linux/drivers/infiniband/hw/hfi1/sdma.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015, 2016 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/spinlock.h>
  49#include <linux/seqlock.h>
  50#include <linux/netdevice.h>
  51#include <linux/moduleparam.h>
  52#include <linux/bitops.h>
  53#include <linux/timer.h>
  54#include <linux/vmalloc.h>
  55#include <linux/highmem.h>
  56
  57#include "hfi.h"
  58#include "common.h"
  59#include "qp.h"
  60#include "sdma.h"
  61#include "iowait.h"
  62#include "trace.h"
  63
  64/* must be a power of 2 >= 64 <= 32768 */
  65#define SDMA_DESCQ_CNT 2048
  66#define SDMA_DESC_INTR 64
  67#define INVALID_TAIL 0xffff
  68
  69static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
  70module_param(sdma_descq_cnt, uint, S_IRUGO);
  71MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
  72
  73static uint sdma_idle_cnt = 250;
  74module_param(sdma_idle_cnt, uint, S_IRUGO);
  75MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
  76
  77uint mod_num_sdma;
  78module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
  79MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
  80
  81static uint sdma_desct_intr = SDMA_DESC_INTR;
  82module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
  83MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
  84
  85#define SDMA_WAIT_BATCH_SIZE 20
  86/* max wait time for a SDMA engine to indicate it has halted */
  87#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
  88/* all SDMA engine errors that cause a halt */
  89
  90#define SD(name) SEND_DMA_##name
  91#define ALL_SDMA_ENG_HALT_ERRS \
  92        (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
  93        | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
  94        | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
  95        | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
  96        | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
  97        | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
  98        | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
  99        | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
 100        | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
 101        | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
 102        | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
 103        | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
 104        | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
 105        | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
 106        | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
 107        | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
 108        | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
 109        | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
 110
 111/* sdma_sendctrl operations */
 112#define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
 113#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
 114#define SDMA_SENDCTRL_OP_HALT      BIT(2)
 115#define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
 116
 117/* handle long defines */
 118#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
 119SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
 120#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
 121SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
 122
 123static const char * const sdma_state_names[] = {
 124        [sdma_state_s00_hw_down]                = "s00_HwDown",
 125        [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
 126        [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
 127        [sdma_state_s20_idle]                   = "s20_Idle",
 128        [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
 129        [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
 130        [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
 131        [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
 132        [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
 133        [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
 134        [sdma_state_s99_running]                = "s99_Running",
 135};
 136
 137#ifdef CONFIG_SDMA_VERBOSITY
 138static const char * const sdma_event_names[] = {
 139        [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
 140        [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
 141        [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
 142        [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
 143        [sdma_event_e30_go_running]   = "e30_GoRunning",
 144        [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
 145        [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
 146        [sdma_event_e60_hw_halted]    = "e60_HwHalted",
 147        [sdma_event_e70_go_idle]      = "e70_GoIdle",
 148        [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
 149        [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
 150        [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
