             &request->submitq);
1056                if (engine->schedule)
1057                        __i915_priotree_add_dependency(&request->priotree,
1058                                                       &prev->priotree,
1059                                                       &request->dep,
1060                                                       0);
1061        }
1062
1063        spin_lock_irq(&timeline->lock);
1064        list_add_tail(&request->link, &timeline->requests);
1065        spin_unlock_irq(&timeline->lock);
1066
1067        GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1068        i915_gem_active_set(&timeline->last_request, request);
1069
1070        list_add_tail(&request->ring_link, &ring->request_list);
1071        request->emitted_jiffies = jiffies;
1072
1073        /*
1074         * Let the backend know a new request has arrived that may need
1075         * to adjust the existing execution schedule due to a high priority
1076         * request - i.e. we may want to preempt the current request in order
1077         * to run a high priority dependency chain *before* we can execute this
1078         * request.
1079         *
1080         * This is called before the request is ready to run so that we can
1081         * decide whether to preempt the entire chain so that it is ready to
1082         * run at the earliest possible convenience.
1083         */
1084        rcu_read_lock();
1085        if (engine->schedule)
1086                engine->schedule(request, request->ctx->priority);
1087        rcu_read_unlock();
1088
1089        local_bh_disable();
1090        i915_sw_fence_commit(&request->submit);
1091        local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1092
1093        /*
1094         * In typical scenarios, we do not expect the previous request on
1095         * the timeline to be still tracked by timeline->last_request if it
1096         * has been completed. If the completed request is still here, that
1097         * implies that request retirement is a long way behind submission,
1098         * suggesting that we haven't been retiring frequently enough from
1099         * the combination of retire-before-alloc, waiters and the background
1100         * retirement worker. So if the last request on this timeline was
1101         * already completed, do a catch up pass, flushing the retirement queue
1102         * up to this client. Since we have now moved the heaviest operations
1103         * during retirement onto secondary workers, such as freeing objects
1104         * or contexts, retiring a bunch of requests is mostly list management
1105         * (and cache misses), and so we should not be overly penalizing this
1106         * client by performing excess work, though we may still performing
1107         * work on behalf of others -- but instead we should benefit from
1108         * improved resource management. (Well, that's the theory at least.)
1109         */
1110        if (prev && i915_request_completed(prev))
1111                i915_request_retire_upto(prev);
1112}
1113
1114static unsigned long local_clock_us(unsigned int *cpu)
1115{
1116        unsigned long t;
1117
1118        /*
1119         * Cheaply and approximately convert from nanoseconds to microseconds.
1120         * The result and subsequent calculations are also defined in the same
1121         * approximate microseconds units. The principal source of timing
1122         * error here is from the simple truncation.
1123         *
1124         * Note that local_clock() is only defined wrt to the current CPU;
1125         * the comparisons are no longer valid if we switch CPUs. Instead of
1126         * blocking preemption for the entire busywait, we can detect the CPU
1127         * switch and use that as indicator of system load and a reason to
1128         * stop busywaiting, see busywait_stop().
1129         */
1130        *cpu = get_cpu();
1131        t = local_clock() >> 10;
1132        put_cpu();
1133
1134        return t;
1135}
1136
1137static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1138{
1139        unsigned int this_cpu;
1140
1141        if (time_after(local_clock_us(&this_cpu), timeout))
1142                return true;
1143
1144        return this_cpu != cpu;
1145}
1146
1147static bool __i915_spin_request(const struct i915_request *rq,
1148                                u32 seqno, int state, unsigned long timeout_us)
1149{
1150        struct intel_engine_cs *engine = rq->engine;
1151        unsigned int irq, cpu;
1152
1153        GEM_BUG_ON(!seqno);
1154
1155        /*
1156         * Only wait for the request if we know it is likely to complete.
1157         *
1158         * We don't track the timestamps around requests, nor the average
1159         * request length, so we do not have a good indicator that this
1160         * request will complete within the timeout. What we do know is the
1161         * order in which requests are executed by the engine and so we can
1162         * tell if the request has started. If the request hasn't started yet,
1163         * it is a fair assumption that it will not complete within our
1164         * relatively short timeout.
