linux/drivers/gpu/drm/i915/intel_device_info.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <drm/drm_print.h>
  26
  27#include "intel_device_info.h"
  28#include "i915_drv.h"
  29
  30#define PLATFORM_NAME(x) [INTEL_##x] = #x
  31static const char * const platform_names[] = {
  32        PLATFORM_NAME(I830),
  33        PLATFORM_NAME(I845G),
  34        PLATFORM_NAME(I85X),
  35        PLATFORM_NAME(I865G),
  36        PLATFORM_NAME(I915G),
  37        PLATFORM_NAME(I915GM),
  38        PLATFORM_NAME(I945G),
  39        PLATFORM_NAME(I945GM),
  40        PLATFORM_NAME(G33),
  41        PLATFORM_NAME(PINEVIEW),
  42        PLATFORM_NAME(I965G),
  43        PLATFORM_NAME(I965GM),
  44        PLATFORM_NAME(G45),
  45        PLATFORM_NAME(GM45),
  46        PLATFORM_NAME(IRONLAKE),
  47        PLATFORM_NAME(SANDYBRIDGE),
  48        PLATFORM_NAME(IVYBRIDGE),
  49        PLATFORM_NAME(VALLEYVIEW),
  50        PLATFORM_NAME(HASWELL),
  51        PLATFORM_NAME(BROADWELL),
  52        PLATFORM_NAME(CHERRYVIEW),
  53        PLATFORM_NAME(SKYLAKE),
  54        PLATFORM_NAME(BROXTON),
  55        PLATFORM_NAME(KABYLAKE),
  56        PLATFORM_NAME(GEMINILAKE),
  57        PLATFORM_NAME(COFFEELAKE),
  58        PLATFORM_NAME(CANNONLAKE),
  59        PLATFORM_NAME(ICELAKE),
  60};
  61#undef PLATFORM_NAME
  62
  63const char *intel_platform_name(enum intel_platform platform)
  64{
  65        BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
  66
  67        if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
  68                         platform_names[platform] == NULL))
  69                return "<unknown>";
  70
  71        return platform_names[platform];
  72}
  73
  74void intel_device_info_dump_flags(const struct intel_device_info *info,
  75                                  struct drm_printer *p)
  76{
  77#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
  78        DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  79#undef PRINT_FLAG
  80}
  81
  82static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
  83{
  84        int s;
  85
  86        drm_printf(p, "slice mask: %04x\n", sseu->slice_mask);
  87        drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask));
  88        drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
  89        for (s = 0; s < ARRAY_SIZE(sseu->subslice_mask); s++) {
  90                drm_printf(p, "slice%d %u subslices mask=%04x\n",
  91                           s, hweight8(sseu->subslice_mask[s]),
  92                           sseu->subslice_mask[s]);
  93        }
  94        drm_printf(p, "EU total: %u\n", sseu->eu_total);
  95        drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
  96        drm_printf(p, "has slice power gating: %s\n",
  97                   yesno(sseu->has_slice_pg));
  98        drm_printf(p, "has subslice power gating: %s\n",
  99                   yesno(sseu->has_subslice_pg));
 100        drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
 101}
 102
 103void intel_device_info_dump_runtime(const struct intel_device_info *info,
 104                                    struct drm_printer *p)
 105{
 106        sseu_dump(&info->sseu, p);
 107
 108        drm_printf(p, "CS timestamp frequency: %u kHz\n",
 109                   info->cs_timestamp_frequency_khz);
 110}
 111
 112void intel_device_info_dump(const struct intel_device_info *info,
 113                            struct drm_printer *p)
 114{
 115        struct drm_i915_private *dev_priv =
 116                container_of(info, struct drm_i915_private, info);
 117
 118        drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
 119                   INTEL_DEVID(dev_priv),
 120                   INTEL_REVID(dev_priv),
 121                   intel_platform_name(info->platform),
 122                   info->gen);
 123
 124        intel_device_info_dump_flags(info, p);
 125}
 126
 127void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
 128                                     struct drm_printer *p)
 129{
 130        int s, ss;
 131
 132        if (sseu->max_slices == 0) {
 133                drm_printf(p, "Unavailable\n");
 134                return;
 135        }
 136
 137        for (s = 0; s < sseu->max_slices; s++) {
 138                drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
 139                           s, hweight8(sseu->subslice_mask[s]),
 140                           sseu->subslice_mask[s]);
 141
 142                for (ss = 0; ss < sseu->max_subslices; ss++) {
 143                        u16 enabled_eus = sseu_get_eus(sseu, s, ss);
 144
 145                        drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
 146                                   ss, hweight16(enabled_eus), enabled_eus);
 147                }
 148        }
 149}
 150
 151static u16 compute_eu_total(const struct sseu_dev_info *sseu)
 152{
 153        u16 i, total = 0;
 154
 155        for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
 156                total += hweight8(sseu->eu_mask[i]);
 157
 158        return total;
 159}
 160
 161static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
 162{
 163        struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
 164        const u32 fuse2 = I915_READ(GEN8_FUSE2);
 165        int s, ss;
 166        const int eu_mask = 0xff;
 167        u32 subslice_mask, eu_en;
 168
 169        sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
 170                            GEN10_F2_S_ENA_SHIFT;
 171        sseu->max_slices = 6;
 172        sseu->max_subslices = 4;
 173        sseu->max_eus_per_subslice = 8;
 174
 175        subslice_mask = (1 << 4) - 1;
 176        subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
 177                           GEN10_F2_SS_DIS_SHIFT);
 178
 179        /*
 180         * Slice0 can have up to 3 subslices, but there are only 2 in
 181         * slice1/2.