 151        [sdma_event_e85_link_down]    = "e85_LinkDown",
 152        [sdma_event_e90_sw_halted]    = "e90_SwHalted",
 153};
 154#endif
 155
 156static const struct sdma_set_state_action sdma_action_table[] = {
 157        [sdma_state_s00_hw_down] = {
 158                .go_s99_running_tofalse = 1,
 159                .op_enable = 0,
 160                .op_intenable = 0,
 161                .op_halt = 0,
 162                .op_cleanup = 0,
 163        },
 164        [sdma_state_s10_hw_start_up_halt_wait] = {
 165                .op_enable = 0,
 166                .op_intenable = 0,
 167                .op_halt = 1,
 168                .op_cleanup = 0,
 169        },
 170        [sdma_state_s15_hw_start_up_clean_wait] = {
 171                .op_enable = 0,
 172                .op_intenable = 1,
 173                .op_halt = 0,
 174                .op_cleanup = 1,
 175        },
 176        [sdma_state_s20_idle] = {
 177                .op_enable = 0,
 178                .op_intenable = 1,
 179                .op_halt = 0,
 180                .op_cleanup = 0,
 181        },
 182        [sdma_state_s30_sw_clean_up_wait] = {
 183                .op_enable = 0,
 184                .op_intenable = 0,
 185                .op_halt = 0,
 186                .op_cleanup = 0,
 187        },
 188        [sdma_state_s40_hw_clean_up_wait] = {
 189                .op_enable = 0,
 190                .op_intenable = 0,
 191                .op_halt = 0,
 192                .op_cleanup = 1,
 193        },
 194        [sdma_state_s50_hw_halt_wait] = {
 195                .op_enable = 0,
 196                .op_intenable = 0,
 197                .op_halt = 0,
 198                .op_cleanup = 0,
 199        },
 200        [sdma_state_s60_idle_halt_wait] = {
 201                .go_s99_running_tofalse = 1,
 202                .op_enable = 0,
 203                .op_intenable = 0,
 204                .op_halt = 1,
 205                .op_cleanup = 0,
 206        },
 207        [sdma_state_s80_hw_freeze] = {
 208                .op_enable = 0,
 209                .op_intenable = 0,
 210                .op_halt = 0,
 211                .op_cleanup = 0,
 212        },
 213        [sdma_state_s82_freeze_sw_clean] = {
 214                .op_enable = 0,
 215                .op_intenable = 0,
 216                .op_halt = 0,
 217                .op_cleanup = 0,
 218        },
 219        [sdma_state_s99_running] = {
 220                .op_enable = 1,
 221                .op_intenable = 1,
 222                .op_halt = 0,
 223                .op_cleanup = 0,
 224                .go_s99_running_totrue = 1,
 225        },
 226};
 227
 228#define SDMA_TAIL_UPDATE_THRESH 0x1F
 229
 230/* declare all statics here rather than keep sorting */
 231static void sdma_complete(struct kref *);
 232static void sdma_finalput(struct sdma_state *);
 233static void sdma_get(struct sdma_state *);
 234static void sdma_hw_clean_up_task(unsigned long);
 235static void sdma_put(struct sdma_state *);
 236static void sdma_set_state(struct sdma_engine *, enum sdma_states);
 237static void sdma_start_hw_clean_up(struct sdma_engine *);
 238static void sdma_sw_clean_up_task(unsigned long);
 239static void sdma_sendctrl(struct sdma_engine *, unsigned);
 240static void init_sdma_regs(struct sdma_engine *, u32, uint);
 241static void sdma_process_event(
 242        struct sdma_engine *sde,
 243        enum sdma_events event);
 244static void __sdma_process_event(
 245        struct sdma_engine *sde,
 246        enum sdma_events event);
 247static void dump_sdma_state(struct sdma_engine *sde);
 248static void sdma_make_progress(struct sdma_engine *sde, u64 status);
 249static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
 250static void sdma_flush_descq(struct sdma_engine *sde);
 251
 252/**
 253 * sdma_state_name() - return state string from enum
 254 * @state: state
 255 */
 256static const char *sdma_state_name(enum sdma_states state)
 257{
 258        return sdma_state_names[state];
 259}
 260
 261static void sdma_get(struct sdma_state *ss)
 262{
 263        kref_get(&ss->kref);
 264}
 265
 266static void sdma_complete(struct kref *kref)
 267{
 268        struct sdma_state *ss =
 269                container_of(kref, struct sdma_state, kref);
 270
 271        complete(&ss->comp);
 272}
 273
 274static void sdma_put(struct sdma_state *ss)
 275{
 276        kref_put(&ss->kref, sdma_complete);
 277}
 278
 279static void sdma_finalput(struct sdma_state *ss)
 280{
 281        sdma_put(ss);
 282        wait_for_completion(&ss->comp);
 283}
 284
 285static inline void write_sde_csr(
 286        struct sdma_engine *sde,
 287        u32 offset0,
 288        u64 value)
 289{
 290        write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
 291}
 292
 293static inline u64 read_sde_csr(
 294        struct sdma_engine *sde,
 295        u32 offset0)
 296{
 297        return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
 298}
 299
 300/*
 301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
 302 * sdma engine 'sde' to drop to 0.