1165         */
1166        if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1167                return false;
1168
1169        /*
1170         * When waiting for high frequency requests, e.g. during synchronous
1171         * rendering split between the CPU and GPU, the finite amount of time
1172         * required to set up the irq and wait upon it limits the response
1173         * rate. By busywaiting on the request completion for a short while we
1174         * can service the high frequency waits as quick as possible. However,
1175         * if it is a slow request, we want to sleep as quickly as possible.
1176         * The tradeoff between waiting and sleeping is roughly the time it
1177         * takes to sleep on a request, on the order of a microsecond.
1178         */
1179
1180        irq = atomic_read(&engine->irq_count);
1181        timeout_us += local_clock_us(&cpu);
1182        do {
1183                if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1184                        return seqno == i915_request_global_seqno(rq);
1185
1186                /*
1187                 * Seqno are meant to be ordered *before* the interrupt. If
1188                 * we see an interrupt without a corresponding seqno advance,
1189                 * assume we won't see one in the near future but require
1190                 * the engine->seqno_barrier() to fixup coherency.
1191                 */
1192                if (atomic_read(&engine->irq_count) != irq)
1193                        break;
1194
1195                if (signal_pending_state(state, current))
1196                        break;
1197
1198                if (busywait_stop(timeout_us, cpu))
1199                        break;
1200
1201                cpu_relax();
1202        } while (!need_resched());
1203
1204        return false;
1205}
1206
1207static bool __i915_wait_request_check_and_reset(struct i915_request *request)
1208{
1209        if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1210                return false;
1211
1212        __set_current_state(TASK_RUNNING);
1213        i915_reset(request->i915, 0);
1214        return true;
1215}
1216
1217/**
1218 * i915_request_wait - wait until execution of request has finished
1219 * @rq: the request to wait upon
1220 * @flags: how to wait
1221 * @timeout: how long to wait in jiffies
1222 *
1223 * i915_request_wait() waits for the request to be completed, for a
1224 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1225 * unbounded wait).
1226 *
1227 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1228 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1229 * must not specify that the wait is locked.
1230 *
1231 * Returns the remaining time (in jiffies) if the request completed, which may
1232 * be zero or -ETIME if the request is unfinished after the timeout expires.
1233 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1234 * pending before the request completes.
1235 */
1236long i915_request_wait(struct i915_request *rq,
1237                       unsigned int flags,
1238                       long timeout)
1239{
1240        const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1241                TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1242        wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1243        DEFINE_WAIT_FUNC(reset, default_wake_function);
1244        DEFINE_WAIT_FUNC(exec, default_wake_function);
1245        struct intel_wait wait;
1246
1247        might_sleep();
1248#if IS_ENABLED(CONFIG_LOCKDEP)
1249        GEM_BUG_ON(debug_locks &&
1250                   !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1251                   !!(flags & I915_WAIT_LOCKED));
1252#endif
1253        GEM_BUG_ON(timeout < 0);
1254
1255        if (i915_request_completed(rq))
1256                return timeout;
1257
1258        if (!timeout)
1259                return -ETIME;
1260
1261        trace_i915_request_wait_begin(rq, flags);
1262
1263        add_wait_queue(&rq->execute, &exec);
1264        if (flags & I915_WAIT_LOCKED)
1265                add_wait_queue(errq, &reset);
1266
1267        intel_wait_init(&wait, rq);
1268
1269restart:
1270        do {
1271                set_current_state(state);
1272                if (intel_wait_update_request(&wait, rq))
1273                        break;
1274
1275                if (flags & I915_WAIT_LOCKED &&
1276                    __i915_wait_request_check_and_reset(rq))
1277                        continue;
1278
1279                if (signal_pending_state(state, current)) {
1280                        timeout = -ERESTARTSYS;
1281                        goto complete;
1282                }
1283
1284                if (!timeout) {
1285                        timeout = -ETIME;
1286                        goto complete;
1287                }
1288
1289                timeout = io_schedule_timeout(timeout);
1290        } while (1);
1291
1292        GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1293        GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1294
1295        /* Optimistic short spin before touching IRQs */
1296        if (__i915_spin_request(rq, wait.seqno, state, 5))
1297                goto complete;
1298
1299        set_current_state(state);
1300        if (intel_engine_add_wait(rq->engine, &wait))
1301                /*
1302                 * In order to check that we haven't missed the interrupt
1303                 * as we enabled it, we need to kick ourselves to do a
1304                 * coherent check on the seqno before we sleep.
