linux/drivers/infiniband/core/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
  53
  54#include "core_priv.h"
  55
  56static int ib_resolve_eth_dmac(struct ib_device *device,
  57                               struct rdma_ah_attr *ah_attr);
  58
  59static const char * const ib_events[] = {
  60        [IB_EVENT_CQ_ERR]               = "CQ error",
  61        [IB_EVENT_QP_FATAL]             = "QP fatal error",
  62        [IB_EVENT_QP_REQ_ERR]           = "QP request error",
  63        [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
  64        [IB_EVENT_COMM_EST]             = "communication established",
  65        [IB_EVENT_SQ_DRAINED]           = "send queue drained",
  66        [IB_EVENT_PATH_MIG]             = "path migration successful",
  67        [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
  68        [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
  69        [IB_EVENT_PORT_ACTIVE]          = "port active",
  70        [IB_EVENT_PORT_ERR]             = "port error",
  71        [IB_EVENT_LID_CHANGE]           = "LID change",
  72        [IB_EVENT_PKEY_CHANGE]          = "P_key change",
  73        [IB_EVENT_SM_CHANGE]            = "SM change",
  74        [IB_EVENT_SRQ_ERR]              = "SRQ error",
  75        [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
  76        [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
  77        [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
  78        [IB_EVENT_GID_CHANGE]           = "GID changed",
  79};
  80
  81const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  82{
  83        size_t index = event;
  84
  85        return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  86                        ib_events[index] : "unrecognized event";
  87}
  88EXPORT_SYMBOL(ib_event_msg);
  89
  90static const char * const wc_statuses[] = {
  91        [IB_WC_SUCCESS]                 = "success",
  92        [IB_WC_LOC_LEN_ERR]             = "local length error",
  93        [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
  94        [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
  95        [IB_WC_LOC_PROT_ERR]            = "local protection error",
  96        [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
  97        [IB_WC_MW_BIND_ERR]             = "memory management operation error",
  98        [IB_WC_BAD_RESP_ERR]            = "bad response error",
  99        [IB_WC_LOC_ACCESS_ERR]          = "local access error",
 100        [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
 101        [IB_WC_REM_ACCESS_ERR]          = "remote access error",
 102        [IB_WC_REM_OP_ERR]              = "remote operation error",
 103        [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
 104        [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
 105        [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
 106        [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
 107        [IB_WC_REM_ABORT_ERR]           = "operation aborted",
 108        [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
 109        [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
 110        [IB_WC_FATAL_ERR]               = "fatal error",
 111        [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
 112        [IB_WC_GENERAL_ERR]             = "general error",
 113};
 114
 115const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 116{
 117        size_t index = status;
 118
 119        return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 120                        wc_statuses[index] : "unrecognized status";
 121}
 122EXPORT_SYMBOL(ib_wc_status_msg);
 123
 124__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 125{
 126        switch (rate) {
 127        case IB_RATE_2_5_GBPS: return   1;
 128        case IB_RATE_5_GBPS:   return   2;
 129        case IB_RATE_10_GBPS:  return   4;
 130        case IB_RATE_20_GBPS:  return   8;
 131        case IB_RATE_30_GBPS:  return  12;
 132        case IB_RATE_40_GBPS:  return  16;
 133        case IB_RATE_60_GBPS:  return  24;
 134        case IB_RATE_80_GBPS:  return  32;
 135        case IB_RATE_120_GBPS: return  48;
 136        case IB_RATE_14_GBPS:  return   6;
 137        case IB_RATE_56_GBPS:  return  22;
 138        case IB_RATE_112_GBPS: return  45;
 139        case IB_RATE_168_GBPS: return  67;
 140        case IB_RATE_25_GBPS:  return  10;
 141        case IB_RATE_100_GBPS: return  40;
 142        case IB_RATE_200_GBPS: return  80;
 143        case IB_RATE_300_GBPS: return 120;
 144        default:               return  -1;
 145        }
 146}
 147EXPORT_SYMBOL(ib_rate_to_mult);
 148
 149__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 150{
 151        switch (mult) {
 152        case 1:   return IB_RATE_2_5_GBPS;
 153        case 2:   return IB_RATE_5_GBPS;
 154        case 4:   return IB_RATE_10_GBPS;
 155        case 8:   return IB_RATE_20_GBPS;
 156        case 12:  return IB_RATE_30_GBPS;
 157        case 16:  return IB_RATE_40_GBPS;
 158        case 24:  return IB_RATE_60_GBPS;
 159        case 32:  return IB_RATE_80_GBPS;
 160        case 48:  return IB_RATE_120_GBPS;
 161        case 6:   return IB_RATE_14_GBPS;
 162        case 22:  return IB_RATE_56_GBPS;
 163        case 45:  return IB_RATE_112_GBPS;
 164        case 67:  return IB_RATE_168_GBPS;
 165        case 10:  return IB_RATE_25_GBPS;
 166        case 40:  return IB_RATE_100_GBPS;
 167        case 80:  return IB_RATE_200_GBPS;
 168        case 120: return IB_RATE_300_GBPS;
 169        default:  return IB_RATE_PORT_CURRENT;
 170        }
 171}
 172EXPORT_SYMBOL(mult_to_ib_rate);
 173
 174__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 175{
 176        switch (rate) {
 177        case IB_RATE_2_5_GBPS: return 2500;
 178        case IB_RATE_5_GBPS:   return 5000;
 179        case IB_RATE_10_GBPS:  return 10000;
 180        case IB_RATE_20_GBPS:  return 20000;
 181        case IB_RATE_30_GBPS:  return 30000;
 182        case IB_RATE_40_GBPS:  return 40000;
 183        case IB_RATE_60_GBPS:  return 60000;
 184        case IB_RATE_80_GBPS:  return 80000;
 185        case IB_RATE_120_GBPS: return 120000;
 186        case IB_RATE_14_GBPS:  return 14062;
 187        case IB_RATE_56_GBPS:  return 56250;
 188        case IB_RATE_112_GBPS: return 112500;
 189        case IB_RATE_168_GBPS: return 168750;
 190        case IB_RATE_25_GBPS:  return 25781;
 191        case IB_RATE_100_GBPS: return 103125;
 192        case IB_RATE_200_GBPS: return 206250;
 193        case IB_RATE_300_GBPS: return 309375;
 194        default:               return -1;
 195        }
 196}
 197EXPORT_SYMBOL(ib_rate_to_mbps);
 198
 199__attribute_const__ enum rdma_transport_type
 200rdma_node_get_transport(enum rdma_node_type node_type)
 201{
 202
 203        if (node_type == RDMA_NODE_USNIC)
 204                return RDMA_TRANSPORT_USNIC;
 205        if (node_type == RDMA_NODE_USNIC_UDP)
 206                return RDMA_TRANSPORT_USNIC_UDP;
 207        if (node_type == RDMA_NODE_RNIC)
 208                return RDMA_TRANSPORT_IWARP;
 209
 210        return RDMA_TRANSPORT_IB;
 211}
 212EXPORT_SYMBOL(rdma_node_get_transport);
 213
 214enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
 215{
 216        enum rdma_transport_type lt;
 217        if (device->get_link_layer)
 218                return device->get_link_layer(device, port_num);
 219
 220        lt = rdma_node_get_transport(device->node_type);
 221        if (lt == RDMA_TRANSPORT_IB)
 222                return IB_LINK_LAYER_INFINIBAND;
 223
 224        return IB_LINK_LAYER_ETHERNET;
 225}
 226EXPORT_SYMBOL(rdma_port_get_link_layer);
 227
 228/* Protection domains */
 229
 230/**
 231 * ib_alloc_pd - Allocates an unused protection domain.
 232 * @device: The device on which to allocate the protection domain.
 233 *
 234 * A protection domain object provides an association between QPs, shared
 235 * receive queues, address handles, memory regions, and memory windows.
 236 *
 237 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 238 * memory operations.
 239 */
 240struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 241                const char *caller)
 242{
 243        struct ib_pd *pd;
 244        int mr_access_flags = 0;
 245
 246        pd = device->alloc_pd(device, NULL, NULL);
 247        if (IS_ERR(pd))
 248                return pd;
 249
 250        pd->device = device;
 251        pd->uobject = NULL;
 252        pd->__internal_mr = NULL;
 253        atomic_set(&pd->usecnt, 0);
 254        pd->flags = flags;
 255
 256        if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
 257                pd->local_dma_lkey = device->local_dma_lkey;
 258        else
 259                mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 260
 261        if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 262                pr_warn("%s: enabling unsafe global rkey\n", caller);
 263                mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 264        }
 265
 266        pd->res.type = RDMA_RESTRACK_PD;
 267        pd->res.kern_name = caller;
 268        rdma_restrack_add(&pd->res);
 269
 270        if (mr_access_flags) {
 271                struct ib_mr *mr;
 272
 273                mr = pd->device->get_dma_mr(pd, mr_access_flags);
 274                if (IS_ERR(mr)) {
 275                        ib_dealloc_pd(pd);
 276                        return ERR_CAST(mr);
 277                }
 278
 279                mr->device      = pd->device;
 280                mr->pd          = pd;
 281                mr->uobject     = NULL;
 282                mr->need_inval  = false;
 283
 284                pd->__internal_mr = mr;
 285
 286                if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
 287                        pd->local_dma_lkey = pd->__internal_mr->lkey;
 288
 289                if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 290                        pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 291        }
 292
 293        return pd;
 294}
 295EXPORT_SYMBOL(__ib_alloc_pd);
 296
 297/**
 298 * ib_dealloc_pd - Deallocates a protection domain.
 299 * @pd: The protection domain to deallocate.
 300 *
 301 * It is an error to call this function while any resources in the pd still
 302 * exist.  The caller is responsible to synchronously destroy them and
 303 * guarantee no new allocations will happen.
