linux/drivers/gpu/drm/i915/intel_lrc.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134#include <linux/interrupt.h>
 135
 136#include <drm/drmP.h>
 137#include <drm/i915_drm.h>
 138#include "i915_drv.h"
 139#include "i915_gem_render_state.h"
 140#include "intel_lrc_reg.h"
 141#include "intel_mocs.h"
 142
 143#define RING_EXECLIST_QFULL             (1 << 0x2)
 144#define RING_EXECLIST1_VALID            (1 << 0x3)
 145#define RING_EXECLIST0_VALID            (1 << 0x4)
 146#define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
 147#define RING_EXECLIST1_ACTIVE           (1 << 0x11)
 148#define RING_EXECLIST0_ACTIVE           (1 << 0x12)
 149
 150#define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
 151#define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
 152#define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
 153#define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
 154#define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
 155#define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
 156
 157#define GEN8_CTX_STATUS_COMPLETED_MASK \
 158         (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
 159
 160/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 161#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 162#define WA_TAIL_DWORDS 2
 163#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
 164
 165static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
 166                                            struct intel_engine_cs *engine);
 167static void execlists_init_reg_state(u32 *reg_state,
 168                                     struct i915_gem_context *ctx,
 169                                     struct intel_engine_cs *engine,
 170                                     struct intel_ring *ring);
 171
 172static inline struct i915_priolist *to_priolist(struct rb_node *rb)
 173{
 174        return rb_entry(rb, struct i915_priolist, node);
 175}
 176
 177static inline int rq_prio(const struct i915_request *rq)
 178{
 179        return rq->priotree.priority;
 180}
 181
 182static inline bool need_preempt(const struct intel_engine_cs *engine,
 183                                const struct i915_request *last,
 184                                int prio)
 185{
 186        return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
 187}
 188
 189/**
 190 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 191 *                                        descriptor for a pinned context
 192 * @ctx: Context to work on
 193 * @engine: Engine the descriptor will be used with
 194 *
 195 * The context descriptor encodes various attributes of a context,
 196 * including its GTT address and some flags. Because it's fairly
 197 * expensive to calculate, we'll just do it once and cache the result,
 198 * which remains valid until the context is unpinned.
 199 *
 200 * This is what a descriptor looks like, from LSB to MSB::
 201 *
 202 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
 203 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 204 *      bits 32-52:    ctx ID, a globally unique tag
 205 *      bits 53-54:    mbz, reserved for use by hardware
 206 *      bits 55-63:    group ID, currently unused and set to 0
 207 *
 208 * Starting from Gen11, the upper dword of the descriptor has a new format:
 209 *
 210 *      bits 32-36:    reserved
 211 *      bits 37-47:    SW context ID
 212 *      bits 48:53:    engine instance
 213 *      bit 54:        mbz, reserved for use by hardware
 214 *      bits 55-60:    SW counter
 215 *      bits 61-63:    engine class
 216 *
 217 * engine info, SW context ID and SW counter need to form a unique number
 218 * (Context ID) per lrc.
 219 */
 220static void
 221intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
 222                                   struct intel_engine_cs *engine)
 223{
 224        struct intel_context *ce = &ctx->engine[engine->id];
 225        u64 desc;
 226
 227        BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
 228        BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
 229
 230        desc = ctx->desc_template;                              /* bits  0-11 */
 231        GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
 232
 233        desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
 234                                                                /* bits 12-31 */
 235        GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
 236
 237        if (INTEL_GEN(ctx->i915) >= 11) {
 238                GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
 239                desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
 240                                                                /* bits 37-47 */
 241
 242                desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
 243                                                                /* bits 48-53 */
 244
 245                /* TODO: decide what to do with SW counter (bits 55-60) */
 246
 247                desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
 248                                                                /* bits 61-63 */
 249        } else {
 250                GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
 251                desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
 252        }
 253
 254        ce->lrc_desc = desc;
 255}
 256
 257static struct i915_priolist *
 258lookup_priolist(struct intel_engine_cs *engine,
 259                struct i915_priotree *pt,
 260                int prio)
 261{
 262        struct intel_engine_execlists * const execlists = &engine->execlists;
 263        struct i915_priolist *p;
 264        struct rb_node **parent, *rb;
 265        bool first = true;
 266
 267        if (unlikely(execlists->no_priolist))
 268                prio = I915_PRIORITY_NORMAL;
 269
 270find_priolist:
 271        /* most positive priority is scheduled first, equal priorities fifo */
 272        rb = NULL;
 273        parent = &execlists->queue.rb_node;
 274        while (*parent) {
 275                rb = *parent;
 276                p = to_priolist(rb);
 277                if (prio > p->priority) {
 278                        parent = &rb->rb_left;
 279                } else if (prio < p->priority) {
 280                        parent = &rb->rb_right;
 281                        first = false;
 282                } else {
 283                        return p;
 284                }
 285        }
 286
 287        if (prio == I915_PRIORITY_NORMAL) {
 288                p = &execlists->default_priolist;
 289        } else {
 290                p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
 291                /* Convert an allocation failure to a priority bump */
 292                if (unlikely(!p)) {
 293                        prio = I915_PRIORITY_NORMAL; /* recurses just once */
 294
 295                        /* To maintain ordering with all rendering, after an
 296                         * allocation failure we have to disable all scheduling.
 297                         * Requests will then be executed in fifo, and schedule
 298                         * will ensure that dependencies are emitted in fifo.
 299                         * There will be still some reordering with existing
 300                         * requests, so if userspace lied about their
 301                         * dependencies that reordering may be visible.
 302                         */
 303                        execlists->no_priolist = true;
 304                        goto find_priolist;
 305                }
 306        }
 307
 308        p->priority = prio;
 309        INIT_LIST_HEAD(&p->requests);
 310        rb_link_node(&p->node, rb, parent);
 311        rb_insert_color(&p->node, &execlists->queue);
 312
 313        if (first)
 314                execlists->first = &p->node;
 315
 316        return p;
 317}
 318
 319static void unwind_wa_tail(struct i915_request *rq)
 320{
 321        rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
 322        assert_ring_tail_valid(rq->ring, rq->tail);
 323}
 324
 325static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
 326{
 327        struct i915_request *rq, *rn;
 328        struct i915_priolist *uninitialized_var(p);
 329        int last_prio = I915_PRIORITY_INVALID;
 330
 331        lockdep_assert_held(&engine->timeline->lock);
 332
 333        list_for_each_entry_safe_reverse(rq, rn,
 334                                         &engine->timeline->requests,
 335                                         link) {
 336                if (i915_request_completed(rq))
 337                        return;
 338
 339                __i915_request_unsubmit(rq);
 340                unwind_wa_tail(rq);
 341
 342                GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
 343                if (rq_prio(rq) != last_prio) {
 344                        last_prio = rq_prio(rq);
 345                        p = lookup_priolist(engine, &rq->priotree, last_prio);
 346                }
 347
 348                list_add(&rq->priotree.link, &p->requests);
 349        }
 350}
 351
 352void
 353execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
 354{
 355        struct intel_engine_cs *engine =
 356                container_of(execlists, typeof(*engine), execlists);
 357
 358        spin_lock_irq(&engine->timeline->lock);
 359        __unwind_incomplete_requests(engine);
 360        spin_unlock_irq(&engine->timeline->lock);
 361}
 362
 363static inline void
 364execlists_context_status_change(struct i915_request *rq, unsigned long status)
 365{
 366        /*
 367         * Only used when GVT-g is enabled now. When GVT-g is disabled,
 368         * The compiler should eliminate this function as dead-code.
 369         */
 370        if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 371                return;
 372
 373        atomic_notifier_call_chain(&rq->engine->context_status_notifier,
 374                                   status, rq);
 375}
 376
 377static inline void
 378execlists_context_schedule_in(struct i915_request *rq)
 379{
 380        execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
 381        intel_engine_context_in(rq->engine);
 382}
 383
 384static inline void
 385execlists_context_schedule_out(struct i915_request *rq)
 386{
 387        intel_engine_context_out(rq->engine);
 388        execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
 389}
 390
 391static void
 392execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
 393{
 394        ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
 395        ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
 396        ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
 397        ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
 398}
 399
 400static u64 execlists_update_context(struct i915_request *rq)
 401{
 402        struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
 403        struct i915_hw_ppgtt *ppgtt =
 404                rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
 405        u32 *reg_state = ce->lrc_reg_state;
 406
 407        reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
 408
 409        /* True 32b PPGTT with dynamic page allocation: update PDP
 410         * registers and point the unallocated PDPs to scratch page.
 411         * PML4 is allocated during ppgtt init, so this is not needed
 412         * in 48-bit mode.
 413         */
 414        if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
 415                execlists_update_context_pdps(ppgtt, reg_state);
 416
 417        return ce->lrc_desc;
 418}
 419
 420static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
 421{
 422        if (execlists->ctrl_reg) {
 423                writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
 424                writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
 425        } else {
 426                writel(upper_32_bits(desc), execlists->submit_reg);
 427                writel(lower_32_bits(desc), execlists->submit_reg);
 428        }
 429}
 430
 431static void execlists_submit_ports(struct intel_engine_cs *engine)
 432{
 433        struct intel_engine_execlists *execlists = &engine->execlists;
 434        struct execlist_port *port = execlists->port;
 435        unsigned int n;
 436
 437        /*
 438         * ELSQ note: the submit queue is not cleared after being submitted
 439         * to the HW so we need to make sure we always clean it up. This is
 440         * currently ensured by the fact that we always write the same number
 441         * of elsq entries, keep this in mind before changing the loop below.