 303 */
 304static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
 305                                        int pause)
 306{
 307        u64 off = 8 * sde->this_idx;
 308        struct hfi1_devdata *dd = sde->dd;
 309        int lcnt = 0;
 310        u64 reg_prev;
 311        u64 reg = 0;
 312
 313        while (1) {
 314                reg_prev = reg;
 315                reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
 316
 317                reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
 318                reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
 319                if (reg == 0)
 320                        break;
 321                /* counter is reest if accupancy count changes */
 322                if (reg != reg_prev)
 323                        lcnt = 0;
 324                if (lcnt++ > 500) {
 325                        /* timed out - bounce the link */
 326                        dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
 327                                   __func__, sde->this_idx, (u32)reg);
 328                        queue_work(dd->pport->link_wq,
 329                                   &dd->pport->link_bounce_work);
 330                        break;
 331                }
 332                udelay(1);
 333        }
 334}
 335
 336/*
 337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
 338 * and pause for credit return.
 339 */
 340void sdma_wait(struct hfi1_devdata *dd)
 341{
 342        int i;
 343
 344        for (i = 0; i < dd->num_sdma; i++) {
 345                struct sdma_engine *sde = &dd->per_sdma[i];
 346
 347                sdma_wait_for_packet_egress(sde, 0);
 348        }
 349}
 350
 351static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
 352{
 353        u64 reg;
 354
 355        if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
 356                return;
 357        reg = cnt;
 358        reg &= SD(DESC_CNT_CNT_MASK);
 359        reg <<= SD(DESC_CNT_CNT_SHIFT);
 360        write_sde_csr(sde, SD(DESC_CNT), reg);
 361}
 362
 363static inline void complete_tx(struct sdma_engine *sde,
 364                               struct sdma_txreq *tx,
 365                               int res)
 366{
 367        /* protect against complete modifying */
 368        struct iowait *wait = tx->wait;
 369        callback_t complete = tx->complete;
 370
 371#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 372        trace_hfi1_sdma_out_sn(sde, tx->sn);
 373        if (WARN_ON_ONCE(sde->head_sn != tx->sn))
 374                dd_dev_err(sde->dd, "expected %llu got %llu\n",
 375                           sde->head_sn, tx->sn);
 376        sde->head_sn++;
 377#endif
 378        __sdma_txclean(sde->dd, tx);
 379        if (complete)
 380                (*complete)(tx, res);
 381        if (wait && iowait_sdma_dec(wait))
 382                iowait_drain_wakeup(wait);
 383}
 384
 385/*
 386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
 387 *
 388 * Depending on timing there can be txreqs in two places:
 389 * - in the descq ring
 390 * - in the flush list
 391 *
 392 * To avoid ordering issues the descq ring needs to be flushed
 393 * first followed by the flush list.
 394 *
 395 * This routine is called from two places
 396 * - From a work queue item
 397 * - Directly from the state machine just before setting the
 398 *   state to running
 399 *
 400 * Must be called with head_lock held
 401 *
 402 */
 403static void sdma_flush(struct sdma_engine *sde)
 404{
 405        struct sdma_txreq *txp, *txp_next;
 406        LIST_HEAD(flushlist);
 407        unsigned long flags;
 408
 409        /* flush from head to tail */
 410        sdma_flush_descq(sde);
 411        spin_lock_irqsave(&sde->flushlist_lock, flags);
 412        /* copy flush list */
 413        list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
 414                list_del_init(&txp->list);
 415                list_add_tail(&txp->list, &flushlist);
 416        }
 417        spin_unlock_irqrestore(&sde->flushlist_lock, flags);
 418        /* flush from flush list */
 419        list_for_each_entry_safe(txp, txp_next, &flushlist, list)
 420                complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 421}
 422
 423/*
 424 * Fields a work request for flushing the descq ring
 425 * and the flush list
 426 *
 427 * If the engine has been brought to running during
 428 * the scheduling delay, the flush is ignored, assuming
 429 * that the process of bringing the engine to running
 430 * would have done this flush prior to going to running.