 182         */
 183        sseu->subslice_mask[0] = subslice_mask;
 184        for (s = 1; s < sseu->max_slices; s++)
 185                sseu->subslice_mask[s] = subslice_mask & 0x3;
 186
 187        /* Slice0 */
 188        eu_en = ~I915_READ(GEN8_EU_DISABLE0);
 189        for (ss = 0; ss < sseu->max_subslices; ss++)
 190                sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
 191        /* Slice1 */
 192        sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
 193        eu_en = ~I915_READ(GEN8_EU_DISABLE1);
 194        sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
 195        /* Slice2 */
 196        sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
 197        sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
 198        /* Slice3 */
 199        sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
 200        eu_en = ~I915_READ(GEN8_EU_DISABLE2);
 201        sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
 202        /* Slice4 */
 203        sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
 204        sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
 205        /* Slice5 */
 206        sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
 207        eu_en = ~I915_READ(GEN10_EU_DISABLE3);
 208        sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
 209
 210        /* Do a second pass where we mark the subslices disabled if all their
 211         * eus are off.
 212         */
 213        for (s = 0; s < sseu->max_slices; s++) {
 214                for (ss = 0; ss < sseu->max_subslices; ss++) {
 215                        if (sseu_get_eus(sseu, s, ss) == 0)
 216                                sseu->subslice_mask[s] &= ~BIT(ss);
 217                }
 218        }
 219
 220        sseu->eu_total = compute_eu_total(sseu);
 221
 222        /*
 223         * CNL is expected to always have a uniform distribution
 224         * of EU across subslices with the exception that any one
 225         * EU in any one subslice may be fused off for die
 226         * recovery.
 227         */
 228        sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
 229                                DIV_ROUND_UP(sseu->eu_total,
 230                                             sseu_subslice_total(sseu)) : 0;
 231
 232        /* No restrictions on Power Gating */
 233        sseu->has_slice_pg = 1;
 234        sseu->has_subslice_pg = 1;
 235        sseu->has_eu_pg = 1;
 236}
 237
 238static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
 239{
 240        struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
 241        u32 fuse;
 242
 243        fuse = I915_READ(CHV_FUSE_GT);
 244
 245        sseu->slice_mask = BIT(0);
 246        sseu->max_slices = 1;
 247        sseu->max_subslices = 2;
 248        sseu->max_eus_per_subslice = 8;
 249
 250        if (!(fuse & CHV_FGT_DISABLE_SS0)) {
 251                u8 disabled_mask =
 252                        ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
 253                         CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
 254                        (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
 255                          CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
 256
 257                sseu->subslice_mask[0] |= BIT(0);
 258                sseu_set_eus(sseu, 0, 0, ~disabled_mask);
 259        }
 260
 261        if (!(fuse & CHV_FGT_DISABLE_SS1)) {
 262                u8 disabled_mask =
 263                        ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
 264                         CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
 265                        (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
 266                          CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
 267
 268                sseu->subslice_mask[0] |= BIT(1);
 269                sseu_set_eus(sseu, 0, 1, ~disabled_mask);
 270        }
 271
 272        sseu->eu_total = compute_eu_total(sseu);
 273
 274        /*
 275         * CHV expected to always have a uniform distribution of EU
 276         * across subslices.