 304 */
 305void ib_dealloc_pd(struct ib_pd *pd)
 306{
 307        int ret;
 308
 309        if (pd->__internal_mr) {
 310                ret = pd->device->dereg_mr(pd->__internal_mr);
 311                WARN_ON(ret);
 312                pd->__internal_mr = NULL;
 313        }
 314
 315        /* uverbs manipulates usecnt with proper locking, while the kabi
 316           requires the caller to guarantee we can't race here. */
 317        WARN_ON(atomic_read(&pd->usecnt));
 318
 319        rdma_restrack_del(&pd->res);
 320        /* Making delalloc_pd a void return is a WIP, no driver should return
 321           an error here. */
 322        ret = pd->device->dealloc_pd(pd);
 323        WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
 324}
 325EXPORT_SYMBOL(ib_dealloc_pd);
 326
 327/* Address handles */
 328
 329static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 330                                     struct rdma_ah_attr *ah_attr,
 331                                     struct ib_udata *udata)
 332{
 333        struct ib_ah *ah;
 334
 335        ah = pd->device->create_ah(pd, ah_attr, udata);
 336
 337        if (!IS_ERR(ah)) {
 338                ah->device  = pd->device;
 339                ah->pd      = pd;
 340                ah->uobject = NULL;
 341                ah->type    = ah_attr->type;
 342                atomic_inc(&pd->usecnt);
 343        }
 344
 345        return ah;
 346}
 347
 348struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
 349{
 350        return _rdma_create_ah(pd, ah_attr, NULL);
 351}
 352EXPORT_SYMBOL(rdma_create_ah);
 353
 354/**
 355 * rdma_create_user_ah - Creates an address handle for the
 356 * given address vector.
 357 * It resolves destination mac address for ah attribute of RoCE type.
 358 * @pd: The protection domain associated with the address handle.
 359 * @ah_attr: The attributes of the address vector.
 360 * @udata: pointer to user's input output buffer information need by
 361 *         provider driver.
 362 *
 363 * It returns 0 on success and returns appropriate error code on error.
 364 * The address handle is used to reference a local or global destination
 365 * in all UD QP post sends.
 366 */
 367struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 368                                  struct rdma_ah_attr *ah_attr,
 369                                  struct ib_udata *udata)
 370{
 371        int err;
 372
 373        if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 374                err = ib_resolve_eth_dmac(pd->device, ah_attr);
 375                if (err)
 376                        return ERR_PTR(err);
 377        }
 378
 379        return _rdma_create_ah(pd, ah_attr, udata);
 380}
 381EXPORT_SYMBOL(rdma_create_user_ah);
 382
 383int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 384{
 385        const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 386        struct iphdr ip4h_checked;
 387        const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 388
 389        /* If it's IPv6, the version must be 6, otherwise, the first
 390         * 20 bytes (before the IPv4 header) are garbled.
 391         */
 392        if (ip6h->version != 6)
 393                return (ip4h->version == 4) ? 4 : 0;
 394        /* version may be 6 or 4 because the first 20 bytes could be garbled */
 395
 396        /* RoCE v2 requires no options, thus header length
 397         * must be 5 words
 398         */
 399        if (ip4h->ihl != 5)
 400                return 6;
 401
 402        /* Verify checksum.
 403         * We can't write on scattered buffers so we need to copy to
 404         * temp buffer.
 405         */
 406        memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 407        ip4h_checked.check = 0;
 408        ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 409        /* if IPv4 header checksum is OK, believe it */
 410        if (ip4h->check == ip4h_checked.check)
 411                return 4;
 412        return 6;
 413}
 414EXPORT_SYMBOL(ib_get_rdma_header_version);
 415
 416static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 417                                                     u8 port_num,
 418                                                     const struct ib_grh *grh)
 419{
 420        int grh_version;
 421
 422        if (rdma_protocol_ib(device, port_num))
 423                return RDMA_NETWORK_IB;
 424
 425        grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 426
 427        if (grh_version == 4)
 428                return RDMA_NETWORK_IPV4;
 429
 430        if (grh->next_hdr == IPPROTO_UDP)
 431                return RDMA_NETWORK_IPV6;
 432
 433        return RDMA_NETWORK_ROCE_V1;
 434}
 435
 436struct find_gid_index_context {
 437        u16 vlan_id;
 438        enum ib_gid_type gid_type;
 439};
 440
 441static bool find_gid_index(const union ib_gid *gid,
 442                           const struct ib_gid_attr *gid_attr,
 443                           void *context)
 444{
 445        struct find_gid_index_context *ctx = context;
 446
 447        if (ctx->gid_type != gid_attr->gid_type)
 448                return false;
 449
 450        if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
 451            (is_vlan_dev(gid_attr->ndev) &&
 452             vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
 453                return false;
 454
 455        return true;
 456}
 457
 458static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
 459                                   u16 vlan_id, const union ib_gid *sgid,
 460                                   enum ib_gid_type gid_type,
 461                                   u16 *gid_index)
 462{
 463        struct find_gid_index_context context = {.vlan_id = vlan_id,
 464                                                 .gid_type = gid_type};
 465
 466        return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 467                                     &context, gid_index);
 468}
 469
 470int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 471                              enum rdma_network_type net_type,
 472                              union ib_gid *sgid, union ib_gid *dgid)
 473{
 474        struct sockaddr_in  src_in;
 475        struct sockaddr_in  dst_in;
 476        __be32 src_saddr, dst_saddr;
 477
 478        if (!sgid || !dgid)
 479                return -EINVAL;
 480
 481        if (net_type == RDMA_NETWORK_IPV4) {
 482                memcpy(&src_in.sin_addr.s_addr,
 483                       &hdr->roce4grh.saddr, 4);
 484                memcpy(&dst_in.sin_addr.s_addr,
 485                       &hdr->roce4grh.daddr, 4);
 486                src_saddr = src_in.sin_addr.s_addr;
 487                dst_saddr = dst_in.sin_addr.s_addr;
 488                ipv6_addr_set_v4mapped(src_saddr,
 489                                       (struct in6_addr *)sgid);
 490                ipv6_addr_set_v4mapped(dst_saddr,
 491                                       (struct in6_addr *)dgid);
 492                return 0;
 493        } else if (net_type == RDMA_NETWORK_IPV6 ||
 494                   net_type == RDMA_NETWORK_IB) {
 495                *dgid = hdr->ibgrh.dgid;
 496                *sgid = hdr->ibgrh.sgid;
 497                return 0;
 498        } else {
 499                return -EINVAL;
 500        }
 501}
 502EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 503
 504/* Resolve destination mac address and hop limit for unicast destination
 505 * GID entry, considering the source GID entry as well.
 506 * ah_attribute must have have valid port_num, sgid_index.
 507 */
 508static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 509                                       struct rdma_ah_attr *ah_attr)
 510{
 511        struct ib_gid_attr sgid_attr;
 512        struct ib_global_route *grh;
 513        int hop_limit = 0xff;
 514        union ib_gid sgid;
 515        int ret;
 516
 517        grh = rdma_ah_retrieve_grh(ah_attr);
 518
 519        ret = ib_query_gid(device,
 520                           rdma_ah_get_port_num(ah_attr),
 521                           grh->sgid_index,
 522                           &sgid, &sgid_attr);
 523        if (ret || !sgid_attr.ndev) {
 524                if (!ret)
 525                        ret = -ENXIO;
 526                return ret;
 527        }
 528
 529        /* If destination is link local and source GID is RoCEv1,
 530         * IP stack is not used.
 531         */
 532        if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 533            sgid_attr.gid_type == IB_GID_TYPE_ROCE) {
 534                rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 535                                ah_attr->roce.dmac);
 536                goto done;
 537        }
 538
 539        ret = rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
 540                                           ah_attr->roce.dmac,
 541                                           sgid_attr.ndev, &hop_limit);
 542done:
 543        dev_put(sgid_attr.ndev);
 544
 545        grh->hop_limit = hop_limit;
 546        return ret;
 547}
 548
 549/*
 550 * This function initializes address handle attributes from the incoming packet.
 551 * Incoming packet has dgid of the receiver node on which this code is
 552 * getting executed and, sgid contains the GID of the sender.
 553 *
 554 * When resolving mac address of destination, the arrived dgid is used
 555 * as sgid and, sgid is used as dgid because sgid contains destinations
 556 * GID whom to respond to.