 431 *
 432 */
 433static void sdma_field_flush(struct work_struct *work)
 434{
 435        unsigned long flags;
 436        struct sdma_engine *sde =
 437                container_of(work, struct sdma_engine, flush_worker);
 438
 439        write_seqlock_irqsave(&sde->head_lock, flags);
 440        if (!__sdma_running(sde))
 441                sdma_flush(sde);
 442        write_sequnlock_irqrestore(&sde->head_lock, flags);
 443}
 444
 445static void sdma_err_halt_wait(struct work_struct *work)
 446{
 447        struct sdma_engine *sde = container_of(work, struct sdma_engine,
 448                                                err_halt_worker);
 449        u64 statuscsr;
 450        unsigned long timeout;
 451
 452        timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
 453        while (1) {
 454                statuscsr = read_sde_csr(sde, SD(STATUS));
 455                statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
 456                if (statuscsr)
 457                        break;
 458                if (time_after(jiffies, timeout)) {
 459                        dd_dev_err(sde->dd,
 460                                   "SDMA engine %d - timeout waiting for engine to halt\n",
 461                                   sde->this_idx);
 462                        /*
 463                         * Continue anyway.  This could happen if there was
 464                         * an uncorrectable error in the wrong spot.
 465                         */
 466                        break;
 467                }
 468                usleep_range(80, 120);
 469        }
 470
 471        sdma_process_event(sde, sdma_event_e15_hw_halt_done);
 472}
 473
 474static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
 475{
 476        if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
 477                unsigned index;
 478                struct hfi1_devdata *dd = sde->dd;
 479
 480                for (index = 0; index < dd->num_sdma; index++) {
 481                        struct sdma_engine *curr_sdma = &dd->per_sdma[index];
 482
 483                        if (curr_sdma != sde)
 484                                curr_sdma->progress_check_head =
 485                                                        curr_sdma->descq_head;
 486                }
 487                dd_dev_err(sde->dd,
 488                           "SDMA engine %d - check scheduled\n",
 489                                sde->this_idx);
 490                mod_timer(&sde->err_progress_check_timer, jiffies + 10);
 491        }
 492}
 493
 494static void sdma_err_progress_check(struct timer_list *t)
 495{
 496        unsigned index;
 497        struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
 498
 499        dd_dev_err(sde->dd, "SDE progress check event\n");
 500        for (index = 0; index < sde->dd->num_sdma; index++) {
 501                struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
 502                unsigned long flags;
 503
 504                /* check progress on each engine except the current one */
 505                if (curr_sde == sde)
 506                        continue;
 507                /*
 508                 * We must lock interrupts when acquiring sde->lock,
 509                 * to avoid a deadlock if interrupt triggers and spins on
 510                 * the same lock on same CPU
 511                 */
 512                spin_lock_irqsave(&curr_sde->tail_lock, flags);
 513                write_seqlock(&curr_sde->head_lock);
 514
 515                /* skip non-running queues */
 516                if (curr_sde->state.current_state != sdma_state_s99_running) {
 517                        write_sequnlock(&curr_sde->head_lock);
 518                        spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 519                        continue;
 520                }
 521
 522                if ((curr_sde->descq_head != curr_sde->descq_tail) &&
 523                    (curr_sde->descq_head ==
 524                                curr_sde->progress_check_head))
 525                        __sdma_process_event(curr_sde,
 526                                             sdma_event_e90_sw_halted);
 527                write_sequnlock(&curr_sde->head_lock);
 528                spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 529        }
 530        schedule_work(&sde->err_halt_worker);
 531}
 532
 533static void sdma_hw_clean_up_task(unsigned long opaque)
 534{
 535        struct sdma_engine *sde = (struct sdma_engine *)opaque;
 536        u64 statuscsr;
 537
 538        while (1) {
 539#ifdef CONFIG_SDMA_VERBOSITY
 540                dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 541                           sde->this_idx, slashstrip(__FILE__), __LINE__,
 542                        __func__);
 543#endif
 544                statuscsr = read_sde_csr(sde, SD(STATUS));
 545                statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
 546                if (statuscsr)
 547                        break;
 548                udelay(10);
 549        }
 550
 551        sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
 552}
 553
 554static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
 555{
 556        return sde->tx_ring[sde->tx_head & sde->sdma_mask];
 557}
 558
 559/*
 560 * flush ring for recovery
 561 */
 562static void sdma_flush_descq(struct sdma_engine *sde)
 563{
 564        u16 head, tail;
 565        int progress = 0;
 566        struct sdma_txreq *txp = get_txhead(sde);
 567
 568        /* The reason for some of the complexity of this code is that
 569         * not all descriptors have corresponding txps.  So, we have to
 570         * be able to skip over descs until we wander into the range of
 571         * the next txp on the list.