 277        */
 278        sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
 279                                sseu->eu_total / sseu_subslice_total(sseu) :
 280                                0;
 281        /*
 282         * CHV supports subslice power gating on devices with more than
 283         * one subslice, and supports EU power gating on devices with
 284         * more than one EU pair per subslice.
 285        */
 286        sseu->has_slice_pg = 0;
 287        sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
 288        sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
 289}
 290
 291static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
 292{
 293        struct intel_device_info *info = mkwrite_device_info(dev_priv);
 294        struct sseu_dev_info *sseu = &info->sseu;
 295        int s, ss;
 296        u32 fuse2, eu_disable, subslice_mask;
 297        const u8 eu_mask = 0xff;
 298
 299        fuse2 = I915_READ(GEN8_FUSE2);
 300        sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
 301
 302        /* BXT has a single slice and at most 3 subslices. */
 303        sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
 304        sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
 305        sseu->max_eus_per_subslice = 8;
 306
 307        /*
 308         * The subslice disable field is global, i.e. it applies
 309         * to each of the enabled slices.
 310        */
 311        subslice_mask = (1 << sseu->max_subslices) - 1;
 312        subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
 313                           GEN9_F2_SS_DIS_SHIFT);
 314
 315        /*
 316         * Iterate through enabled slices and subslices to
 317         * count the total enabled EU.
 318        */
 319        for (s = 0; s < sseu->max_slices; s++) {
 320                if (!(sseu->slice_mask & BIT(s)))
 321                        /* skip disabled slice */
 322                        continue;
 323
 324                sseu->subslice_mask[s] = subslice_mask;
 325
 326                eu_disable = I915_READ(GEN9_EU_DISABLE(s));
 327                for (ss = 0; ss < sseu->max_subslices; ss++) {
 328                        int eu_per_ss;
 329                        u8 eu_disabled_mask;
 330
 331                        if (!(sseu->subslice_mask[s] & BIT(ss)))
 332                                /* skip disabled subslice */
 333                                continue;
 334
 335                        eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
 336
 337                        sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
 338
 339                        eu_per_ss = sseu->max_eus_per_subslice -
 340                                hweight8(eu_disabled_mask);
 341
 342                        /*
 343                         * Record which subslice(s) has(have) 7 EUs. we
 344                         * can tune the hash used to spread work among
 345                         * subslices if they are unbalanced.
 346                         */
 347                        if (eu_per_ss == 7)
 348                                sseu->subslice_7eu[s] |= BIT(ss);
 349                }
 350        }
 351
 352        sseu->eu_total = compute_eu_total(sseu);
 353
 354        /*
 355         * SKL is expected to always have a uniform distribution
 356         * of EU across subslices with the exception that any one
 357         * EU in any one subslice may be fused off for die
 358         * recovery. BXT is expected to be perfectly uniform in EU
 359         * distribution.
 360        */
 361        sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
 362                                DIV_ROUND_UP(sseu->eu_total,
 363                                             sseu_subslice_total(sseu)) : 0;
 364        /*
 365         * SKL+ supports slice power gating on devices with more than
 366         * one slice, and supports EU power gating on devices with
 367         * more than one EU pair per subslice. BXT+ supports subslice
 368         * power gating on devices with more than one subslice, and
 369         * supports EU power gating on devices with more than one EU
 370         * pair per subslice.
 371        */
 372        sseu->has_slice_pg =
 373                !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
 374        sseu->has_subslice_pg =
 375                IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
 376        sseu->has_eu_pg = sseu->eu_per_subslice > 2;
 377
 378        if (IS_GEN9_LP(dev_priv)) {
 379#define IS_SS_DISABLED(ss)      (!(sseu->subslice_mask[0] & BIT(ss)))
 380                info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
 381
 382                sseu->min_eu_in_pool = 0;
 383                if (info->has_pooled_eu) {
 384                        if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
 385                                sseu->min_eu_in_pool = 3;
 386                        else if (IS_SS_DISABLED(1))
 387                                sseu->min_eu_in_pool = 6;
 388                        else
 389                                sseu->min_eu_in_pool = 9;
 390                }
 391#undef IS_SS_DISABLED
 392        }
 393}
 394
 395static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
 396{
 397        struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
 398        int s, ss;
 399        u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
 400
 401        fuse2 = I915_READ(GEN8_FUSE2);
 402        sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
 403        sseu->max_slices = 3;
 404        sseu->max_subslices = 3;
 405        sseu->max_eus_per_subslice = 8;
 406
 407        /*
 408         * The subslice disable field is global, i.e. it applies
 409         * to each of the enabled slices.