 442         */
 443        for (n = execlists_num_ports(execlists); n--; ) {
 444                struct i915_request *rq;
 445                unsigned int count;
 446                u64 desc;
 447
 448                rq = port_unpack(&port[n], &count);
 449                if (rq) {
 450                        GEM_BUG_ON(count > !n);
 451                        if (!count++)
 452                                execlists_context_schedule_in(rq);
 453                        port_set(&port[n], port_pack(rq, count));
 454                        desc = execlists_update_context(rq);
 455                        GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
 456
 457                        GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
 458                                  engine->name, n,
 459                                  port[n].context_id, count,
 460                                  rq->global_seqno,
 461                                  rq_prio(rq));
 462                } else {
 463                        GEM_BUG_ON(!n);
 464                        desc = 0;
 465                }
 466
 467                write_desc(execlists, desc, n);
 468        }
 469
 470        /* we need to manually load the submit queue */
 471        if (execlists->ctrl_reg)
 472                writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 473
 474        execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
 475}
 476
 477static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
 478{
 479        return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 480                i915_gem_context_force_single_submission(ctx));
 481}
 482
 483static bool can_merge_ctx(const struct i915_gem_context *prev,
 484                          const struct i915_gem_context *next)
 485{
 486        if (prev != next)
 487                return false;
 488
 489        if (ctx_single_port_submission(prev))
 490                return false;
 491
 492        return true;
 493}
 494
 495static void port_assign(struct execlist_port *port, struct i915_request *rq)
 496{
 497        GEM_BUG_ON(rq == port_request(port));
 498
 499        if (port_isset(port))
 500                i915_request_put(port_request(port));
 501
 502        port_set(port, port_pack(i915_request_get(rq), port_count(port)));
 503}
 504
 505static void inject_preempt_context(struct intel_engine_cs *engine)
 506{
 507        struct intel_engine_execlists *execlists = &engine->execlists;
 508        struct intel_context *ce =
 509                &engine->i915->preempt_context->engine[engine->id];
 510        unsigned int n;
 511
 512        GEM_BUG_ON(execlists->preempt_complete_status !=
 513                   upper_32_bits(ce->lrc_desc));
 514        GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
 515                    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
 516                                       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
 517                   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
 518                                      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
 519
 520        /*
 521         * Switch to our empty preempt context so
 522         * the state of the GPU is known (idle).
 523         */
 524        GEM_TRACE("%s\n", engine->name);
 525        for (n = execlists_num_ports(execlists); --n; )
 526                write_desc(execlists, 0, n);
 527
 528        write_desc(execlists, ce->lrc_desc, n);
 529
 530        /* we need to manually load the submit queue */
 531        if (execlists->ctrl_reg)
 532                writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 533
 534        execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
 535        execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
 536}
 537
 538static void execlists_dequeue(struct intel_engine_cs *engine)
 539{
 540        struct intel_engine_execlists * const execlists = &engine->execlists;
 541        struct execlist_port *port = execlists->port;
 542        const struct execlist_port * const last_port =
 543                &execlists->port[execlists->port_mask];
 544        struct i915_request *last = port_request(port);
 545        struct rb_node *rb;
 546        bool submit = false;
 547
 548        /* Hardware submission is through 2 ports. Conceptually each port
 549         * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
 550         * static for a context, and unique to each, so we only execute
 551         * requests belonging to a single context from each ring. RING_HEAD
 552         * is maintained by the CS in the context image, it marks the place
 553         * where it got up to last time, and through RING_TAIL we tell the CS
 554         * where we want to execute up to this time.
 555         *
 556         * In this list the requests are in order of execution. Consecutive
 557         * requests from the same context are adjacent in the ringbuffer. We
 558         * can combine these requests into a single RING_TAIL update:
 559         *
 560         *              RING_HEAD...req1...req2
 561         *                                    ^- RING_TAIL
 562         * since to execute req2 the CS must first execute req1.
 563         *
 564         * Our goal then is to point each port to the end of a consecutive
 565         * sequence of requests as being the most optimal (fewest wake ups
 566         * and context switches) submission.
 567         */
 568
 569        spin_lock_irq(&engine->timeline->lock);
 570        rb = execlists->first;
 571        GEM_BUG_ON(rb_first(&execlists->queue) != rb);
 572
 573        if (last) {
 574                /*
 575                 * Don't resubmit or switch until all outstanding
 576                 * preemptions (lite-restore) are seen. Then we
 577                 * know the next preemption status we see corresponds
 578                 * to this ELSP update.
 579                 */
 580                GEM_BUG_ON(!execlists_is_active(execlists,
 581                                                EXECLISTS_ACTIVE_USER));
 582                GEM_BUG_ON(!port_count(&port[0]));
 583                if (port_count(&port[0]) > 1)
 584                        goto unlock;
 585
 586                /*
 587                 * If we write to ELSP a second time before the HW has had
 588                 * a chance to respond to the previous write, we can confuse
 589                 * the HW and hit "undefined behaviour". After writing to ELSP,
 590                 * we must then wait until we see a context-switch event from
 591                 * the HW to indicate that it has had a chance to respond.
 592                 */
 593                if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
 594                        goto unlock;
 595
 596                if (need_preempt(engine, last, execlists->queue_priority)) {
 597                        inject_preempt_context(engine);
 598                        goto unlock;
 599                }
 600
 601                /*
 602                 * In theory, we could coalesce more requests onto
 603                 * the second port (the first port is active, with
 604                 * no preemptions pending). However, that means we
 605                 * then have to deal with the possible lite-restore
 606                 * of the second port (as we submit the ELSP, there
 607                 * may be a context-switch) but also we may complete
 608                 * the resubmission before the context-switch. Ergo,
 609                 * coalescing onto the second port will cause a
 610                 * preemption event, but we cannot predict whether
 611                 * that will affect port[0] or port[1].
 612                 *
 613                 * If the second port is already active, we can wait
 614                 * until the next context-switch before contemplating
 615                 * new requests. The GPU will be busy and we should be
 616                 * able to resubmit the new ELSP before it idles,
 617                 * avoiding pipeline bubbles (momentary pauses where
 618                 * the driver is unable to keep up the supply of new
 619                 * work). However, we have to double check that the
 620                 * priorities of the ports haven't been switch.
 621                 */
 622                if (port_count(&port[1]))
 623                        goto unlock;
 624
 625                /*
 626                 * WaIdleLiteRestore:bdw,skl
 627                 * Apply the wa NOOPs to prevent
 628                 * ring:HEAD == rq:TAIL as we resubmit the
 629                 * request. See gen8_emit_breadcrumb() for
 630                 * where we prepare the padding after the
 631                 * end of the request.
 632                 */
 633                last->tail = last->wa_tail;
 634        }
 635
 636        while (rb) {
 637                struct i915_priolist *p = to_priolist(rb);
 638                struct i915_request *rq, *rn;
 639
 640                list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
 641                        /*
 642                         * Can we combine this request with the current port?
 643                         * It has to be the same context/ringbuffer and not
 644                         * have any exceptions (e.g. GVT saying never to
 645                         * combine contexts).
 646                         *
 647                         * If we can combine the requests, we can execute both
 648                         * by updating the RING_TAIL to point to the end of the
 649                         * second request, and so we never need to tell the
 650                         * hardware about the first.
 651                         */
 652                        if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
 653                                /*
 654                                 * If we are on the second port and cannot
 655                                 * combine this request with the last, then we
 656                                 * are done.
 657                                 */
 658                                if (port == last_port) {
 659                                        __list_del_many(&p->requests,
 660                                                        &rq->priotree.link);
 661                                        goto done;
 662                                }
 663
 664                                /*
 665                                 * If GVT overrides us we only ever submit
 666                                 * port[0], leaving port[1] empty. Note that we
 667                                 * also have to be careful that we don't queue
 668                                 * the same context (even though a different
 669                                 * request) to the second port.
 670                                 */
 671                                if (ctx_single_port_submission(last->ctx) ||
 672                                    ctx_single_port_submission(rq->ctx)) {
 673                                        __list_del_many(&p->requests,
 674                                                        &rq->priotree.link);
 675                                        goto done;
 676                                }
 677
 678                                GEM_BUG_ON(last->ctx == rq->ctx);
 679
 680                                if (submit)
 681                                        port_assign(port, last);
 682                                port++;
 683
 684                                GEM_BUG_ON(port_isset(port));
 685                        }
 686
 687                        INIT_LIST_HEAD(&rq->priotree.link);
 688                        __i915_request_submit(rq);
 689                        trace_i915_request_in(rq, port_index(port, execlists));
 690                        last = rq;
 691                        submit = true;
 692                }
 693
 694                rb = rb_next(rb);
 695                rb_erase(&p->node, &execlists->queue);
 696                INIT_LIST_HEAD(&p->requests);
 697                if (p->priority != I915_PRIORITY_NORMAL)
 698                        kmem_cache_free(engine->i915->priorities, p);
 699        }
 700done:
 701        execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
 702        execlists->first = rb;
 703        if (submit)
 704                port_assign(port, last);
 705
 706        /* We must always keep the beast fed if we have work piled up */
 707        GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
 708
 709unlock:
 710        spin_unlock_irq(&engine->timeline->lock);
 711
 712        if (submit) {
 713                execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
 714                execlists_submit_ports(engine);
 715        }
 716
 717        GEM_BUG_ON(port_isset(execlists->port) &&
 718                   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
 719}
 720
 721void
 722execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
 723{
 724        struct execlist_port *port = execlists->port;
 725        unsigned int num_ports = execlists_num_ports(execlists);
 726
 727        while (num_ports-- && port_isset(port)) {
 728                struct i915_request *rq = port_request(port);
 729
 730                GEM_BUG_ON(!execlists->active);
 731                intel_engine_context_out(rq->engine);
 732
 733                execlists_context_status_change(rq,
 734                                                i915_request_completed(rq) ?
