linux/drivers/gpu/drm/tegra/dc.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
  12#include <linux/iommu.h>
  13#include <linux/of_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <soc/tegra/pmc.h>
  18
  19#include "dc.h"
  20#include "drm.h"
  21#include "gem.h"
  22#include "hub.h"
  23#include "plane.h"
  24
  25#include <drm/drm_atomic.h>
  26#include <drm/drm_atomic_helper.h>
  27#include <drm/drm_plane_helper.h>
  28
  29static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  30{
  31        stats->frames = 0;
  32        stats->vblank = 0;
  33        stats->underflow = 0;
  34        stats->overflow = 0;
  35}
  36
  37/* Reads the active copy of a register. */
  38static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  39{
  40        u32 value;
  41
  42        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  43        value = tegra_dc_readl(dc, offset);
  44        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  45
  46        return value;
  47}
  48
  49static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  50                                              unsigned int offset)
  51{
  52        if (offset >= 0x500 && offset <= 0x638) {
  53                offset = 0x000 + (offset - 0x500);
  54                return plane->offset + offset;
  55        }
  56
  57        if (offset >= 0x700 && offset <= 0x719) {
  58                offset = 0x180 + (offset - 0x700);
  59                return plane->offset + offset;
  60        }
  61
  62        if (offset >= 0x800 && offset <= 0x839) {
  63                offset = 0x1c0 + (offset - 0x800);
  64                return plane->offset + offset;
  65        }
  66
  67        dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
  68
  69        return plane->offset + offset;
  70}
  71
  72static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  73                                    unsigned int offset)
  74{
  75        return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
  76}
  77
  78static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  79                                      unsigned int offset)
  80{
  81        tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  82}
  83
  84bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  85{
  86        struct device_node *np = dc->dev->of_node;
  87        struct of_phandle_iterator it;
  88        int err;
  89
  90        of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
  91                if (it.node == dev->of_node)
  92                        return true;
  93
  94        return false;
  95}
  96
  97/*
  98 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
  99 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 100 * Latching happens mmediately if the display controller is in STOP mode or
 101 * on the next frame boundary otherwise.
 102 *
 103 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 104 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 105 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 106 * into the ACTIVE copy, either immediately if the display controller is in
 107 * STOP mode, or at the next frame boundary otherwise.
 108 */
 109void tegra_dc_commit(struct tegra_dc *dc)
 110{
 111        tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 112        tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 113}
 114
 115static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 116                                  unsigned int bpp)
 117{
 118        fixed20_12 outf = dfixed_init(out);
 119        fixed20_12 inf = dfixed_init(in);
 120        u32 dda_inc;
 121        int max;
 122
 123        if (v)
 124                max = 15;
 125        else {
 126                switch (bpp) {
 127                case 2:
 128                        max = 8;
 129                        break;
 130
 131                default:
 132                        WARN_ON_ONCE(1);
 133                        /* fallthrough */
 134                case 4:
 135                        max = 4;
 136                        break;
 137                }
 138        }
 139
 140        outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 141        inf.full -= dfixed_const(1);
 142
 143        dda_inc = dfixed_div(inf, outf);
 144        dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 145
 146        return dda_inc;
 147}
 148
 149static inline u32 compute_initial_dda(unsigned int in)
 150{
 151        fixed20_12 inf = dfixed_init(in);
 152        return dfixed_frac(inf);
 153}
 154
 155static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 156{
 157        u32 background[3] = {
 158                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 159                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 160                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 161        };
 162        u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 163                         BLEND_COLOR_KEY_NONE;
 164        u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 165        struct tegra_plane_state *state;
 166        unsigned int i;
 167
 168        state = to_tegra_plane_state(plane->base.state);
 169
 170        /* alpha contribution is 1 minus sum of overlapping windows */
 171        for (i = 0; i < 3; i++) {
 172                if (state->dependent[i])
 173                        background[i] |= BLEND_CONTROL_DEPENDENT;
 174        }
 175
 176        /* enable alpha blending if pixel format has an alpha component */
 177        if (!state->opaque)
 178                foreground |= BLEND_CONTROL_ALPHA;
 179
 180        /*
 181         * Disable blending and assume Window A is the bottom-most window,
 182         * Window C is the top-most window and Window B is in the middle.
 183         */
 184        tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 185        tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 186
 187        switch (plane->index) {
 188        case 0:
 189                tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 190                tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 191                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 192                break;
 193
 194        case 1:
 195                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 196                tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 197                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 198                break;
 199
 200        case 2:
 201                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 202                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 203                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 204                break;
 205        }
 206}
 207
 208static void tegra_plane_setup_blending(struct tegra_plane *plane,
 209                                       const struct tegra_dc_window *window)
 210{
 211        u32 value;
 212
 213        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 214                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 215                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 216        tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 217
 218        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 219                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 220                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 221        tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 222
 223        value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 224        tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 225}
 226
 227static void tegra_dc_setup_window(struct tegra_plane *plane,
 228                                  const struct tegra_dc_window *window)
 229{
 230        unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 231        struct tegra_dc *dc = plane->dc;
 232        bool yuv, planar;
 233        u32 value;
 234
 235        /*
 236         * For YUV planar modes, the number of bytes per pixel takes into
 237         * account only the luma component and therefore is 1.
 238         */
 239        yuv = tegra_plane_format_is_yuv(window->format, &planar);
 240        if (!yuv)
 241                bpp = window->bits_per_pixel / 8;
 242        else
 243                bpp = planar ? 1 : 2;
 244
 245        tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 246        tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 247
 248        value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 249        tegra_plane_writel(plane, value, DC_WIN_POSITION);
 250
 251        value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 252        tegra_plane_writel(plane, value, DC_WIN_SIZE);
 253
 254        h_offset = window->src.x * bpp;
 255        v_offset = window->src.y;
 256        h_size = window->src.w * bpp;
 257        v_size = window->src.h;
 258
 259        value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 260        tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 261
 262        /*
 263         * For DDA computations the number of bytes per pixel for YUV planar
 264         * modes needs to take into account all Y, U and V components.
 265         */
 266        if (yuv && planar)
 267                bpp = 2;
 268
 269        h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 270        v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 271
 272        value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 273        tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 274
 275        h_dda = compute_initial_dda(window->src.x);
 276        v_dda = compute_initial_dda(window->src.y);
 277
 278        tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 279        tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 280
 281        tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 282        tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 283
 284        tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 285
 286        if (yuv && planar) {
 287                tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 288                tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 289                value = window->stride[1] << 16 | window->stride[0];
 290                tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 291        } else {
 292                tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 293        }
 294
 295        if (window->bottom_up)
 296                v_offset += window->src.h - 1;
 297
 298        tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 299        tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 300
 301        if (dc->soc->supports_block_linear) {
 302                unsigned long height = window->tiling.value;
 303
 304                switch (window->tiling.mode) {
 305                case TEGRA_BO_TILING_MODE_PITCH:
 306                        value = DC_WINBUF_SURFACE_KIND_PITCH;
 307                        break;
 308
 309                case TEGRA_BO_TILING_MODE_TILED:
 310                        value = DC_WINBUF_SURFACE_KIND_TILED;
 311                        break;
 312
 313                case TEGRA_BO_TILING_MODE_BLOCK:
 314                        value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 315                                DC_WINBUF_SURFACE_KIND_BLOCK;
 316                        break;
 317                }
 318
 319                tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 320        } else {
 321                switch (window->tiling.mode) {
 322                case TEGRA_BO_TILING_MODE_PITCH:
 323                        value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 324                                DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 325                        break;
 326
 327                case TEGRA_BO_TILING_MODE_TILED:
 328                        value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 329                                DC_WIN_BUFFER_ADDR_MODE_TILE;
 330                        break;
 331
 332                case TEGRA_BO_TILING_MODE_BLOCK:
 333                        /*
 334                         * No need to handle this here because ->atomic_check
 335                         * will already have filtered it out.