 557 *
 558 */
 559int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
 560                            const struct ib_wc *wc, const struct ib_grh *grh,
 561                            struct rdma_ah_attr *ah_attr)
 562{
 563        u32 flow_class;
 564        u16 gid_index;
 565        int ret;
 566        enum rdma_network_type net_type = RDMA_NETWORK_IB;
 567        enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 568        int hoplimit = 0xff;
 569        union ib_gid dgid;
 570        union ib_gid sgid;
 571
 572        might_sleep();
 573
 574        memset(ah_attr, 0, sizeof *ah_attr);
 575        ah_attr->type = rdma_ah_find_type(device, port_num);
 576        if (rdma_cap_eth_ah(device, port_num)) {
 577                if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 578                        net_type = wc->network_hdr_type;
 579                else
 580                        net_type = ib_get_net_type_by_grh(device, port_num, grh);
 581                gid_type = ib_network_to_gid_type(net_type);
 582        }
 583        ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 584                                        &sgid, &dgid);
 585        if (ret)
 586                return ret;
 587
 588        rdma_ah_set_sl(ah_attr, wc->sl);
 589        rdma_ah_set_port_num(ah_attr, port_num);
 590
 591        if (rdma_protocol_roce(device, port_num)) {
 592                u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 593                                wc->vlan_id : 0xffff;
 594
 595                if (!(wc->wc_flags & IB_WC_GRH))
 596                        return -EPROTOTYPE;
 597
 598                ret = get_sgid_index_from_eth(device, port_num,
 599                                              vlan_id, &dgid,
 600                                              gid_type, &gid_index);
 601                if (ret)
 602                        return ret;
 603
 604                flow_class = be32_to_cpu(grh->version_tclass_flow);
 605                rdma_ah_set_grh(ah_attr, &sgid,
 606                                flow_class & 0xFFFFF,
 607                                (u8)gid_index, hoplimit,
 608                                (flow_class >> 20) & 0xFF);
 609                return ib_resolve_unicast_gid_dmac(device, ah_attr);
 610        } else {
 611                rdma_ah_set_dlid(ah_attr, wc->slid);
 612                rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 613
 614                if (wc->wc_flags & IB_WC_GRH) {
 615                        if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 616                                ret = ib_find_cached_gid_by_port(device, &dgid,
 617                                                                 IB_GID_TYPE_IB,
 618                                                                 port_num, NULL,
 619                                                                 &gid_index);
 620                                if (ret)
 621                                        return ret;
 622                        } else {
 623                                gid_index = 0;
 624                        }
 625
 626                        flow_class = be32_to_cpu(grh->version_tclass_flow);
 627                        rdma_ah_set_grh(ah_attr, &sgid,
 628                                        flow_class & 0xFFFFF,
 629                                        (u8)gid_index, hoplimit,
 630                                        (flow_class >> 20) & 0xFF);
 631                }
 632                return 0;
 633        }
 634}
 635EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 636
 637struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 638                                   const struct ib_grh *grh, u8 port_num)
 639{
 640        struct rdma_ah_attr ah_attr;
 641        int ret;
 642
 643        ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 644        if (ret)
 645                return ERR_PTR(ret);
 646
 647        return rdma_create_ah(pd, &ah_attr);
 648}
 649EXPORT_SYMBOL(ib_create_ah_from_wc);
 650
 651int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 652{
 653        if (ah->type != ah_attr->type)
 654                return -EINVAL;
 655
 656        return ah->device->modify_ah ?
 657                ah->device->modify_ah(ah, ah_attr) :
 658                -EOPNOTSUPP;
 659}
 660EXPORT_SYMBOL(rdma_modify_ah);
 661
 662int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 663{
 664        return ah->device->query_ah ?
 665                ah->device->query_ah(ah, ah_attr) :
 666                -EOPNOTSUPP;
 667}
 668EXPORT_SYMBOL(rdma_query_ah);
 669
 670int rdma_destroy_ah(struct ib_ah *ah)
 671{
 672        struct ib_pd *pd;
 673        int ret;
 674
 675        pd = ah->pd;
 676        ret = ah->device->destroy_ah(ah);
 677        if (!ret)
 678                atomic_dec(&pd->usecnt);
 679
 680        return ret;
 681}
 682EXPORT_SYMBOL(rdma_destroy_ah);
 683
 684/* Shared receive queues */
 685
 686struct ib_srq *ib_create_srq(struct ib_pd *pd,
 687                             struct ib_srq_init_attr *srq_init_attr)
 688{
 689        struct ib_srq *srq;
 690
 691        if (!pd->device->create_srq)
 692                return ERR_PTR(-EOPNOTSUPP);
 693
 694        srq = pd->device->create_srq(pd, srq_init_attr, NULL);
 695
 696        if (!IS_ERR(srq)) {
 697                srq->device        = pd->device;
 698                srq->pd            = pd;
 699                srq->uobject       = NULL;
 700                srq->event_handler = srq_init_attr->event_handler;
 701                srq->srq_context   = srq_init_attr->srq_context;
 702                srq->srq_type      = srq_init_attr->srq_type;
 703                if (ib_srq_has_cq(srq->srq_type)) {
 704                        srq->ext.cq   = srq_init_attr->ext.cq;
 705                        atomic_inc(&srq->ext.cq->usecnt);
 706                }
 707                if (srq->srq_type == IB_SRQT_XRC) {
 708                        srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
 709                        atomic_inc(&srq->ext.xrc.xrcd->usecnt);
 710                }
 711                atomic_inc(&pd->usecnt);
 712                atomic_set(&srq->usecnt, 0);
 713        }
 714
 715        return srq;
 716}
 717EXPORT_SYMBOL(ib_create_srq);
 718
 719int ib_modify_srq(struct ib_srq *srq,
 720                  struct ib_srq_attr *srq_attr,
 721                  enum ib_srq_attr_mask srq_attr_mask)
 722{
 723        return srq->device->modify_srq ?
 724                srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
 725                -EOPNOTSUPP;
 726}
 727EXPORT_SYMBOL(ib_modify_srq);
 728
 729int ib_query_srq(struct ib_srq *srq,
 730                 struct ib_srq_attr *srq_attr)
 731{
 732        return srq->device->query_srq ?
 733                srq->device->query_srq(srq, srq_attr) : -EOPNOTSUPP;
 734}
 735EXPORT_SYMBOL(ib_query_srq);
 736
 737int ib_destroy_srq(struct ib_srq *srq)
 738{
 739        struct ib_pd *pd;
 740        enum ib_srq_type srq_type;
 741        struct ib_xrcd *uninitialized_var(xrcd);
 742        struct ib_cq *uninitialized_var(cq);
 743        int ret;
 744
 745        if (atomic_read(&srq->usecnt))
 746                return -EBUSY;
 747
 748        pd = srq->pd;
 749        srq_type = srq->srq_type;
 750        if (ib_srq_has_cq(srq_type))
 751                cq = srq->ext.cq;
 752        if (srq_type == IB_SRQT_XRC)
 753                xrcd = srq->ext.xrc.xrcd;
 754
 755        ret = srq->device->destroy_srq(srq);
 756        if (!ret) {
 757                atomic_dec(&pd->usecnt);
 758                if (srq_type == IB_SRQT_XRC)
 759                        atomic_dec(&xrcd->usecnt);
 760                if (ib_srq_has_cq(srq_type))
 761                        atomic_dec(&cq->usecnt);
 762        }
 763
 764        return ret;
 765}
 766EXPORT_SYMBOL(ib_destroy_srq);
 767
 768/* Queue pairs */
 769
 770static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
 771{
 772        struct ib_qp *qp = context;
 773        unsigned long flags;
 774
 775        spin_lock_irqsave(&qp->device->event_handler_lock, flags);
 776        list_for_each_entry(event->element.qp, &qp->open_list, open_list)
 777                if (event->element.qp->event_handler)
 778                        event->element.qp->event_handler(event, event->element.qp->qp_context);
 779        spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
 780}
 781
 782static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
 783{
 784        mutex_lock(&xrcd->tgt_qp_mutex);
 785        list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
 786        mutex_unlock(&xrcd->tgt_qp_mutex);
 787}
 788
 789static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
 790                                  void (*event_handler)(struct ib_event *, void *),
 791                                  void *qp_context)
 792{
 793        struct ib_qp *qp;
 794        unsigned long flags;
 795        int err;
 796
 797        qp = kzalloc(sizeof *qp, GFP_KERNEL);
 798        if (!qp)
 799                return ERR_PTR(-ENOMEM);
 800
 801        qp->real_qp = real_qp;
 802        err = ib_open_shared_qp_security(qp, real_qp->device);
 803        if (err) {
 804                kfree(qp);
 805                return ERR_PTR(err);
 806        }
 807
 808        qp->real_qp = real_qp;
 809        atomic_inc(&real_qp->usecnt);
 810        qp->device = real_qp->device;
 811        qp->event_handler = event_handler;
 812        qp->qp_context = qp_context;
 813        qp->qp_num = real_qp->qp_num;
 814        qp->qp_type = real_qp->qp_type;
 815
 816        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
 817        list_add(&qp->open_list, &real_qp->open_list);
 818        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
 819
 820        return qp;
 821}
 822
 823struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
 824                         struct ib_qp_open_attr *qp_open_attr)
 825{
 826        struct ib_qp *qp, *real_qp;
 827
 828        if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
 829                return ERR_PTR(-EINVAL);
 830
 831        qp = ERR_PTR(-EINVAL);
 832        mutex_lock(&xrcd->tgt_qp_mutex);
 833        list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
 834                if (real_qp->qp_num == qp_open_attr->qp_num) {
 835                        qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
 836                                          qp_open_attr->qp_context);
 837                        break;
 838                }
 839        }
 840        mutex_unlock(&xrcd->tgt_qp_mutex);
 841        return qp;
 842}
 843EXPORT_SYMBOL(ib_open_qp);
 844
 845static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
 846                struct ib_qp_init_attr *qp_init_attr)
 847{
 848        struct ib_qp *real_qp = qp;
 849
 850        qp->event_handler = __ib_shared_qp_event_handler;
 851        qp->qp_context = qp;
 852        qp->pd = NULL;
 853        qp->send_cq = qp->recv_cq = NULL;
 854        qp->srq = NULL;
 855        qp->xrcd = qp_init_attr->xrcd;
 856        atomic_inc(&qp_init_attr->xrcd->usecnt);
 857        INIT_LIST_HEAD(&qp->open_list);
 858
 859        qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
 860                          qp_init_attr->qp_context);
 861        if (!IS_ERR(qp))
 862                __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
 863        else
 864                real_qp->device->destroy_qp(real_qp);
 865        return qp;
 866}
 867
 868struct ib_qp *ib_create_qp(struct ib_pd *pd,
 869                           struct ib_qp_init_attr *qp_init_attr)
 870{
 871        struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
 872        struct ib_qp *qp;
 873        int ret;
 874
 875        if (qp_init_attr->rwq_ind_tbl &&
 876            (qp_init_attr->recv_cq ||
 877            qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
 878            qp_init_attr->cap.max_recv_sge))
 879                return ERR_PTR(-EINVAL);
 880
 881        /*
 882         * If the callers is using the RDMA API calculate the resources
 883         * needed for the RDMA READ/WRITE operations.