 735                                                INTEL_CONTEXT_SCHEDULE_OUT :
 736                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
 737
 738                i915_request_put(rq);
 739
 740                memset(port, 0, sizeof(*port));
 741                port++;
 742        }
 743
 744        execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
 745}
 746
 747static void execlists_cancel_requests(struct intel_engine_cs *engine)
 748{
 749        struct intel_engine_execlists * const execlists = &engine->execlists;
 750        struct i915_request *rq, *rn;
 751        struct rb_node *rb;
 752        unsigned long flags;
 753
 754        GEM_TRACE("%s\n", engine->name);
 755
 756        /*
 757         * Before we call engine->cancel_requests(), we should have exclusive
 758         * access to the submission state. This is arranged for us by the
 759         * caller disabling the interrupt generation, the tasklet and other
 760         * threads that may then access the same state, giving us a free hand
 761         * to reset state. However, we still need to let lockdep be aware that
 762         * we know this state may be accessed in hardirq context, so we
 763         * disable the irq around this manipulation and we want to keep
 764         * the spinlock focused on its duties and not accidentally conflate
 765         * coverage to the submission's irq state. (Similarly, although we
 766         * shouldn't need to disable irq around the manipulation of the
 767         * submission's irq state, we also wish to remind ourselves that
 768         * it is irq state.)
 769         */
 770        local_irq_save(flags);
 771
 772        /* Cancel the requests on the HW and clear the ELSP tracker. */
 773        execlists_cancel_port_requests(execlists);
 774
 775        spin_lock(&engine->timeline->lock);
 776
 777        /* Mark all executing requests as skipped. */
 778        list_for_each_entry(rq, &engine->timeline->requests, link) {
 779                GEM_BUG_ON(!rq->global_seqno);
 780                if (!i915_request_completed(rq))
 781                        dma_fence_set_error(&rq->fence, -EIO);
 782        }
 783
 784        /* Flush the queued requests to the timeline list (for retiring). */
 785        rb = execlists->first;
 786        while (rb) {
 787                struct i915_priolist *p = to_priolist(rb);
 788
 789                list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
 790                        INIT_LIST_HEAD(&rq->priotree.link);
 791
 792                        dma_fence_set_error(&rq->fence, -EIO);
 793                        __i915_request_submit(rq);
 794                }
 795
 796                rb = rb_next(rb);
 797                rb_erase(&p->node, &execlists->queue);
 798                INIT_LIST_HEAD(&p->requests);
 799                if (p->priority != I915_PRIORITY_NORMAL)
 800                        kmem_cache_free(engine->i915->priorities, p);
 801        }
 802
 803        /* Remaining _unready_ requests will be nop'ed when submitted */
 804
 805        execlists->queue_priority = INT_MIN;
 806        execlists->queue = RB_ROOT;
 807        execlists->first = NULL;
 808        GEM_BUG_ON(port_isset(execlists->port));
 809
 810        spin_unlock(&engine->timeline->lock);
 811
 812        /*
 813         * The port is checked prior to scheduling a tasklet, but
 814         * just in case we have suspended the tasklet to do the
 815         * wedging make sure that when it wakes, it decides there
 816         * is no work to do by clearing the irq_posted bit.
 817         */
 818        clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
 819
 820        /* Mark all CS interrupts as complete */
 821        execlists->active = 0;
 822
 823        local_irq_restore(flags);
 824}
 825
 826/*
 827 * Check the unread Context Status Buffers and manage the submission of new
 828 * contexts to the ELSP accordingly.
 829 */
 830static void execlists_submission_tasklet(unsigned long data)
 831{
 832        struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
 833        struct intel_engine_execlists * const execlists = &engine->execlists;
 834        struct execlist_port * const port = execlists->port;
 835        struct drm_i915_private *dev_priv = engine->i915;
 836        bool fw = false;
 837
 838        /*
 839         * We can skip acquiring intel_runtime_pm_get() here as it was taken
 840         * on our behalf by the request (see i915_gem_mark_busy()) and it will
 841         * not be relinquished until the device is idle (see
 842         * i915_gem_idle_work_handler()). As a precaution, we make sure
 843         * that all ELSP are drained i.e. we have processed the CSB,
 844         * before allowing ourselves to idle and calling intel_runtime_pm_put().
 845         */
 846        GEM_BUG_ON(!dev_priv->gt.awake);
 847
 848        /*
 849         * Prefer doing test_and_clear_bit() as a two stage operation to avoid
 850         * imposing the cost of a locked atomic transaction when submitting a
 851         * new request (outside of the context-switch interrupt).
 852         */
 853        while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
 854                /* The HWSP contains a (cacheable) mirror of the CSB */
 855                const u32 *buf =
 856                        &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
 857                unsigned int head, tail;
 858
 859                if (unlikely(execlists->csb_use_mmio)) {
 860                        buf = (u32 * __force)
 861                                (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
 862                        execlists->csb_head = -1; /* force mmio read of CSB ptrs */
 863                }
 864
 865                /* Clear before reading to catch new interrupts */
 866                clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
 867                smp_mb__after_atomic();
 868
 869                if (unlikely(execlists->csb_head == -1)) { /* following a reset */
 870                        if (!fw) {
 871                                intel_uncore_forcewake_get(dev_priv,
 872                                                           execlists->fw_domains);
 873                                fw = true;
 874                        }
 875
 876                        head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
 877                        tail = GEN8_CSB_WRITE_PTR(head);
 878                        head = GEN8_CSB_READ_PTR(head);
 879                        execlists->csb_head = head;
 880                } else {
 881                        const int write_idx =
 882                                intel_hws_csb_write_index(dev_priv) -
 883                                I915_HWS_CSB_BUF0_INDEX;
 884
 885                        head = execlists->csb_head;
 886                        tail = READ_ONCE(buf[write_idx]);
 887                        rmb(); /* Hopefully paired with a wmb() in HW */
 888                }
 889                GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
 890                          engine->name,
 891                          head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
 892                          tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
 893
 894                while (head != tail) {
 895                        struct i915_request *rq;
 896                        unsigned int status;
 897                        unsigned int count;
 898
 899                        if (++head == GEN8_CSB_ENTRIES)
 900                                head = 0;
 901
 902                        /* We are flying near dragons again.
 903                         *
 904                         * We hold a reference to the request in execlist_port[]
 905                         * but no more than that. We are operating in softirq
 906                         * context and so cannot hold any mutex or sleep. That
 907                         * prevents us stopping the requests we are processing
 908                         * in port[] from being retired simultaneously (the
 909                         * breadcrumb will be complete before we see the
 910                         * context-switch). As we only hold the reference to the
 911                         * request, any pointer chasing underneath the request
 912                         * is subject to a potential use-after-free. Thus we
 913                         * store all of the bookkeeping within port[] as
 914                         * required, and avoid using unguarded pointers beneath
 915                         * request itself. The same applies to the atomic
 916                         * status notifier.
