linux/drivers/infiniband/core/rw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016 HGST, a Western Digital Company.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 */
  13#include <linux/moduleparam.h>
  14#include <linux/slab.h>
  15#include <rdma/mr_pool.h>
  16#include <rdma/rw.h>
  17
  18enum {
  19        RDMA_RW_SINGLE_WR,
  20        RDMA_RW_MULTI_WR,
  21        RDMA_RW_MR,
  22        RDMA_RW_SIG_MR,
  23};
  24
  25static bool rdma_rw_force_mr;
  26module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
  27MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
  28
  29/*
  30 * Check if the device might use memory registration.  This is currently only
  31 * true for iWarp devices. In the future we can hopefully fine tune this based
  32 * on HCA driver input.
  33 */
  34static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
  35{
  36        if (rdma_protocol_iwarp(dev, port_num))
  37                return true;
  38        if (unlikely(rdma_rw_force_mr))
  39                return true;
  40        return false;
  41}
  42
  43/*
  44 * Check if the device will use memory registration for this RW operation.
  45 * We currently always use memory registrations for iWarp RDMA READs, and
  46 * have a debug option to force usage of MRs.
  47 *
  48 * XXX: In the future we can hopefully fine tune this based on HCA driver
  49 * input.
  50 */
  51static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
  52                enum dma_data_direction dir, int dma_nents)
  53{
  54        if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
  55                return true;
  56        if (unlikely(rdma_rw_force_mr))
  57                return true;
  58        return false;
  59}
  60
  61static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev)
  62{
  63        /* arbitrary limit to avoid allocating gigantic resources */
  64        return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256);
  65}
  66
  67/* Caller must have zero-initialized *reg. */
  68static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
  69                struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
  70                u32 sg_cnt, u32 offset)
  71{
  72        u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
  73        u32 nents = min(sg_cnt, pages_per_mr);
  74        int count = 0, ret;
  75
  76        reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
  77        if (!reg->mr)
  78                return -EAGAIN;
  79
  80        if (reg->mr->need_inval) {
  81                reg->inv_wr.opcode = IB_WR_LOCAL_INV;
  82                reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
  83                reg->inv_wr.next = &reg->reg_wr.wr;
  84                count++;
  85        } else {
  86                reg->inv_wr.next = NULL;
  87        }
  88
  89        ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
  90        if (ret < nents) {
  91                ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
  92                return -EINVAL;
  93        }
  94
  95        reg->reg_wr.wr.opcode = IB_WR_REG_MR;
  96        reg->reg_wr.mr = reg->mr;
  97        reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
  98        if (rdma_protocol_iwarp(qp->device, port_num))
  99                reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
 100        count++;
 101
 102        reg->sge.addr = reg->mr->iova;
 103        reg->sge.length = reg->mr->length;
 104        return count;
 105}
 106
 107static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
 108                u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
 109                u64 remote_addr, u32 rkey, enum dma_data_direction dir)
 110{
 111        struct rdma_rw_reg_ctx *prev = NULL;
 112        u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
 113        int i, j, ret = 0, count = 0;
 114
 115        ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
 116        ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
 117        if (!ctx->reg) {
 118                ret = -ENOMEM;
 119                goto out;
 120        }
 121
 122        for (i = 0; i < ctx->nr_ops; i++) {
 123                struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
 124                u32 nents = min(sg_cnt, pages_per_mr);
 125
 126                ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
 127                                offset);
 128                if (ret < 0)
 129                        goto out_free;
 130                count += ret;
 131
 132                if (prev) {
 133                        if (reg->mr->need_inval)
 134                                prev->wr.wr.next = &reg->inv_wr;
 135                        else
 136                                prev->wr.wr.next = &reg->reg_wr.wr;
 137                }
 138
 139                reg->reg_wr.wr.next = &reg->wr.wr;
 140
 141                reg->wr.wr.sg_list = &reg->sge;
 142                reg->wr.wr.num_sge = 1;
 143                reg->wr.remote_addr = remote_addr;
 144                reg->wr.rkey = rkey;
