linux/drivers/gpu/drm/ttm/ttm_page_alloc_dma.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 (c) Oracle Corp.
   3
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the
  12 * next paragraph) shall be included in all copies or substantial portions
  13 * of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  24 */
  25
  26/*
  27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
  28 * over the DMA pools:
  29 * - Pool collects resently freed pages for reuse (and hooks up to
  30 *   the shrinker).
  31 * - Tracks currently in use pages
  32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
  33 *   when freed).
  34 */
  35
  36#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
  37#define pr_fmt(fmt) "[TTM] " fmt
  38
  39#include <linux/dma-mapping.h>
  40#include <linux/list.h>
  41#include <linux/seq_file.h> /* for seq_printf */
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/highmem.h>
  45#include <linux/mm_types.h>
  46#include <linux/module.h>
  47#include <linux/mm.h>
  48#include <linux/atomic.h>
  49#include <linux/device.h>
  50#include <linux/kthread.h>
  51#include <drm/ttm/ttm_bo_driver.h>
  52#include <drm/ttm/ttm_page_alloc.h>
  53#if IS_ENABLED(CONFIG_AGP)
  54#include <asm/agp.h>
  55#endif
  56#ifdef CONFIG_X86
  57#include <asm/set_memory.h>
  58#endif
  59
  60#define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
  61#define SMALL_ALLOCATION                4
  62#define FREE_ALL_PAGES                  (~0U)
  63#define VADDR_FLAG_HUGE_POOL            1UL
  64#define VADDR_FLAG_UPDATED_COUNT        2UL
  65
  66enum pool_type {
  67        IS_UNDEFINED    = 0,
  68        IS_WC           = 1 << 1,
  69        IS_UC           = 1 << 2,
  70        IS_CACHED       = 1 << 3,
  71        IS_DMA32        = 1 << 4,
  72        IS_HUGE         = 1 << 5
  73};
  74
  75/*
  76 * The pool structure. There are up to nine pools:
  77 *  - generic (not restricted to DMA32):
  78 *      - write combined, uncached, cached.
  79 *  - dma32 (up to 2^32 - so up 4GB):
  80 *      - write combined, uncached, cached.
  81 *  - huge (not restricted to DMA32):
  82 *      - write combined, uncached, cached.
  83 * for each 'struct device'. The 'cached' is for pages that are actively used.
  84 * The other ones can be shrunk by the shrinker API if neccessary.
  85 * @pools: The 'struct device->dma_pools' link.
  86 * @type: Type of the pool
  87 * @lock: Protects the free_list from concurrnet access. Must be
  88 * used with irqsave/irqrestore variants because pool allocator maybe called
  89 * from delayed work.
  90 * @free_list: Pool of pages that are free to be used. No order requirements.
  91 * @dev: The device that is associated with these pools.
  92 * @size: Size used during DMA allocation.
  93 * @npages_free: Count of available pages for re-use.
  94 * @npages_in_use: Count of pages that are in use.
  95 * @nfrees: Stats when pool is shrinking.
  96 * @nrefills: Stats when the pool is grown.
  97 * @gfp_flags: Flags to pass for alloc_page.
  98 * @name: Name of the pool.
  99 * @dev_name: Name derieved from dev - similar to how dev_info works.
 100 *   Used during shutdown as the dev_info during release is unavailable.
 101 */
 102struct dma_pool {
 103        struct list_head pools; /* The 'struct device->dma_pools link */
 104        enum pool_type type;
 105        spinlock_t lock;
 106        struct list_head free_list;
 107        struct device *dev;
 108        unsigned size;
 109        unsigned npages_free;
 110        unsigned npages_in_use;
 111        unsigned long nfrees; /* Stats when shrunk. */
 112        unsigned long nrefills; /* Stats when grown. */
 113        gfp_t gfp_flags;
 114        char name[13]; /* "cached dma32" */
 115        char dev_name[64]; /* Constructed from dev */
 116};
 117
 118/*
 119 * The accounting page keeping track of the allocated page along with
 120 * the DMA address.
 121 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
 122 * @vaddr: The virtual address of the page and a flag if the page belongs to a
 123 * huge pool
 124 * @dma: The bus address of the page. If the page is not allocated
 125 *   via the DMA API, it will be -1.
 126 */
 127struct dma_page {
 128        struct list_head page_list;
 129        unsigned long vaddr;
 130        struct page *p;
 131        dma_addr_t dma;
 132};
 133
 134/*
 135 * Limits for the pool. They are handled without locks because only place where
 136 * they may change is in sysfs store. They won't have immediate effect anyway
 137 * so forcing serialization to access them is pointless.
 138 */
 139
 140struct ttm_pool_opts {
 141        unsigned        alloc_size;
 142        unsigned        max_size;
 143        unsigned        small;
 144};
 145
 146/*
 147 * Contains the list of all of the 'struct device' and their corresponding
 148 * DMA pools. Guarded by _mutex->lock.