 917                         */
 918
 919                        status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
 920                        GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
 921                                  engine->name, head,
 922                                  status, buf[2*head + 1],
 923                                  execlists->active);
 924
 925                        if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
 926                                      GEN8_CTX_STATUS_PREEMPTED))
 927                                execlists_set_active(execlists,
 928                                                     EXECLISTS_ACTIVE_HWACK);
 929                        if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
 930                                execlists_clear_active(execlists,
 931                                                       EXECLISTS_ACTIVE_HWACK);
 932
 933                        if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
 934                                continue;
 935
 936                        /* We should never get a COMPLETED | IDLE_ACTIVE! */
 937                        GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
 938
 939                        if (status & GEN8_CTX_STATUS_COMPLETE &&
 940                            buf[2*head + 1] == execlists->preempt_complete_status) {
 941                                GEM_TRACE("%s preempt-idle\n", engine->name);
 942
 943                                execlists_cancel_port_requests(execlists);
 944                                execlists_unwind_incomplete_requests(execlists);
 945
 946                                GEM_BUG_ON(!execlists_is_active(execlists,
 947                                                                EXECLISTS_ACTIVE_PREEMPT));
 948                                execlists_clear_active(execlists,
 949                                                       EXECLISTS_ACTIVE_PREEMPT);
 950                                continue;
 951                        }
 952
 953                        if (status & GEN8_CTX_STATUS_PREEMPTED &&
 954                            execlists_is_active(execlists,
 955                                                EXECLISTS_ACTIVE_PREEMPT))
 956                                continue;
 957
 958                        GEM_BUG_ON(!execlists_is_active(execlists,
 959                                                        EXECLISTS_ACTIVE_USER));
 960
 961                        rq = port_unpack(port, &count);
 962                        GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
 963                                  engine->name,
 964                                  port->context_id, count,
 965                                  rq ? rq->global_seqno : 0,
 966                                  rq ? rq_prio(rq) : 0);
 967
 968                        /* Check the context/desc id for this event matches */
 969                        GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
 970
 971                        GEM_BUG_ON(count == 0);
 972                        if (--count == 0) {
 973                                GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
 974                                GEM_BUG_ON(port_isset(&port[1]) &&
 975                                           !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
 976                                GEM_BUG_ON(!i915_request_completed(rq));
 977                                execlists_context_schedule_out(rq);
 978                                trace_i915_request_out(rq);
 979                                i915_request_put(rq);
 980
 981                                GEM_TRACE("%s completed ctx=%d\n",
 982                                          engine->name, port->context_id);
 983
 984                                execlists_port_complete(execlists, port);
 985                        } else {
 986                                port_set(port, port_pack(rq, count));
 987                        }
 988
 989                        /* After the final element, the hw should be idle */
 990                        GEM_BUG_ON(port_count(port) == 0 &&
 991                                   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
 992                        if (port_count(port) == 0)
 993                                execlists_clear_active(execlists,
 994                                                       EXECLISTS_ACTIVE_USER);
 995                }
 996
 997                if (head != execlists->csb_head) {
 998                        execlists->csb_head = head;
 999                        writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1000                               dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1001                }
1002        }
1003
1004        if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1005                execlists_dequeue(engine);
1006
1007        if (fw)
1008                intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1009
1010        /* If the engine is now idle, so should be the flag; and vice versa. */
1011        GEM_BUG_ON(execlists_is_active(&engine->execlists,
1012                                       EXECLISTS_ACTIVE_USER) ==
1013                   !port_isset(engine->execlists.port));
1014}
1015
1016static void queue_request(struct intel_engine_cs *engine,
1017                          struct i915_priotree *pt,
1018                          int prio)
1019{
1020        list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
1021}
1022
1023static void submit_queue(struct intel_engine_cs *engine, int prio)
1024{
1025        if (prio > engine->execlists.queue_priority) {
1026                engine->execlists.queue_priority = prio;
1027                tasklet_hi_schedule(&engine->execlists.tasklet);
1028        }
1029}
1030
1031static void execlists_submit_request(struct i915_request *request)
1032{
1033        struct intel_engine_cs *engine = request->engine;
1034        unsigned long flags;
1035
1036        /* Will be called from irq-context when using foreign fences. */
1037        spin_lock_irqsave(&engine->timeline->lock, flags);
1038
1039        queue_request(engine, &request->priotree, rq_prio(request));
1040        submit_queue(engine, rq_prio(request));
1041
1042        GEM_BUG_ON(!engine->execlists.first);
1043        GEM_BUG_ON(list_empty(&request->priotree.link));
1044
1045        spin_unlock_irqrestore(&engine->timeline->lock, flags);
1046}
1047
1048static struct i915_request *pt_to_request(struct i915_priotree *pt)
1049{
1050        return container_of(pt, struct i915_request, priotree);
1051}
1052
1053static struct intel_engine_cs *
1054pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
1055{
1056        struct intel_engine_cs *engine = pt_to_request(pt)->engine;
1057
1058        GEM_BUG_ON(!locked);
1059
1060        if (engine != locked) {
1061                spin_unlock(&locked->timeline->lock);
1062                spin_lock(&engine->timeline->lock);
1063        }
1064
1065        return engine;
1066}
1067
1068static void execlists_schedule(struct i915_request *request, int prio)
1069{
1070        struct intel_engine_cs *engine;
1071        struct i915_dependency *dep, *p;
1072        struct i915_dependency stack;
1073        LIST_HEAD(dfs);
1074
1075        GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1076
1077        if (i915_request_completed(request))
1078                return;
1079
1080        if (prio <= READ_ONCE(request->priotree.priority))
1081                return;
1082
1083        /* Need BKL in order to use the temporary link inside i915_dependency */
1084        lockdep_assert_held(&request->i915->drm.struct_mutex);
1085
1086        stack.signaler = &request->priotree;
1087        list_add(&stack.dfs_link, &dfs);
1088
1089        /*
1090         * Recursively bump all dependent priorities to match the new request.
1091         *
1092         * A naive approach would be to use recursion:
1093         * static void update_priorities(struct i915_priotree *pt, prio) {
1094         *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
1095         *              update_priorities(dep->signal, prio)
1096         *      queue_request(pt);
1097         * }
1098         * but that may have unlimited recursion depth and so runs a very
1099         * real risk of overunning the kernel stack. Instead, we build
1100         * a flat list of all dependencies starting with the current request.
1101         * As we walk the list of dependencies, we add all of its dependencies
1102         * to the end of the list (this may include an already visited
1103         * request) and continue to walk onwards onto the new dependencies. The
1104         * end result is a topological list of requests in reverse order, the
1105         * last element in the list is the request we must execute first.
1106         */
1107        list_for_each_entry(dep, &dfs, dfs_link) {
1108                struct i915_priotree *pt = dep->signaler;
1109
1110                /*
1111                 * Within an engine, there can be no cycle, but we may
1112                 * refer to the same dependency chain multiple times
1113                 * (redundant dependencies are not eliminated) and across
1114                 * engines.
1115                 */
1116                list_for_each_entry(p, &pt->signalers_list, signal_link) {
1117                        GEM_BUG_ON(p == dep); /* no cycles! */
1118
1119                        if (i915_priotree_signaled(p->signaler))
1120                                continue;
1121
1122                        GEM_BUG_ON(p->signaler->priority < pt->priority);
1123                        if (prio > READ_ONCE(p->signaler->priority))
1124                                list_move_tail(&p->dfs_link, &dfs);
1125                }
1126        }
1127
1128        /*
1129         * If we didn't need to bump any existing priorities, and we haven't
1130         * yet submitted this request (i.e. there is no potential race with
1131         * execlists_submit_request()), we can set our own priority and skip
1132         * acquiring the engine locks.
1133         */
1134        if (request->priotree.priority == I915_PRIORITY_INVALID) {
1135                GEM_BUG_ON(!list_empty(&request->priotree.link));
1136                request->priotree.priority = prio;
1137                if (stack.dfs_link.next == stack.dfs_link.prev)
1138                        return;
1139                __list_del_entry(&stack.dfs_link);
1140        }
1141
1142        engine = request->engine;
1143        spin_lock_irq(&engine->timeline->lock);
1144
1145        /* Fifo and depth-first replacement ensure our deps execute before us */
1146        list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1147                struct i915_priotree *pt = dep->signaler;
1148
1149                INIT_LIST_HEAD(&dep->dfs_link);
1150
1151                engine = pt_lock_engine(pt, engine);
1152
1153                if (prio <= pt->priority)
1154                        continue;
1155
1156                pt->priority = prio;
1157                if (!list_empty(&pt->link)) {
1158                        __list_del_entry(&pt->link);
1159                        queue_request(engine, pt, prio);
1160                }
1161                submit_queue(engine, prio);
1162        }
1163
1164        spin_unlock_irq(&engine->timeline->lock);
1165}
1166
1167static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1168{
1169        unsigned int flags;
1170        int err;
1171
1172        /*
1173         * Clear this page out of any CPU caches for coherent swap-in/out.
1174         * We only want to do this on the first bind so that we do not stall
1175         * on an active context (which by nature is already on the GPU).
1176         */
1177        if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1178                err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1179                if (err)
1180                        return err;
1181        }
1182
1183        flags = PIN_GLOBAL | PIN_HIGH;
1184        if (ctx->ggtt_offset_bias)
1185                flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1186
1187        return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1188}
1189
1190static struct intel_ring *
1191execlists_context_pin(struct intel_engine_cs *engine,
1192                      struct i915_gem_context *ctx)
1193{
1194        struct intel_context *ce = &ctx->engine[engine->id];
1195        void *vaddr;
1196        int ret;
1197
1198        lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1199
1200        if (likely(ce->pin_count++))
1201                goto out;
1202        GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1203
1204        ret = execlists_context_deferred_alloc(ctx, engine);
1205        if (ret)
1206                goto err;
1207        GEM_BUG_ON(!ce->state);
1208
1209        ret = __context_pin(ctx, ce->state);
1210        if (ret)
1211                goto err;
1212
1213        vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1214        if (IS_ERR(vaddr)) {
1215                ret = PTR_ERR(vaddr);
1216                goto unpin_vma;
1217        }
1218
1219        ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1220        if (ret)
1221                goto unpin_map;
1222
1223        intel_lr_context_descriptor_update(ctx, engine);
1224
1225        ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1226        ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1227                i915_ggtt_offset(ce->ring->vma);
1228
1229        ce->state->obj->pin_global++;
1230        i915_gem_context_get(ctx);
1231out:
1232        return ce->ring;
1233
1234unpin_map:
1235        i915_gem_object_unpin_map(ce->state->obj);
1236unpin_vma:
1237        __i915_vma_unpin(ce->state);
1238err:
1239        ce->pin_count = 0;
1240        return ERR_PTR(ret);
1241}
1242
1243static void execlists_context_unpin(struct intel_engine_cs *engine,
1244                                    struct i915_gem_context *ctx)
1245{
1246        struct intel_context *ce = &ctx->engine[engine->id];
1247
1248        lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1249        GEM_BUG_ON(ce->pin_count == 0);
1250
1251        if (--ce->pin_count)
1252                return;
1253
1254        intel_ring_unpin(ce->ring);
1255
1256        ce->state->obj->pin_global--;
1257        i915_gem_object_unpin_map(ce->state->obj);
1258        i915_vma_unpin(ce->state);
1259
1260        i915_gem_context_put(ctx);
1261}
1262
1263static int execlists_request_alloc(struct i915_request *request)
1264{
1265        struct intel_engine_cs *engine = request->engine;
1266        struct intel_context *ce = &request->ctx->engine[engine->id];
1267        int ret;
1268
1269        GEM_BUG_ON(!ce->pin_count);
1270
1271        /* Flush enough space to reduce the likelihood of waiting after
1272         * we start building the request - in which case we will just
1273         * have to repeat work.