 884         *
 885         * Note that these callers need to pass in a port number.
 886         */
 887        if (qp_init_attr->cap.max_rdma_ctxs)
 888                rdma_rw_init_qp(device, qp_init_attr);
 889
 890        qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
 891        if (IS_ERR(qp))
 892                return qp;
 893
 894        ret = ib_create_qp_security(qp, device);
 895        if (ret) {
 896                ib_destroy_qp(qp);
 897                return ERR_PTR(ret);
 898        }
 899
 900        qp->real_qp    = qp;
 901        qp->qp_type    = qp_init_attr->qp_type;
 902        qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
 903
 904        atomic_set(&qp->usecnt, 0);
 905        qp->mrs_used = 0;
 906        spin_lock_init(&qp->mr_lock);
 907        INIT_LIST_HEAD(&qp->rdma_mrs);
 908        INIT_LIST_HEAD(&qp->sig_mrs);
 909        qp->port = 0;
 910
 911        if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
 912                return ib_create_xrc_qp(qp, qp_init_attr);
 913
 914        qp->event_handler = qp_init_attr->event_handler;
 915        qp->qp_context = qp_init_attr->qp_context;
 916        if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
 917                qp->recv_cq = NULL;
 918                qp->srq = NULL;
 919        } else {
 920                qp->recv_cq = qp_init_attr->recv_cq;
 921                if (qp_init_attr->recv_cq)
 922                        atomic_inc(&qp_init_attr->recv_cq->usecnt);
 923                qp->srq = qp_init_attr->srq;
 924                if (qp->srq)
 925                        atomic_inc(&qp_init_attr->srq->usecnt);
 926        }
 927
 928        qp->send_cq = qp_init_attr->send_cq;
 929        qp->xrcd    = NULL;
 930
 931        atomic_inc(&pd->usecnt);
 932        if (qp_init_attr->send_cq)
 933                atomic_inc(&qp_init_attr->send_cq->usecnt);
 934        if (qp_init_attr->rwq_ind_tbl)
 935                atomic_inc(&qp->rwq_ind_tbl->usecnt);
 936
 937        if (qp_init_attr->cap.max_rdma_ctxs) {
 938                ret = rdma_rw_init_mrs(qp, qp_init_attr);
 939                if (ret) {
 940                        pr_err("failed to init MR pool ret= %d\n", ret);
 941                        ib_destroy_qp(qp);
 942                        return ERR_PTR(ret);
 943                }
 944        }
 945
 946        /*
 947         * Note: all hw drivers guarantee that max_send_sge is lower than
 948         * the device RDMA WRITE SGE limit but not all hw drivers ensure that
 949         * max_send_sge <= max_sge_rd.
 950         */
 951        qp->max_write_sge = qp_init_attr->cap.max_send_sge;
 952        qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
 953                                 device->attrs.max_sge_rd);
 954
 955        return qp;
 956}
 957EXPORT_SYMBOL(ib_create_qp);
 958
 959static const struct {
 960        int                     valid;
 961        enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
 962        enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
 963} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
 964        [IB_QPS_RESET] = {
 965                [IB_QPS_RESET] = { .valid = 1 },
 966                [IB_QPS_INIT]  = {
 967                        .valid = 1,
 968                        .req_param = {
 969                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
 970                                                IB_QP_PORT                      |
 971                                                IB_QP_QKEY),
 972                                [IB_QPT_RAW_PACKET] = IB_QP_PORT,
 973                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
 974                                                IB_QP_PORT                      |
 975                                                IB_QP_ACCESS_FLAGS),
 976                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
 977                                                IB_QP_PORT                      |
 978                                                IB_QP_ACCESS_FLAGS),
 979                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
 980                                                IB_QP_PORT                      |
 981                                                IB_QP_ACCESS_FLAGS),
 982                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
 983                                                IB_QP_PORT                      |
 984                                                IB_QP_ACCESS_FLAGS),
 985                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
 986                                                IB_QP_QKEY),
 987                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
 988                                                IB_QP_QKEY),
 989                        }
 990                },
 991        },
 992        [IB_QPS_INIT]  = {
 993                [IB_QPS_RESET] = { .valid = 1 },
 994                [IB_QPS_ERR] =   { .valid = 1 },
 995                [IB_QPS_INIT]  = {
 996                        .valid = 1,
 997                        .opt_param = {
 998                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
 999                                                IB_QP_PORT                      |
1000                                                IB_QP_QKEY),
1001                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1002                                                IB_QP_PORT                      |
1003                                                IB_QP_ACCESS_FLAGS),
1004                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1005                                                IB_QP_PORT                      |
1006                                                IB_QP_ACCESS_FLAGS),
1007                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1008                                                IB_QP_PORT                      |
1009                                                IB_QP_ACCESS_FLAGS),
1010                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1011                                                IB_QP_PORT                      |
1012                                                IB_QP_ACCESS_FLAGS),
1013                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1014                                                IB_QP_QKEY),
1015                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1016                                                IB_QP_QKEY),
1017                        }
1018                },
1019                [IB_QPS_RTR]   = {
1020                        .valid = 1,
1021                        .req_param = {
1022                                [IB_QPT_UC]  = (IB_QP_AV                        |
1023                                                IB_QP_PATH_MTU                  |
1024                                                IB_QP_DEST_QPN                  |
1025                                                IB_QP_RQ_PSN),
1026                                [IB_QPT_RC]  = (IB_QP_AV                        |
1027                                                IB_QP_PATH_MTU                  |
1028                                                IB_QP_DEST_QPN                  |
1029                                                IB_QP_RQ_PSN                    |
1030                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1031                                                IB_QP_MIN_RNR_TIMER),
1032                                [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1033                                                IB_QP_PATH_MTU                  |
1034                                                IB_QP_DEST_QPN                  |
1035                                                IB_QP_RQ_PSN),
1036                                [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1037                                                IB_QP_PATH_MTU                  |
1038                                                IB_QP_DEST_QPN                  |
1039                                                IB_QP_RQ_PSN                    |
1040                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1041                                                IB_QP_MIN_RNR_TIMER),
1042                        },
1043                        .opt_param = {
1044                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1045                                                 IB_QP_QKEY),
1046                                 [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1047                                                 IB_QP_ACCESS_FLAGS             |
1048                                                 IB_QP_PKEY_INDEX),
1049                                 [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1050                                                 IB_QP_ACCESS_FLAGS             |
1051                                                 IB_QP_PKEY_INDEX),
1052                                 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1053                                                 IB_QP_ACCESS_FLAGS             |
1054                                                 IB_QP_PKEY_INDEX),
1055                                 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1056                                                 IB_QP_ACCESS_FLAGS             |
1057                                                 IB_QP_PKEY_INDEX),
1058                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1059                                                 IB_QP_QKEY),
1060                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1061                                                 IB_QP_QKEY),
1062                         },
1063                },
1064        },
1065        [IB_QPS_RTR]   = {
1066                [IB_QPS_RESET] = { .valid = 1 },
1067                [IB_QPS_ERR] =   { .valid = 1 },
1068                [IB_QPS_RTS]   = {
1069                        .valid = 1,
1070                        .req_param = {
1071                                [IB_QPT_UD]  = IB_QP_SQ_PSN,
1072                                [IB_QPT_UC]  = IB_QP_SQ_PSN,
1073                                [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1074                                                IB_QP_RETRY_CNT                 |
1075                                                IB_QP_RNR_RETRY                 |
1076                                                IB_QP_SQ_PSN                    |
1077                                                IB_QP_MAX_QP_RD_ATOMIC),
1078                                [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1079                                                IB_QP_RETRY_CNT                 |
1080                                                IB_QP_RNR_RETRY                 |
1081                                                IB_QP_SQ_PSN                    |
1082                                                IB_QP_MAX_QP_RD_ATOMIC),
1083                                [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1084                                                IB_QP_SQ_PSN),
1085                                [IB_QPT_SMI] = IB_QP_SQ_PSN,
1086                                [IB_QPT_GSI] = IB_QP_SQ_PSN,
1087                        },
1088                        .opt_param = {
1089                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1090                                                 IB_QP_QKEY),
1091                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1092                                                 IB_QP_ALT_PATH                 |
1093                                                 IB_QP_ACCESS_FLAGS             |
1094                                                 IB_QP_PATH_MIG_STATE),
1095                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1096                                                 IB_QP_ALT_PATH                 |
1097                                                 IB_QP_ACCESS_FLAGS             |
1098                                                 IB_QP_MIN_RNR_TIMER            |
1099                                                 IB_QP_PATH_MIG_STATE),
1100                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1101                                                 IB_QP_ALT_PATH                 |
1102                                                 IB_QP_ACCESS_FLAGS             |
1103                                                 IB_QP_PATH_MIG_STATE),
1104                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1105                                                 IB_QP_ALT_PATH                 |
1106                                                 IB_QP_ACCESS_FLAGS             |
1107                                                 IB_QP_MIN_RNR_TIMER            |
1108                                                 IB_QP_PATH_MIG_STATE),
1109                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1110                                                 IB_QP_QKEY),
1111                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1112                                                 IB_QP_QKEY),
1113                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1114                         }
1115                }
1116        },
1117        [IB_QPS_RTS]   = {
1118                [IB_QPS_RESET] = { .valid = 1 },
1119                [IB_QPS_ERR] =   { .valid = 1 },
1120                [IB_QPS_RTS]   = {
1121                        .valid = 1,
1122                        .opt_param = {
1123                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1124                                                IB_QP_QKEY),
1125                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1126                                                IB_QP_ACCESS_FLAGS              |
1127                                                IB_QP_ALT_PATH                  |
1128                                                IB_QP_PATH_MIG_STATE),
1129                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1130                                                IB_QP_ACCESS_FLAGS              |
1131                                                IB_QP_ALT_PATH                  |
1132                                                IB_QP_PATH_MIG_STATE            |
1133                                                IB_QP_MIN_RNR_TIMER),
1134                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1135                                                IB_QP_ACCESS_FLAGS              |
1136                                                IB_QP_ALT_PATH                  |
1137                                                IB_QP_PATH_MIG_STATE),
1138                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1139                                                IB_QP_ACCESS_FLAGS              |
1140                                                IB_QP_ALT_PATH                  |