 145                if (dir == DMA_TO_DEVICE) {
 146                        reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
 147                } else if (!rdma_cap_read_inv(qp->device, port_num)) {
 148                        reg->wr.wr.opcode = IB_WR_RDMA_READ;
 149                } else {
 150                        reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
 151                        reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
 152                }
 153                count++;
 154
 155                remote_addr += reg->sge.length;
 156                sg_cnt -= nents;
 157                for (j = 0; j < nents; j++)
 158                        sg = sg_next(sg);
 159                prev = reg;
 160                offset = 0;
 161        }
 162
 163        if (prev)
 164                prev->wr.wr.next = NULL;
 165
 166        ctx->type = RDMA_RW_MR;
 167        return count;
 168
 169out_free:
 170        while (--i >= 0)
 171                ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
 172        kfree(ctx->reg);
 173out:
 174        return ret;
 175}
 176
 177static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
 178                struct scatterlist *sg, u32 sg_cnt, u32 offset,
 179                u64 remote_addr, u32 rkey, enum dma_data_direction dir)
 180{
 181        struct ib_device *dev = qp->pd->device;
 182        u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
 183                      qp->max_read_sge;
 184        struct ib_sge *sge;
 185        u32 total_len = 0, i, j;
 186
 187        ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
 188
 189        ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
 190        if (!ctx->map.sges)
 191                goto out;
 192
 193        ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
 194        if (!ctx->map.wrs)
 195                goto out_free_sges;
 196
 197        for (i = 0; i < ctx->nr_ops; i++) {
 198                struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
 199                u32 nr_sge = min(sg_cnt, max_sge);
 200
 201                if (dir == DMA_TO_DEVICE)
 202                        rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
 203                else
 204                        rdma_wr->wr.opcode = IB_WR_RDMA_READ;
 205                rdma_wr->remote_addr = remote_addr + total_len;
 206                rdma_wr->rkey = rkey;
 207                rdma_wr->wr.num_sge = nr_sge;
 208                rdma_wr->wr.sg_list = sge;
 209
 210                for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
 211                        sge->addr = ib_sg_dma_address(dev, sg) + offset;
 212                        sge->length = ib_sg_dma_len(dev, sg) - offset;
 213                        sge->lkey = qp->pd->local_dma_lkey;
 214
 215                        total_len += sge->length;
 216                        sge++;
 217                        sg_cnt--;
 218                        offset = 0;
 219                }
 220
 221                rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
 222                        &ctx->map.wrs[i + 1].wr : NULL;
 223        }
 224
 225        ctx->type = RDMA_RW_MULTI_WR;
 226        return ctx->nr_ops;
 227
 228out_free_sges:
 229        kfree(ctx->map.sges);
 230out:
 231        return -ENOMEM;
 232}
 233
 234static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
 235                struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
 236                enum dma_data_direction dir)
 237{
 238        struct ib_device *dev = qp->pd->device;
 239        struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
 240
 241        ctx->nr_ops = 1;
 242
 243        ctx->single.sge.lkey = qp->pd->local_dma_lkey;
 244        ctx->single.sge.addr = ib_sg_dma_address(dev, sg) + offset;
 245        ctx->single.sge.length = ib_sg_dma_len(dev, sg) - offset;
 246
 247        memset(rdma_wr, 0, sizeof(*rdma_wr));
 248        if (dir == DMA_TO_DEVICE)
 249                rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
 250        else
 251                rdma_wr->wr.opcode = IB_WR_RDMA_READ;
 252        rdma_wr->wr.sg_list = &ctx->single.sge;
 253        rdma_wr->wr.num_sge = 1;
 254        rdma_wr->remote_addr = remote_addr;
 255        rdma_wr->rkey = rkey;
 256
 257        ctx->type = RDMA_RW_SINGLE_WR;
 258        return 1;
 259}
 260
 261/**
 262 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
 263 * @ctx:        context to initialize
 264 * @qp:         queue pair to operate on
 265 * @port_num:   port num to which the connection is bound
 266 * @sg:         scatterlist to READ/WRITE from/to
 267 * @sg_cnt:     number of entries in @sg
 268 * @sg_offset:  current byte offset into @sg
 269 * @remote_addr:remote address to read/write (relative to @rkey)
 270 * @rkey:       remote key to operate on
 271 * @dir:        %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
 272 *
 273 * Returns the number of WQEs that will be needed on the workqueue if
 274 * successful, or a negative error code.
