linux/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  20 * DEALINGS IN THE SOFTWARE.
  21 */
  22
  23/*
  24 * GK20A does not have dedicated video memory, and to accurately represent this
  25 * fact Nouveau will not create a RAM device for it. Therefore its instmem
  26 * implementation must be done directly on top of system memory, while
  27 * preserving coherency for read and write operations.
  28 *
  29 * Instmem can be allocated through two means:
  30 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
  31 *    pages contiguous to the GPU. This is the preferred way.
  32 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
  33 *    contiguous memory.
  34 *
  35 * In both cases CPU read and writes are performed by creating a write-combined
  36 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
  37 * be conservative we do this every time we acquire or release an instobj, but
  38 * ideally L2 management should be handled at a higher level.
  39 *
  40 * To improve performance, CPU mappings are not removed upon instobj release.
  41 * Instead they are placed into a LRU list to be recycled when the mapped space
  42 * goes beyond a certain threshold. At the moment this limit is 1MB.
  43 */
  44#include "priv.h"
  45
  46#include <core/memory.h>
  47#include <core/tegra.h>
  48#include <subdev/ltc.h>
  49#include <subdev/mmu.h>
  50
  51struct gk20a_instobj {
  52        struct nvkm_memory memory;
  53        struct nvkm_mm_node *mn;
  54        struct gk20a_instmem *imem;
  55
  56        /* CPU mapping */
  57        u32 *vaddr;
  58};
  59#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
  60
  61/*
  62 * Used for objects allocated using the DMA API
  63 */
  64struct gk20a_instobj_dma {
  65        struct gk20a_instobj base;
  66
  67        dma_addr_t handle;
  68        struct nvkm_mm_node r;
  69};
  70#define gk20a_instobj_dma(p) \
  71        container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
  72
  73/*
  74 * Used for objects flattened using the IOMMU API
  75 */
  76struct gk20a_instobj_iommu {
  77        struct gk20a_instobj base;
  78
  79        /* to link into gk20a_instmem::vaddr_lru */
  80        struct list_head vaddr_node;
  81        /* how many clients are using vaddr? */
  82        u32 use_cpt;
  83
  84        /* will point to the higher half of pages */
  85        dma_addr_t *dma_addrs;
  86        /* array of base.mem->size pages (+ dma_addr_ts) */
  87        struct page *pages[];
  88};
  89#define gk20a_instobj_iommu(p) \
  90        container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
  91
  92struct gk20a_instmem {
  93        struct nvkm_instmem base;
  94
  95        /* protects vaddr_* and gk20a_instobj::vaddr* */
  96        struct mutex lock;
  97
  98        /* CPU mappings LRU */
  99        unsigned int vaddr_use;
 100        unsigned int vaddr_max;
 101        struct list_head vaddr_lru;
 102
 103        /* Only used if IOMMU if present */
 104        struct mutex *mm_mutex;
 105        struct nvkm_mm *mm;
 106        struct iommu_domain *domain;
 107        unsigned long iommu_pgshift;
 108        u16 iommu_bit;
 109
 110        /* Only used by DMA API */
 111        unsigned long attrs;
 112};
 113#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
 114
 115static enum nvkm_memory_target
 116gk20a_instobj_target(struct nvkm_memory *memory)
 117{
 118        return NVKM_MEM_TARGET_NCOH;
 119}
 120
 121static u8
 122gk20a_instobj_page(struct nvkm_memory *memory)
 123{
 124        return 12;
 125}
 126
 127static u64
 128gk20a_instobj_addr(struct nvkm_memory *memory)
 129{
 130        return (u64)gk20a_instobj(memory)->mn->offset << 12;
 131}
 132
 133static u64
 134gk20a_instobj_size(struct nvkm_memory *memory)
 135{
 136        return (u64)gk20a_instobj(memory)->mn->length << 12;
 137}
 138
 139/*
 140 * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held.