1141                                                IB_QP_PATH_MIG_STATE            |
1142                                                IB_QP_MIN_RNR_TIMER),
1143                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1144                                                IB_QP_QKEY),
1145                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1146                                                IB_QP_QKEY),
1147                                [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1148                        }
1149                },
1150                [IB_QPS_SQD]   = {
1151                        .valid = 1,
1152                        .opt_param = {
1153                                [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1154                                [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1155                                [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1156                                [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1157                                [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1158                                [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1159                                [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1160                        }
1161                },
1162        },
1163        [IB_QPS_SQD]   = {
1164                [IB_QPS_RESET] = { .valid = 1 },
1165                [IB_QPS_ERR] =   { .valid = 1 },
1166                [IB_QPS_RTS]   = {
1167                        .valid = 1,
1168                        .opt_param = {
1169                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1170                                                IB_QP_QKEY),
1171                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1172                                                IB_QP_ALT_PATH                  |
1173                                                IB_QP_ACCESS_FLAGS              |
1174                                                IB_QP_PATH_MIG_STATE),
1175                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1176                                                IB_QP_ALT_PATH                  |
1177                                                IB_QP_ACCESS_FLAGS              |
1178                                                IB_QP_MIN_RNR_TIMER             |
1179                                                IB_QP_PATH_MIG_STATE),
1180                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1181                                                IB_QP_ALT_PATH                  |
1182                                                IB_QP_ACCESS_FLAGS              |
1183                                                IB_QP_PATH_MIG_STATE),
1184                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1185                                                IB_QP_ALT_PATH                  |
1186                                                IB_QP_ACCESS_FLAGS              |
1187                                                IB_QP_MIN_RNR_TIMER             |
1188                                                IB_QP_PATH_MIG_STATE),
1189                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1190                                                IB_QP_QKEY),
1191                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1192                                                IB_QP_QKEY),
1193                        }
1194                },
1195                [IB_QPS_SQD]   = {
1196                        .valid = 1,
1197                        .opt_param = {
1198                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1199                                                IB_QP_QKEY),
1200                                [IB_QPT_UC]  = (IB_QP_AV                        |
1201                                                IB_QP_ALT_PATH                  |
1202                                                IB_QP_ACCESS_FLAGS              |
1203                                                IB_QP_PKEY_INDEX                |
1204                                                IB_QP_PATH_MIG_STATE),
1205                                [IB_QPT_RC]  = (IB_QP_PORT                      |
1206                                                IB_QP_AV                        |
1207                                                IB_QP_TIMEOUT                   |
1208                                                IB_QP_RETRY_CNT                 |
1209                                                IB_QP_RNR_RETRY                 |
1210                                                IB_QP_MAX_QP_RD_ATOMIC          |
1211                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1212                                                IB_QP_ALT_PATH                  |
1213                                                IB_QP_ACCESS_FLAGS              |
1214                                                IB_QP_PKEY_INDEX                |
1215                                                IB_QP_MIN_RNR_TIMER             |
1216                                                IB_QP_PATH_MIG_STATE),
1217                                [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1218                                                IB_QP_AV                        |
1219                                                IB_QP_TIMEOUT                   |
1220                                                IB_QP_RETRY_CNT                 |
1221                                                IB_QP_RNR_RETRY                 |
1222                                                IB_QP_MAX_QP_RD_ATOMIC          |
1223                                                IB_QP_ALT_PATH                  |
1224                                                IB_QP_ACCESS_FLAGS              |
1225                                                IB_QP_PKEY_INDEX                |
1226                                                IB_QP_PATH_MIG_STATE),
1227                                [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1228                                                IB_QP_AV                        |
1229                                                IB_QP_TIMEOUT                   |
1230                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1231                                                IB_QP_ALT_PATH                  |
1232                                                IB_QP_ACCESS_FLAGS              |
1233                                                IB_QP_PKEY_INDEX                |
1234                                                IB_QP_MIN_RNR_TIMER             |
1235                                                IB_QP_PATH_MIG_STATE),
1236                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1237                                                IB_QP_QKEY),
1238                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1239                                                IB_QP_QKEY),
1240                        }
1241                }
1242        },
1243        [IB_QPS_SQE]   = {
1244                [IB_QPS_RESET] = { .valid = 1 },
1245                [IB_QPS_ERR] =   { .valid = 1 },
1246                [IB_QPS_RTS]   = {
1247                        .valid = 1,
1248                        .opt_param = {
1249                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1250                                                IB_QP_QKEY),
1251                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1252                                                IB_QP_ACCESS_FLAGS),
1253                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1254                                                IB_QP_QKEY),
1255                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1256                                                IB_QP_QKEY),
1257                        }
1258                }
1259        },
1260        [IB_QPS_ERR] = {
1261                [IB_QPS_RESET] = { .valid = 1 },
1262                [IB_QPS_ERR] =   { .valid = 1 }
1263        }
1264};
1265
1266bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1267                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1268                        enum rdma_link_layer ll)
1269{
1270        enum ib_qp_attr_mask req_param, opt_param;
1271
1272        if (mask & IB_QP_CUR_STATE  &&
1273            cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1274            cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1275                return false;
1276
1277        if (!qp_state_table[cur_state][next_state].valid)
1278                return false;
1279
1280        req_param = qp_state_table[cur_state][next_state].req_param[type];
1281        opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1282
1283        if ((mask & req_param) != req_param)
1284                return false;
1285
1286        if (mask & ~(req_param | opt_param | IB_QP_STATE))
1287                return false;
1288
1289        return true;
1290}
1291EXPORT_SYMBOL(ib_modify_qp_is_ok);
1292
1293static int ib_resolve_eth_dmac(struct ib_device *device,
1294                               struct rdma_ah_attr *ah_attr)
1295{
1296        int           ret = 0;
1297        struct ib_global_route *grh;
1298
1299        if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1300                return -EINVAL;
1301
1302        grh = rdma_ah_retrieve_grh(ah_attr);
1303
1304        if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1305                if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1306                        __be32 addr = 0;
1307
1308                        memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1309                        ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1310                } else {
1311                        ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1312                                        (char *)ah_attr->roce.dmac);
1313                }
1314        } else {
1315                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1316        }
1317        return ret;
1318}
1319
1320/**
1321 * IB core internal function to perform QP attributes modification.
1322 */
1323static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1324                         int attr_mask, struct ib_udata *udata)
1325{
1326        u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1327        int ret;
1328
1329        if (rdma_ib_or_roce(qp->device, port)) {
1330                if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1331                        pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n",
1332                                __func__, qp->device->name);
1333                        attr->rq_psn &= 0xffffff;
1334                }
1335
1336                if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1337                        pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n",
1338                                __func__, qp->device->name);
1339                        attr->sq_psn &= 0xffffff;
1340                }
1341        }
1342
1343        ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1344        if (!ret && (attr_mask & IB_QP_PORT))
1345                qp->port = attr->port_num;
1346
1347        return ret;
1348}
1349
1350static bool is_qp_type_connected(const struct ib_qp *qp)
1351{
1352        return (qp->qp_type == IB_QPT_UC ||
1353                qp->qp_type == IB_QPT_RC ||
1354                qp->qp_type == IB_QPT_XRC_INI ||
1355                qp->qp_type == IB_QPT_XRC_TGT);
1356}
1357
1358/**
1359 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1360 * @ib_qp: The QP to modify.
1361 * @attr: On input, specifies the QP attributes to modify.  On output,
1362 *   the current values of selected QP attributes are returned.
1363 * @attr_mask: A bit-mask used to specify which attributes of the QP
1364 *   are being modified.
1365 * @udata: pointer to user's input output buffer information
1366 *   are being modified.
1367 * It returns 0 on success and returns appropriate error code on error.
1368 */
1369int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1370                            int attr_mask, struct ib_udata *udata)
1371{
1372        struct ib_qp *qp = ib_qp->real_qp;
1373        int ret;
1374
1375        if (attr_mask & IB_QP_AV &&
1376            attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1377            is_qp_type_connected(qp)) {
1378                ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1379                if (ret)
1380                        return ret;
1381        }
1382        return _ib_modify_qp(qp, attr, attr_mask, udata);
1383}
1384EXPORT_SYMBOL(ib_modify_qp_with_udata);
1385
1386int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1387{
1388        int rc;
1389        u32 netdev_speed;
1390        struct net_device *netdev;
1391        struct ethtool_link_ksettings lksettings;
1392
1393        if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1394                return -EINVAL;
1395
1396        if (!dev->get_netdev)
1397                return -EOPNOTSUPP;
1398
1399        netdev = dev->get_netdev(dev, port_num);
1400        if (!netdev)
1401                return -ENODEV;
1402
1403        rtnl_lock();
1404        rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1405        rtnl_unlock();
1406
1407        dev_put(netdev);
1408
1409        if (!rc) {
1410                netdev_speed = lksettings.base.speed;
1411        } else {
1412                netdev_speed = SPEED_1000;
1413                pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1414                        netdev_speed);
1415        }
1416
1417        if (netdev_speed <= SPEED_1000) {
1418                *width = IB_WIDTH_1X;
1419                *speed = IB_SPEED_SDR;
1420        } else if (netdev_speed <= SPEED_10000) {
1421                *width = IB_WIDTH_1X;
1422                *speed = IB_SPEED_FDR10;
1423        } else if (netdev_speed <= SPEED_20000) {
1424                *width = IB_WIDTH_4X;
1425                *speed = IB_SPEED_DDR;
1426        } else if (netdev_speed <= SPEED_25000) {
1427                *width = IB_WIDTH_1X;
1428                *speed = IB_SPEED_EDR;
1429        } else if (netdev_speed <= SPEED_40000) {
1430                *width = IB_WIDTH_4X;
1431                *speed = IB_SPEED_FDR10;
1432        } else {
1433                *width = IB_WIDTH_4X;
1434                *speed = IB_SPEED_EDR;
1435        }
1436
1437        return 0;
1438}
1439EXPORT_SYMBOL(ib_get_eth_speed);
1440
1441int ib_modify_qp(struct ib_qp *qp,
1442                 struct ib_qp_attr *qp_attr,
1443                 int qp_attr_mask)
1444{
1445        return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1446}
1447EXPORT_SYMBOL(ib_modify_qp);
1448
1449int ib_query_qp(struct ib_qp *qp,
1450                struct ib_qp_attr *qp_attr,
1451                int qp_attr_mask,
1452                struct ib_qp_init_attr *qp_init_attr)
1453{
1454        return qp->device->query_qp ?