 336                         */
 337                        break;
 338                }
 339
 340                tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 341        }
 342
 343        value = WIN_ENABLE;
 344
 345        if (yuv) {
 346                /* setup default colorspace conversion coefficients */
 347                tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 348                tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 349                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 350                tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 351                tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 352                tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 353                tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 354                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 355
 356                value |= CSC_ENABLE;
 357        } else if (window->bits_per_pixel < 24) {
 358                value |= COLOR_EXPAND;
 359        }
 360
 361        if (window->bottom_up)
 362                value |= V_DIRECTION;
 363
 364        tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 365
 366        if (dc->soc->supports_blending)
 367                tegra_plane_setup_blending(plane, window);
 368        else
 369                tegra_plane_setup_blending_legacy(plane);
 370}
 371
 372static const u32 tegra20_primary_formats[] = {
 373        DRM_FORMAT_ARGB4444,
 374        DRM_FORMAT_ARGB1555,
 375        DRM_FORMAT_RGB565,
 376        DRM_FORMAT_RGBA5551,
 377        DRM_FORMAT_ABGR8888,
 378        DRM_FORMAT_ARGB8888,
 379        /* non-native formats */
 380        DRM_FORMAT_XRGB1555,
 381        DRM_FORMAT_RGBX5551,
 382        DRM_FORMAT_XBGR8888,
 383        DRM_FORMAT_XRGB8888,
 384};
 385
 386static const u64 tegra20_modifiers[] = {
 387        DRM_FORMAT_MOD_LINEAR,
 388        DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 389        DRM_FORMAT_MOD_INVALID
 390};
 391
 392static const u32 tegra114_primary_formats[] = {
 393        DRM_FORMAT_ARGB4444,
 394        DRM_FORMAT_ARGB1555,
 395        DRM_FORMAT_RGB565,
 396        DRM_FORMAT_RGBA5551,
 397        DRM_FORMAT_ABGR8888,
 398        DRM_FORMAT_ARGB8888,
 399        /* new on Tegra114 */
 400        DRM_FORMAT_ABGR4444,
 401        DRM_FORMAT_ABGR1555,
 402        DRM_FORMAT_BGRA5551,
 403        DRM_FORMAT_XRGB1555,
 404        DRM_FORMAT_RGBX5551,
 405        DRM_FORMAT_XBGR1555,
 406        DRM_FORMAT_BGRX5551,
 407        DRM_FORMAT_BGR565,
 408        DRM_FORMAT_BGRA8888,
 409        DRM_FORMAT_RGBA8888,
 410        DRM_FORMAT_XRGB8888,
 411        DRM_FORMAT_XBGR8888,
 412};
 413
 414static const u32 tegra124_primary_formats[] = {
 415        DRM_FORMAT_ARGB4444,
 416        DRM_FORMAT_ARGB1555,
 417        DRM_FORMAT_RGB565,
 418        DRM_FORMAT_RGBA5551,
 419        DRM_FORMAT_ABGR8888,
 420        DRM_FORMAT_ARGB8888,
 421        /* new on Tegra114 */
 422        DRM_FORMAT_ABGR4444,
 423        DRM_FORMAT_ABGR1555,
 424        DRM_FORMAT_BGRA5551,
 425        DRM_FORMAT_XRGB1555,
 426        DRM_FORMAT_RGBX5551,
 427        DRM_FORMAT_XBGR1555,
 428        DRM_FORMAT_BGRX5551,
 429        DRM_FORMAT_BGR565,
 430        DRM_FORMAT_BGRA8888,
 431        DRM_FORMAT_RGBA8888,
 432        DRM_FORMAT_XRGB8888,
 433        DRM_FORMAT_XBGR8888,
 434        /* new on Tegra124 */
 435        DRM_FORMAT_RGBX8888,
 436        DRM_FORMAT_BGRX8888,
 437};
 438
 439static const u64 tegra124_modifiers[] = {
 440        DRM_FORMAT_MOD_LINEAR,
 441        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 442        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 443        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 444        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 445        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 446        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 447        DRM_FORMAT_MOD_INVALID
 448};
 449
 450static int tegra_plane_atomic_check(struct drm_plane *plane,
 451                                    struct drm_plane_state *state)
 452{
 453        struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 454        struct tegra_bo_tiling *tiling = &plane_state->tiling;
 455        struct tegra_plane *tegra = to_tegra_plane(plane);
 456        struct tegra_dc *dc = to_tegra_dc(state->crtc);
 457        unsigned int format;
 458        int err;
 459
 460        /* no need for further checks if the plane is being disabled */
 461        if (!state->crtc)
 462                return 0;
 463
 464        err = tegra_plane_format(state->fb->format->format, &format,
 465                                 &plane_state->swap);
 466        if (err < 0)
 467                return err;
 468
 469        /*
 470         * Tegra20 and Tegra30 are special cases here because they support
 471         * only variants of specific formats with an alpha component, but not
 472         * the corresponding opaque formats. However, the opaque formats can
 473         * be emulated by disabling alpha blending for the plane.
 474         */
 475        if (!dc->soc->supports_blending) {
 476                if (!tegra_plane_format_has_alpha(format)) {
 477                        err = tegra_plane_format_get_alpha(format, &format);
 478                        if (err < 0)
 479                                return err;
 480
 481                        plane_state->opaque = true;
 482                } else {
 483                        plane_state->opaque = false;
 484                }
 485
 486                tegra_plane_check_dependent(tegra, plane_state);
 487        }
 488
 489        plane_state->format = format;
 490
 491        err = tegra_fb_get_tiling(state->fb, tiling);
 492        if (err < 0)
 493                return err;
 494
 495        if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 496            !dc->soc->supports_block_linear) {
 497                DRM_ERROR("hardware doesn't support block linear mode\n");
 498                return -EINVAL;
 499        }
 500
 501        /*
 502         * Tegra doesn't support different strides for U and V planes so we
 503         * error out if the user tries to display a framebuffer with such a
 504         * configuration.
 505         */
 506        if (state->fb->format->num_planes > 2) {
 507                if (state->fb->pitches[2] != state->fb->pitches[1]) {
 508                        DRM_ERROR("unsupported UV-plane configuration\n");
 509                        return -EINVAL;
 510                }
 511        }
 512
 513        err = tegra_plane_state_add(tegra, state);
 514        if (err < 0)
 515                return err;
 516
 517        return 0;
 518}
 519
 520static void tegra_plane_atomic_disable(struct drm_plane *plane,
 521                                       struct drm_plane_state *old_state)
 522{
 523        struct tegra_plane *p = to_tegra_plane(plane);
 524        u32 value;
 525
 526        /* rien ne va plus */
 527        if (!old_state || !old_state->crtc)
 528                return;
 529
 530        value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 531        value &= ~WIN_ENABLE;
 532        tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 533}
 534
 535static void tegra_plane_atomic_update(struct drm_plane *plane,
 536                                      struct drm_plane_state *old_state)
 537{
 538        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 539        struct drm_framebuffer *fb = plane->state->fb;
 540        struct tegra_plane *p = to_tegra_plane(plane);
 541        struct tegra_dc_window window;
 542        unsigned int i;
 543
 544        /* rien ne va plus */
 545        if (!plane->state->crtc || !plane->state->fb)
 546                return;
 547
 548        if (!plane->state->visible)
 549                return tegra_plane_atomic_disable(plane, old_state);
 550
 551        memset(&window, 0, sizeof(window));
 552        window.src.x = plane->state->src.x1 >> 16;
 553        window.src.y = plane->state->src.y1 >> 16;
 554        window.src.w = drm_rect_width(&plane->state->src) >> 16;
 555        window.src.h = drm_rect_height(&plane->state->src) >> 16;
 556        window.dst.x = plane->state->dst.x1;
 557        window.dst.y = plane->state->dst.y1;
 558        window.dst.w = drm_rect_width(&plane->state->dst);
 559        window.dst.h = drm_rect_height(&plane->state->dst);
 560        window.bits_per_pixel = fb->format->cpp[0] * 8;
 561        window.bottom_up = tegra_fb_is_bottom_up(fb);
 562
 563        /* copy from state */
 564        window.zpos = plane->state->normalized_zpos;
 565        window.tiling = state->tiling;
 566        window.format = state->format;
 567        window.swap = state->swap;
 568
 569        for (i = 0; i < fb->format->num_planes; i++) {
 570                struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 571
 572                window.base[i] = bo->paddr + fb->offsets[i];
 573
 574                /*
 575                 * Tegra uses a shared stride for UV planes. Framebuffers are
 576                 * already checked for this in the tegra_plane_atomic_check()
 577                 * function, so it's safe to ignore the V-plane pitch here.