1274         */
1275        request->reserved_space += EXECLISTS_REQUEST_SIZE;
1276
1277        ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1278        if (ret)
1279                return ret;
1280
1281        /* Note that after this point, we have committed to using
1282         * this request as it is being used to both track the
1283         * state of engine initialisation and liveness of the
1284         * golden renderstate above. Think twice before you try
1285         * to cancel/unwind this request now.
1286         */
1287
1288        request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1289        return 0;
1290}
1291
1292/*
1293 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1294 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1295 * but there is a slight complication as this is applied in WA batch where the
1296 * values are only initialized once so we cannot take register value at the
1297 * beginning and reuse it further; hence we save its value to memory, upload a
1298 * constant value with bit21 set and then we restore it back with the saved value.
1299 * To simplify the WA, a constant value is formed by using the default value
1300 * of this register. This shouldn't be a problem because we are only modifying
1301 * it for a short period and this batch in non-premptible. We can ofcourse
1302 * use additional instructions that read the actual value of the register
1303 * at that time and set our bit of interest but it makes the WA complicated.
1304 *
1305 * This WA is also required for Gen9 so extracting as a function avoids
1306 * code duplication.
1307 */
1308static u32 *
1309gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1310{
1311        *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1312        *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1313        *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1314        *batch++ = 0;
1315
1316        *batch++ = MI_LOAD_REGISTER_IMM(1);
1317        *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1318        *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1319
1320        batch = gen8_emit_pipe_control(batch,
1321                                       PIPE_CONTROL_CS_STALL |
1322                                       PIPE_CONTROL_DC_FLUSH_ENABLE,
1323                                       0);
1324
1325        *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1326        *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1327        *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1328        *batch++ = 0;
1329
1330        return batch;
1331}
1332
1333/*
1334 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1335 * initialized at the beginning and shared across all contexts but this field
1336 * helps us to have multiple batches at different offsets and select them based
1337 * on a criteria. At the moment this batch always start at the beginning of the page
1338 * and at this point we don't have multiple wa_ctx batch buffers.
1339 *
1340 * The number of WA applied are not known at the beginning; we use this field
1341 * to return the no of DWORDS written.
1342 *
1343 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1344 * so it adds NOOPs as padding to make it cacheline aligned.
1345 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1346 * makes a complete batch buffer.
1347 */
1348static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1349{
1350        /* WaDisableCtxRestoreArbitration:bdw,chv */
1351        *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1352
1353        /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1354        if (IS_BROADWELL(engine->i915))
1355                batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1356
1357        /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1358        /* Actual scratch location is at 128 bytes offset */
1359        batch = gen8_emit_pipe_control(batch,
1360                                       PIPE_CONTROL_FLUSH_L3 |
1361                                       PIPE_CONTROL_GLOBAL_GTT_IVB |
1362                                       PIPE_CONTROL_CS_STALL |
1363                                       PIPE_CONTROL_QW_WRITE,
1364                                       i915_ggtt_offset(engine->scratch) +
1365                                       2 * CACHELINE_BYTES);
1366
1367        *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1368
1369        /* Pad to end of cacheline */
1370        while ((unsigned long)batch % CACHELINE_BYTES)
1371                *batch++ = MI_NOOP;
1372
1373        /*
1374         * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1375         * execution depends on the length specified in terms of cache lines
1376         * in the register CTX_RCS_INDIRECT_CTX
1377         */
1378
1379        return batch;
1380}
1381
1382static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1383{
1384        *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1385
1386        /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1387        batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1388
1389        /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1390        *batch++ = MI_LOAD_REGISTER_IMM(1);
1391        *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1392        *batch++ = _MASKED_BIT_DISABLE(
1393                        GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1394        *batch++ = MI_NOOP;
1395
1396        /* WaClearSlmSpaceAtContextSwitch:kbl */
1397        /* Actual scratch location is at 128 bytes offset */
1398        if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1399                batch = gen8_emit_pipe_control(batch,
1400                                               PIPE_CONTROL_FLUSH_L3 |
1401                                               PIPE_CONTROL_GLOBAL_GTT_IVB |
1402                                               PIPE_CONTROL_CS_STALL |
1403                                               PIPE_CONTROL_QW_WRITE,
1404                                               i915_ggtt_offset(engine->scratch)
1405                                               + 2 * CACHELINE_BYTES);
1406        }
1407
1408        /* WaMediaPoolStateCmdInWABB:bxt,glk */
1409        if (HAS_POOLED_EU(engine->i915)) {
1410                /*
1411                 * EU pool configuration is setup along with golden context
1412                 * during context initialization. This value depends on
1413                 * device type (2x6 or 3x6) and needs to be updated based
1414                 * on which subslice is disabled especially for 2x6
1415                 * devices, however it is safe to load default
1416                 * configuration of 3x6 device instead of masking off
1417                 * corresponding bits because HW ignores bits of a disabled
1418                 * subslice and drops down to appropriate config. Please
1419                 * see render_state_setup() in i915_gem_render_state.c for
1420                 * possible configurations, to avoid duplication they are
1421                 * not shown here again.
1422                 */
1423                *batch++ = GEN9_MEDIA_POOL_STATE;
1424                *batch++ = GEN9_MEDIA_POOL_ENABLE;
1425                *batch++ = 0x00777000;
1426                *batch++ = 0;
1427                *batch++ = 0;
1428                *batch++ = 0;
1429        }
1430
1431        *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1432
1433        /* Pad to end of cacheline */
1434        while ((unsigned long)batch % CACHELINE_BYTES)
1435                *batch++ = MI_NOOP;
1436
1437        return batch;
1438}
1439
1440static u32 *
1441gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1442{
1443        int i;
1444
1445        /*
1446         * WaPipeControlBefore3DStateSamplePattern: cnl
1447         *
1448         * Ensure the engine is idle prior to programming a
1449         * 3DSTATE_SAMPLE_PATTERN during a context restore.
1450         */
1451        batch = gen8_emit_pipe_control(batch,
1452                                       PIPE_CONTROL_CS_STALL,
1453                                       0);
1454        /*
1455         * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1456         * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1457         * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1458         * confusing. Since gen8_emit_pipe_control() already advances the
1459         * batch by 6 dwords, we advance the other 10 here, completing a
1460         * cacheline. It's not clear if the workaround requires this padding
1461         * before other commands, or if it's just the regular padding we would
1462         * already have for the workaround bb, so leave it here for now.
1463         */
1464        for (i = 0; i < 10; i++)
1465                *batch++ = MI_NOOP;
1466
1467        /* Pad to end of cacheline */
1468        while ((unsigned long)batch % CACHELINE_BYTES)
1469                *batch++ = MI_NOOP;
1470
1471        return batch;
1472}
1473
1474#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1475
1476static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1477{
1478        struct drm_i915_gem_object *obj;
1479        struct i915_vma *vma;
1480        int err;
1481
1482        obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1483        if (IS_ERR(obj))
1484                return PTR_ERR(obj);
1485
1486        vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1487        if (IS_ERR(vma)) {
1488                err = PTR_ERR(vma);
1489                goto err;
1490        }
1491
1492        err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1493        if (err)
1494                goto err;
1495
1496        engine->wa_ctx.vma = vma;
1497        return 0;
1498
1499err:
1500        i915_gem_object_put(obj);
1501        return err;
1502}
1503
1504static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1505{
1506        i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1507}
1508
1509typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1510
1511static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1512{
1513        struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1514        struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1515                                            &wa_ctx->per_ctx };
1516        wa_bb_func_t wa_bb_fn[2];
1517        struct page *page;
1518        void *batch, *batch_ptr;
1519        unsigned int i;
1520        int ret;
1521
1522        if (GEM_WARN_ON(engine->id != RCS))
1523                return -EINVAL;
1524
1525        switch (INTEL_GEN(engine->i915)) {
1526        case 10:
1527                wa_bb_fn[0] = gen10_init_indirectctx_bb;
1528                wa_bb_fn[1] = NULL;
1529                break;
1530        case 9:
1531                wa_bb_fn[0] = gen9_init_indirectctx_bb;
1532                wa_bb_fn[1] = NULL;
1533                break;
1534        case 8:
1535                wa_bb_fn[0] = gen8_init_indirectctx_bb;
1536                wa_bb_fn[1] = NULL;
1537                break;
1538        default:
1539                MISSING_CASE(INTEL_GEN(engine->i915));
1540                return 0;
1541        }
1542
1543        ret = lrc_setup_wa_ctx(engine);
1544        if (ret) {
1545                DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1546                return ret;
1547        }
1548
1549        page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1550        batch = batch_ptr = kmap_atomic(page);
1551
1552        /*
1553         * Emit the two workaround batch buffers, recording the offset from the
1554         * start of the workaround batch buffer object for each and their
1555         * respective sizes.
1556         */
1557        for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1558                wa_bb[i]->offset = batch_ptr - batch;
1559                if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1560                                            CACHELINE_BYTES))) {
1561                        ret = -EINVAL;
1562                        break;
1563                }
1564                if (wa_bb_fn[i])
1565                        batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1566                wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1567        }
1568
1569        BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1570
1571        kunmap_atomic(batch);
1572        if (ret)
1573                lrc_destroy_wa_ctx(engine);
1574
1575        return ret;
1576}
1577
1578static u8 gtiir[] = {
1579        [RCS] = 0,
1580        [BCS] = 0,
1581        [VCS] = 1,
1582        [VCS2] = 1,
1583        [VECS] = 3,
1584};
1585
1586static void enable_execlists(struct intel_engine_cs *engine)
1587{
1588        struct drm_i915_private *dev_priv = engine->i915;
1589
1590        I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1591
1592        /*
1593         * Make sure we're not enabling the new 12-deep CSB
1594         * FIFO as that requires a slightly updated handling
1595         * in the ctx switch irq. Since we're currently only
1596         * using only 2 elements of the enhanced execlists the
1597         * deeper FIFO it's not needed and it's not worth adding
1598         * more statements to the irq handler to support it.