1455                qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1456                -EOPNOTSUPP;
1457}
1458EXPORT_SYMBOL(ib_query_qp);
1459
1460int ib_close_qp(struct ib_qp *qp)
1461{
1462        struct ib_qp *real_qp;
1463        unsigned long flags;
1464
1465        real_qp = qp->real_qp;
1466        if (real_qp == qp)
1467                return -EINVAL;
1468
1469        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1470        list_del(&qp->open_list);
1471        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1472
1473        atomic_dec(&real_qp->usecnt);
1474        if (qp->qp_sec)
1475                ib_close_shared_qp_security(qp->qp_sec);
1476        kfree(qp);
1477
1478        return 0;
1479}
1480EXPORT_SYMBOL(ib_close_qp);
1481
1482static int __ib_destroy_shared_qp(struct ib_qp *qp)
1483{
1484        struct ib_xrcd *xrcd;
1485        struct ib_qp *real_qp;
1486        int ret;
1487
1488        real_qp = qp->real_qp;
1489        xrcd = real_qp->xrcd;
1490
1491        mutex_lock(&xrcd->tgt_qp_mutex);
1492        ib_close_qp(qp);
1493        if (atomic_read(&real_qp->usecnt) == 0)
1494                list_del(&real_qp->xrcd_list);
1495        else
1496                real_qp = NULL;
1497        mutex_unlock(&xrcd->tgt_qp_mutex);
1498
1499        if (real_qp) {
1500                ret = ib_destroy_qp(real_qp);
1501                if (!ret)
1502                        atomic_dec(&xrcd->usecnt);
1503                else
1504                        __ib_insert_xrcd_qp(xrcd, real_qp);
1505        }
1506
1507        return 0;
1508}
1509
1510int ib_destroy_qp(struct ib_qp *qp)
1511{
1512        struct ib_pd *pd;
1513        struct ib_cq *scq, *rcq;
1514        struct ib_srq *srq;
1515        struct ib_rwq_ind_table *ind_tbl;
1516        struct ib_qp_security *sec;
1517        int ret;
1518
1519        WARN_ON_ONCE(qp->mrs_used > 0);
1520
1521        if (atomic_read(&qp->usecnt))
1522                return -EBUSY;
1523
1524        if (qp->real_qp != qp)
1525                return __ib_destroy_shared_qp(qp);
1526
1527        pd   = qp->pd;
1528        scq  = qp->send_cq;
1529        rcq  = qp->recv_cq;
1530        srq  = qp->srq;
1531        ind_tbl = qp->rwq_ind_tbl;
1532        sec  = qp->qp_sec;
1533        if (sec)
1534                ib_destroy_qp_security_begin(sec);
1535
1536        if (!qp->uobject)
1537                rdma_rw_cleanup_mrs(qp);
1538
1539        rdma_restrack_del(&qp->res);
1540        ret = qp->device->destroy_qp(qp);
1541        if (!ret) {
1542                if (pd)
1543                        atomic_dec(&pd->usecnt);
1544                if (scq)
1545                        atomic_dec(&scq->usecnt);
1546                if (rcq)
1547                        atomic_dec(&rcq->usecnt);
1548                if (srq)
1549                        atomic_dec(&srq->usecnt);
1550                if (ind_tbl)
1551                        atomic_dec(&ind_tbl->usecnt);
1552                if (sec)
1553                        ib_destroy_qp_security_end(sec);
1554        } else {
1555                if (sec)
1556                        ib_destroy_qp_security_abort(sec);
1557        }
1558
1559        return ret;
1560}
1561EXPORT_SYMBOL(ib_destroy_qp);
1562
1563/* Completion queues */
1564
1565struct ib_cq *ib_create_cq(struct ib_device *device,
1566                           ib_comp_handler comp_handler,
1567                           void (*event_handler)(struct ib_event *, void *),
1568                           void *cq_context,
1569                           const struct ib_cq_init_attr *cq_attr)
1570{
1571        struct ib_cq *cq;
1572
1573        cq = device->create_cq(device, cq_attr, NULL, NULL);
1574
1575        if (!IS_ERR(cq)) {
1576                cq->device        = device;
1577                cq->uobject       = NULL;
1578                cq->comp_handler  = comp_handler;
1579                cq->event_handler = event_handler;
1580                cq->cq_context    = cq_context;
1581                atomic_set(&cq->usecnt, 0);
1582                cq->res.type = RDMA_RESTRACK_CQ;
1583                rdma_restrack_add(&cq->res);
1584        }
1585
1586        return cq;
1587}
1588EXPORT_SYMBOL(ib_create_cq);
1589
1590int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1591{
1592        return cq->device->modify_cq ?
1593                cq->device->modify_cq(cq, cq_count, cq_period) : -EOPNOTSUPP;
1594}
1595EXPORT_SYMBOL(rdma_set_cq_moderation);
1596
1597int ib_destroy_cq(struct ib_cq *cq)
1598{
1599        if (atomic_read(&cq->usecnt))
1600                return -EBUSY;
1601
1602        rdma_restrack_del(&cq->res);
1603        return cq->device->destroy_cq(cq);
1604}
1605EXPORT_SYMBOL(ib_destroy_cq);
1606
1607int ib_resize_cq(struct ib_cq *cq, int cqe)
1608{
1609        return cq->device->resize_cq ?
1610                cq->device->resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1611}
1612EXPORT_SYMBOL(ib_resize_cq);
1613
1614/* Memory regions */
1615
1616int ib_dereg_mr(struct ib_mr *mr)
1617{
1618        struct ib_pd *pd = mr->pd;
1619        struct ib_dm *dm = mr->dm;
1620        int ret;
1621
1622        rdma_restrack_del(&mr->res);
1623        ret = mr->device->dereg_mr(mr);
1624        if (!ret) {
1625                atomic_dec(&pd->usecnt);
1626                if (dm)
1627                        atomic_dec(&dm->usecnt);
1628        }
1629
1630        return ret;
1631}
1632EXPORT_SYMBOL(ib_dereg_mr);
1633
1634/**
1635 * ib_alloc_mr() - Allocates a memory region
1636 * @pd:            protection domain associated with the region
1637 * @mr_type:       memory region type
1638 * @max_num_sg:    maximum sg entries available for registration.
1639 *
1640 * Notes:
1641 * Memory registeration page/sg lists must not exceed max_num_sg.
1642 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1643 * max_num_sg * used_page_size.
1644 *
1645 */
1646struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1647                          enum ib_mr_type mr_type,
1648                          u32 max_num_sg)
1649{
1650        struct ib_mr *mr;
1651
1652        if (!pd->device->alloc_mr)
1653                return ERR_PTR(-EOPNOTSUPP);
1654
1655        mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1656        if (!IS_ERR(mr)) {
1657                mr->device  = pd->device;
1658                mr->pd      = pd;
1659                mr->dm      = NULL;
1660                mr->uobject = NULL;
1661                atomic_inc(&pd->usecnt);
1662                mr->need_inval = false;
1663                mr->res.type = RDMA_RESTRACK_MR;
1664                rdma_restrack_add(&mr->res);
1665        }
1666
1667        return mr;
1668}
1669EXPORT_SYMBOL(ib_alloc_mr);
1670
1671/* "Fast" memory regions */
1672
1673struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1674                            int mr_access_flags,
1675                            struct ib_fmr_attr *fmr_attr)
1676{
1677        struct ib_fmr *fmr;
1678
1679        if (!pd->device->alloc_fmr)
1680                return ERR_PTR(-EOPNOTSUPP);
1681
1682        fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1683        if (!IS_ERR(fmr)) {
1684                fmr->device = pd->device;
1685                fmr->pd     = pd;
1686                atomic_inc(&pd->usecnt);
1687        }
1688
1689        return fmr;
1690}
1691EXPORT_SYMBOL(ib_alloc_fmr);
1692
1693int ib_unmap_fmr(struct list_head *fmr_list)
1694{
1695        struct ib_fmr *fmr;
1696
1697        if (list_empty(fmr_list))
1698                return 0;
1699
1700        fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1701        return fmr->device->unmap_fmr(fmr_list);
1702}
1703EXPORT_SYMBOL(ib_unmap_fmr);
1704
1705int ib_dealloc_fmr(struct ib_fmr *fmr)
1706{
1707        struct ib_pd *pd;
1708        int ret;
1709
1710        pd = fmr->pd;
1711        ret = fmr->device->dealloc_fmr(fmr);
1712        if (!ret)
1713                atomic_dec(&pd->usecnt);
1714
1715        return ret;
1716}
1717EXPORT_SYMBOL(ib_dealloc_fmr);
1718
1719/* Multicast groups */
1720
1721static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1722{
1723        struct ib_qp_init_attr init_attr = {};
1724        struct ib_qp_attr attr = {};
1725        int num_eth_ports = 0;
1726        int port;
1727
1728        /* If QP state >= init, it is assigned to a port and we can check this
1729         * port only.