 578                 */
 579                if (i < 2)
 580                        window.stride[i] = fb->pitches[i];
 581        }
 582
 583        tegra_dc_setup_window(p, &window);
 584}
 585
 586static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 587        .atomic_check = tegra_plane_atomic_check,
 588        .atomic_disable = tegra_plane_atomic_disable,
 589        .atomic_update = tegra_plane_atomic_update,
 590};
 591
 592static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 593{
 594        /*
 595         * Ideally this would use drm_crtc_mask(), but that would require the
 596         * CRTC to already be in the mode_config's list of CRTCs. However, it
 597         * will only be added to that list in the drm_crtc_init_with_planes()
 598         * (in tegra_dc_init()), which in turn requires registration of these
 599         * planes. So we have ourselves a nice little chicken and egg problem
 600         * here.
 601         *
 602         * We work around this by manually creating the mask from the number
 603         * of CRTCs that have been registered, and should therefore always be
 604         * the same as drm_crtc_index() after registration.
 605         */
 606        return 1 << drm->mode_config.num_crtc;
 607}
 608
 609static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 610                                                    struct tegra_dc *dc)
 611{
 612        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 613        enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 614        struct tegra_plane *plane;
 615        unsigned int num_formats;
 616        const u64 *modifiers;
 617        const u32 *formats;
 618        int err;
 619
 620        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 621        if (!plane)
 622                return ERR_PTR(-ENOMEM);
 623
 624        /* Always use window A as primary window */
 625        plane->offset = 0xa00;
 626        plane->index = 0;
 627        plane->dc = dc;
 628
 629        num_formats = dc->soc->num_primary_formats;
 630        formats = dc->soc->primary_formats;
 631        modifiers = dc->soc->modifiers;
 632
 633        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 634                                       &tegra_plane_funcs, formats,
 635                                       num_formats, modifiers, type, NULL);
 636        if (err < 0) {
 637                kfree(plane);
 638                return ERR_PTR(err);
 639        }
 640
 641        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 642
 643        if (dc->soc->supports_blending)
 644                drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
 645
 646        return &plane->base;
 647}
 648
 649static const u32 tegra_cursor_plane_formats[] = {
 650        DRM_FORMAT_RGBA8888,
 651};
 652
 653static int tegra_cursor_atomic_check(struct drm_plane *plane,
 654                                     struct drm_plane_state *state)
 655{
 656        struct tegra_plane *tegra = to_tegra_plane(plane);
 657        int err;
 658
 659        /* no need for further checks if the plane is being disabled */
 660        if (!state->crtc)
 661                return 0;
 662
 663        /* scaling not supported for cursor */
 664        if ((state->src_w >> 16 != state->crtc_w) ||
 665            (state->src_h >> 16 != state->crtc_h))
 666                return -EINVAL;
 667
 668        /* only square cursors supported */
 669        if (state->src_w != state->src_h)
 670                return -EINVAL;
 671
 672        if (state->crtc_w != 32 && state->crtc_w != 64 &&
 673            state->crtc_w != 128 && state->crtc_w != 256)
 674                return -EINVAL;
 675
 676        err = tegra_plane_state_add(tegra, state);
 677        if (err < 0)
 678                return err;
 679
 680        return 0;
 681}
 682
 683static void tegra_cursor_atomic_update(struct drm_plane *plane,
 684                                       struct drm_plane_state *old_state)
 685{
 686        struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 687        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 688        struct drm_plane_state *state = plane->state;
 689        u32 value = CURSOR_CLIP_DISPLAY;
 690
 691        /* rien ne va plus */
 692        if (!plane->state->crtc || !plane->state->fb)
 693                return;
 694
 695        switch (state->crtc_w) {
 696        case 32:
 697                value |= CURSOR_SIZE_32x32;
 698                break;
 699
 700        case 64:
 701                value |= CURSOR_SIZE_64x64;
 702                break;
 703
 704        case 128:
 705                value |= CURSOR_SIZE_128x128;
 706                break;
 707
 708        case 256:
 709                value |= CURSOR_SIZE_256x256;
 710                break;
 711
 712        default:
 713                WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 714                     state->crtc_h);
 715                return;
 716        }
 717
 718        value |= (bo->paddr >> 10) & 0x3fffff;
 719        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 720
 721#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 722        value = (bo->paddr >> 32) & 0x3;
 723        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 724#endif
 725
 726        /* enable cursor and set blend mode */
 727        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 728        value |= CURSOR_ENABLE;
 729        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 730
 731        value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 732        value &= ~CURSOR_DST_BLEND_MASK;
 733        value &= ~CURSOR_SRC_BLEND_MASK;
 734        value |= CURSOR_MODE_NORMAL;
 735        value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 736        value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 737        value |= CURSOR_ALPHA;
 738        tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 739
 740        /* position the cursor */
 741        value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 742        tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 743}
 744
 745static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 746                                        struct drm_plane_state *old_state)
 747{
 748        struct tegra_dc *dc;
 749        u32 value;
 750
 751        /* rien ne va plus */
 752        if (!old_state || !old_state->crtc)
 753                return;
 754
 755        dc = to_tegra_dc(old_state->crtc);
 756
 757        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 758        value &= ~CURSOR_ENABLE;
 759        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 760}
 761
 762static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 763        .atomic_check = tegra_cursor_atomic_check,
 764        .atomic_update = tegra_cursor_atomic_update,
 765        .atomic_disable = tegra_cursor_atomic_disable,
 766};
 767
 768static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 769                                                      struct tegra_dc *dc)
 770{
 771        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 772        struct tegra_plane *plane;
 773        unsigned int num_formats;
 774        const u32 *formats;
 775        int err;
 776
 777        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 778        if (!plane)
 779                return ERR_PTR(-ENOMEM);
 780
 781        /*
 782         * This index is kind of fake. The cursor isn't a regular plane, but
 783         * its update and activation request bits in DC_CMD_STATE_CONTROL do
 784         * use the same programming. Setting this fake index here allows the
 785         * code in tegra_add_plane_state() to do the right thing without the
 786         * need to special-casing the cursor plane.