 275 */
 276int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
 277                struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
 278                u64 remote_addr, u32 rkey, enum dma_data_direction dir)
 279{
 280        struct ib_device *dev = qp->pd->device;
 281        int ret;
 282
 283        ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
 284        if (!ret)
 285                return -ENOMEM;
 286        sg_cnt = ret;
 287
 288        /*
 289         * Skip to the S/G entry that sg_offset falls into:
 290         */
 291        for (;;) {
 292                u32 len = ib_sg_dma_len(dev, sg);
 293
 294                if (sg_offset < len)
 295                        break;
 296
 297                sg = sg_next(sg);
 298                sg_offset -= len;
 299                sg_cnt--;
 300        }
 301
 302        ret = -EIO;
 303        if (WARN_ON_ONCE(sg_cnt == 0))
 304                goto out_unmap_sg;
 305
 306        if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
 307                ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
 308                                sg_offset, remote_addr, rkey, dir);
 309        } else if (sg_cnt > 1) {
 310                ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
 311                                remote_addr, rkey, dir);
 312        } else {
 313                ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
 314                                remote_addr, rkey, dir);
 315        }
 316
 317        if (ret < 0)
 318                goto out_unmap_sg;
 319        return ret;
 320
 321out_unmap_sg:
 322        ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
 323        return ret;
 324}
 325EXPORT_SYMBOL(rdma_rw_ctx_init);
 326
 327/**
 328 * rdma_rw_ctx_signature init - initialize a RW context with signature offload
 329 * @ctx:        context to initialize
 330 * @qp:         queue pair to operate on
 331 * @port_num:   port num to which the connection is bound
 332 * @sg:         scatterlist to READ/WRITE from/to
 333 * @sg_cnt:     number of entries in @sg
 334 * @prot_sg:    scatterlist to READ/WRITE protection information from/to
 335 * @prot_sg_cnt: number of entries in @prot_sg
 336 * @sig_attrs:  signature offloading algorithms
 337 * @remote_addr:remote address to read/write (relative to @rkey)
 338 * @rkey:       remote key to operate on
 339 * @dir:        %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
 340 *
 341 * Returns the number of WQEs that will be needed on the workqueue if
 342 * successful, or a negative error code.
 343 */
 344int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
 345                u8 port_num, struct scatterlist *sg, u32 sg_cnt,
 346                struct scatterlist *prot_sg, u32 prot_sg_cnt,
 347                struct ib_sig_attrs *sig_attrs,
 348                u64 remote_addr, u32 rkey, enum dma_data_direction dir)
 349{
 350        struct ib_device *dev = qp->pd->device;
 351        u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
 352        struct ib_rdma_wr *rdma_wr;
 353        struct ib_send_wr *prev_wr = NULL;
 354        int count = 0, ret;
 355
 356        if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
 357                pr_err("SG count too large\n");
 358                return -EINVAL;
 359        }
 360
 361        ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
 362        if (!ret)
 363                return -ENOMEM;
 364        sg_cnt = ret;
 365
 366        ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
 367        if (!ret) {
 368                ret = -ENOMEM;
 369                goto out_unmap_sg;
 370        }
 371        prot_sg_cnt = ret;
 372
 373        ctx->type = RDMA_RW_SIG_MR;
 374        ctx->nr_ops = 1;
 375        ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL);
 376        if (!ctx->sig) {
 377                ret = -ENOMEM;
 378                goto out_unmap_prot_sg;
 379        }
 380
 381        ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0);
 382        if (ret < 0)
 383                goto out_free_ctx;
 384        count += ret;
 385        prev_wr = &ctx->sig->data.reg_wr.wr;
 386
 387        ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot,