 149 * @pools: The link to 'struct ttm_pool_manager->pools'
 150 * @dev: The 'struct device' associated with the 'pool'
 151 * @pool: The 'struct dma_pool' associated with the 'dev'
 152 */
 153struct device_pools {
 154        struct list_head pools;
 155        struct device *dev;
 156        struct dma_pool *pool;
 157};
 158
 159/*
 160 * struct ttm_pool_manager - Holds memory pools for fast allocation
 161 *
 162 * @lock: Lock used when adding/removing from pools
 163 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
 164 * @options: Limits for the pool.
 165 * @npools: Total amount of pools in existence.
 166 * @shrinker: The structure used by [un|]register_shrinker
 167 */
 168struct ttm_pool_manager {
 169        struct mutex            lock;
 170        struct list_head        pools;
 171        struct ttm_pool_opts    options;
 172        unsigned                npools;
 173        struct shrinker         mm_shrink;
 174        struct kobject          kobj;
 175};
 176
 177static struct ttm_pool_manager *_manager;
 178
 179static struct attribute ttm_page_pool_max = {
 180        .name = "pool_max_size",
 181        .mode = S_IRUGO | S_IWUSR
 182};
 183static struct attribute ttm_page_pool_small = {
 184        .name = "pool_small_allocation",
 185        .mode = S_IRUGO | S_IWUSR
 186};
 187static struct attribute ttm_page_pool_alloc_size = {
 188        .name = "pool_allocation_size",
 189        .mode = S_IRUGO | S_IWUSR
 190};
 191
 192static struct attribute *ttm_pool_attrs[] = {
 193        &ttm_page_pool_max,
 194        &ttm_page_pool_small,
 195        &ttm_page_pool_alloc_size,
 196        NULL
 197};
 198
 199static void ttm_pool_kobj_release(struct kobject *kobj)
 200{
 201        struct ttm_pool_manager *m =
 202                container_of(kobj, struct ttm_pool_manager, kobj);
 203        kfree(m);
 204}
 205
 206static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
 207                              const char *buffer, size_t size)
 208{
 209        struct ttm_pool_manager *m =
 210                container_of(kobj, struct ttm_pool_manager, kobj);
 211        int chars;
 212        unsigned val;
 213
 214        chars = sscanf(buffer, "%u", &val);
 215        if (chars == 0)
 216                return size;
 217
 218        /* Convert kb to number of pages */
 219        val = val / (PAGE_SIZE >> 10);
 220
 221        if (attr == &ttm_page_pool_max) {
 222                m->options.max_size = val;
 223        } else if (attr == &ttm_page_pool_small) {
 224                m->options.small = val;
 225        } else if (attr == &ttm_page_pool_alloc_size) {
 226                if (val > NUM_PAGES_TO_ALLOC*8) {
 227                        pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
 228                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
 229                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 230                        return size;
 231                } else if (val > NUM_PAGES_TO_ALLOC) {
 232                        pr_warn("Setting allocation size to larger than %lu is not recommended\n",
 233                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 234                }
 235                m->options.alloc_size = val;
 236        }
 237
 238        return size;
 239}
 240
 241static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
 242                             char *buffer)
 243{
 244        struct ttm_pool_manager *m =
 245                container_of(kobj, struct ttm_pool_manager, kobj);
 246        unsigned val = 0;
 247
 248        if (attr == &ttm_page_pool_max)
 249                val = m->options.max_size;
 250        else if (attr == &ttm_page_pool_small)
 251                val = m->options.small;
 252        else if (attr == &ttm_page_pool_alloc_size)
 253                val = m->options.alloc_size;
 254
 255        val = val * (PAGE_SIZE >> 10);
 256
 257        return snprintf(buffer, PAGE_SIZE, "%u\n", val);
 258}
 259
 260static const struct sysfs_ops ttm_pool_sysfs_ops = {
 261        .show = &ttm_pool_show,
 262        .store = &ttm_pool_store,
 263};
 264
 265static struct kobj_type ttm_pool_kobj_type = {
 266        .release = &ttm_pool_kobj_release,
 267        .sysfs_ops = &ttm_pool_sysfs_ops,
 268        .default_attrs = ttm_pool_attrs,
 269};
 270
 271#ifndef CONFIG_X86
 272static int set_pages_array_wb(struct page **pages, int addrinarray)
 273{
 274#if IS_ENABLED(CONFIG_AGP)
 275        int i;
 276
 277        for (i = 0; i < addrinarray; i++)
 278                unmap_page_from_agp(pages[i]);
 279#endif
 280        return 0;
 281}
 282
 283static int set_pages_array_wc(struct page **pages, int addrinarray)
 284{
 285#if IS_ENABLED(CONFIG_AGP)
 286        int i;
 287
 288        for (i = 0; i < addrinarray; i++)
 289                map_page_into_agp(pages[i]);
 290#endif
 291        return 0;
 292}
 293
 294static int set_pages_array_uc(struct page **pages, int addrinarray)