 787         */
 788        plane->index = 6;
 789        plane->dc = dc;
 790
 791        num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 792        formats = tegra_cursor_plane_formats;
 793
 794        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 795                                       &tegra_plane_funcs, formats,
 796                                       num_formats, NULL,
 797                                       DRM_PLANE_TYPE_CURSOR, NULL);
 798        if (err < 0) {
 799                kfree(plane);
 800                return ERR_PTR(err);
 801        }
 802
 803        drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 804
 805        return &plane->base;
 806}
 807
 808static const u32 tegra20_overlay_formats[] = {
 809        DRM_FORMAT_ARGB4444,
 810        DRM_FORMAT_ARGB1555,
 811        DRM_FORMAT_RGB565,
 812        DRM_FORMAT_RGBA5551,
 813        DRM_FORMAT_ABGR8888,
 814        DRM_FORMAT_ARGB8888,
 815        /* non-native formats */
 816        DRM_FORMAT_XRGB1555,
 817        DRM_FORMAT_RGBX5551,
 818        DRM_FORMAT_XBGR8888,
 819        DRM_FORMAT_XRGB8888,
 820        /* planar formats */
 821        DRM_FORMAT_UYVY,
 822        DRM_FORMAT_YUYV,
 823        DRM_FORMAT_YUV420,
 824        DRM_FORMAT_YUV422,
 825};
 826
 827static const u32 tegra114_overlay_formats[] = {
 828        DRM_FORMAT_ARGB4444,
 829        DRM_FORMAT_ARGB1555,
 830        DRM_FORMAT_RGB565,
 831        DRM_FORMAT_RGBA5551,
 832        DRM_FORMAT_ABGR8888,
 833        DRM_FORMAT_ARGB8888,
 834        /* new on Tegra114 */
 835        DRM_FORMAT_ABGR4444,
 836        DRM_FORMAT_ABGR1555,
 837        DRM_FORMAT_BGRA5551,
 838        DRM_FORMAT_XRGB1555,
 839        DRM_FORMAT_RGBX5551,
 840        DRM_FORMAT_XBGR1555,
 841        DRM_FORMAT_BGRX5551,
 842        DRM_FORMAT_BGR565,
 843        DRM_FORMAT_BGRA8888,
 844        DRM_FORMAT_RGBA8888,
 845        DRM_FORMAT_XRGB8888,
 846        DRM_FORMAT_XBGR8888,
 847        /* planar formats */
 848        DRM_FORMAT_UYVY,
 849        DRM_FORMAT_YUYV,
 850        DRM_FORMAT_YUV420,
 851        DRM_FORMAT_YUV422,
 852};
 853
 854static const u32 tegra124_overlay_formats[] = {
 855        DRM_FORMAT_ARGB4444,
 856        DRM_FORMAT_ARGB1555,
 857        DRM_FORMAT_RGB565,
 858        DRM_FORMAT_RGBA5551,
 859        DRM_FORMAT_ABGR8888,
 860        DRM_FORMAT_ARGB8888,
 861        /* new on Tegra114 */
 862        DRM_FORMAT_ABGR4444,
 863        DRM_FORMAT_ABGR1555,
 864        DRM_FORMAT_BGRA5551,
 865        DRM_FORMAT_XRGB1555,
 866        DRM_FORMAT_RGBX5551,
 867        DRM_FORMAT_XBGR1555,
 868        DRM_FORMAT_BGRX5551,
 869        DRM_FORMAT_BGR565,
 870        DRM_FORMAT_BGRA8888,
 871        DRM_FORMAT_RGBA8888,
 872        DRM_FORMAT_XRGB8888,
 873        DRM_FORMAT_XBGR8888,
 874        /* new on Tegra124 */
 875        DRM_FORMAT_RGBX8888,
 876        DRM_FORMAT_BGRX8888,
 877        /* planar formats */
 878        DRM_FORMAT_UYVY,
 879        DRM_FORMAT_YUYV,
 880        DRM_FORMAT_YUV420,
 881        DRM_FORMAT_YUV422,
 882};
 883
 884static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 885                                                       struct tegra_dc *dc,
 886                                                       unsigned int index,
 887                                                       bool cursor)
 888{
 889        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 890        struct tegra_plane *plane;
 891        unsigned int num_formats;
 892        enum drm_plane_type type;
 893        const u32 *formats;
 894        int err;
 895
 896        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 897        if (!plane)
 898                return ERR_PTR(-ENOMEM);
 899
 900        plane->offset = 0xa00 + 0x200 * index;
 901        plane->index = index;
 902        plane->dc = dc;
 903
 904        num_formats = dc->soc->num_overlay_formats;
 905        formats = dc->soc->overlay_formats;
 906
 907        if (!cursor)
 908                type = DRM_PLANE_TYPE_OVERLAY;
 909        else
 910                type = DRM_PLANE_TYPE_CURSOR;
 911
 912        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 913                                       &tegra_plane_funcs, formats,
 914                                       num_formats, NULL, type, NULL);
 915        if (err < 0) {
 916                kfree(plane);
 917                return ERR_PTR(err);
 918        }
 919
 920        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 921
 922        if (dc->soc->supports_blending)
 923                drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
 924
 925        return &plane->base;
 926}
 927
 928static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
 929                                                    struct tegra_dc *dc)
 930{
 931        struct drm_plane *plane, *primary = NULL;
 932        unsigned int i, j;
 933
 934        for (i = 0; i < dc->soc->num_wgrps; i++) {
 935                const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
 936
 937                if (wgrp->dc == dc->pipe) {
 938                        for (j = 0; j < wgrp->num_windows; j++) {
 939                                unsigned int index = wgrp->windows[j];
 940
 941                                plane = tegra_shared_plane_create(drm, dc,
 942                                                                  wgrp->index,
 943                                                                  index);
 944                                if (IS_ERR(plane))
 945                                        return plane;
 946
 947                                /*
 948                                 * Choose the first shared plane owned by this
 949                                 * head as the primary plane.
 950                                 */
 951                                if (!primary) {
 952                                        plane->type = DRM_PLANE_TYPE_PRIMARY;
 953                                        primary = plane;
 954                                }
 955                        }
 956                }
 957        }
 958
 959        return primary;
 960}
 961
 962static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
 963                                             struct tegra_dc *dc)
 964{
 965        struct drm_plane *planes[2], *primary;
 966        unsigned int planes_num;
 967        unsigned int i;
 968        int err;
 969
 970        primary = tegra_primary_plane_create(drm, dc);
 971        if (IS_ERR(primary))
 972                return primary;
 973
 974        if (dc->soc->supports_cursor)
 975                planes_num = 2;
 976        else
 977                planes_num = 1;
 978
 979        for (i = 0; i < planes_num; i++) {
 980                planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
 981                                                          false);
 982                if (IS_ERR(planes[i])) {
 983                        err = PTR_ERR(planes[i]);
 984
 985                        while (i--)
 986                                tegra_plane_funcs.destroy(planes[i]);
 987
 988                        tegra_plane_funcs.destroy(primary);
 989                        return ERR_PTR(err);
 990                }
 991        }
 992
 993        return primary;
 994}
 995
 996static void tegra_dc_destroy(struct drm_crtc *crtc)
 997{
 998        drm_crtc_cleanup(crtc);
 999}
1000
1001static void tegra_crtc_reset(struct drm_crtc *crtc)
1002{
1003        struct tegra_dc_state *state;
1004
1005        if (crtc->state)
1006                __drm_atomic_helper_crtc_destroy_state(crtc->state);
1007
1008        kfree(crtc->state);
1009        crtc->state = NULL;
1010
1011        state = kzalloc(sizeof(*state), GFP_KERNEL);
1012        if (state) {
1013                crtc->state = &state->base;
1014                crtc->state->crtc = crtc;
1015        }
1016
1017        drm_crtc_vblank_reset(crtc);
1018}
1019
1020static struct drm_crtc_state *
1021tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1022{
1023        struct tegra_dc_state *state = to_dc_state(crtc->state);
1024        struct tegra_dc_state *copy;
1025
1026        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1027        if (!copy)
1028                return NULL;
1029
1030        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1031        copy->clk = state->clk;
1032        copy->pclk = state->pclk;
1033        copy->div = state->div;
1034        copy->planes = state->planes;
1035
1036        return &copy->base;
1037}
1038
1039static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1040                                            struct drm_crtc_state *state)
1041{
1042        __drm_atomic_helper_crtc_destroy_state(state);
1043        kfree(state);
1044}
1045
1046#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1047
1048static const struct debugfs_reg32 tegra_dc_regs[] = {
1049        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1050        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1051        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1052        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1053        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1054        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1055        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1056        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1057        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1058        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1059        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1060        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1061        DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1062        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1063        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1064        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1065        DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1066        DEBUGFS_REG32(DC_CMD_INT_STATUS),
1067        DEBUGFS_REG32(DC_CMD_INT_MASK),
1068        DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1069        DEBUGFS_REG32(DC_CMD_INT_TYPE),
1070        DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1071        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1072        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1073        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1074        DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1075        DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1076        DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1077        DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1078        DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1079        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1080        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1081        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1082        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1083        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1084        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1085        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1086        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1087        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1088        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1089        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1090        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1091        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1092        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1093        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1094        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1095        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1096        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1097        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1098        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1099        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1100        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1101        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1102        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1103        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1104        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1105        DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1106        DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1107        DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1108        DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1109        DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1110        DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1111        DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1112        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1113        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1114        DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1115        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1116        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1117        DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1118        DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1119        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1120        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1121        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1122        DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1123        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1124        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1125        DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1126        DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1127        DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1128        DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1129        DEBUGFS_REG32(DC_DISP_ACTIVE),