1599         */
1600        if (INTEL_GEN(dev_priv) >= 11)
1601                I915_WRITE(RING_MODE_GEN7(engine),
1602                           _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1603        else
1604                I915_WRITE(RING_MODE_GEN7(engine),
1605                           _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1606
1607        I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1608                   engine->status_page.ggtt_offset);
1609        POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1610
1611        /* Following the reset, we need to reload the CSB read/write pointers */
1612        engine->execlists.csb_head = -1;
1613}
1614
1615static int gen8_init_common_ring(struct intel_engine_cs *engine)
1616{
1617        struct intel_engine_execlists * const execlists = &engine->execlists;
1618        int ret;
1619
1620        ret = intel_mocs_init_engine(engine);
1621        if (ret)
1622                return ret;
1623
1624        intel_engine_reset_breadcrumbs(engine);
1625        intel_engine_init_hangcheck(engine);
1626
1627        enable_execlists(engine);
1628
1629        /* After a GPU reset, we may have requests to replay */
1630        if (execlists->first)
1631                tasklet_schedule(&execlists->tasklet);
1632
1633        return 0;
1634}
1635
1636static int gen8_init_render_ring(struct intel_engine_cs *engine)
1637{
1638        struct drm_i915_private *dev_priv = engine->i915;
1639        int ret;
1640
1641        ret = gen8_init_common_ring(engine);
1642        if (ret)
1643                return ret;
1644
1645        /* We need to disable the AsyncFlip performance optimisations in order
1646         * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1647         * programmed to '1' on all products.
1648         *
1649         * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1650         */
1651        I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1652
1653        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1654
1655        return init_workarounds_ring(engine);
1656}
1657
1658static int gen9_init_render_ring(struct intel_engine_cs *engine)
1659{
1660        int ret;
1661
1662        ret = gen8_init_common_ring(engine);
1663        if (ret)
1664                return ret;
1665
1666        return init_workarounds_ring(engine);
1667}
1668
1669static void reset_irq(struct intel_engine_cs *engine)
1670{
1671        struct drm_i915_private *dev_priv = engine->i915;
1672        int i;
1673
1674        GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1675
1676        /*
1677         * Clear any pending interrupt state.
1678         *
1679         * We do it twice out of paranoia that some of the IIR are double
1680         * buffered, and if we only reset it once there may still be
1681         * an interrupt pending.
1682         */
1683        for (i = 0; i < 2; i++) {
1684                I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1685                           GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1686                POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
1687        }
1688        GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
1689                   (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));
1690
1691        clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1692}
1693
1694static void reset_common_ring(struct intel_engine_cs *engine,
1695                              struct i915_request *request)
1696{
1697        struct intel_engine_execlists * const execlists = &engine->execlists;
1698        struct intel_context *ce;
1699        unsigned long flags;
1700
1701        GEM_TRACE("%s seqno=%x\n",
1702                  engine->name, request ? request->global_seqno : 0);
1703
1704        /* See execlists_cancel_requests() for the irq/spinlock split. */
1705        local_irq_save(flags);
1706
1707        reset_irq(engine);
1708
1709        /*
1710         * Catch up with any missed context-switch interrupts.
1711         *
1712         * Ideally we would just read the remaining CSB entries now that we
1713         * know the gpu is idle. However, the CSB registers are sometimes^W
1714         * often trashed across a GPU reset! Instead we have to rely on
1715         * guessing the missed context-switch events by looking at what
1716         * requests were completed.
1717         */
1718        execlists_cancel_port_requests(execlists);
1719
1720        /* Push back any incomplete requests for replay after the reset. */
1721        spin_lock(&engine->timeline->lock);
1722        __unwind_incomplete_requests(engine);
1723        spin_unlock(&engine->timeline->lock);
1724
1725        /* Mark all CS interrupts as complete */
1726        execlists->active = 0;
1727
1728        local_irq_restore(flags);
1729
1730        /*
1731         * If the request was innocent, we leave the request in the ELSP
1732         * and will try to replay it on restarting. The context image may
1733         * have been corrupted by the reset, in which case we may have
1734         * to service a new GPU hang, but more likely we can continue on
1735         * without impact.
1736         *
1737         * If the request was guilty, we presume the context is corrupt
1738         * and have to at least restore the RING register in the context
1739         * image back to the expected values to skip over the guilty request.
1740         */
1741        if (!request || request->fence.error != -EIO)
1742                return;
1743
1744        /*
1745         * We want a simple context + ring to execute the breadcrumb update.
1746         * We cannot rely on the context being intact across the GPU hang,
1747         * so clear it and rebuild just what we need for the breadcrumb.
1748         * All pending requests for this context will be zapped, and any
1749         * future request will be after userspace has had the opportunity
1750         * to recreate its own state.
1751         */
1752        ce = &request->ctx->engine[engine->id];
1753        execlists_init_reg_state(ce->lrc_reg_state,
1754                                 request->ctx, engine, ce->ring);
1755
1756        /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1757        ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1758                i915_ggtt_offset(ce->ring->vma);
1759        ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1760
1761        request->ring->head = request->postfix;
1762        intel_ring_update_space(request->ring);
1763
1764        /* Reset WaIdleLiteRestore:bdw,skl as well */
1765        unwind_wa_tail(request);
1766}
1767
1768static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1769{
1770        struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
1771        struct intel_engine_cs *engine = rq->engine;
1772        const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1773        u32 *cs;
1774        int i;
1775
1776        cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1777        if (IS_ERR(cs))
1778                return PTR_ERR(cs);
1779
1780        *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1781        for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1782                const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1783
1784                *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1785                *cs++ = upper_32_bits(pd_daddr);
1786                *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1787                *cs++ = lower_32_bits(pd_daddr);
1788        }
1789
1790        *cs++ = MI_NOOP;
1791        intel_ring_advance(rq, cs);
1792
1793        return 0;
1794}
1795
1796static int gen8_emit_bb_start(struct i915_request *rq,
1797                              u64 offset, u32 len,
1798                              const unsigned int flags)
1799{
1800        u32 *cs;
1801        int ret;
1802
1803        /* Don't rely in hw updating PDPs, specially in lite-restore.
1804         * Ideally, we should set Force PD Restore in ctx descriptor,
1805         * but we can't. Force Restore would be a second option, but
1806         * it is unsafe in case of lite-restore (because the ctx is
1807         * not idle). PML4 is allocated during ppgtt init so this is
1808         * not needed in 48-bit.*/
1809        if (rq->ctx->ppgtt &&
1810            (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
1811            !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
1812            !intel_vgpu_active(rq->i915)) {
1813                ret = intel_logical_ring_emit_pdps(rq);
1814                if (ret)
1815                        return ret;
1816
1817                rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1818        }
1819
1820        cs = intel_ring_begin(rq, 4);
1821        if (IS_ERR(cs))
1822                return PTR_ERR(cs);
1823
1824        /*
1825         * WaDisableCtxRestoreArbitration:bdw,chv
1826         *
1827         * We don't need to perform MI_ARB_ENABLE as often as we do (in
1828         * particular all the gen that do not need the w/a at all!), if we
1829         * took care to make sure that on every switch into this context
1830         * (both ordinary and for preemption) that arbitrartion was enabled
1831         * we would be fine. However, there doesn't seem to be a downside to
1832         * being paranoid and making sure it is set before each batch and
1833         * every context-switch.
1834         *
1835         * Note that if we fail to enable arbitration before the request
1836         * is complete, then we do not see the context-switch interrupt and
1837         * the engine hangs (with RING_HEAD == RING_TAIL).
1838         *
1839         * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1840         */
1841        *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1842
1843        /* FIXME(BDW): Address space and security selectors. */
1844        *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1845                (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1846                (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1847        *cs++ = lower_32_bits(offset);
1848        *cs++ = upper_32_bits(offset);
1849        intel_ring_advance(rq, cs);
1850
1851        return 0;
1852}
1853
1854static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1855{
1856        struct drm_i915_private *dev_priv = engine->i915;
1857        I915_WRITE_IMR(engine,
1858                       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1859        POSTING_READ_FW(RING_IMR(engine->mmio_base));
1860}
1861
1862static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1863{
1864        struct drm_i915_private *dev_priv = engine->i915;
1865        I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1866}
1867
1868static int gen8_emit_flush(struct i915_request *request, u32 mode)
1869{
1870        u32 cmd, *cs;
1871
1872        cs = intel_ring_begin(request, 4);
1873        if (IS_ERR(cs))
1874                return PTR_ERR(cs);
1875
1876        cmd = MI_FLUSH_DW + 1;
1877
1878        /* We always require a command barrier so that subsequent
1879         * commands, such as breadcrumb interrupts, are strictly ordered
1880         * wrt the contents of the write cache being flushed to memory
1881         * (and thus being coherent from the CPU).