 295{
 296#if IS_ENABLED(CONFIG_AGP)
 297        int i;
 298
 299        for (i = 0; i < addrinarray; i++)
 300                map_page_into_agp(pages[i]);
 301#endif
 302        return 0;
 303}
 304#endif /* for !CONFIG_X86 */
 305
 306static int ttm_set_pages_caching(struct dma_pool *pool,
 307                                 struct page **pages, unsigned cpages)
 308{
 309        int r = 0;
 310        /* Set page caching */
 311        if (pool->type & IS_UC) {
 312                r = set_pages_array_uc(pages, cpages);
 313                if (r)
 314                        pr_err("%s: Failed to set %d pages to uc!\n",
 315                               pool->dev_name, cpages);
 316        }
 317        if (pool->type & IS_WC) {
 318                r = set_pages_array_wc(pages, cpages);
 319                if (r)
 320                        pr_err("%s: Failed to set %d pages to wc!\n",
 321                               pool->dev_name, cpages);
 322        }
 323        return r;
 324}
 325
 326static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
 327{
 328        dma_addr_t dma = d_page->dma;
 329        d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
 330        dma_free_coherent(pool->dev, pool->size, (void *)d_page->vaddr, dma);
 331
 332        kfree(d_page);
 333        d_page = NULL;
 334}
 335static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
 336{
 337        struct dma_page *d_page;
 338        unsigned long attrs = 0;
 339        void *vaddr;
 340
 341        d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
 342        if (!d_page)
 343                return NULL;
 344
 345        if (pool->type & IS_HUGE)
 346                attrs = DMA_ATTR_NO_WARN;
 347
 348        vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
 349                                pool->gfp_flags, attrs);
 350        if (vaddr) {
 351                if (is_vmalloc_addr(vaddr))
 352                        d_page->p = vmalloc_to_page(vaddr);
 353                else
 354                        d_page->p = virt_to_page(vaddr);
 355                d_page->vaddr = (unsigned long)vaddr;
 356                if (pool->type & IS_HUGE)
 357                        d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
 358        } else {
 359                kfree(d_page);
 360                d_page = NULL;
 361        }
 362        return d_page;
 363}
 364static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
 365{
 366        enum pool_type type = IS_UNDEFINED;
 367
 368        if (flags & TTM_PAGE_FLAG_DMA32)
 369                type |= IS_DMA32;
 370        if (cstate == tt_cached)
 371                type |= IS_CACHED;
 372        else if (cstate == tt_uncached)
 373                type |= IS_UC;
 374        else
 375                type |= IS_WC;
 376
 377        return type;
 378}
 379
 380static void ttm_pool_update_free_locked(struct dma_pool *pool,
 381                                        unsigned freed_pages)
 382{
 383        pool->npages_free -= freed_pages;
 384        pool->nfrees += freed_pages;
 385
 386}
 387
 388/* set memory back to wb and free the pages. */
 389static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
 390{
 391        struct page *page = d_page->p;
 392        unsigned i, num_pages;
 393
 394        /* Don't set WB on WB page pool. */
 395        if (!(pool->type & IS_CACHED)) {
 396                num_pages = pool->size / PAGE_SIZE;
 397                for (i = 0; i < num_pages; ++i, ++page) {
 398                        if (set_pages_array_wb(&page, 1)) {
 399                                pr_err("%s: Failed to set %d pages to wb!\n",
 400                                       pool->dev_name, 1);
 401                        }
 402                }
 403        }
 404
 405        list_del(&d_page->page_list);
 406        __ttm_dma_free_page(pool, d_page);
 407}
 408
 409static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
 410                              struct page *pages[], unsigned npages)
 411{
 412        struct dma_page *d_page, *tmp;
 413
 414        if (pool->type & IS_HUGE) {
 415                list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
 416                        ttm_dma_page_put(pool, d_page);
 417
 418                return;
 419        }
 420
 421        /* Don't set WB on WB page pool. */
 422        if (npages && !(pool->type & IS_CACHED) &&
 423            set_pages_array_wb(pages, npages))
 424                pr_err("%s: Failed to set %d pages to wb!\n",
 425                       pool->dev_name, npages);
 426
 427        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 428                list_del(&d_page->page_list);
 429                __ttm_dma_free_page(pool, d_page);
 430        }
 431}
 432
 433/*
 434 * Free pages from pool.
 435 *
 436 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
 437 * number of pages in one go.