1130        DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1131        DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1132        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1133        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1134        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1135        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1136        DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1137        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1138        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1139        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1140        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1141        DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1142        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1143        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1144        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1145        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1146        DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1147        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1148        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1149        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1150        DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1151        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1152        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1153        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1154        DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1155        DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1156        DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1157        DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1158        DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1159        DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1160        DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1161        DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1162        DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1163        DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1164        DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1165        DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1166        DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1167        DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1168        DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1169        DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1170        DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1171        DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1172        DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1173        DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1174        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1175        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1176        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1177        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1178        DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1179        DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1180        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1181        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1182        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1183        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1184        DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1185        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1186        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1187        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1188        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1189        DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1190        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1191        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1192        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1193        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1194        DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1195        DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1196        DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1197        DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1198        DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1199        DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1200        DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1201        DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1202        DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1203        DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1204        DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1205        DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1206        DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1207        DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1208        DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1209        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1210        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1211        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1212        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1213        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1214        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1215        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1216        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1217        DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1218        DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1219        DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1220        DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1221        DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1222        DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1223        DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1224        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1225        DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1226        DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1227        DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1228        DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1229        DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1230        DEBUGFS_REG32(DC_WIN_POSITION),
1231        DEBUGFS_REG32(DC_WIN_SIZE),
1232        DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1233        DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1234        DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1235        DEBUGFS_REG32(DC_WIN_DDA_INC),
1236        DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1237        DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1238        DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1239        DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1240        DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1241        DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1242        DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1243        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1244        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1245        DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1246        DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1247        DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1248        DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1249        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1250        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1251        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1252        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1253        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1254        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1255        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1256        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1257        DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1258        DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1259        DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1260        DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1261};
1262
1263static int tegra_dc_show_regs(struct seq_file *s, void *data)
1264{
1265        struct drm_info_node *node = s->private;
1266        struct tegra_dc *dc = node->info_ent->data;
1267        unsigned int i;
1268        int err = 0;
1269
1270        drm_modeset_lock(&dc->base.mutex, NULL);
1271
1272        if (!dc->base.state->active) {
1273                err = -EBUSY;
1274                goto unlock;
1275        }
1276
1277        for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1278                unsigned int offset = tegra_dc_regs[i].offset;
1279
1280                seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1281                           offset, tegra_dc_readl(dc, offset));
1282        }
1283
1284unlock:
1285        drm_modeset_unlock(&dc->base.mutex);
1286        return err;
1287}
1288
1289static int tegra_dc_show_crc(struct seq_file *s, void *data)
1290{
1291        struct drm_info_node *node = s->private;
1292        struct tegra_dc *dc = node->info_ent->data;
1293        int err = 0;
1294        u32 value;
1295
1296        drm_modeset_lock(&dc->base.mutex, NULL);
1297
1298        if (!dc->base.state->active) {
1299                err = -EBUSY;
1300                goto unlock;
1301        }
1302
1303        value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1304        tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1305        tegra_dc_commit(dc);
1306
1307        drm_crtc_wait_one_vblank(&dc->base);
1308        drm_crtc_wait_one_vblank(&dc->base);
1309
1310        value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1311        seq_printf(s, "%08x\n", value);
1312
1313        tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1314
1315unlock:
1316        drm_modeset_unlock(&dc->base.mutex);
1317        return err;
1318}
1319
1320static int tegra_dc_show_stats(struct seq_file *s, void *data)
1321{
1322        struct drm_info_node *node = s->private;
1323        struct tegra_dc *dc = node->info_ent->data;
1324
1325        seq_printf(s, "frames: %lu\n", dc->stats.frames);
1326        seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1327        seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1328        seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1329
1330        return 0;
1331}
1332
1333static struct drm_info_list debugfs_files[] = {
1334        { "regs", tegra_dc_show_regs, 0, NULL },
1335        { "crc", tegra_dc_show_crc, 0, NULL },
1336        { "stats", tegra_dc_show_stats, 0, NULL },
1337};
1338
1339static int tegra_dc_late_register(struct drm_crtc *crtc)
1340{
1341        unsigned int i, count = ARRAY_SIZE(debugfs_files);
1342        struct drm_minor *minor = crtc->dev->primary;
1343        struct dentry *root;
1344        struct tegra_dc *dc = to_tegra_dc(crtc);
1345        int err;
1346
1347#ifdef CONFIG_DEBUG_FS
1348        root = crtc->debugfs_entry;
1349#else
1350        root = NULL;
1351#endif
1352
1353        dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1354                                    GFP_KERNEL);
1355        if (!dc->debugfs_files)
1356                return -ENOMEM;
1357
1358        for (i = 0; i < count; i++)
1359                dc->debugfs_files[i].data = dc;
1360
1361        err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1362        if (err < 0)
1363                goto free;
1364
1365        return 0;
1366
1367free:
1368        kfree(dc->debugfs_files);
1369        dc->debugfs_files = NULL;
1370
1371        return err;
1372}
1373
1374static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1375{
1376        unsigned int count = ARRAY_SIZE(debugfs_files);
1377        struct drm_minor *minor = crtc->dev->primary;
1378        struct tegra_dc *dc = to_tegra_dc(crtc);
1379
1380        drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1381        kfree(dc->debugfs_files);
1382        dc->debugfs_files = NULL;
1383}
1384
1385static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1386{
1387        struct tegra_dc *dc = to_tegra_dc(crtc);
1388
1389        /* XXX vblank syncpoints don't work with nvdisplay yet */
1390        if (dc->syncpt && !dc->soc->has_nvdisplay)
1391                return host1x_syncpt_read(dc->syncpt);
1392
1393        /* fallback to software emulated VBLANK counter */
1394        return (u32)drm_crtc_vblank_count(&dc->base);
1395}
1396
1397static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1398{
1399        struct tegra_dc *dc = to_tegra_dc(crtc);
1400        u32 value;
1401
1402        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1403        value |= VBLANK_INT;
1404        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1405
1406        return 0;
1407}
1408
1409static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1410{
1411        struct tegra_dc *dc = to_tegra_dc(crtc);
1412        u32 value;
1413
1414        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1415        value &= ~VBLANK_INT;
1416        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1417}
1418
1419static const struct drm_crtc_funcs tegra_crtc_funcs = {
1420        .page_flip = drm_atomic_helper_page_flip,
1421        .set_config = drm_atomic_helper_set_config,
1422        .destroy = tegra_dc_destroy,
1423        .reset = tegra_crtc_reset,
1424        .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1425        .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1426        .late_register = tegra_dc_late_register,
1427        .early_unregister = tegra_dc_early_unregister,
1428        .get_vblank_counter = tegra_dc_get_vblank_counter,
1429        .enable_vblank = tegra_dc_enable_vblank,
1430        .disable_vblank = tegra_dc_disable_vblank,
1431};
1432
1433static int tegra_dc_set_timings(struct tegra_dc *dc,
1434                                struct drm_display_mode *mode)
1435{
1436        unsigned int h_ref_to_sync = 1;
1437        unsigned int v_ref_to_sync = 1;
1438        unsigned long value;
1439
1440        if (!dc->soc->has_nvdisplay) {
1441                tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1442
1443                value = (v_ref_to_sync << 16) | h_ref_to_sync;
1444                tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1445        }
1446
1447        value = ((mode->vsync_end - mode->vsync_start) << 16) |
1448                ((mode->hsync_end - mode->hsync_start) <<  0);
1449        tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1450
1451        value = ((mode->vtotal - mode->vsync_end) << 16) |
1452                ((mode->htotal - mode->hsync_end) <<  0);
1453        tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1454
1455        value = ((mode->vsync_start - mode->vdisplay) << 16) |
1456                ((mode->hsync_start - mode->hdisplay) <<  0);
1457        tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1458
1459        value = (mode->vdisplay << 16) | mode->hdisplay;
1460        tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1461
1462        return 0;
1463}
1464
1465/**
1466 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1467 *     state
1468 * @dc: display controller
1469 * @crtc_state: CRTC atomic state
1470 * @clk: parent clock for display controller
1471 * @pclk: pixel clock
1472 * @div: shift clock divider
1473 *
1474 * Returns:
1475 * 0 on success or a negative error-code on failure.
1476 */
1477int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1478                               struct drm_crtc_state *crtc_state,
1479                               struct clk *clk, unsigned long pclk,
1480                               unsigned int div)
1481{
1482        struct tegra_dc_state *state = to_dc_state(crtc_state);
1483
1484        if (!clk_has_parent(dc->clk, clk))
1485                return -EINVAL;
1486
1487        state->clk = clk;
1488        state->pclk = pclk;
1489        state->div = div;
1490
1491        return 0;
1492}
1493
1494static void tegra_dc_commit_state(struct tegra_dc *dc,
1495                                  struct tegra_dc_state *state)
1496{
1497        u32 value;
1498        int err;
1499
1500        err = clk_set_parent(dc->clk, state->clk);
1501        if (err < 0)
1502                dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1503
1504        /*
1505         * Outputs may not want to change the parent clock rate. This is only
1506         * relevant to Tegra20 where only a single display PLL is available.