 410         */
 411        subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
 412        subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
 413                           GEN8_F2_SS_DIS_SHIFT);
 414
 415        eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
 416        eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
 417                        ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
 418                         (32 - GEN8_EU_DIS0_S1_SHIFT));
 419        eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
 420                        ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
 421                         (32 - GEN8_EU_DIS1_S2_SHIFT));
 422
 423        /*
 424         * Iterate through enabled slices and subslices to
 425         * count the total enabled EU.
 426         */
 427        for (s = 0; s < sseu->max_slices; s++) {
 428                if (!(sseu->slice_mask & BIT(s)))
 429                        /* skip disabled slice */
 430                        continue;
 431
 432                sseu->subslice_mask[s] = subslice_mask;
 433
 434                for (ss = 0; ss < sseu->max_subslices; ss++) {
 435                        u8 eu_disabled_mask;
 436                        u32 n_disabled;
 437
 438                        if (!(sseu->subslice_mask[ss] & BIT(ss)))
 439                                /* skip disabled subslice */
 440                                continue;
 441
 442                        eu_disabled_mask =
 443                                eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
 444
 445                        sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
 446
 447                        n_disabled = hweight8(eu_disabled_mask);
 448
 449                        /*
 450                         * Record which subslices have 7 EUs.
 451                         */
 452                        if (sseu->max_eus_per_subslice - n_disabled == 7)
 453                                sseu->subslice_7eu[s] |= 1 << ss;
 454                }
 455        }
 456
 457        sseu->eu_total = compute_eu_total(sseu);
 458
 459        /*
 460         * BDW is expected to always have a uniform distribution of EU across
 461         * subslices with the exception that any one EU in any one subslice may
 462         * be fused off for die recovery.
 463         */
 464        sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
 465                                DIV_ROUND_UP(sseu->eu_total,
 466                                             sseu_subslice_total(sseu)) : 0;
 467
 468        /*
 469         * BDW supports slice power gating on devices with more than
 470         * one slice.
 471         */
 472        sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
 473        sseu->has_subslice_pg = 0;
 474        sseu->has_eu_pg = 0;
 475}
 476
 477static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
 478{
 479        struct intel_device_info *info = mkwrite_device_info(dev_priv);
 480        struct sseu_dev_info *sseu = &info->sseu;
 481        u32 fuse1;
 482        int s, ss;
 483
 484        /*
 485         * There isn't a register to tell us how many slices/subslices. We
 486         * work off the PCI-ids here.
 487         */
 488        switch (info->gt) {
 489        default:
 490                MISSING_CASE(info->gt);
 491                /* fall through */
 492        case 1:
 493                sseu->slice_mask = BIT(0);
 494                sseu->subslice_mask[0] = BIT(0);
 495                break;
 496        case 2:
 497                sseu->slice_mask = BIT(0);
 498                sseu->subslice_mask[0] = BIT(0) | BIT(1);
 499                break;
 500        case 3:
 501                sseu->slice_mask = BIT(0) | BIT(1);
 502                sseu->subslice_mask[0] = BIT(0) | BIT(1);
 503                sseu->subslice_mask[1] = BIT(0) | BIT(1);
 504                break;
 505        }
 506
 507        sseu->max_slices = hweight8(sseu->slice_mask);
 508        sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
 509
 510        fuse1 = I915_READ(HSW_PAVP_FUSE1);
 511        switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
 512        default:
 513                MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
 514                             HSW_F1_EU_DIS_SHIFT);
 515                /* fall through */
 516        case HSW_F1_EU_DIS_10EUS:
 517                sseu->eu_per_subslice = 10;
 518                break;
 519        case HSW_F1_EU_DIS_8EUS:
 520                sseu->eu_per_subslice = 8;
 521                break;
 522        case HSW_F1_EU_DIS_6EUS:
 523                sseu->eu_per_subslice = 6;
 524                break;
 525        }
 526        sseu->max_eus_per_subslice = sseu->eu_per_subslice;
 527
 528        for (s = 0; s < sseu->max_slices; s++) {
 529                for (ss = 0; ss < sseu->max_subslices; ss++) {
 530                        sseu_set_eus(sseu, s, ss,
 531                                     (1UL << sseu->eu_per_subslice) - 1);
 532                }
 533        }
 534
 535        sseu->eu_total = compute_eu_total(sseu);
 536
 537        /* No powergating for you. */
 538        sseu->has_slice_pg = 0;
 539        sseu->has_subslice_pg = 0;
 540        sseu->has_eu_pg = 0;
 541}