 141 */
 142static void
 143gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj)
 144{
 145        struct gk20a_instmem *imem = obj->base.imem;
 146        /* there should not be any user left... */
 147        WARN_ON(obj->use_cpt);
 148        list_del(&obj->vaddr_node);
 149        vunmap(obj->base.vaddr);
 150        obj->base.vaddr = NULL;
 151        imem->vaddr_use -= nvkm_memory_size(&obj->base.memory);
 152        nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use,
 153                   imem->vaddr_max);
 154}
 155
 156/*
 157 * Must be called while holding gk20a_instmem::lock
 158 */
 159static void
 160gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
 161{
 162        while (imem->vaddr_use + size > imem->vaddr_max) {
 163                /* no candidate that can be unmapped, abort... */
 164                if (list_empty(&imem->vaddr_lru))
 165                        break;
 166
 167                gk20a_instobj_iommu_recycle_vaddr(
 168                                list_first_entry(&imem->vaddr_lru,
 169                                struct gk20a_instobj_iommu, vaddr_node));
 170        }
 171}
 172
 173static void __iomem *
 174gk20a_instobj_acquire_dma(struct nvkm_memory *memory)
 175{
 176        struct gk20a_instobj *node = gk20a_instobj(memory);
 177        struct gk20a_instmem *imem = node->imem;
 178        struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
 179
 180        nvkm_ltc_flush(ltc);
 181
 182        return node->vaddr;
 183}
 184
 185static void __iomem *
 186gk20a_instobj_acquire_iommu(struct nvkm_memory *memory)
 187{
 188        struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
 189        struct gk20a_instmem *imem = node->base.imem;
 190        struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
 191        const u64 size = nvkm_memory_size(memory);
 192
 193        nvkm_ltc_flush(ltc);
 194
 195        mutex_lock(&imem->lock);
 196
 197        if (node->base.vaddr) {
 198                if (!node->use_cpt) {
 199                        /* remove from LRU list since mapping in use again */
 200                        list_del(&node->vaddr_node);
 201                }
 202                goto out;
 203        }
 204
 205        /* try to free some address space if we reached the limit */
 206        gk20a_instmem_vaddr_gc(imem, size);
 207
 208        /* map the pages */
 209        node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP,
 210                                pgprot_writecombine(PAGE_KERNEL));
 211        if (!node->base.vaddr) {
 212                nvkm_error(&imem->base.subdev, "cannot map instobj - "
 213                           "this is not going to end well...\n");
 214                goto out;
 215        }
 216
 217        imem->vaddr_use += size;
 218        nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
 219                   imem->vaddr_use, imem->vaddr_max);
 220
 221out:
 222        node->use_cpt++;
 223        mutex_unlock(&imem->lock);
 224
 225        return node->base.vaddr;
 226}
 227
 228static void
 229gk20a_instobj_release_dma(struct nvkm_memory *memory)
 230{
 231        struct gk20a_instobj *node = gk20a_instobj(memory);
 232        struct gk20a_instmem *imem = node->imem;
 233        struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
 234
 235        /* in case we got a write-combined mapping */
 236        wmb();
 237        nvkm_ltc_invalidate(ltc);
 238}
 239
 240static void
 241gk20a_instobj_release_iommu(struct nvkm_memory *memory)
 242{
 243        struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
 244        struct gk20a_instmem *imem = node->base.imem;
 245        struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
 246
 247        mutex_lock(&imem->lock);
 248
 249        /* we should at least have one user to release... */
 250        if (WARN_ON(node->use_cpt == 0))
 251                goto out;
 252
 253        /* add unused objs to the LRU list to recycle their mapping */
 254        if (--node->use_cpt == 0)
 255                list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
 256
 257out:
 258        mutex_unlock(&imem->lock);
 259
 260        wmb();
 261        nvkm_ltc_invalidate(ltc);
 262}
 263
 264static u32
 265gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
 266{
 267        struct gk20a_instobj *node = gk20a_instobj(memory);
 268
 269        return node->vaddr[offset / 4];
 270}
 271
 272static void
 273gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
 274{
 275        struct gk20a_instobj *node = gk20a_instobj(memory);
 276
 277        node->vaddr[offset / 4] = data;
 278}
 279
 280static int
 281gk20a_instobj_map(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm,
 282                  struct nvkm_vma *vma, void *argv, u32 argc)
 283{
 284        struct gk20a_instobj *node = gk20a_instobj(memory);
 285        struct nvkm_vmm_map map = {
 286                .memory = &node->memory,
 287                .offset = offset,
 288                .mem = node->mn,
 289        };
 290
 291        return nvkm_vmm_map(vmm, vma, argv, argc, &map);
 292}
 293
 294static void *
 295gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
 296{
 297        struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
 298        struct gk20a_instmem *imem = node->base.imem;
 299        struct device *dev = imem->base.subdev.device->dev;
 300
 301        if (unlikely(!node->base.vaddr))
 302                goto out;
 303
 304        dma_free_attrs(dev, (u64)node->base.mn->length << PAGE_SHIFT,