1507         * Since that PLL would typically be used for HDMI, an internal LVDS
1508         * panel would need to be driven by some other clock such as PLL_P
1509         * which is shared with other peripherals. Changing the clock rate
1510         * should therefore be avoided.
1511         */
1512        if (state->pclk > 0) {
1513                err = clk_set_rate(state->clk, state->pclk);
1514                if (err < 0)
1515                        dev_err(dc->dev,
1516                                "failed to set clock rate to %lu Hz\n",
1517                                state->pclk);
1518        }
1519
1520        DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1521                      state->div);
1522        DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1523
1524        if (!dc->soc->has_nvdisplay) {
1525                value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1526                tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1527        }
1528
1529        err = clk_set_rate(dc->clk, state->pclk);
1530        if (err < 0)
1531                dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1532                        dc->clk, state->pclk, err);
1533}
1534
1535static void tegra_dc_stop(struct tegra_dc *dc)
1536{
1537        u32 value;
1538
1539        /* stop the display controller */
1540        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1541        value &= ~DISP_CTRL_MODE_MASK;
1542        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1543
1544        tegra_dc_commit(dc);
1545}
1546
1547static bool tegra_dc_idle(struct tegra_dc *dc)
1548{
1549        u32 value;
1550
1551        value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1552
1553        return (value & DISP_CTRL_MODE_MASK) == 0;
1554}
1555
1556static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1557{
1558        timeout = jiffies + msecs_to_jiffies(timeout);
1559
1560        while (time_before(jiffies, timeout)) {
1561                if (tegra_dc_idle(dc))
1562                        return 0;
1563
1564                usleep_range(1000, 2000);
1565        }
1566
1567        dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1568        return -ETIMEDOUT;
1569}
1570
1571static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1572                                      struct drm_crtc_state *old_state)
1573{
1574        struct tegra_dc *dc = to_tegra_dc(crtc);
1575        u32 value;
1576
1577        if (!tegra_dc_idle(dc)) {
1578                tegra_dc_stop(dc);
1579
1580                /*
1581                 * Ignore the return value, there isn't anything useful to do
1582                 * in case this fails.
1583                 */
1584                tegra_dc_wait_idle(dc, 100);
1585        }
1586
1587        /*
1588         * This should really be part of the RGB encoder driver, but clearing
1589         * these bits has the side-effect of stopping the display controller.
1590         * When that happens no VBLANK interrupts will be raised. At the same
1591         * time the encoder is disabled before the display controller, so the
1592         * above code is always going to timeout waiting for the controller
1593         * to go idle.
1594         *
1595         * Given the close coupling between the RGB encoder and the display
1596         * controller doing it here is still kind of okay. None of the other
1597         * encoder drivers require these bits to be cleared.
1598         *
1599         * XXX: Perhaps given that the display controller is switched off at
1600         * this point anyway maybe clearing these bits isn't even useful for
1601         * the RGB encoder?
1602         */
1603        if (dc->rgb) {
1604                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1605                value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1606                           PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1607                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1608        }
1609
1610        tegra_dc_stats_reset(&dc->stats);
1611        drm_crtc_vblank_off(crtc);
1612
1613        spin_lock_irq(&crtc->dev->event_lock);
1614
1615        if (crtc->state->event) {
1616                drm_crtc_send_vblank_event(crtc, crtc->state->event);
1617                crtc->state->event = NULL;
1618        }
1619
1620        spin_unlock_irq(&crtc->dev->event_lock);
1621
1622        pm_runtime_put_sync(dc->dev);
1623}
1624
1625static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1626                                     struct drm_crtc_state *old_state)
1627{
1628        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1629        struct tegra_dc_state *state = to_dc_state(crtc->state);
1630        struct tegra_dc *dc = to_tegra_dc(crtc);
1631        u32 value;
1632
1633        pm_runtime_get_sync(dc->dev);
1634
1635        /* initialize display controller */
1636        if (dc->syncpt) {
1637                u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1638
1639                if (dc->soc->has_nvdisplay)
1640                        enable = 1 << 31;
1641                else
1642                        enable = 1 << 8;
1643
1644                value = SYNCPT_CNTRL_NO_STALL;
1645                tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1646
1647                value = enable | syncpt;
1648                tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1649        }
1650
1651        if (dc->soc->has_nvdisplay) {
1652                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1653                        DSC_OBUF_UF_INT;
1654                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1655
1656                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1657                        DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1658                        HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1659                        REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1660                        VBLANK_INT | FRAME_END_INT;
1661                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1662
1663                value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1664                        FRAME_END_INT;
1665                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1666
1667                value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1668                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1669
1670                tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1671        } else {
1672                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1673                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1674                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1675
1676                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1677                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1678                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1679
1680                /* initialize timer */
1681                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1682                        WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1683                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1684
1685                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1686                        WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1687                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1688
1689                value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1690                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1691                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1692
1693                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1694                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1695                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1696        }
1697
1698        if (dc->soc->supports_background_color)
1699                tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1700        else
1701                tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1702
1703        /* apply PLL and pixel clock changes */
1704        tegra_dc_commit_state(dc, state);
1705
1706        /* program display mode */
1707        tegra_dc_set_timings(dc, mode);
1708
1709        /* interlacing isn't supported yet, so disable it */
1710        if (dc->soc->supports_interlacing) {
1711                value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1712                value &= ~INTERLACE_ENABLE;
1713                tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1714        }
1715
1716        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1717        value &= ~DISP_CTRL_MODE_MASK;
1718        value |= DISP_CTRL_MODE_C_DISPLAY;
1719        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1720
1721        if (!dc->soc->has_nvdisplay) {
1722                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1723                value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1724                         PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1725                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1726        }
1727
1728        /* enable underflow reporting and display red for missing pixels */
1729        if (dc->soc->has_nvdisplay) {
1730                value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1731                tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1732        }
1733
1734        tegra_dc_commit(dc);
1735
1736        drm_crtc_vblank_on(crtc);
1737}
1738
1739static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1740                                    struct drm_crtc_state *old_crtc_state)
1741{
1742        unsigned long flags;
1743
1744        if (crtc->state->event) {
1745                spin_lock_irqsave(&crtc->dev->event_lock, flags);
1746
1747                if (drm_crtc_vblank_get(crtc) != 0)
1748                        drm_crtc_send_vblank_event(crtc, crtc->state->event);
1749                else
1750                        drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1751
1752                spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1753
1754                crtc->state->event = NULL;
1755        }
1756}
1757
1758static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1759                                    struct drm_crtc_state *old_crtc_state)
1760{
1761        struct tegra_dc_state *state = to_dc_state(crtc->state);
1762        struct tegra_dc *dc = to_tegra_dc(crtc);
1763        u32 value;
1764
1765        value = state->planes << 8 | GENERAL_UPDATE;
1766        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1767        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1768
1769        value = state->planes | GENERAL_ACT_REQ;
1770        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1771        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1772}
1773
1774static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1775        .atomic_begin = tegra_crtc_atomic_begin,
1776        .atomic_flush = tegra_crtc_atomic_flush,
1777        .atomic_enable = tegra_crtc_atomic_enable,
1778        .atomic_disable = tegra_crtc_atomic_disable,
1779};
1780
1781static irqreturn_t tegra_dc_irq(int irq, void *data)
1782{
1783        struct tegra_dc *dc = data;
1784        unsigned long status;
1785
1786        status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1787        tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1788
1789        if (status & FRAME_END_INT) {
1790                /*
1791                dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1792                */
1793                dc->stats.frames++;
1794        }
1795
1796        if (status & VBLANK_INT) {
1797                /*
1798                dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1799                */
1800                drm_crtc_handle_vblank(&dc->base);
1801                dc->stats.vblank++;
1802        }
1803
1804        if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1805                /*
1806                dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1807                */
1808                dc->stats.underflow++;
1809        }
1810
1811        if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1812                /*
1813                dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1814                */
1815                dc->stats.overflow++;
1816        }
1817
1818        if (status & HEAD_UF_INT) {
1819                dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1820                dc->stats.underflow++;
1821        }
1822
1823        return IRQ_HANDLED;
1824}
1825
1826static int tegra_dc_init(struct host1x_client *client)
1827{
1828        struct drm_device *drm = dev_get_drvdata(client->parent);
1829        struct iommu_group *group = iommu_group_get(client->dev);
1830        unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1831        struct tegra_dc *dc = host1x_client_to_dc(client);
1832        struct tegra_drm *tegra = drm->dev_private;
1833        struct drm_plane *primary = NULL;
1834        struct drm_plane *cursor = NULL;
1835        int err;
1836
1837        dc->syncpt = host1x_syncpt_request(client, flags);
1838        if (!dc->syncpt)
1839                dev_warn(dc->dev, "failed to allocate syncpoint\n");
1840
1841        if (group && tegra->domain) {
1842                if (group != tegra->group) {
1843                        err = iommu_attach_group(tegra->domain, group);
1844                        if (err < 0) {
1845                                dev_err(dc->dev,
1846                                        "failed to attach to domain: %d\n",
1847                                        err);
1848                                return err;
1849                        }
1850
1851                        tegra->group = group;
1852                }
1853
1854                dc->domain = tegra->domain;
1855        }
1856
1857        if (dc->soc->wgrps)
1858                primary = tegra_dc_add_shared_planes(drm, dc);
1859        else
1860                primary = tegra_dc_add_planes(drm, dc);
1861
1862        if (IS_ERR(primary)) {
1863                err = PTR_ERR(primary);
1864                goto cleanup;
1865        }
1866
1867        if (dc->soc->supports_cursor) {
1868                cursor = tegra_dc_cursor_plane_create(drm, dc);
1869                if (IS_ERR(cursor)) {
1870                        err = PTR_ERR(cursor);
1871                        goto cleanup;
1872                }
1873        } else {
1874                /* dedicate one overlay to mouse cursor */
1875                cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
1876                if (IS_ERR(cursor)) {
1877                        err = PTR_ERR(cursor);
1878                        goto cleanup;
1879                }
1880        }
1881
1882        err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1883                                        &tegra_crtc_funcs, NULL);
1884        if (err < 0)
1885                goto cleanup;
1886
1887        drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1888
1889        /*
1890         * Keep track of the minimum pitch alignment across all display
1891         * controllers.