 542
 543static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
 544{
 545        u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
 546        u32 base_freq, frac_freq;
 547
 548        base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
 549                     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
 550        base_freq *= 1000;
 551
 552        frac_freq = ((ts_override &
 553                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
 554                     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
 555        frac_freq = 1000 / (frac_freq + 1);
 556
 557        return base_freq + frac_freq;
 558}
 559
 560static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
 561{
 562        u32 f12_5_mhz = 12500;
 563        u32 f19_2_mhz = 19200;
 564        u32 f24_mhz = 24000;
 565
 566        if (INTEL_GEN(dev_priv) <= 4) {
 567                /* PRMs say:
 568                 *
 569                 *     "The value in this register increments once every 16
 570                 *      hclks." (through the “Clocking Configuration”
 571                 *      (“CLKCFG”) MCHBAR register)
 572                 */
 573                return dev_priv->rawclk_freq / 16;
 574        } else if (INTEL_GEN(dev_priv) <= 8) {
 575                /* PRMs say:
 576                 *
 577                 *     "The PCU TSC counts 10ns increments; this timestamp
 578                 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
 579                 *      rolling over every 1.5 hours).
 580                 */
 581                return f12_5_mhz;
 582        } else if (INTEL_GEN(dev_priv) <= 9) {
 583                u32 ctc_reg = I915_READ(CTC_MODE);
 584                u32 freq = 0;
 585
 586                if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 587                        freq = read_reference_ts_freq(dev_priv);
 588                } else {
 589                        freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
 590
 591                        /* Now figure out how the command stream's timestamp
 592                         * register increments from this frequency (it might
 593                         * increment only every few clock cycle).
 594                         */
 595                        freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
 596                                      CTC_SHIFT_PARAMETER_SHIFT);
 597                }
 598
 599                return freq;
 600        } else if (INTEL_GEN(dev_priv) <= 10) {
 601                u32 ctc_reg = I915_READ(CTC_MODE);
 602                u32 freq = 0;
 603                u32 rpm_config_reg = 0;
 604
 605                /* First figure out the reference frequency. There are 2 ways
 606                 * we can compute the frequency, either through the
 607                 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
 608                 * tells us which one we should use.
 609                 */
 610                if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 611                        freq = read_reference_ts_freq(dev_priv);
 612                } else {
 613                        u32 crystal_clock;
 614
 615                        rpm_config_reg = I915_READ(RPM_CONFIG0);
 616                        crystal_clock = (rpm_config_reg &
 617                                         GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 618                                GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 619                        switch (crystal_clock) {
 620                        case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 621                                freq = f19_2_mhz;
 622                                break;
 623                        case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 624                                freq = f24_mhz;
 625                                break;
 626                        }
 627
 628                        /* Now figure out how the command stream's timestamp
 629                         * register increments from this frequency (it might
 630                         * increment only every few clock cycle).
 631                         */
 632                        freq >>= 3 - ((rpm_config_reg &
 633                                       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
 634                                      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
 635                }
 636
 637                return freq;
 638        }
 639
 640        MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
 641        return 0;
 642}
 643
 644/**
 645 * intel_device_info_runtime_init - initialize runtime info
 646 * @info: intel device info struct
 647 *
 648 * Determine various intel_device_info fields at runtime.
 649 *
 650 * Use it when either:
 651 *   - it's judged too laborious to fill n static structures with the limit
 652 *     when a simple if statement does the job,
 653 *   - run-time checks (eg read fuse/strap registers) are needed.
 654 *
 655 * This function needs to be called:
 656 *   - after the MMIO has been setup as we are reading registers,
 657 *   - after the PCH has been detected,
 658 *   - before the first usage of the fields it can tweak.