 572         */
 573        head = sde->descq_head & sde->sdma_mask;
 574        tail = sde->descq_tail & sde->sdma_mask;
 575        while (head != tail) {
 576                /* advance head, wrap if needed */
 577                head = ++sde->descq_head & sde->sdma_mask;
 578                /* if now past this txp's descs, do the callback */
 579                if (txp && txp->next_descq_idx == head) {
 580                        /* remove from list */
 581                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
 582                        complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 583                        trace_hfi1_sdma_progress(sde, head, tail, txp);
 584                        txp = get_txhead(sde);
 585                }
 586                progress++;
 587        }
 588        if (progress)
 589                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
 590}
 591
 592static void sdma_sw_clean_up_task(unsigned long opaque)
 593{
 594        struct sdma_engine *sde = (struct sdma_engine *)opaque;
 595        unsigned long flags;
 596
 597        spin_lock_irqsave(&sde->tail_lock, flags);
 598        write_seqlock(&sde->head_lock);
 599
 600        /*
 601         * At this point, the following should always be true:
 602         * - We are halted, so no more descriptors are getting retired.
 603         * - We are not running, so no one is submitting new work.
 604         * - Only we can send the e40_sw_cleaned, so we can't start
 605         *   running again until we say so.  So, the active list and
 606         *   descq are ours to play with.
 607         */
 608
 609        /*
 610         * In the error clean up sequence, software clean must be called
 611         * before the hardware clean so we can use the hardware head in
 612         * the progress routine.  A hardware clean or SPC unfreeze will
 613         * reset the hardware head.
 614         *
 615         * Process all retired requests. The progress routine will use the
 616         * latest physical hardware head - we are not running so speed does
 617         * not matter.
 618         */
 619        sdma_make_progress(sde, 0);
 620
 621        sdma_flush(sde);
 622
 623        /*
 624         * Reset our notion of head and tail.
 625         * Note that the HW registers have been reset via an earlier
 626         * clean up.
 627         */
 628        sde->descq_tail = 0;
 629        sde->descq_head = 0;
 630        sde->desc_avail = sdma_descq_freecnt(sde);
 631        *sde->head_dma = 0;
 632
 633        __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
 634
 635        write_sequnlock(&sde->head_lock);
 636        spin_unlock_irqrestore(&sde->tail_lock, flags);
 637}
 638
 639static void sdma_sw_tear_down(struct sdma_engine *sde)
 640{
 641        struct sdma_state *ss = &sde->state;
 642
 643        /* Releasing this reference means the state machine has stopped. */
 644        sdma_put(ss);
 645
 646        /* stop waiting for all unfreeze events to complete */
 647        atomic_set(&sde->dd->sdma_unfreeze_count, -1);
 648        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 649}
 650
 651static void sdma_start_hw_clean_up(struct sdma_engine *sde)
 652{
 653        tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
 654}
 655
 656static void sdma_set_state(struct sdma_engine *sde,
 657                           enum sdma_states next_state)
 658{
 659        struct sdma_state *ss = &sde->state;
 660        const struct sdma_set_state_action *action = sdma_action_table;
 661        unsigned op = 0;
 662
 663        trace_hfi1_sdma_state(
 664                sde,
 665                sdma_state_names[ss->current_state],
 666                sdma_state_names[next_state]);
 667
 668        /* debugging bookkeeping */
 669        ss->previous_state = ss->current_state;
 670        ss->previous_op = ss->current_op;
 671        ss->current_state = next_state;
 672
 673        if (ss->previous_state != sdma_state_s99_running &&
 674            next_state == sdma_state_s99_running)
 675                sdma_flush(sde);
 676
 677        if (action[next_state].op_enable)
 678                op |= SDMA_SENDCTRL_OP_ENABLE;
 679
 680        if (action[next_state].op_intenable)
 681                op |= SDMA_SENDCTRL_OP_INTENABLE;
 682
 683        if (action[next_state].op_halt)
 684                op |= SDMA_SENDCTRL_OP_HALT;
 685
 686        if (action[next_state].op_cleanup)
 687                op |= SDMA_SENDCTRL_OP_CLEANUP;
 688
 689        if (action[next_state].go_s99_running_tofalse)
 690                ss->go_s99_running = 0;
 691
 692        if (action[next_state].go_s99_running_totrue)
 693                ss->go_s99_running = 1;
 694
 695        ss->current_op = op;
 696        sdma_sendctrl(sde, ss->current_op);
 697}
 698
 699/**
 700 * sdma_get_descq_cnt() - called when device probed
 701 *
 702 * Return a validated descq count.