1892         */
1893        if (dc->soc->pitch_align > tegra->pitch_align)
1894                tegra->pitch_align = dc->soc->pitch_align;
1895
1896        err = tegra_dc_rgb_init(drm, dc);
1897        if (err < 0 && err != -ENODEV) {
1898                dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1899                goto cleanup;
1900        }
1901
1902        err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1903                               dev_name(dc->dev), dc);
1904        if (err < 0) {
1905                dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1906                        err);
1907                goto cleanup;
1908        }
1909
1910        return 0;
1911
1912cleanup:
1913        if (!IS_ERR_OR_NULL(cursor))
1914                drm_plane_cleanup(cursor);
1915
1916        if (!IS_ERR(primary))
1917                drm_plane_cleanup(primary);
1918
1919        if (group && dc->domain) {
1920                if (group == tegra->group) {
1921                        iommu_detach_group(dc->domain, group);
1922                        tegra->group = NULL;
1923                }
1924
1925                dc->domain = NULL;
1926        }
1927
1928        return err;
1929}
1930
1931static int tegra_dc_exit(struct host1x_client *client)
1932{
1933        struct drm_device *drm = dev_get_drvdata(client->parent);
1934        struct iommu_group *group = iommu_group_get(client->dev);
1935        struct tegra_dc *dc = host1x_client_to_dc(client);
1936        struct tegra_drm *tegra = drm->dev_private;
1937        int err;
1938
1939        devm_free_irq(dc->dev, dc->irq, dc);
1940
1941        err = tegra_dc_rgb_exit(dc);
1942        if (err) {
1943                dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1944                return err;
1945        }
1946
1947        if (group && dc->domain) {
1948                if (group == tegra->group) {
1949                        iommu_detach_group(dc->domain, group);
1950                        tegra->group = NULL;
1951                }
1952
1953                dc->domain = NULL;
1954        }
1955
1956        host1x_syncpt_free(dc->syncpt);
1957
1958        return 0;
1959}
1960
1961static const struct host1x_client_ops dc_client_ops = {
1962        .init = tegra_dc_init,
1963        .exit = tegra_dc_exit,
1964};
1965
1966static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1967        .supports_background_color = false,
1968        .supports_interlacing = false,
1969        .supports_cursor = false,
1970        .supports_block_linear = false,
1971        .supports_blending = false,
1972        .pitch_align = 8,
1973        .has_powergate = false,
1974        .coupled_pm = true,
1975        .has_nvdisplay = false,
1976        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1977        .primary_formats = tegra20_primary_formats,
1978        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1979        .overlay_formats = tegra20_overlay_formats,
1980        .modifiers = tegra20_modifiers,
1981};
1982
1983static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1984        .supports_background_color = false,
1985        .supports_interlacing = false,
1986        .supports_cursor = false,
1987        .supports_block_linear = false,
1988        .supports_blending = false,
1989        .pitch_align = 8,
1990        .has_powergate = false,
1991        .coupled_pm = false,
1992        .has_nvdisplay = false,
1993        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1994        .primary_formats = tegra20_primary_formats,
1995        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1996        .overlay_formats = tegra20_overlay_formats,
1997        .modifiers = tegra20_modifiers,
1998};
1999
2000static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2001        .supports_background_color = false,
2002        .supports_interlacing = false,
2003        .supports_cursor = false,
2004        .supports_block_linear = false,
2005        .supports_blending = false,
2006        .pitch_align = 64,
2007        .has_powergate = true,
2008        .coupled_pm = false,
2009        .has_nvdisplay = false,
2010        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2011        .primary_formats = tegra114_primary_formats,
2012        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2013        .overlay_formats = tegra114_overlay_formats,
2014        .modifiers = tegra20_modifiers,
2015};
2016
2017static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2018        .supports_background_color = true,
2019        .supports_interlacing = true,
2020        .supports_cursor = true,
2021        .supports_block_linear = true,
2022        .supports_blending = true,
2023        .pitch_align = 64,
2024        .has_powergate = true,
2025        .coupled_pm = false,
2026        .has_nvdisplay = false,
2027        .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2028        .primary_formats = tegra124_primary_formats,
2029        .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2030        .overlay_formats = tegra124_overlay_formats,
2031        .modifiers = tegra124_modifiers,
2032};
2033
2034static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2035        .supports_background_color = true,
2036        .supports_interlacing = true,
2037        .supports_cursor = true,
2038        .supports_block_linear = true,
2039        .supports_blending = true,
2040        .pitch_align = 64,
2041        .has_powergate = true,
2042        .coupled_pm = false,
2043        .has_nvdisplay = false,
2044        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2045        .primary_formats = tegra114_primary_formats,
2046        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2047        .overlay_formats = tegra114_overlay_formats,
2048        .modifiers = tegra124_modifiers,
2049};
2050
2051static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2052        {
2053                .index = 0,
2054                .dc = 0,
2055                .windows = (const unsigned int[]) { 0 },
2056                .num_windows = 1,
2057        }, {
2058                .index = 1,
2059                .dc = 1,
2060                .windows = (const unsigned int[]) { 1 },
2061                .num_windows = 1,
2062        }, {
2063                .index = 2,
2064                .dc = 1,
2065                .windows = (const unsigned int[]) { 2 },
2066                .num_windows = 1,
2067        }, {
2068                .index = 3,
2069                .dc = 2,
2070                .windows = (const unsigned int[]) { 3 },
2071                .num_windows = 1,
2072        }, {
2073                .index = 4,
2074                .dc = 2,
2075                .windows = (const unsigned int[]) { 4 },
2076                .num_windows = 1,
2077        }, {
2078                .index = 5,
2079                .dc = 2,
2080                .windows = (const unsigned int[]) { 5 },
2081                .num_windows = 1,
2082        },
2083};
2084
2085static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2086        .supports_background_color = true,
2087        .supports_interlacing = true,
2088        .supports_cursor = true,
2089        .supports_block_linear = true,
2090        .supports_blending = true,
2091        .pitch_align = 64,
2092        .has_powergate = false,
2093        .coupled_pm = false,
2094        .has_nvdisplay = true,
2095        .wgrps = tegra186_dc_wgrps,
2096        .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2097};
2098
2099static const struct of_device_id tegra_dc_of_match[] = {
2100        {
2101                .compatible = "nvidia,tegra186-dc",
2102                .data = &tegra186_dc_soc_info,
2103        }, {
2104                .compatible = "nvidia,tegra210-dc",
2105                .data = &tegra210_dc_soc_info,
2106        }, {
2107                .compatible = "nvidia,tegra124-dc",
2108                .data = &tegra124_dc_soc_info,
2109        }, {
2110                .compatible = "nvidia,tegra114-dc",
2111                .data = &tegra114_dc_soc_info,
2112        }, {
2113                .compatible = "nvidia,tegra30-dc",
2114                .data = &tegra30_dc_soc_info,
2115        }, {
2116                .compatible = "nvidia,tegra20-dc",
2117                .data = &tegra20_dc_soc_info,
2118        }, {
2119                /* sentinel */
2120        }
2121};
2122MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2123
2124static int tegra_dc_parse_dt(struct tegra_dc *dc)
2125{
2126        struct device_node *np;
2127        u32 value = 0;
2128        int err;
2129
2130        err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2131        if (err < 0) {
2132                dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2133
2134                /*
2135                 * If the nvidia,head property isn't present, try to find the
2136                 * correct head number by looking up the position of this
2137                 * display controller's node within the device tree. Assuming
2138                 * that the nodes are ordered properly in the DTS file and
2139                 * that the translation into a flattened device tree blob
2140                 * preserves that ordering this will actually yield the right
2141                 * head number.