 438 *
 439 * @pool: to free the pages from
 440 * @nr_free: If set to true will free all pages in pool
 441 * @use_static: Safe to use static buffer
 442 **/
 443static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
 444                                       bool use_static)
 445{
 446        static struct page *static_buf[NUM_PAGES_TO_ALLOC];
 447        unsigned long irq_flags;
 448        struct dma_page *dma_p, *tmp;
 449        struct page **pages_to_free;
 450        struct list_head d_pages;
 451        unsigned freed_pages = 0,
 452                 npages_to_free = nr_free;
 453
 454        if (NUM_PAGES_TO_ALLOC < nr_free)
 455                npages_to_free = NUM_PAGES_TO_ALLOC;
 456#if 0
 457        if (nr_free > 1) {
 458                pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
 459                         pool->dev_name, pool->name, current->pid,
 460                         npages_to_free, nr_free);
 461        }
 462#endif
 463        if (use_static)
 464                pages_to_free = static_buf;
 465        else
 466                pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
 467                                        GFP_KERNEL);
 468
 469        if (!pages_to_free) {
 470                pr_debug("%s: Failed to allocate memory for pool free operation\n",
 471                       pool->dev_name);
 472                return 0;
 473        }
 474        INIT_LIST_HEAD(&d_pages);
 475restart:
 476        spin_lock_irqsave(&pool->lock, irq_flags);
 477
 478        /* We picking the oldest ones off the list */
 479        list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
 480                                         page_list) {
 481                if (freed_pages >= npages_to_free)
 482                        break;
 483
 484                /* Move the dma_page from one list to another. */
 485                list_move(&dma_p->page_list, &d_pages);
 486
 487                pages_to_free[freed_pages++] = dma_p->p;
 488                /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
 489                if (freed_pages >= NUM_PAGES_TO_ALLOC) {
 490
 491                        ttm_pool_update_free_locked(pool, freed_pages);
 492                        /**
 493                         * Because changing page caching is costly
 494                         * we unlock the pool to prevent stalling.
 495                         */
 496                        spin_unlock_irqrestore(&pool->lock, irq_flags);
 497
 498                        ttm_dma_pages_put(pool, &d_pages, pages_to_free,
 499                                          freed_pages);
 500
 501                        INIT_LIST_HEAD(&d_pages);
 502
 503                        if (likely(nr_free != FREE_ALL_PAGES))
 504                                nr_free -= freed_pages;
 505
 506                        if (NUM_PAGES_TO_ALLOC >= nr_free)
 507                                npages_to_free = nr_free;
 508                        else
 509                                npages_to_free = NUM_PAGES_TO_ALLOC;
 510
 511                        freed_pages = 0;
 512
 513                        /* free all so restart the processing */
 514                        if (nr_free)
 515                                goto restart;
 516
 517                        /* Not allowed to fall through or break because
 518                         * following context is inside spinlock while we are
 519                         * outside here.
 520                         */
 521                        goto out;
 522
 523                }
 524        }
 525
 526        /* remove range of pages from the pool */
 527        if (freed_pages) {
 528                ttm_pool_update_free_locked(pool, freed_pages);
 529                nr_free -= freed_pages;
 530        }
 531
 532        spin_unlock_irqrestore(&pool->lock, irq_flags);
 533
 534        if (freed_pages)
 535                ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
 536out:
 537        if (pages_to_free != static_buf)
 538                kfree(pages_to_free);
 539        return nr_free;
 540}
 541
 542static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
 543{
 544        struct device_pools *p;
 545        struct dma_pool *pool;
 546
 547        if (!dev)
 548                return;
 549
 550        mutex_lock(&_manager->lock);
 551        list_for_each_entry_reverse(p, &_manager->pools, pools) {
 552                if (p->dev != dev)
 553                        continue;
 554                pool = p->pool;
 555                if (pool->type != type)
 556                        continue;
 557
 558                list_del(&p->pools);
 559                kfree(p);
 560                _manager->npools--;
 561                break;
 562        }
 563        list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
 564                if (pool->type != type)
 565                        continue;
 566                /* Takes a spinlock.. */
 567                /* OK to use static buffer since global mutex is held. */
 568                ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
 569                WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
 570                /* This code path is called after _all_ references to the
 571                 * struct device has been dropped - so nobody should be
 572                 * touching it. In case somebody is trying to _add_ we are
 573                 * guarded by the mutex. */
 574                list_del(&pool->pools);
 575                kfree(pool);
 576                break;
 577        }
 578        mutex_unlock(&_manager->lock);
 579}
 580
 581/*
 582 * On free-ing of the 'struct device' this deconstructor is run.
 583 * Albeit the pool might have already been freed earlier.