 388                                  prot_sg, prot_sg_cnt, 0);
 389        if (ret < 0)
 390                goto out_destroy_data_mr;
 391        count += ret;
 392
 393        if (ctx->sig->prot.inv_wr.next)
 394                prev_wr->next = &ctx->sig->prot.inv_wr;
 395        else
 396                prev_wr->next = &ctx->sig->prot.reg_wr.wr;
 397        prev_wr = &ctx->sig->prot.reg_wr.wr;
 398
 399        ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs);
 400        if (!ctx->sig->sig_mr) {
 401                ret = -EAGAIN;
 402                goto out_destroy_prot_mr;
 403        }
 404
 405        if (ctx->sig->sig_mr->need_inval) {
 406                memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr));
 407
 408                ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV;
 409                ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey;
 410
 411                prev_wr->next = &ctx->sig->sig_inv_wr;
 412                prev_wr = &ctx->sig->sig_inv_wr;
 413        }
 414
 415        ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR;
 416        ctx->sig->sig_wr.wr.wr_cqe = NULL;
 417        ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge;
 418        ctx->sig->sig_wr.wr.num_sge = 1;
 419        ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE;
 420        ctx->sig->sig_wr.sig_attrs = sig_attrs;
 421        ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr;
 422        if (prot_sg_cnt)
 423                ctx->sig->sig_wr.prot = &ctx->sig->prot.sge;
 424        prev_wr->next = &ctx->sig->sig_wr.wr;
 425        prev_wr = &ctx->sig->sig_wr.wr;
 426        count++;
 427
 428        ctx->sig->sig_sge.addr = 0;
 429        ctx->sig->sig_sge.length = ctx->sig->data.sge.length;
 430        if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE)
 431                ctx->sig->sig_sge.length += ctx->sig->prot.sge.length;
 432
 433        rdma_wr = &ctx->sig->data.wr;
 434        rdma_wr->wr.sg_list = &ctx->sig->sig_sge;
 435        rdma_wr->wr.num_sge = 1;
 436        rdma_wr->remote_addr = remote_addr;
 437        rdma_wr->rkey = rkey;
 438        if (dir == DMA_TO_DEVICE)
 439                rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
 440        else
 441                rdma_wr->wr.opcode = IB_WR_RDMA_READ;
 442        prev_wr->next = &rdma_wr->wr;
 443        prev_wr = &rdma_wr->wr;
 444        count++;
 445
 446        return count;
 447
 448out_destroy_prot_mr:
 449        if (prot_sg_cnt)
 450                ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
 451out_destroy_data_mr:
 452        ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
 453out_free_ctx:
 454        kfree(ctx->sig);
 455out_unmap_prot_sg:
 456        ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
 457out_unmap_sg:
 458        ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
 459        return ret;
 460}
 461EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
 462
 463/*
 464 * Now that we are going to post the WRs we can update the lkey and need_inval
 465 * state on the MRs.  If we were doing this at init time, we would get double
 466 * or missing invalidations if a context was initialized but not actually
 467 * posted.
 468 */
 469static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
 470{
 471        reg->mr->need_inval = need_inval;
 472        ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
 473        reg->reg_wr.key = reg->mr->lkey;
 474        reg->sge.lkey = reg->mr->lkey;
 475}
 476
 477/**
 478 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
 479 * @ctx:        context to operate on
 480 * @qp:         queue pair to operate on
 481 * @port_num:   port num to which the connection is bound
 482 * @cqe:        completion queue entry for the last WR
 483 * @chain_wr:   WR to append to the posted chain
 484 *
 485 * Return the WR chain for the set of RDMA READ/WRITE operations described by
 486 * @ctx, as well as any memory registration operations needed.  If @chain_wr
 487 * is non-NULL the WR it points to will be appended to the chain of WRs posted.
 488 * If @chain_wr is not set @cqe must be set so that the caller gets a
 489 * completion notification.