 659 */
 660void intel_device_info_runtime_init(struct intel_device_info *info)
 661{
 662        struct drm_i915_private *dev_priv =
 663                container_of(info, struct drm_i915_private, info);
 664        enum pipe pipe;
 665
 666        if (INTEL_GEN(dev_priv) >= 10) {
 667                for_each_pipe(dev_priv, pipe)
 668                        info->num_scalers[pipe] = 2;
 669        } else if (INTEL_GEN(dev_priv) == 9) {
 670                info->num_scalers[PIPE_A] = 2;
 671                info->num_scalers[PIPE_B] = 2;
 672                info->num_scalers[PIPE_C] = 1;
 673        }
 674
 675        BUILD_BUG_ON(I915_NUM_ENGINES >
 676                     sizeof(intel_ring_mask_t) * BITS_PER_BYTE);
 677
 678        /*
 679         * Skylake and Broxton currently don't expose the topmost plane as its
 680         * use is exclusive with the legacy cursor and we only want to expose
 681         * one of those, not both. Until we can safely expose the topmost plane
 682         * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
 683         * we don't expose the topmost plane at all to prevent ABI breakage
 684         * down the line.
 685         */
 686        if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
 687                for_each_pipe(dev_priv, pipe)
 688                        info->num_sprites[pipe] = 3;
 689        else if (IS_BROXTON(dev_priv)) {
 690                info->num_sprites[PIPE_A] = 2;
 691                info->num_sprites[PIPE_B] = 2;
 692                info->num_sprites[PIPE_C] = 1;
 693        } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 694                for_each_pipe(dev_priv, pipe)
 695                        info->num_sprites[pipe] = 2;
 696        } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
 697                for_each_pipe(dev_priv, pipe)
 698                        info->num_sprites[pipe] = 1;
 699        }
 700
 701        if (i915_modparams.disable_display) {
 702                DRM_INFO("Display disabled (module parameter)\n");
 703                info->num_pipes = 0;
 704        } else if (info->num_pipes > 0 &&
 705                   (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
 706                   HAS_PCH_SPLIT(dev_priv)) {
 707                u32 fuse_strap = I915_READ(FUSE_STRAP);
 708                u32 sfuse_strap = I915_READ(SFUSE_STRAP);
 709
 710                /*
 711                 * SFUSE_STRAP is supposed to have a bit signalling the display
 712                 * is fused off. Unfortunately it seems that, at least in
 713                 * certain cases, fused off display means that PCH display
 714                 * reads don't land anywhere. In that case, we read 0s.
 715                 *
 716                 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
 717                 * should be set when taking over after the firmware.
 718                 */
 719                if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
 720                    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
 721                    (HAS_PCH_CPT(dev_priv) &&
 722                     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
 723                        DRM_INFO("Display fused off, disabling\n");
 724                        info->num_pipes = 0;
 725                } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
 726                        DRM_INFO("PipeC fused off\n");
 727                        info->num_pipes -= 1;
 728                }
 729        } else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
 730                u32 dfsm = I915_READ(SKL_DFSM);
 731                u8 disabled_mask = 0;
 732                bool invalid;
 733                int num_bits;
 734
 735                if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
 736                        disabled_mask |= BIT(PIPE_A);
 737                if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
 738                        disabled_mask |= BIT(PIPE_B);
 739                if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
 740                        disabled_mask |= BIT(PIPE_C);
 741
 742                num_bits = hweight8(disabled_mask);
 743
 744                switch (disabled_mask) {
 745                case BIT(PIPE_A):
 746                case BIT(PIPE_B):
 747                case BIT(PIPE_A) | BIT(PIPE_B):
 748                case BIT(PIPE_A) | BIT(PIPE_C):
 749                        invalid = true;
 750                        break;
 751                default:
 752                        invalid = false;
 753                }
 754
 755                if (num_bits > info->num_pipes || invalid)
 756                        DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
 757                                  disabled_mask);
 758                else
 759                        info->num_pipes -= num_bits;
 760        }
 761
 762        /* Initialize slice/subslice/EU info */
 763        if (IS_HASWELL(dev_priv))
 764                haswell_sseu_info_init(dev_priv);
 765        else if (IS_CHERRYVIEW(dev_priv))
 766                cherryview_sseu_info_init(dev_priv);
 767        else if (IS_BROADWELL(dev_priv))
 768                broadwell_sseu_info_init(dev_priv);
 769        else if (INTEL_GEN(dev_priv) == 9)
 770                gen9_sseu_info_init(dev_priv);
 771        else if (INTEL_GEN(dev_priv) >= 10)
 772                gen10_sseu_info_init(dev_priv);
 773
 774        /* Initialize command stream timestamp frequency */
 775        info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
 776}
 777
 778void intel_driver_caps_print(const struct intel_driver_caps *caps,
 779                             struct drm_printer *p)
 780{
 781        drm_printf(p, "scheduler: %x\n", caps->scheduler);
 782}
 783