 584 */
 585static void ttm_dma_pool_release(struct device *dev, void *res)
 586{
 587        struct dma_pool *pool = *(struct dma_pool **)res;
 588
 589        if (pool)
 590                ttm_dma_free_pool(dev, pool->type);
 591}
 592
 593static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
 594{
 595        return *(struct dma_pool **)res == match_data;
 596}
 597
 598static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
 599                                          enum pool_type type)
 600{
 601        const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
 602        enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
 603        struct device_pools *sec_pool = NULL;
 604        struct dma_pool *pool = NULL, **ptr;
 605        unsigned i;
 606        int ret = -ENODEV;
 607        char *p;
 608
 609        if (!dev)
 610                return NULL;
 611
 612        ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
 613        if (!ptr)
 614                return NULL;
 615
 616        ret = -ENOMEM;
 617
 618        pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
 619                            dev_to_node(dev));
 620        if (!pool)
 621                goto err_mem;
 622
 623        sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
 624                                dev_to_node(dev));
 625        if (!sec_pool)
 626                goto err_mem;
 627
 628        INIT_LIST_HEAD(&sec_pool->pools);
 629        sec_pool->dev = dev;
 630        sec_pool->pool =  pool;
 631
 632        INIT_LIST_HEAD(&pool->free_list);
 633        INIT_LIST_HEAD(&pool->pools);
 634        spin_lock_init(&pool->lock);
 635        pool->dev = dev;
 636        pool->npages_free = pool->npages_in_use = 0;
 637        pool->nfrees = 0;
 638        pool->gfp_flags = flags;
 639        if (type & IS_HUGE)
 640#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 641                pool->size = HPAGE_PMD_SIZE;
 642#else
 643                BUG();
 644#endif
 645        else
 646                pool->size = PAGE_SIZE;
 647        pool->type = type;
 648        pool->nrefills = 0;
 649        p = pool->name;
 650        for (i = 0; i < ARRAY_SIZE(t); i++) {
 651                if (type & t[i]) {
 652                        p += snprintf(p, sizeof(pool->name) - (p - pool->name),
 653                                      "%s", n[i]);
 654                }
 655        }
 656        *p = 0;
 657        /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
 658         * - the kobj->name has already been deallocated.*/
 659        snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
 660                 dev_driver_string(dev), dev_name(dev));
 661        mutex_lock(&_manager->lock);
 662        /* You can get the dma_pool from either the global: */
 663        list_add(&sec_pool->pools, &_manager->pools);
 664        _manager->npools++;
 665        /* or from 'struct device': */
 666        list_add(&pool->pools, &dev->dma_pools);
 667        mutex_unlock(&_manager->lock);
 668
 669        *ptr = pool;
 670        devres_add(dev, ptr);
 671
 672        return pool;
 673err_mem:
 674        devres_free(ptr);
 675        kfree(sec_pool);
 676        kfree(pool);
 677        return ERR_PTR(ret);
 678}
 679
 680static struct dma_pool *ttm_dma_find_pool(struct device *dev,
 681                                          enum pool_type type)
 682{
 683        struct dma_pool *pool, *tmp;
 684
 685        if (type == IS_UNDEFINED)
 686                return NULL;
 687
 688        /* NB: We iterate on the 'struct dev' which has no spinlock, but
 689         * it does have a kref which we have taken. The kref is taken during
 690         * graphic driver loading - in the drm_pci_init it calls either
 691         * pci_dev_get or pci_register_driver which both end up taking a kref
 692         * on 'struct device'.
 693         *
 694         * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
 695         * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
 696         * thing is at that point of time there are no pages associated with the
 697         * driver so this function will not be called.
 698         */
 699        list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
 700                if (pool->type == type)
 701                        return pool;
 702        return NULL;
 703}
 704
 705/*
 706 * Free pages the pages that failed to change the caching state. If there
 707 * are pages that have changed their caching state already put them to the
 708 * pool.
 709 */
 710static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
 711                                                 struct list_head *d_pages,
 712                                                 struct page **failed_pages,
 713                                                 unsigned cpages)
 714{
 715        struct dma_page *d_page, *tmp;
 716        struct page *p;
 717        unsigned i = 0;
 718
 719        p = failed_pages[0];
 720        if (!p)
 721                return;
 722        /* Find the failed page. */
 723        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 724                if (d_page->p != p)
 725                        continue;
 726                /* .. and then progress over the full list. */
 727                list_del(&d_page->page_list);
 728                __ttm_dma_free_page(pool, d_page);
 729                if (++i < cpages)
 730                        p = failed_pages[i];
 731                else
 732                        break;
 733        }
 734
 735}
 736
 737/*
 738 * Allocate 'count' pages, and put 'need' number of them on the
 739 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
 740 * The full list of pages should also be on 'd_pages'.
 741 * We return zero for success, and negative numbers as errors.