2142                 *
2143                 * If those assumptions don't hold, this will still work for
2144                 * cases where only a single display controller is used.
2145                 */
2146                for_each_matching_node(np, tegra_dc_of_match) {
2147                        if (np == dc->dev->of_node) {
2148                                of_node_put(np);
2149                                break;
2150                        }
2151
2152                        value++;
2153                }
2154        }
2155
2156        dc->pipe = value;
2157
2158        return 0;
2159}
2160
2161static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2162{
2163        struct tegra_dc *dc = dev_get_drvdata(dev);
2164        unsigned int pipe = (unsigned long)data;
2165
2166        return dc->pipe == pipe;
2167}
2168
2169static int tegra_dc_couple(struct tegra_dc *dc)
2170{
2171        /*
2172         * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2173         * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2174         * POWER_CONTROL registers during CRTC enabling.
2175         */
2176        if (dc->soc->coupled_pm && dc->pipe == 1) {
2177                u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE;
2178                struct device_link *link;
2179                struct device *partner;
2180
2181                partner = driver_find_device(dc->dev->driver, NULL, NULL,
2182                                             tegra_dc_match_by_pipe);
2183                if (!partner)
2184                        return -EPROBE_DEFER;
2185
2186                link = device_link_add(dc->dev, partner, flags);
2187                if (!link) {
2188                        dev_err(dc->dev, "failed to link controllers\n");
2189                        return -EINVAL;
2190                }
2191
2192                dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2193        }
2194
2195        return 0;
2196}
2197
2198static int tegra_dc_probe(struct platform_device *pdev)
2199{
2200        struct resource *regs;
2201        struct tegra_dc *dc;
2202        int err;
2203
2204        dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2205        if (!dc)
2206                return -ENOMEM;
2207
2208        dc->soc = of_device_get_match_data(&pdev->dev);
2209
2210        INIT_LIST_HEAD(&dc->list);
2211        dc->dev = &pdev->dev;
2212
2213        err = tegra_dc_parse_dt(dc);
2214        if (err < 0)
2215                return err;
2216
2217        err = tegra_dc_couple(dc);
2218        if (err < 0)
2219                return err;
2220
2221        dc->clk = devm_clk_get(&pdev->dev, NULL);
2222        if (IS_ERR(dc->clk)) {
2223                dev_err(&pdev->dev, "failed to get clock\n");
2224                return PTR_ERR(dc->clk);
2225        }
2226
2227        dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2228        if (IS_ERR(dc->rst)) {
2229                dev_err(&pdev->dev, "failed to get reset\n");
2230                return PTR_ERR(dc->rst);
2231        }
2232
2233        /* assert reset and disable clock */
2234        err = clk_prepare_enable(dc->clk);
2235        if (err < 0)
2236                return err;
2237
2238        usleep_range(2000, 4000);
2239
2240        err = reset_control_assert(dc->rst);
2241        if (err < 0)
2242                return err;
2243
2244        usleep_range(2000, 4000);
2245
2246        clk_disable_unprepare(dc->clk);
2247
2248        if (dc->soc->has_powergate) {
2249                if (dc->pipe == 0)
2250                        dc->powergate = TEGRA_POWERGATE_DIS;
2251                else
2252                        dc->powergate = TEGRA_POWERGATE_DISB;
2253
2254                tegra_powergate_power_off(dc->powergate);
2255        }
2256
2257        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2258        dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2259        if (IS_ERR(dc->regs))
2260                return PTR_ERR(dc->regs);
2261
2262        dc->irq = platform_get_irq(pdev, 0);
2263        if (dc->irq < 0) {
2264                dev_err(&pdev->dev, "failed to get IRQ\n");
2265                return -ENXIO;
2266        }
2267
2268        err = tegra_dc_rgb_probe(dc);
2269        if (err < 0 && err != -ENODEV) {
2270                dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2271                return err;
2272        }
2273
2274        platform_set_drvdata(pdev, dc);
2275        pm_runtime_enable(&pdev->dev);
2276
2277        INIT_LIST_HEAD(&dc->client.list);
2278        dc->client.ops = &dc_client_ops;
2279        dc->client.dev = &pdev->dev;
2280
2281        err = host1x_client_register(&dc->client);
2282        if (err < 0) {
2283                dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2284                        err);
2285                return err;
2286        }
2287
2288        return 0;
2289}
2290
2291static int tegra_dc_remove(struct platform_device *pdev)
2292{
2293        struct tegra_dc *dc = platform_get_drvdata(pdev);
2294        int err;
2295
2296        err = host1x_client_unregister(&dc->client);
2297        if (err < 0) {
2298                dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2299                        err);
2300                return err;
2301        }
2302
2303        err = tegra_dc_rgb_remove(dc);
2304        if (err < 0) {
2305                dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2306                return err;
2307        }
2308
2309        pm_runtime_disable(&pdev->dev);
2310
2311        return 0;
2312}
2313
2314#ifdef CONFIG_PM
2315static int tegra_dc_suspend(struct device *dev)
2316{
2317        struct tegra_dc *dc = dev_get_drvdata(dev);
2318        int err;
2319
2320        err = reset_control_assert(dc->rst);
2321        if (err < 0) {
2322                dev_err(dev, "failed to assert reset: %d\n", err);
2323                return err;
2324        }
2325
2326        if (dc->soc->has_powergate)
2327                tegra_powergate_power_off(dc->powergate);
2328
2329        clk_disable_unprepare(dc->clk);
2330
2331        return 0;
2332}
2333
2334static int tegra_dc_resume(struct device *dev)
2335{
2336        struct tegra_dc *dc = dev_get_drvdata(dev);
2337        int err;
2338
2339        if (dc->soc->has_powergate) {
2340                err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2341                                                        dc->rst);
2342                if (err < 0) {
2343                        dev_err(dev, "failed to power partition: %d\n", err);
2344                        return err;
2345                }
2346        } else {
2347                err = clk_prepare_enable(dc->clk);
2348                if (err < 0) {
2349                        dev_err(dev, "failed to enable clock: %d\n", err);
2350                        return err;
2351                }
2352
2353                err = reset_control_deassert(dc->rst);
2354                if (err < 0) {
2355                        dev_err(dev, "failed to deassert reset: %d\n", err);
2356                        return err;
2357                }
2358        }
2359
2360        return 0;
2361}
2362#endif
2363
2364static const struct dev_pm_ops tegra_dc_pm_ops = {
2365        SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2366};
2367
2368struct platform_driver tegra_dc_driver = {
2369        .driver = {
2370                .name = "tegra-dc",
2371                .of_match_table = tegra_dc_of_match,
2372                .pm = &tegra_dc_pm_ops,
2373        },
2374        .probe = tegra_dc_probe,
2375        .remove = tegra_dc_remove,
2376};
2377