 490 */
 491struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
 492                u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
 493{
 494        struct ib_send_wr *first_wr, *last_wr;
 495        int i;
 496
 497        switch (ctx->type) {
 498        case RDMA_RW_SIG_MR:
 499                rdma_rw_update_lkey(&ctx->sig->data, true);
 500                if (ctx->sig->prot.mr)
 501                        rdma_rw_update_lkey(&ctx->sig->prot, true);
 502        
 503                ctx->sig->sig_mr->need_inval = true;
 504                ib_update_fast_reg_key(ctx->sig->sig_mr,
 505                        ib_inc_rkey(ctx->sig->sig_mr->lkey));
 506                ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey;
 507
 508                if (ctx->sig->data.inv_wr.next)
 509                        first_wr = &ctx->sig->data.inv_wr;
 510                else
 511                        first_wr = &ctx->sig->data.reg_wr.wr;
 512                last_wr = &ctx->sig->data.wr.wr;
 513                break;
 514        case RDMA_RW_MR:
 515                for (i = 0; i < ctx->nr_ops; i++) {
 516                        rdma_rw_update_lkey(&ctx->reg[i],
 517                                ctx->reg[i].wr.wr.opcode !=
 518                                        IB_WR_RDMA_READ_WITH_INV);
 519                }
 520
 521                if (ctx->reg[0].inv_wr.next)
 522                        first_wr = &ctx->reg[0].inv_wr;
 523                else
 524                        first_wr = &ctx->reg[0].reg_wr.wr;
 525                last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
 526                break;
 527        case RDMA_RW_MULTI_WR:
 528                first_wr = &ctx->map.wrs[0].wr;
 529                last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
 530                break;
 531        case RDMA_RW_SINGLE_WR:
 532                first_wr = &ctx->single.wr.wr;
 533                last_wr = &ctx->single.wr.wr;
 534                break;
 535        default:
 536                BUG();
 537        }
 538
 539        if (chain_wr) {
 540                last_wr->next = chain_wr;
 541        } else {
 542                last_wr->wr_cqe = cqe;
 543                last_wr->send_flags |= IB_SEND_SIGNALED;
 544        }
 545
 546        return first_wr;
 547}
 548EXPORT_SYMBOL(rdma_rw_ctx_wrs);
 549
 550/**
 551 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
 552 * @ctx:        context to operate on
 553 * @qp:         queue pair to operate on
 554 * @port_num:   port num to which the connection is bound
 555 * @cqe:        completion queue entry for the last WR
 556 * @chain_wr:   WR to append to the posted chain
 557 *
 558 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
 559 * any memory registration operations needed.  If @chain_wr is non-NULL the
 560 * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
 561 * is not set @cqe must be set so that the caller gets a completion
 562 * notification.
 563 */
 564int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
 565                struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
 566{
 567        struct ib_send_wr *first_wr, *bad_wr;
 568
 569        first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
 570        return ib_post_send(qp, first_wr, &bad_wr);
 571}
 572EXPORT_SYMBOL(rdma_rw_ctx_post);
 573
 574/**
 575 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
 576 * @ctx:        context to release
 577 * @qp:         queue pair to operate on
 578 * @port_num:   port num to which the connection is bound
 579 * @sg:         scatterlist that was used for the READ/WRITE
 580 * @sg_cnt:     number of entries in @sg
 581 * @dir:        %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
 582 */
 583void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
 584                struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
 585{
 586        int i;
 587
 588        switch (ctx->type) {
 589        case RDMA_RW_MR:
 590                for (i = 0; i < ctx->nr_ops; i++)
 591                        ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
 592                kfree(ctx->reg);
 593                break;
 594        case RDMA_RW_MULTI_WR:
 595                kfree(ctx->map.wrs);
 596                kfree(ctx->map.sges);
 597                break;
 598        case RDMA_RW_SINGLE_WR:
 599                break;
 600        default:
 601                BUG();
 602                break;
 603        }
 604
 605        ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
 606}
 607EXPORT_SYMBOL(rdma_rw_ctx_destroy);
 608
 609/**
 610 * rdma_rw_ctx_destroy_signature - release all resources allocated by
 611 *      rdma_rw_ctx_init_signature
 612 * @ctx:        context to release
 613 * @qp:         queue pair to operate on
 614 * @port_num:   port num to which the connection is bound
 615 * @sg:         scatterlist that was used for the READ/WRITE
 616 * @sg_cnt:     number of entries in @sg
 617 * @prot_sg:    scatterlist that was used for the READ/WRITE of the PI
 618 * @prot_sg_cnt: number of entries in @prot_sg
 619 * @dir:        %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
 620 */
 621void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
 622                u8 port_num, struct scatterlist *sg, u32 sg_cnt,
 623                struct scatterlist *prot_sg, u32 prot_sg_cnt,
 624                enum dma_data_direction dir)
 625{
 626        if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
 627                return;
 628
 629        ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
 630        ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
 631
 632        if (ctx->sig->prot.mr) {
 633                ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
 634                ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
 635        }
 636
 637        ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr);
 638        kfree(ctx->sig);
 639}
 640EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
 641
 642/**
 643 * rdma_rw_mr_factor - return number of MRs required for a payload
 644 * @device:     device handling the connection
 645 * @port_num:   port num to which the connection is bound
 646 * @maxpages:   maximum payload pages per rdma_rw_ctx
 647 *
 648 * Returns the number of MRs the device requires to move @maxpayload
 649 * bytes. The returned value is used during transport creation to
 650 * compute max_rdma_ctxts and the size of the transport's Send and
 651 * Send Completion Queues.