 742 */
 743static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
 744                                        struct list_head *d_pages,
 745                                        unsigned count)
 746{
 747        struct page **caching_array;
 748        struct dma_page *dma_p;
 749        struct page *p;
 750        int r = 0;
 751        unsigned i, j, npages, cpages;
 752        unsigned max_cpages = min(count,
 753                        (unsigned)(PAGE_SIZE/sizeof(struct page *)));
 754
 755        /* allocate array for page caching change */
 756        caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
 757
 758        if (!caching_array) {
 759                pr_debug("%s: Unable to allocate table for new pages\n",
 760                       pool->dev_name);
 761                return -ENOMEM;
 762        }
 763
 764        if (count > 1)
 765                pr_debug("%s: (%s:%d) Getting %d pages\n",
 766                         pool->dev_name, pool->name, current->pid, count);
 767
 768        for (i = 0, cpages = 0; i < count; ++i) {
 769                dma_p = __ttm_dma_alloc_page(pool);
 770                if (!dma_p) {
 771                        pr_debug("%s: Unable to get page %u\n",
 772                                 pool->dev_name, i);
 773
 774                        /* store already allocated pages in the pool after
 775                         * setting the caching state */
 776                        if (cpages) {
 777                                r = ttm_set_pages_caching(pool, caching_array,
 778                                                          cpages);
 779                                if (r)
 780                                        ttm_dma_handle_caching_state_failure(
 781                                                pool, d_pages, caching_array,
 782                                                cpages);
 783                        }
 784                        r = -ENOMEM;
 785                        goto out;
 786                }
 787                p = dma_p->p;
 788                list_add(&dma_p->page_list, d_pages);
 789
 790#ifdef CONFIG_HIGHMEM
 791                /* gfp flags of highmem page should never be dma32 so we
 792                 * we should be fine in such case
 793                 */
 794                if (PageHighMem(p))
 795                        continue;
 796#endif
 797
 798                npages = pool->size / PAGE_SIZE;
 799                for (j = 0; j < npages; ++j) {
 800                        caching_array[cpages++] = p + j;
 801                        if (cpages == max_cpages) {
 802                                /* Note: Cannot hold the spinlock */
 803                                r = ttm_set_pages_caching(pool, caching_array,
 804                                                          cpages);
 805                                if (r) {
 806                                        ttm_dma_handle_caching_state_failure(
 807                                             pool, d_pages, caching_array,
 808                                             cpages);
 809                                        goto out;
 810                                }
 811                                cpages = 0;
 812                        }
 813                }
 814        }
 815
 816        if (cpages) {
 817                r = ttm_set_pages_caching(pool, caching_array, cpages);
 818                if (r)
 819                        ttm_dma_handle_caching_state_failure(pool, d_pages,
 820                                        caching_array, cpages);
 821        }
 822out:
 823        kfree(caching_array);
 824        return r;
 825}
 826
 827/*
 828 * @return count of pages still required to fulfill the request.
 829 */
 830static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
 831                                         unsigned long *irq_flags)
 832{
 833        unsigned count = _manager->options.small;
 834        int r = pool->npages_free;
 835
 836        if (count > pool->npages_free) {
 837                struct list_head d_pages;
 838
 839                INIT_LIST_HEAD(&d_pages);
 840
 841                spin_unlock_irqrestore(&pool->lock, *irq_flags);
 842
 843                /* Returns how many more are neccessary to fulfill the
 844                 * request. */
 845                r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
 846
 847                spin_lock_irqsave(&pool->lock, *irq_flags);
 848                if (!r) {
 849                        /* Add the fresh to the end.. */
 850                        list_splice(&d_pages, &pool->free_list);
 851                        ++pool->nrefills;
 852                        pool->npages_free += count;
 853                        r = count;
 854                } else {
 855                        struct dma_page *d_page;
 856                        unsigned cpages = 0;
 857
 858                        pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
 859                                 pool->dev_name, pool->name, r);
 860
 861                        list_for_each_entry(d_page, &d_pages, page_list) {
 862                                cpages++;
 863                        }
 864                        list_splice_tail(&d_pages, &pool->free_list);
 865                        pool->npages_free += cpages;
 866                        r = cpages;
 867                }
 868        }
 869        return r;
 870}
 871
 872/*
 873 * The populate list is actually a stack (not that is matters as TTM
 874 * allocates one page at a time.
 875 * return dma_page pointer if success, otherwise NULL.
 876 */
 877static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
 878                                  struct ttm_dma_tt *ttm_dma,
 879                                  unsigned index)
 880{
 881        struct dma_page *d_page = NULL;
 882        struct ttm_tt *ttm = &ttm_dma->ttm;
 883        unsigned long irq_flags;
 884        int count;
 885
 886        spin_lock_irqsave(&pool->lock, irq_flags);
 887        count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
 888        if (count) {
 889                d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
 890                ttm->pages[index] = d_page->p;
 891                ttm_dma->dma_address[index] = d_page->dma;
 892                list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
 893                pool->npages_in_use += 1;
 894                pool->npages_free -= 1;
 895        }
 896        spin_unlock_irqrestore(&pool->lock, irq_flags);
 897        return d_page;
 898}
 899
 900static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
 901{
 902        struct ttm_tt *ttm = &ttm_dma->ttm;
 903        gfp_t gfp_flags;
 904
 905        if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 906                gfp_flags = GFP_USER | GFP_DMA32;
 907        else
 908                gfp_flags = GFP_HIGHUSER;
 909        if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
 910                gfp_flags |= __GFP_ZERO;
 911
 912        if (huge) {
 913                gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
 914                        __GFP_KSWAPD_RECLAIM;
 915                gfp_flags &= ~__GFP_MOVABLE;
 916                gfp_flags &= ~__GFP_COMP;
 917        }
 918