 305                       node->base.vaddr, node->handle, imem->attrs);
 306
 307out:
 308        return node;
 309}
 310
 311static void *
 312gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
 313{
 314        struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
 315        struct gk20a_instmem *imem = node->base.imem;
 316        struct device *dev = imem->base.subdev.device->dev;
 317        struct nvkm_mm_node *r = node->base.mn;
 318        int i;
 319
 320        if (unlikely(!r))
 321                goto out;
 322
 323        mutex_lock(&imem->lock);
 324
 325        /* vaddr has already been recycled */
 326        if (node->base.vaddr)
 327                gk20a_instobj_iommu_recycle_vaddr(node);
 328
 329        mutex_unlock(&imem->lock);
 330
 331        /* clear IOMMU bit to unmap pages */
 332        r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
 333
 334        /* Unmap pages from GPU address space and free them */
 335        for (i = 0; i < node->base.mn->length; i++) {
 336                iommu_unmap(imem->domain,
 337                            (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
 338                dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
 339                               DMA_BIDIRECTIONAL);
 340                __free_page(node->pages[i]);
 341        }
 342
 343        /* Release area from GPU address space */
 344        mutex_lock(imem->mm_mutex);
 345        nvkm_mm_free(imem->mm, &r);
 346        mutex_unlock(imem->mm_mutex);
 347
 348out:
 349        return node;
 350}
 351
 352static const struct nvkm_memory_func
 353gk20a_instobj_func_dma = {
 354        .dtor = gk20a_instobj_dtor_dma,
 355        .target = gk20a_instobj_target,
 356        .page = gk20a_instobj_page,
 357        .addr = gk20a_instobj_addr,
 358        .size = gk20a_instobj_size,
 359        .acquire = gk20a_instobj_acquire_dma,
 360        .release = gk20a_instobj_release_dma,
 361        .map = gk20a_instobj_map,
 362};
 363
 364static const struct nvkm_memory_func
 365gk20a_instobj_func_iommu = {
 366        .dtor = gk20a_instobj_dtor_iommu,
 367        .target = gk20a_instobj_target,
 368        .page = gk20a_instobj_page,
 369        .addr = gk20a_instobj_addr,
 370        .size = gk20a_instobj_size,
 371        .acquire = gk20a_instobj_acquire_iommu,
 372        .release = gk20a_instobj_release_iommu,
 373        .map = gk20a_instobj_map,
 374};
 375
 376static const struct nvkm_memory_ptrs
 377gk20a_instobj_ptrs = {
 378        .rd32 = gk20a_instobj_rd32,
 379        .wr32 = gk20a_instobj_wr32,
 380};
 381
 382static int
 383gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
 384                       struct gk20a_instobj **_node)
 385{
 386        struct gk20a_instobj_dma *node;
 387        struct nvkm_subdev *subdev = &imem->base.subdev;
 388        struct device *dev = subdev->device->dev;
 389
 390        if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
 391                return -ENOMEM;
 392        *_node = &node->base;
 393
 394        nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
 395        node->base.memory.ptrs = &gk20a_instobj_ptrs;
 396
 397        node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
 398                                           &node->handle, GFP_KERNEL,
 399                                           imem->attrs);
 400        if (!node->base.vaddr) {
 401                nvkm_error(subdev, "cannot allocate DMA memory\n");
 402                return -ENOMEM;
 403        }
 404
 405        /* alignment check */
 406        if (unlikely(node->handle & (align - 1)))
 407                nvkm_warn(subdev,
 408                          "memory not aligned as requested: %pad (0x%x)\n",
 409                          &node->handle, align);
 410
 411        /* present memory for being mapped using small pages */
 412        node->r.type = 12;
 413        node->r.offset = node->handle >> 12;
 414        node->r.length = (npages << PAGE_SHIFT) >> 12;
 415
 416        node->base.mn = &node->r;
 417        return 0;
 418}
 419
 420static int
 421gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
 422                         struct gk20a_instobj **_node)
 423{
 424        struct gk20a_instobj_iommu *node;
 425        struct nvkm_subdev *subdev = &imem->base.subdev;
 426        struct device *dev = subdev->device->dev;
 427        struct nvkm_mm_node *r;
 428        int ret;
 429        int i;
 430
 431        /*
 432         * despite their variable size, instmem allocations are small enough
 433         * (< 1 page) to be handled by kzalloc
 434         */
 435        if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
 436                             sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
 437                return -ENOMEM;
 438        *_node = &node->base;
 439        node->dma_addrs = (void *)(node->pages + npages);
 440
 441        nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
 442        node->base.memory.ptrs = &gk20a_instobj_ptrs;
 443
 444        /* Allocate backing memory */
 445        for (i = 0; i < npages; i++) {
 446                struct page *p = alloc_page(GFP_KERNEL);
 447                dma_addr_t dma_adr;
 448
 449                if (p == NULL) {
 450                        ret = -ENOMEM;
 451                        goto free_pages;
 452                }
 453                node->pages[i] = p;
 454                dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
 455                if (dma_mapping_error(dev, dma_adr)) {
 456                        nvkm_error(subdev, "DMA mapping error!\n");