1730         */
1731        if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1732                if (attr.qp_state >= IB_QPS_INIT) {
1733                        if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1734                            IB_LINK_LAYER_INFINIBAND)
1735                                return true;
1736                        goto lid_check;
1737                }
1738        }
1739
1740        /* Can't get a quick answer, iterate over all ports */
1741        for (port = 0; port < qp->device->phys_port_cnt; port++)
1742                if (rdma_port_get_link_layer(qp->device, port) !=
1743                    IB_LINK_LAYER_INFINIBAND)
1744                        num_eth_ports++;
1745
1746        /* If we have at lease one Ethernet port, RoCE annex declares that
1747         * multicast LID should be ignored. We can't tell at this step if the
1748         * QP belongs to an IB or Ethernet port.
1749         */
1750        if (num_eth_ports)
1751                return true;
1752
1753        /* If all the ports are IB, we can check according to IB spec. */
1754lid_check:
1755        return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1756                 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1757}
1758
1759int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1760{
1761        int ret;
1762
1763        if (!qp->device->attach_mcast)
1764                return -EOPNOTSUPP;
1765
1766        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1767            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1768                return -EINVAL;
1769
1770        ret = qp->device->attach_mcast(qp, gid, lid);
1771        if (!ret)
1772                atomic_inc(&qp->usecnt);
1773        return ret;
1774}
1775EXPORT_SYMBOL(ib_attach_mcast);
1776
1777int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1778{
1779        int ret;
1780
1781        if (!qp->device->detach_mcast)
1782                return -EOPNOTSUPP;
1783
1784        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1785            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1786                return -EINVAL;
1787
1788        ret = qp->device->detach_mcast(qp, gid, lid);
1789        if (!ret)
1790                atomic_dec(&qp->usecnt);
1791        return ret;
1792}
1793EXPORT_SYMBOL(ib_detach_mcast);
1794
1795struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
1796{
1797        struct ib_xrcd *xrcd;
1798
1799        if (!device->alloc_xrcd)
1800                return ERR_PTR(-EOPNOTSUPP);
1801
1802        xrcd = device->alloc_xrcd(device, NULL, NULL);
1803        if (!IS_ERR(xrcd)) {
1804                xrcd->device = device;
1805                xrcd->inode = NULL;
1806                atomic_set(&xrcd->usecnt, 0);
1807                mutex_init(&xrcd->tgt_qp_mutex);
1808                INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1809        }
1810
1811        return xrcd;
1812}
1813EXPORT_SYMBOL(__ib_alloc_xrcd);
1814
1815int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1816{
1817        struct ib_qp *qp;
1818        int ret;
1819
1820        if (atomic_read(&xrcd->usecnt))
1821                return -EBUSY;
1822
1823        while (!list_empty(&xrcd->tgt_qp_list)) {
1824                qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1825                ret = ib_destroy_qp(qp);
1826                if (ret)
1827                        return ret;
1828        }
1829
1830        return xrcd->device->dealloc_xrcd(xrcd);
1831}
1832EXPORT_SYMBOL(ib_dealloc_xrcd);
1833
1834/**
1835 * ib_create_wq - Creates a WQ associated with the specified protection
1836 * domain.
1837 * @pd: The protection domain associated with the WQ.
1838 * @wq_attr: A list of initial attributes required to create the
1839 * WQ. If WQ creation succeeds, then the attributes are updated to
1840 * the actual capabilities of the created WQ.
1841 *
1842 * wq_attr->max_wr and wq_attr->max_sge determine
1843 * the requested size of the WQ, and set to the actual values allocated
1844 * on return.
1845 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1846 * at least as large as the requested values.
1847 */
1848struct ib_wq *ib_create_wq(struct ib_pd *pd,
1849                           struct ib_wq_init_attr *wq_attr)
1850{
1851        struct ib_wq *wq;
1852
1853        if (!pd->device->create_wq)
1854                return ERR_PTR(-EOPNOTSUPP);
1855
1856        wq = pd->device->create_wq(pd, wq_attr, NULL);
1857        if (!IS_ERR(wq)) {
1858                wq->event_handler = wq_attr->event_handler;
1859                wq->wq_context = wq_attr->wq_context;
1860                wq->wq_type = wq_attr->wq_type;
1861                wq->cq = wq_attr->cq;
1862                wq->device = pd->device;
1863                wq->pd = pd;
1864                wq->uobject = NULL;
1865                atomic_inc(&pd->usecnt);
1866                atomic_inc(&wq_attr->cq->usecnt);
1867                atomic_set(&wq->usecnt, 0);
1868        }
1869        return wq;
1870}
1871EXPORT_SYMBOL(ib_create_wq);
1872
1873/**
1874 * ib_destroy_wq - Destroys the specified WQ.
1875 * @wq: The WQ to destroy.
1876 */
1877int ib_destroy_wq(struct ib_wq *wq)
1878{
1879        int err;
1880        struct ib_cq *cq = wq->cq;
1881        struct ib_pd *pd = wq->pd;
1882
1883        if (atomic_read(&wq->usecnt))
1884                return -EBUSY;
1885
1886        err = wq->device->destroy_wq(wq);
1887        if (!err) {
1888                atomic_dec(&pd->usecnt);
1889                atomic_dec(&cq->usecnt);
1890        }
1891        return err;
1892}
1893EXPORT_SYMBOL(ib_destroy_wq);
1894
1895/**
1896 * ib_modify_wq - Modifies the specified WQ.
1897 * @wq: The WQ to modify.
1898 * @wq_attr: On input, specifies the WQ attributes to modify.
1899 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1900 *   are being modified.
1901 * On output, the current values of selected WQ attributes are returned.
1902 */
1903int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1904                 u32 wq_attr_mask)
1905{
1906        int err;
1907
1908        if (!wq->device->modify_wq)
1909                return -EOPNOTSUPP;
1910
1911        err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1912        return err;
1913}
1914EXPORT_SYMBOL(ib_modify_wq);
1915
1916/*
1917 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1918 * @device: The device on which to create the rwq indirection table.
1919 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1920 * create the Indirection Table.
1921 *
1922 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1923 *      than the created ib_rwq_ind_table object and the caller is responsible
1924 *      for its memory allocation/free.
1925 */
1926struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1927                                                 struct ib_rwq_ind_table_init_attr *init_attr)
1928{
1929        struct ib_rwq_ind_table *rwq_ind_table;
1930        int i;
1931        u32 table_size;
1932
1933        if (!device->create_rwq_ind_table)
1934                return ERR_PTR(-EOPNOTSUPP);
1935
1936        table_size = (1 << init_attr->log_ind_tbl_size);
1937        rwq_ind_table = device->create_rwq_ind_table(device,
1938                                init_attr, NULL);
1939        if (IS_ERR(rwq_ind_table))
1940                return rwq_ind_table;
1941
1942        rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1943        rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1944        rwq_ind_table->device = device;
1945        rwq_ind_table->uobject = NULL;
1946        atomic_set(&rwq_ind_table->usecnt, 0);
1947
1948        for (i = 0; i < table_size; i++)
1949                atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1950
1951        return rwq_ind_table;
1952}
1953EXPORT_SYMBOL(ib_create_rwq_ind_table);
1954
1955/*
1956 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1957 * @wq_ind_table: The Indirection Table to destroy.
1958*/
1959int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1960{
1961        int err, i;
1962        u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1963        struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1964
1965        if (atomic_read(&rwq_ind_table->usecnt))
1966                return -EBUSY;
1967
1968        err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1969        if (!err) {
1970                for (i = 0; i < table_size; i++)
1971                        atomic_dec(&ind_tbl[i]->usecnt);
1972        }
1973
1974        return err;
1975}
1976EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1977
1978struct ib_flow *ib_create_flow(struct ib_qp *qp,
1979                               struct ib_flow_attr *flow_attr,
1980                               int domain)
1981{
1982        struct ib_flow *flow_id;
1983        if (!qp->device->create_flow)
1984                return ERR_PTR(-EOPNOTSUPP);
1985
1986        flow_id = qp->device->create_flow(qp, flow_attr, domain);
1987        if (!IS_ERR(flow_id)) {
1988                atomic_inc(&qp->usecnt);
1989                flow_id->qp = qp;
1990        }
1991        return flow_id;
1992}
1993EXPORT_SYMBOL(ib_create_flow);
1994
1995int ib_destroy_flow(struct ib_flow *flow_id)
1996{
1997        int err;
1998        struct ib_qp *qp = flow_id->qp;
1999
2000        err = qp->device->destroy_flow(flow_id);
2001        if (!err)
2002                atomic_dec(&qp->usecnt);
2003        return err;
2004}
2005EXPORT_SYMBOL(ib_destroy_flow);
2006
2007int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2008                       struct ib_mr_status *mr_status)
2009{
2010        return mr->device->check_mr_status ?