 919        if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
 920                gfp_flags |= __GFP_RETRY_MAYFAIL;
 921
 922        return gfp_flags;
 923}
 924
 925/*
 926 * On success pages list will hold count number of correctly
 927 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
 928 */
 929int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
 930                        struct ttm_operation_ctx *ctx)
 931{
 932        struct ttm_tt *ttm = &ttm_dma->ttm;
 933        struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
 934        unsigned long num_pages = ttm->num_pages;
 935        struct dma_pool *pool;
 936        struct dma_page *d_page;
 937        enum pool_type type;
 938        unsigned i;
 939        int ret;
 940
 941        if (ttm->state != tt_unpopulated)
 942                return 0;
 943
 944        if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
 945                return -ENOMEM;
 946
 947        INIT_LIST_HEAD(&ttm_dma->pages_list);
 948        i = 0;
 949
 950        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 951
 952#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 953        if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 954                goto skip_huge;
 955
 956        pool = ttm_dma_find_pool(dev, type | IS_HUGE);
 957        if (!pool) {
 958                gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
 959
 960                pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
 961                if (IS_ERR_OR_NULL(pool))
 962                        goto skip_huge;
 963        }
 964
 965        while (num_pages >= HPAGE_PMD_NR) {
 966                unsigned j;
 967
 968                d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 969                if (!d_page)
 970                        break;
 971
 972                ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 973                                                pool->size, ctx);
 974                if (unlikely(ret != 0)) {
 975                        ttm_dma_unpopulate(ttm_dma, dev);
 976                        return -ENOMEM;
 977                }
 978
 979                d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
 980                for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
 981                        ttm->pages[j] = ttm->pages[j - 1] + 1;
 982                        ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
 983                                PAGE_SIZE;
 984                }
 985
 986                i += HPAGE_PMD_NR;
 987                num_pages -= HPAGE_PMD_NR;
 988        }
 989
 990skip_huge:
 991#endif
 992
 993        pool = ttm_dma_find_pool(dev, type);
 994        if (!pool) {
 995                gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
 996
 997                pool = ttm_dma_pool_init(dev, gfp_flags, type);
 998                if (IS_ERR_OR_NULL(pool))
 999                        return -ENOMEM;
1000        }
1001
1002        while (num_pages) {
1003                d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
1004                if (!d_page) {
1005                        ttm_dma_unpopulate(ttm_dma, dev);
1006                        return -ENOMEM;
1007                }
1008
1009                ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1010                                                pool->size, ctx);
1011                if (unlikely(ret != 0)) {
1012                        ttm_dma_unpopulate(ttm_dma, dev);
1013                        return -ENOMEM;
1014                }
1015
1016                d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
1017                ++i;
1018                --num_pages;
1019        }
1020
1021        if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1022                ret = ttm_tt_swapin(ttm);
1023                if (unlikely(ret != 0)) {
1024                        ttm_dma_unpopulate(ttm_dma, dev);
1025                        return ret;
1026                }
1027        }
1028
1029        ttm->state = tt_unbound;
1030        return 0;
1031}
1032EXPORT_SYMBOL_GPL(ttm_dma_populate);
1033
1034/* Put all pages in pages list to correct pool to wait for reuse */
1035void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
1036{
1037        struct ttm_tt *ttm = &ttm_dma->ttm;
1038        struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
1039        struct dma_pool *pool;
1040        struct dma_page *d_page, *next;
1041        enum pool_type type;
1042        bool is_cached = false;
1043        unsigned count, i, npages = 0;
1044        unsigned long irq_flags;
1045
1046        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1047
1048#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1049        pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1050        if (pool) {
1051                count = 0;
1052                list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1053                                         page_list) {
1054                        if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1055                                continue;
1056
1057                        count++;
1058                        if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1059                                ttm_mem_global_free_page(mem_glob, d_page->p,
1060                                                         pool->size);
1061                                d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1062                        }
1063                        ttm_dma_page_put(pool, d_page);
1064                }
1065
1066                spin_lock_irqsave(&pool->lock, irq_flags);
1067                pool->npages_in_use -= count;
1068                pool->nfrees += count;
1069                spin_unlock_irqrestore(&pool->lock, irq_flags);
1070        }
1071#endif
1072
1073        pool = ttm_dma_find_pool(dev, type);
1074        if (!pool)
1075                return;
1076
1077        is_cached = (ttm_dma_find_pool(pool->dev,
1078                     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1079
1080        /* make sure pages array match list and count number of pages */
1081        count = 0;
1082        list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1083                                 page_list) {
1084                ttm->pages[count] = d_page->p;
1085                count++;
1086
1087                if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1088                        ttm_mem_global_free_page(mem_glob, d_page->p,
1089                                                 pool->size);
1090                        d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1091                }
1092
1093                if (is_cached)
1094                        ttm_dma_page_put(pool, d_page);
1095        }
1096
1097        spin_lock_irqsave(&pool->lock, irq_flags);
1098        pool->npages_in_use -= count;
1099        if (is_cached) {
1100                pool->nfrees += count;
1101        } else {
1102                pool->npages_free += count;
1103                list_splice(&ttm_dma->pages_list, &pool->free_list);
1104                /*
1105                 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1106                 * to free in order to minimize calls to set_memory_wb().