1882         */
1883        cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1884
1885        if (mode & EMIT_INVALIDATE) {
1886                cmd |= MI_INVALIDATE_TLB;
1887                if (request->engine->id == VCS)
1888                        cmd |= MI_INVALIDATE_BSD;
1889        }
1890
1891        *cs++ = cmd;
1892        *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1893        *cs++ = 0; /* upper addr */
1894        *cs++ = 0; /* value */
1895        intel_ring_advance(request, cs);
1896
1897        return 0;
1898}
1899
1900static int gen8_emit_flush_render(struct i915_request *request,
1901                                  u32 mode)
1902{
1903        struct intel_engine_cs *engine = request->engine;
1904        u32 scratch_addr =
1905                i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1906        bool vf_flush_wa = false, dc_flush_wa = false;
1907        u32 *cs, flags = 0;
1908        int len;
1909
1910        flags |= PIPE_CONTROL_CS_STALL;
1911
1912        if (mode & EMIT_FLUSH) {
1913                flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1914                flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1915                flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1916                flags |= PIPE_CONTROL_FLUSH_ENABLE;
1917        }
1918
1919        if (mode & EMIT_INVALIDATE) {
1920                flags |= PIPE_CONTROL_TLB_INVALIDATE;
1921                flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1922                flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1923                flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1924                flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1925                flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1926                flags |= PIPE_CONTROL_QW_WRITE;
1927                flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1928
1929                /*
1930                 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1931                 * pipe control.
1932                 */
1933                if (IS_GEN9(request->i915))
1934                        vf_flush_wa = true;
1935
1936                /* WaForGAMHang:kbl */
1937                if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1938                        dc_flush_wa = true;
1939        }
1940
1941        len = 6;
1942
1943        if (vf_flush_wa)
1944                len += 6;
1945
1946        if (dc_flush_wa)
1947                len += 12;
1948
1949        cs = intel_ring_begin(request, len);
1950        if (IS_ERR(cs))
1951                return PTR_ERR(cs);
1952
1953        if (vf_flush_wa)
1954                cs = gen8_emit_pipe_control(cs, 0, 0);
1955
1956        if (dc_flush_wa)
1957                cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1958                                            0);
1959
1960        cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1961
1962        if (dc_flush_wa)
1963                cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1964
1965        intel_ring_advance(request, cs);
1966
1967        return 0;
1968}
1969
1970/*
1971 * Reserve space for 2 NOOPs at the end of each request to be
1972 * used as a workaround for not being allowed to do lite
1973 * restore with HEAD==TAIL (WaIdleLiteRestore).
1974 */
1975static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1976{
1977        /* Ensure there's always at least one preemption point per-request. */
1978        *cs++ = MI_ARB_CHECK;
1979        *cs++ = MI_NOOP;
1980        request->wa_tail = intel_ring_offset(request, cs);
1981}
1982
1983static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
1984{
1985        /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1986        BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1987
1988        cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1989                                  intel_hws_seqno_address(request->engine));
1990        *cs++ = MI_USER_INTERRUPT;
1991        *cs++ = MI_NOOP;
1992        request->tail = intel_ring_offset(request, cs);
1993        assert_ring_tail_valid(request->ring, request->tail);
1994
1995        gen8_emit_wa_tail(request, cs);
1996}
1997static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1998
1999static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2000{
2001        /* We're using qword write, seqno should be aligned to 8 bytes. */
2002        BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2003
2004        cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2005                                      intel_hws_seqno_address(request->engine));
2006        *cs++ = MI_USER_INTERRUPT;
2007        *cs++ = MI_NOOP;
2008        request->tail = intel_ring_offset(request, cs);
2009        assert_ring_tail_valid(request->ring, request->tail);
2010
2011        gen8_emit_wa_tail(request, cs);
2012}
2013static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2014
2015static int gen8_init_rcs_context(struct i915_request *rq)
2016{
2017        int ret;
2018
2019        ret = intel_ring_workarounds_emit(rq);
2020        if (ret)
2021                return ret;
2022
2023        ret = intel_rcs_context_init_mocs(rq);
2024        /*
2025         * Failing to program the MOCS is non-fatal.The system will not
2026         * run at peak performance. So generate an error and carry on.
2027         */
2028        if (ret)
2029                DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2030
2031        return i915_gem_render_state_emit(rq);
2032}
2033
2034/**
2035 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2036 * @engine: Engine Command Streamer.
2037 */
2038void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2039{
2040        struct drm_i915_private *dev_priv;
2041
2042        /*
2043         * Tasklet cannot be active at this point due intel_mark_active/idle
2044         * so this is just for documentation.
2045         */
2046        if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2047                             &engine->execlists.tasklet.state)))
2048                tasklet_kill(&engine->execlists.tasklet);
2049
2050        dev_priv = engine->i915;
2051
2052        if (engine->buffer) {
2053                WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2054        }
2055
2056        if (engine->cleanup)
2057                engine->cleanup(engine);
2058
2059        intel_engine_cleanup_common(engine);
2060
2061        lrc_destroy_wa_ctx(engine);
2062
2063        engine->i915 = NULL;
2064        dev_priv->engine[engine->id] = NULL;
2065        kfree(engine);
2066}
2067
2068static void execlists_set_default_submission(struct intel_engine_cs *engine)
2069{
2070        engine->submit_request = execlists_submit_request;
2071        engine->cancel_requests = execlists_cancel_requests;
2072        engine->schedule = execlists_schedule;
2073        engine->execlists.tasklet.func = execlists_submission_tasklet;
2074
2075        engine->park = NULL;
2076        engine->unpark = NULL;
2077
2078        engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2079
2080        engine->i915->caps.scheduler =
2081                I915_SCHEDULER_CAP_ENABLED |
2082                I915_SCHEDULER_CAP_PRIORITY;
2083        if (engine->i915->preempt_context)
2084                engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2085}
2086
2087static void
2088logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2089{
2090        /* Default vfuncs which can be overriden by each engine. */
2091        engine->init_hw = gen8_init_common_ring;
2092        engine->reset_hw = reset_common_ring;
2093
2094        engine->context_pin = execlists_context_pin;
2095        engine->context_unpin = execlists_context_unpin;
2096
2097        engine->request_alloc = execlists_request_alloc;
2098
2099        engine->emit_flush = gen8_emit_flush;
2100        engine->emit_breadcrumb = gen8_emit_breadcrumb;
2101        engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2102
2103        engine->set_default_submission = execlists_set_default_submission;
2104
2105        if (INTEL_GEN(engine->i915) < 11) {
2106                engine->irq_enable = gen8_logical_ring_enable_irq;
2107                engine->irq_disable = gen8_logical_ring_disable_irq;
2108        } else {
2109                /*
2110                 * TODO: On Gen11 interrupt masks need to be clear
2111                 * to allow C6 entry. Keep interrupts enabled at
2112                 * and take the hit of generating extra interrupts
2113                 * until a more refined solution exists.
2114                 */
2115        }
2116        engine->emit_bb_start = gen8_emit_bb_start;
2117}
2118
2119static inline void
2120logical_ring_default_irqs(struct intel_engine_cs *engine)
2121{
2122        unsigned shift = engine->irq_shift;
2123        engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2124        engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2125}
2126
2127static void
2128logical_ring_setup(struct intel_engine_cs *engine)
2129{
2130        struct drm_i915_private *dev_priv = engine->i915;
2131        enum forcewake_domains fw_domains;
2132
2133        intel_engine_setup_common(engine);
2134
2135        /* Intentionally left blank. */
2136        engine->buffer = NULL;
2137
2138        fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2139                                                    RING_ELSP(engine),
2140                                                    FW_REG_WRITE);
2141
2142        fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2143                                                     RING_CONTEXT_STATUS_PTR(engine),
2144                                                     FW_REG_READ | FW_REG_WRITE);
2145
2146        fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2147                                                     RING_CONTEXT_STATUS_BUF_BASE(engine),
2148                                                     FW_REG_READ);
2149
2150        engine->execlists.fw_domains = fw_domains;
2151
2152        tasklet_init(&engine->execlists.tasklet,
2153                     execlists_submission_tasklet, (unsigned long)engine);
2154
2155        logical_ring_default_vfuncs(engine);
2156        logical_ring_default_irqs(engine);
2157}
2158
2159static int logical_ring_init(struct intel_engine_cs *engine)
2160{
2161        int ret;
2162
2163        ret = intel_engine_init_common(engine);
2164        if (ret)
2165                goto error;
2166
2167        if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2168                engine->execlists.submit_reg = engine->i915->regs +
2169                        i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2170                engine->execlists.ctrl_reg = engine->i915->regs +
2171                        i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2172        } else {
2173                engine->execlists.submit_reg = engine->i915->regs +
2174                        i915_mmio_reg_offset(RING_ELSP(engine));
2175        }
2176
2177        engine->execlists.preempt_complete_status = ~0u;
2178        if (engine->i915->preempt_context)
2179                engine->execlists.preempt_complete_status =
2180                        upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);
2181
2182        return 0;
2183
2184error:
2185        intel_logical_ring_cleanup(engine);
2186        return ret;
2187}
2188
2189int logical_render_ring_init(struct intel_engine_cs *engine)
2190{
2191        struct drm_i915_private *dev_priv = engine->i915;
2192        int ret;
2193
2194        logical_ring_setup(engine);
2195
2196        if (HAS_L3_DPF(dev_priv))
2197                engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2198
2199        /* Override some for render ring. */
2200        if (INTEL_GEN(dev_priv) >= 9)
2201                engine->init_hw = gen9_init_render_ring;
2202        else
2203                engine->init_hw = gen8_init_render_ring;
2204        engine->init_context = gen8_init_rcs_context;
2205        engine->emit_flush = gen8_emit_flush_render;
2206        engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2207        engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2208
2209        ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2210        if (ret)
2211                return ret;
2212
2213        ret = intel_init_workaround_bb(engine);
2214        if (ret) {
2215                /*
2216                 * We continue even if we fail to initialize WA batch
2217                 * because we only expect rare glitches but nothing
2218                 * critical to prevent us from using GPU
2219                 */
2220                DRM_ERROR("WA batch buffer initialization failed: %d\n",
2221                          ret);
2222        }
2223
2224        return logical_ring_init(engine);
2225}
2226
2227int logical_xcs_ring_init(struct intel_engine_cs *engine)
2228{
2229        logical_ring_setup(engine);
2230
2231        return logical_ring_init(engine);
2232}
2233
2234static u32
2235make_rpcs(struct drm_i915_private *dev_priv)
2236{
2237        u32 rpcs = 0;
2238
2239        /*
2240         * No explicit RPCS request is needed to ensure full
2241         * slice/subslice/EU enablement prior to Gen9.