 652 */
 653unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
 654                               unsigned int maxpages)
 655{
 656        unsigned int mr_pages;
 657
 658        if (rdma_rw_can_use_mr(device, port_num))
 659                mr_pages = rdma_rw_fr_page_list_len(device);
 660        else
 661                mr_pages = device->attrs.max_sge_rd;
 662        return DIV_ROUND_UP(maxpages, mr_pages);
 663}
 664EXPORT_SYMBOL(rdma_rw_mr_factor);
 665
 666void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
 667{
 668        u32 factor;
 669
 670        WARN_ON_ONCE(attr->port_num == 0);
 671
 672        /*
 673         * Each context needs at least one RDMA READ or WRITE WR.
 674         *
 675         * For some hardware we might need more, eventually we should ask the
 676         * HCA driver for a multiplier here.
 677         */
 678        factor = 1;
 679
 680        /*
 681         * If the devices needs MRs to perform RDMA READ or WRITE operations,
 682         * we'll need two additional MRs for the registrations and the
 683         * invalidation.
 684         */
 685        if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN)
 686                factor += 6;    /* (inv + reg) * (data + prot + sig) */
 687        else if (rdma_rw_can_use_mr(dev, attr->port_num))
 688                factor += 2;    /* inv + reg */
 689
 690        attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
 691
 692        /*
 693         * But maybe we were just too high in the sky and the device doesn't
 694         * even support all we need, and we'll have to live with what we get..
 695         */
 696        attr->cap.max_send_wr =
 697                min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
 698}
 699
 700int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
 701{
 702        struct ib_device *dev = qp->pd->device;
 703        u32 nr_mrs = 0, nr_sig_mrs = 0;
 704        int ret = 0;
 705
 706        if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) {
 707                nr_sig_mrs = attr->cap.max_rdma_ctxs;
 708                nr_mrs = attr->cap.max_rdma_ctxs * 2;
 709        } else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
 710                nr_mrs = attr->cap.max_rdma_ctxs;
 711        }
 712
 713        if (nr_mrs) {
 714                ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
 715                                IB_MR_TYPE_MEM_REG,
 716                                rdma_rw_fr_page_list_len(dev));
 717                if (ret) {
 718                        pr_err("%s: failed to allocated %d MRs\n",
 719                                __func__, nr_mrs);
 720                        return ret;
 721                }
 722        }
 723
 724        if (nr_sig_mrs) {
 725                ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
 726                                IB_MR_TYPE_SIGNATURE, 2);
 727                if (ret) {
 728                        pr_err("%s: failed to allocated %d SIG MRs\n",
 729                                __func__, nr_mrs);
 730                        goto out_free_rdma_mrs;
 731                }
 732        }
 733
 734        return 0;
 735
 736out_free_rdma_mrs:
 737        ib_mr_pool_destroy(qp, &qp->rdma_mrs);
 738        return ret;
 739}
 740
 741void rdma_rw_cleanup_mrs(struct ib_qp *qp)
 742{
 743        ib_mr_pool_destroy(qp, &qp->sig_mrs);
 744        ib_mr_pool_destroy(qp, &qp->rdma_mrs);
 745}
 746