2011                mr->device->check_mr_status(mr, check_mask, mr_status) : -EOPNOTSUPP;
2012}
2013EXPORT_SYMBOL(ib_check_mr_status);
2014
2015int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2016                         int state)
2017{
2018        if (!device->set_vf_link_state)
2019                return -EOPNOTSUPP;
2020
2021        return device->set_vf_link_state(device, vf, port, state);
2022}
2023EXPORT_SYMBOL(ib_set_vf_link_state);
2024
2025int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2026                     struct ifla_vf_info *info)
2027{
2028        if (!device->get_vf_config)
2029                return -EOPNOTSUPP;
2030
2031        return device->get_vf_config(device, vf, port, info);
2032}
2033EXPORT_SYMBOL(ib_get_vf_config);
2034
2035int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2036                    struct ifla_vf_stats *stats)
2037{
2038        if (!device->get_vf_stats)
2039                return -EOPNOTSUPP;
2040
2041        return device->get_vf_stats(device, vf, port, stats);
2042}
2043EXPORT_SYMBOL(ib_get_vf_stats);
2044
2045int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2046                   int type)
2047{
2048        if (!device->set_vf_guid)
2049                return -EOPNOTSUPP;
2050
2051        return device->set_vf_guid(device, vf, port, guid, type);
2052}
2053EXPORT_SYMBOL(ib_set_vf_guid);
2054
2055/**
2056 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2057 *     and set it the memory region.
2058 * @mr:            memory region
2059 * @sg:            dma mapped scatterlist
2060 * @sg_nents:      number of entries in sg
2061 * @sg_offset:     offset in bytes into sg
2062 * @page_size:     page vector desired page size
2063 *
2064 * Constraints:
2065 * - The first sg element is allowed to have an offset.
2066 * - Each sg element must either be aligned to page_size or virtually
2067 *   contiguous to the previous element. In case an sg element has a
2068 *   non-contiguous offset, the mapping prefix will not include it.
2069 * - The last sg element is allowed to have length less than page_size.
2070 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2071 *   then only max_num_sg entries will be mapped.
2072 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2073 *   constraints holds and the page_size argument is ignored.
2074 *
2075 * Returns the number of sg elements that were mapped to the memory region.
2076 *
2077 * After this completes successfully, the  memory region
2078 * is ready for registration.
2079 */
2080int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2081                 unsigned int *sg_offset, unsigned int page_size)
2082{
2083        if (unlikely(!mr->device->map_mr_sg))
2084                return -EOPNOTSUPP;
2085
2086        mr->page_size = page_size;
2087
2088        return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2089}
2090EXPORT_SYMBOL(ib_map_mr_sg);
2091
2092/**
2093 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2094 *     to a page vector
2095 * @mr:            memory region
2096 * @sgl:           dma mapped scatterlist
2097 * @sg_nents:      number of entries in sg
2098 * @sg_offset_p:   IN:  start offset in bytes into sg
2099 *                 OUT: offset in bytes for element n of the sg of the first
2100 *                      byte that has not been processed where n is the return
2101 *                      value of this function.
2102 * @set_page:      driver page assignment function pointer
2103 *
2104 * Core service helper for drivers to convert the largest
2105 * prefix of given sg list to a page vector. The sg list
2106 * prefix converted is the prefix that meet the requirements
2107 * of ib_map_mr_sg.
2108 *
2109 * Returns the number of sg elements that were assigned to
2110 * a page vector.
2111 */
2112int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2113                unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2114{
2115        struct scatterlist *sg;
2116        u64 last_end_dma_addr = 0;
2117        unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2118        unsigned int last_page_off = 0;
2119        u64 page_mask = ~((u64)mr->page_size - 1);
2120        int i, ret;
2121
2122        if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2123                return -EINVAL;
2124
2125        mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2126        mr->length = 0;
2127
2128        for_each_sg(sgl, sg, sg_nents, i) {
2129                u64 dma_addr = sg_dma_address(sg) + sg_offset;
2130                u64 prev_addr = dma_addr;
2131                unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2132                u64 end_dma_addr = dma_addr + dma_len;
2133                u64 page_addr = dma_addr & page_mask;
2134
2135                /*
2136                 * For the second and later elements, check whether either the
2137                 * end of element i-1 or the start of element i is not aligned
2138                 * on a page boundary.
2139                 */
2140                if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2141                        /* Stop mapping if there is a gap. */
2142                        if (last_end_dma_addr != dma_addr)
2143                                break;
2144
2145                        /*
2146                         * Coalesce this element with the last. If it is small
2147                         * enough just update mr->length. Otherwise start
2148                         * mapping from the next page.
2149                         */
2150                        goto next_page;
2151                }
2152
2153                do {
2154                        ret = set_page(mr, page_addr);
2155                        if (unlikely(ret < 0)) {
2156                                sg_offset = prev_addr - sg_dma_address(sg);
2157                                mr->length += prev_addr - dma_addr;
2158                                if (sg_offset_p)
2159                                        *sg_offset_p = sg_offset;
2160                                return i || sg_offset ? i : ret;
2161                        }
2162                        prev_addr = page_addr;
2163next_page:
2164                        page_addr += mr->page_size;
2165                } while (page_addr < end_dma_addr);
2166
2167                mr->length += dma_len;
2168                last_end_dma_addr = end_dma_addr;
2169                last_page_off = end_dma_addr & ~page_mask;
2170
2171                sg_offset = 0;
2172        }
2173
2174        if (sg_offset_p)
2175                *sg_offset_p = 0;
2176        return i;
2177}
2178EXPORT_SYMBOL(ib_sg_to_pages);
2179
2180struct ib_drain_cqe {
2181        struct ib_cqe cqe;
2182        struct completion done;
2183};
2184
2185static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2186{
2187        struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2188                                                cqe);
2189
2190        complete(&cqe->done);
2191}
2192
2193/*
2194 * Post a WR and block until its completion is reaped for the SQ.
2195 */
2196static void __ib_drain_sq(struct ib_qp *qp)
2197{
2198        struct ib_cq *cq = qp->send_cq;
2199        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2200        struct ib_drain_cqe sdrain;
2201        struct ib_send_wr *bad_swr;
2202        struct ib_rdma_wr swr = {
2203                .wr = {
2204                        .next = NULL,
2205                        { .wr_cqe       = &sdrain.cqe, },
2206                        .opcode = IB_WR_RDMA_WRITE,
2207                },
2208        };
2209        int ret;
2210
2211        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2212        if (ret) {
2213                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2214                return;
2215        }
2216
2217        sdrain.cqe.done = ib_drain_qp_done;
2218        init_completion(&sdrain.done);
2219
2220        ret = ib_post_send(qp, &swr.wr, &bad_swr);
2221        if (ret) {
2222                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2223                return;
2224        }
2225
2226        if (cq->poll_ctx == IB_POLL_DIRECT)
2227                while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2228                        ib_process_cq_direct(cq, -1);
2229        else
2230                wait_for_completion(&sdrain.done);
2231}
2232
2233/*
2234 * Post a WR and block until its completion is reaped for the RQ.
2235 */
2236static void __ib_drain_rq(struct ib_qp *qp)
2237{
2238        struct ib_cq *cq = qp->recv_cq;
2239        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2240        struct ib_drain_cqe rdrain;
2241        struct ib_recv_wr rwr = {}, *bad_rwr;
2242        int ret;
2243
2244        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2245        if (ret) {
2246                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2247                return;
2248        }
2249
2250        rwr.wr_cqe = &rdrain.cqe;
2251        rdrain.cqe.done = ib_drain_qp_done;
2252        init_completion(&rdrain.done);
2253
2254        ret = ib_post_recv(qp, &rwr, &bad_rwr);
2255        if (ret) {
2256                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2257                return;
2258        }
2259
2260        if (cq->poll_ctx == IB_POLL_DIRECT)
2261                while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2262                        ib_process_cq_direct(cq, -1);
2263        else
2264                wait_for_completion(&rdrain.done);
2265}
2266
2267/**
2268 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2269 *                 application.
2270 * @qp:            queue pair to drain
2271 *
2272 * If the device has a provider-specific drain function, then
2273 * call that.  Otherwise call the generic drain function
2274 * __ib_drain_sq().
2275 *
2276 * The caller must:
2277 *
2278 * ensure there is room in the CQ and SQ for the drain work request and
2279 * completion.
2280 *
2281 * allocate the CQ using ib_alloc_cq().
2282 *
2283 * ensure that there are no other contexts that are posting WRs concurrently.
2284 * Otherwise the drain is not guaranteed.
2285 */
2286void ib_drain_sq(struct ib_qp *qp)
2287{
2288        if (qp->device->drain_sq)
2289                qp->device->drain_sq(qp);
2290        else
2291                __ib_drain_sq(qp);
2292}
2293EXPORT_SYMBOL(ib_drain_sq);
2294
2295/**
2296 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2297 *                 application.
2298 * @qp:            queue pair to drain
2299 *
2300 * If the device has a provider-specific drain function, then
2301 * call that.  Otherwise call the generic drain function
2302 * __ib_drain_rq().
2303 *
2304 * The caller must:
2305 *
2306 * ensure there is room in the CQ and RQ for the drain work request and
2307 * completion.
2308 *
2309 * allocate the CQ using ib_alloc_cq().
2310 *
2311 * ensure that there are no other contexts that are posting WRs concurrently.
2312 * Otherwise the drain is not guaranteed.
2313 */
2314void ib_drain_rq(struct ib_qp *qp)
2315{
2316        if (qp->device->drain_rq)
2317                qp->device->drain_rq(qp);
2318        else
2319                __ib_drain_rq(qp);
2320}
2321EXPORT_SYMBOL(ib_drain_rq);
2322
2323/**
2324 * ib_drain_qp() - Block until all CQEs have been consumed by the
2325 *                 application on both the RQ and SQ.
2326 * @qp:            queue pair to drain
2327 *
2328 * The caller must:
2329 *
2330 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2331 * and completions.
2332 *
2333 * allocate the CQs using ib_alloc_cq().
2334 *
2335 * ensure that there are no other contexts that are posting WRs concurrently.
2336 * Otherwise the drain is not guaranteed.
2337 */
2338void ib_drain_qp(struct ib_qp *qp)
2339{
2340        ib_drain_sq(qp);
2341        if (!qp->srq)
2342                ib_drain_rq(qp);
2343}
2344EXPORT_SYMBOL(ib_drain_qp);
2345