2242        */
2243        if (INTEL_GEN(dev_priv) < 9)
2244                return 0;
2245
2246        /*
2247         * Starting in Gen9, render power gating can leave
2248         * slice/subslice/EU in a partially enabled state. We
2249         * must make an explicit request through RPCS for full
2250         * enablement.
2251        */
2252        if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2253                rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2254                rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2255                        GEN8_RPCS_S_CNT_SHIFT;
2256                rpcs |= GEN8_RPCS_ENABLE;
2257        }
2258
2259        if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2260                rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2261                rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2262                        GEN8_RPCS_SS_CNT_SHIFT;
2263                rpcs |= GEN8_RPCS_ENABLE;
2264        }
2265
2266        if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2267                rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2268                        GEN8_RPCS_EU_MIN_SHIFT;
2269                rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2270                        GEN8_RPCS_EU_MAX_SHIFT;
2271                rpcs |= GEN8_RPCS_ENABLE;
2272        }
2273
2274        return rpcs;
2275}
2276
2277static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2278{
2279        u32 indirect_ctx_offset;
2280
2281        switch (INTEL_GEN(engine->i915)) {
2282        default:
2283                MISSING_CASE(INTEL_GEN(engine->i915));
2284                /* fall through */
2285        case 11:
2286                indirect_ctx_offset =
2287                        GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2288                break;
2289        case 10:
2290                indirect_ctx_offset =
2291                        GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2292                break;
2293        case 9:
2294                indirect_ctx_offset =
2295                        GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2296                break;
2297        case 8:
2298                indirect_ctx_offset =
2299                        GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2300                break;
2301        }
2302
2303        return indirect_ctx_offset;
2304}
2305
2306static void execlists_init_reg_state(u32 *regs,
2307                                     struct i915_gem_context *ctx,
2308                                     struct intel_engine_cs *engine,
2309                                     struct intel_ring *ring)
2310{
2311        struct drm_i915_private *dev_priv = engine->i915;
2312        struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2313        u32 base = engine->mmio_base;
2314        bool rcs = engine->id == RCS;
2315
2316        /* A context is actually a big batch buffer with several
2317         * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2318         * values we are setting here are only for the first context restore:
2319         * on a subsequent save, the GPU will recreate this batchbuffer with new
2320         * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2321         * we are not initializing here).
2322         */
2323        regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2324                                 MI_LRI_FORCE_POSTED;
2325
2326        CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2327                _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2328                                    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2329                _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2330                                   (HAS_RESOURCE_STREAMER(dev_priv) ?
2331                                   CTX_CTRL_RS_CTX_ENABLE : 0)));
2332        CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2333        CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2334        CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2335        CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2336                RING_CTL_SIZE(ring->size) | RING_VALID);
2337        CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2338        CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2339        CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2340        CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2341        CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2342        CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2343        if (rcs) {
2344                struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2345
2346                CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2347                CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2348                        RING_INDIRECT_CTX_OFFSET(base), 0);
2349                if (wa_ctx->indirect_ctx.size) {
2350                        u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2351
2352                        regs[CTX_RCS_INDIRECT_CTX + 1] =
2353                                (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2354                                (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2355
2356                        regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2357                                intel_lr_indirect_ctx_offset(engine) << 6;
2358                }
2359
2360                CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2361                if (wa_ctx->per_ctx.size) {
2362                        u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2363
2364                        regs[CTX_BB_PER_CTX_PTR + 1] =
2365                                (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2366                }
2367        }
2368
2369        regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2370
2371        CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2372        /* PDP values well be assigned later if needed */
2373        CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2374        CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2375        CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2376        CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2377        CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2378        CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2379        CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2380        CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2381
2382        if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2383                /* 64b PPGTT (48bit canonical)
2384                 * PDP0_DESCRIPTOR contains the base address to PML4 and
2385                 * other PDP Descriptors are ignored.
2386                 */
2387                ASSIGN_CTX_PML4(ppgtt, regs);
2388        }
2389
2390        if (rcs) {
2391                regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2392                CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2393                        make_rpcs(dev_priv));
2394
2395                i915_oa_init_reg_state(engine, ctx, regs);
2396        }
2397}
2398
2399static int
2400populate_lr_context(struct i915_gem_context *ctx,
2401                    struct drm_i915_gem_object *ctx_obj,
2402                    struct intel_engine_cs *engine,
2403                    struct intel_ring *ring)
2404{
2405        void *vaddr;
2406        u32 *regs;
2407        int ret;
2408
2409        ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2410        if (ret) {
2411                DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2412                return ret;
2413        }
2414
2415        vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2416        if (IS_ERR(vaddr)) {
2417                ret = PTR_ERR(vaddr);
2418                DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2419                return ret;
2420        }
2421        ctx_obj->mm.dirty = true;
2422
2423        if (engine->default_state) {
2424                /*
2425                 * We only want to copy over the template context state;
2426                 * skipping over the headers reserved for GuC communication,
2427                 * leaving those as zero.
2428                 */
2429                const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2430                void *defaults;
2431
2432                defaults = i915_gem_object_pin_map(engine->default_state,
2433                                                   I915_MAP_WB);
2434                if (IS_ERR(defaults))
2435                        return PTR_ERR(defaults);
2436
2437                memcpy(vaddr + start, defaults + start, engine->context_size);
2438                i915_gem_object_unpin_map(engine->default_state);
2439        }
2440
2441        /* The second page of the context object contains some fields which must
2442         * be set up prior to the first execution. */
2443        regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2444        execlists_init_reg_state(regs, ctx, engine, ring);
2445        if (!engine->default_state)
2446                regs[CTX_CONTEXT_CONTROL + 1] |=
2447                        _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2448        if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2449                regs[CTX_CONTEXT_CONTROL + 1] |=
2450                        _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2451                                           CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2452
2453        i915_gem_object_unpin_map(ctx_obj);
2454
2455        return 0;
2456}
2457
2458static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2459                                            struct intel_engine_cs *engine)
2460{
2461        struct drm_i915_gem_object *ctx_obj;
2462        struct intel_context *ce = &ctx->engine[engine->id];
2463        struct i915_vma *vma;
2464        uint32_t context_size;
2465        struct intel_ring *ring;
2466        int ret;
2467
2468        if (ce->state)
2469                return 0;
2470
2471        context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2472
2473        /*
2474         * Before the actual start of the context image, we insert a few pages
2475         * for our own use and for sharing with the GuC.
2476         */
2477        context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2478
2479        ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2480        if (IS_ERR(ctx_obj)) {
2481                DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2482                return PTR_ERR(ctx_obj);
2483        }
2484
2485        vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2486        if (IS_ERR(vma)) {
2487                ret = PTR_ERR(vma);
2488                goto error_deref_obj;
2489        }
2490
2491        ring = intel_engine_create_ring(engine, ctx->ring_size);
2492        if (IS_ERR(ring)) {
2493                ret = PTR_ERR(ring);
2494                goto error_deref_obj;
2495        }
2496
2497        ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2498        if (ret) {
2499                DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2500                goto error_ring_free;
2501        }
2502
2503        ce->ring = ring;
2504        ce->state = vma;
2505
2506        return 0;
2507
2508error_ring_free:
2509        intel_ring_free(ring);
2510error_deref_obj:
2511        i915_gem_object_put(ctx_obj);
2512        return ret;
2513}
2514
2515void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2516{
2517        struct intel_engine_cs *engine;
2518        struct i915_gem_context *ctx;
2519        enum intel_engine_id id;
2520
2521        /* Because we emit WA_TAIL_DWORDS there may be a disparity
2522         * between our bookkeeping in ce->ring->head and ce->ring->tail and
2523         * that stored in context. As we only write new commands from
2524         * ce->ring->tail onwards, everything before that is junk. If the GPU
2525         * starts reading from its RING_HEAD from the context, it may try to
2526         * execute that junk and die.
2527         *
2528         * So to avoid that we reset the context images upon resume. For
2529         * simplicity, we just zero everything out.
2530         */
2531        list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2532                for_each_engine(engine, dev_priv, id) {
2533                        struct intel_context *ce = &ctx->engine[engine->id];
2534                        u32 *reg;
2535
2536                        if (!ce->state)
2537                                continue;
2538
2539                        reg = i915_gem_object_pin_map(ce->state->obj,
2540                                                      I915_MAP_WB);
2541                        if (WARN_ON(IS_ERR(reg)))
2542                                continue;
2543
2544                        reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2545                        reg[CTX_RING_HEAD+1] = 0;
2546                        reg[CTX_RING_TAIL+1] = 0;
2547
2548                        ce->state->obj->mm.dirty = true;
2549                        i915_gem_object_unpin_map(ce->state->obj);
2550
2551                        intel_ring_reset(ce->ring, 0);
2552                }
2553        }
2554}
2555