1305                 */
1306                goto wakeup;
1307
1308        if (flags & I915_WAIT_LOCKED)
1309                __i915_wait_request_check_and_reset(rq);
1310
1311        for (;;) {
1312                if (signal_pending_state(state, current)) {
1313                        timeout = -ERESTARTSYS;
1314                        break;
1315                }
1316
1317                if (!timeout) {
1318                        timeout = -ETIME;
1319                        break;
1320                }
1321
1322                timeout = io_schedule_timeout(timeout);
1323
1324                if (intel_wait_complete(&wait) &&
1325                    intel_wait_check_request(&wait, rq))
1326                        break;
1327
1328                set_current_state(state);
1329
1330wakeup:
1331                /*
1332                 * Carefully check if the request is complete, giving time
1333                 * for the seqno to be visible following the interrupt.
1334                 * We also have to check in case we are kicked by the GPU
1335                 * reset in order to drop the struct_mutex.
1336                 */
1337                if (__i915_request_irq_complete(rq))
1338                        break;
1339
1340                /*
1341                 * If the GPU is hung, and we hold the lock, reset the GPU
1342                 * and then check for completion. On a full reset, the engine's
1343                 * HW seqno will be advanced passed us and we are complete.
1344                 * If we do a partial reset, we have to wait for the GPU to
1345                 * resume and update the breadcrumb.
1346                 *
1347                 * If we don't hold the mutex, we can just wait for the worker
1348                 * to come along and update the breadcrumb (either directly
1349                 * itself, or indirectly by recovering the GPU).
1350                 */
1351                if (flags & I915_WAIT_LOCKED &&
1352                    __i915_wait_request_check_and_reset(rq))
1353                        continue;
1354
1355                /* Only spin if we know the GPU is processing this request */
1356                if (__i915_spin_request(rq, wait.seqno, state, 2))
1357                        break;
1358
1359                if (!intel_wait_check_request(&wait, rq)) {
1360                        intel_engine_remove_wait(rq->engine, &wait);
1361                        goto restart;
1362                }
1363        }
1364
1365        intel_engine_remove_wait(rq->engine, &wait);
1366complete:
1367        __set_current_state(TASK_RUNNING);
1368        if (flags & I915_WAIT_LOCKED)
1369                remove_wait_queue(errq, &reset);
1370        remove_wait_queue(&rq->execute, &exec);
1371        trace_i915_request_wait_end(rq);
1372
1373        return timeout;
1374}
1375
1376static void engine_retire_requests(struct intel_engine_cs *engine)
1377{
1378        struct i915_request *request, *next;
1379        u32 seqno = intel_engine_get_seqno(engine);
1380        LIST_HEAD(retire);
1381
1382        spin_lock_irq(&engine->timeline->lock);
1383        list_for_each_entry_safe(request, next,
1384                                 &engine->timeline->requests, link) {
1385                if (!i915_seqno_passed(seqno, request->global_seqno))
1386                        break;
1387
1388                list_move_tail(&request->link, &retire);
1389        }
1390        spin_unlock_irq(&engine->timeline->lock);
1391
1392        list_for_each_entry_safe(request, next, &retire, link)
1393                i915_request_retire(request);
1394}
1395
1396void i915_retire_requests(struct drm_i915_private *i915)
1397{
1398        struct intel_engine_cs *engine;
1399        enum intel_engine_id id;
1400
1401        lockdep_assert_held(&i915->drm.struct_mutex);
1402
1403        if (!i915->gt.active_requests)
1404                return;
1405
1406        for_each_engine(engine, i915, id)
1407                engine_retire_requests(engine);
1408}
1409
1410#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1411#include "selftests/mock_request.c"
1412#include "selftests/i915_request.c"
1413#endif
1414