1107                 */
1108                if (pool->npages_free >= (_manager->options.max_size +
1109                                          NUM_PAGES_TO_ALLOC))
1110                        npages = pool->npages_free - _manager->options.max_size;
1111        }
1112        spin_unlock_irqrestore(&pool->lock, irq_flags);
1113
1114        INIT_LIST_HEAD(&ttm_dma->pages_list);
1115        for (i = 0; i < ttm->num_pages; i++) {
1116                ttm->pages[i] = NULL;
1117                ttm_dma->dma_address[i] = 0;
1118        }
1119
1120        /* shrink pool if necessary (only on !is_cached pools)*/
1121        if (npages)
1122                ttm_dma_page_pool_free(pool, npages, false);
1123        ttm->state = tt_unpopulated;
1124}
1125EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1126
1127/**
1128 * Callback for mm to request pool to reduce number of page held.
1129 *
1130 * XXX: (dchinner) Deadlock warning!
1131 *
1132 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1133 * shrinkers
1134 */
1135static unsigned long
1136ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1137{
1138        static unsigned start_pool;
1139        unsigned idx = 0;
1140        unsigned pool_offset;
1141        unsigned shrink_pages = sc->nr_to_scan;
1142        struct device_pools *p;
1143        unsigned long freed = 0;
1144
1145        if (list_empty(&_manager->pools))
1146                return SHRINK_STOP;
1147
1148        if (!mutex_trylock(&_manager->lock))
1149                return SHRINK_STOP;
1150        if (!_manager->npools)
1151                goto out;
1152        pool_offset = ++start_pool % _manager->npools;
1153        list_for_each_entry(p, &_manager->pools, pools) {
1154                unsigned nr_free;
1155
1156                if (!p->dev)
1157                        continue;
1158                if (shrink_pages == 0)
1159                        break;
1160                /* Do it in round-robin fashion. */
1161                if (++idx < pool_offset)
1162                        continue;
1163                nr_free = shrink_pages;
1164                /* OK to use static buffer since global mutex is held. */
1165                shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1166                freed += nr_free - shrink_pages;
1167
1168                pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1169                         p->pool->dev_name, p->pool->name, current->pid,
1170                         nr_free, shrink_pages);
1171        }
1172out:
1173        mutex_unlock(&_manager->lock);
1174        return freed;
1175}
1176
1177static unsigned long
1178ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1179{
1180        struct device_pools *p;
1181        unsigned long count = 0;
1182
1183        if (!mutex_trylock(&_manager->lock))
1184                return 0;
1185        list_for_each_entry(p, &_manager->pools, pools)
1186                count += p->pool->npages_free;
1187        mutex_unlock(&_manager->lock);
1188        return count;
1189}
1190
1191static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1192{
1193        manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1194        manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1195        manager->mm_shrink.seeks = 1;
1196        return register_shrinker(&manager->mm_shrink);
1197}
1198
1199static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1200{
1201        unregister_shrinker(&manager->mm_shrink);
1202}
1203
1204int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1205{
1206        int ret;
1207
1208        WARN_ON(_manager);
1209
1210        pr_info("Initializing DMA pool allocator\n");
1211
1212        _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1213        if (!_manager)
1214                return -ENOMEM;
1215
1216        mutex_init(&_manager->lock);
1217        INIT_LIST_HEAD(&_manager->pools);
1218
1219        _manager->options.max_size = max_pages;
1220        _manager->options.small = SMALL_ALLOCATION;
1221        _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1222
1223        /* This takes care of auto-freeing the _manager */
1224        ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1225                                   &glob->kobj, "dma_pool");
1226        if (unlikely(ret != 0))
1227                goto error;
1228
1229        ret = ttm_dma_pool_mm_shrink_init(_manager);
1230        if (unlikely(ret != 0))
1231                goto error;
1232        return 0;
1233
1234error:
1235        kobject_put(&_manager->kobj);
1236        _manager = NULL;
1237        return ret;
1238}
1239
1240void ttm_dma_page_alloc_fini(void)
1241{
1242        struct device_pools *p, *t;
1243
1244        pr_info("Finalizing DMA pool allocator\n");
1245        ttm_dma_pool_mm_shrink_fini(_manager);
1246
1247        list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1248                dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1249                        current->pid);
1250                WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1251                        ttm_dma_pool_match, p->pool));
1252                ttm_dma_free_pool(p->dev, p->pool->type);
1253        }
1254        kobject_put(&_manager->kobj);
1255        _manager = NULL;
1256}
1257
1258int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1259{
1260        struct device_pools *p;
1261        struct dma_pool *pool = NULL;
1262
1263        if (!_manager) {
1264                seq_printf(m, "No pool allocator running.\n");
1265                return 0;
1266        }
1267        seq_printf(m, "         pool      refills   pages freed    inuse available     name\n");
1268        mutex_lock(&_manager->lock);
1269        list_for_each_entry(p, &_manager->pools, pools) {
1270                struct device *dev = p->dev;
1271                if (!dev)
1272                        continue;
1273                pool = p->pool;
1274                seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1275                                pool->name, pool->nrefills,
1276                                pool->nfrees, pool->npages_in_use,
1277                                pool->npages_free,
1278                                pool->dev_name);
1279        }
1280        mutex_unlock(&_manager->lock);
1281        return 0;
1282}
1283EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1284
1285#endif
1286