 457                        ret = -ENOMEM;
 458                        goto free_pages;
 459                }
 460                node->dma_addrs[i] = dma_adr;
 461        }
 462
 463        mutex_lock(imem->mm_mutex);
 464        /* Reserve area from GPU address space */
 465        ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
 466                           align >> imem->iommu_pgshift, &r);
 467        mutex_unlock(imem->mm_mutex);
 468        if (ret) {
 469                nvkm_error(subdev, "IOMMU space is full!\n");
 470                goto free_pages;
 471        }
 472
 473        /* Map into GPU address space */
 474        for (i = 0; i < npages; i++) {
 475                u32 offset = (r->offset + i) << imem->iommu_pgshift;
 476
 477                ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
 478                                PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
 479                if (ret < 0) {
 480                        nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
 481
 482                        while (i-- > 0) {
 483                                offset -= PAGE_SIZE;
 484                                iommu_unmap(imem->domain, offset, PAGE_SIZE);
 485                        }
 486                        goto release_area;
 487                }
 488        }
 489
 490        /* IOMMU bit tells that an address is to be resolved through the IOMMU */
 491        r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
 492
 493        node->base.mn = r;
 494        return 0;
 495
 496release_area:
 497        mutex_lock(imem->mm_mutex);
 498        nvkm_mm_free(imem->mm, &r);
 499        mutex_unlock(imem->mm_mutex);
 500
 501free_pages:
 502        for (i = 0; i < npages && node->pages[i] != NULL; i++) {
 503                dma_addr_t dma_addr = node->dma_addrs[i];
 504                if (dma_addr)
 505                        dma_unmap_page(dev, dma_addr, PAGE_SIZE,
 506                                       DMA_BIDIRECTIONAL);
 507                __free_page(node->pages[i]);
 508        }
 509
 510        return ret;
 511}
 512
 513static int
 514gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
 515                  struct nvkm_memory **pmemory)
 516{
 517        struct gk20a_instmem *imem = gk20a_instmem(base);
 518        struct nvkm_subdev *subdev = &imem->base.subdev;
 519        struct gk20a_instobj *node = NULL;
 520        int ret;
 521
 522        nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
 523                   imem->domain ? "IOMMU" : "DMA", size, align);
 524
 525        /* Round size and align to page bounds */
 526        size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
 527        align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
 528
 529        if (imem->domain)
 530                ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
 531                                               align, &node);
 532        else
 533                ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
 534                                             align, &node);
 535        *pmemory = node ? &node->memory : NULL;
 536        if (ret)
 537                return ret;
 538
 539        node->imem = imem;
 540
 541        nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
 542                   size, align, (u64)node->mn->offset << 12);
 543
 544        return 0;
 545}
 546
 547static void *
 548gk20a_instmem_dtor(struct nvkm_instmem *base)
 549{
 550        struct gk20a_instmem *imem = gk20a_instmem(base);
 551
 552        /* perform some sanity checks... */
 553        if (!list_empty(&imem->vaddr_lru))
 554                nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
 555
 556        if (imem->vaddr_use != 0)
 557                nvkm_warn(&base->subdev, "instobj vmap area not empty! "
 558                          "0x%x bytes still mapped\n", imem->vaddr_use);
 559
 560        return imem;
 561}
 562
 563static const struct nvkm_instmem_func
 564gk20a_instmem = {
 565        .dtor = gk20a_instmem_dtor,
 566        .memory_new = gk20a_instobj_new,
 567        .zero = false,
 568};
 569
 570int
 571gk20a_instmem_new(struct nvkm_device *device, int index,
 572                  struct nvkm_instmem **pimem)
 573{
 574        struct nvkm_device_tegra *tdev = device->func->tegra(device);
 575        struct gk20a_instmem *imem;
 576
 577        if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
 578                return -ENOMEM;
 579        nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
 580        mutex_init(&imem->lock);
 581        *pimem = &imem->base;
 582
 583        /* do not allow more than 1MB of CPU-mapped instmem */
 584        imem->vaddr_use = 0;
 585        imem->vaddr_max = 0x100000;
 586        INIT_LIST_HEAD(&imem->vaddr_lru);
 587
 588        if (tdev->iommu.domain) {
 589                imem->mm_mutex = &tdev->iommu.mutex;
 590                imem->mm = &tdev->iommu.mm;
 591                imem->domain = tdev->iommu.domain;
 592                imem->iommu_pgshift = tdev->iommu.pgshift;
 593                imem->iommu_bit = tdev->func->iommu_bit;
 594
 595                nvkm_info(&imem->base.subdev, "using IOMMU\n");
 596        } else {
 597                imem->attrs = DMA_ATTR_NON_CONSISTENT |
 598                              DMA_ATTR_WEAK_ORDERING |
 599                              DMA_ATTR_WRITE_COMBINE;
 600
 601                nvkm_info(&imem->base.subdev, "using DMA API\n");
 602        }
 603
 604        return 0;
 605}
 606