 703 *
 704 * This is currently only used in the verbs initialization to build the tx
 705 * list.
 706 *
 707 * This will probably be deleted in favor of a more scalable approach to
 708 * alloc tx's.
 709 *
 710 */
 711u16 sdma_get_descq_cnt(void)
 712{
 713        u16 count = sdma_descq_cnt;
 714
 715        if (!count)
 716                return SDMA_DESCQ_CNT;
 717        /* count must be a power of 2 greater than 64 and less than
 718         * 32768.   Otherwise return default.
 719         */
 720        if (!is_power_of_2(count))
 721                return SDMA_DESCQ_CNT;
 722        if (count < 64 || count > 32768)
 723                return SDMA_DESCQ_CNT;
 724        return count;
 725}
 726
 727/**
 728 * sdma_engine_get_vl() - return vl for a given sdma engine
 729 * @sde: sdma engine
 730 *
 731 * This function returns the vl mapped to a given engine, or an error if
 732 * the mapping can't be found. The mapping fields are protected by RCU.
 733 */
 734int sdma_engine_get_vl(struct sdma_engine *sde)
 735{
 736        struct hfi1_devdata *dd = sde->dd;
 737        struct sdma_vl_map *m;
 738        u8 vl;
 739
 740        if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
 741                return -EINVAL;
 742
 743        rcu_read_lock();
 744        m = rcu_dereference(dd->sdma_map);
 745        if (unlikely(!m)) {
 746                rcu_read_unlock();
 747                return -EINVAL;
 748        }
 749        vl = m->engine_to_vl[sde->this_idx];
 750        rcu_read_unlock();
 751
 752        return vl;
 753}
 754
 755/**
 756 * sdma_select_engine_vl() - select sdma engine
 757 * @dd: devdata
 758 * @selector: a spreading factor
 759 * @vl: this vl
 760 *
 761 *
 762 * This function returns an engine based on the selector and a vl.  The
 763 * mapping fields are protected by RCU.
 764 */
 765struct sdma_engine *sdma_select_engine_vl(
 766        struct hfi1_devdata *dd,
 767        u32 selector,
 768        u8 vl)
 769{
 770        struct sdma_vl_map *m;
 771        struct sdma_map_elem *e;
 772        struct sdma_engine *rval;
 773
 774        /* NOTE This should only happen if SC->VL changed after the initial
 775         *      checks on the QP/AH
 776         *      Default will return engine 0 below
 777         */
 778        if (vl >= num_vls) {
 779                rval = NULL;
 780                goto done;
 781        }
 782
 783        rcu_read_lock();
 784        m = rcu_dereference(dd->sdma_map);
 785        if (unlikely(!m)) {
 786                rcu_read_unlock();
 787                return &dd->per_sdma[0];
 788        }
 789        e = m->map[vl & m->mask];
 790        rval = e->sde[selector & e->mask];
 791        rcu_read_unlock();
 792
 793done:
 794        rval =  !rval ? &dd->per_sdma[0] : rval;
 795        trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
 796        return rval;
 797}
 798
 799/**
 800 * sdma_select_engine_sc() - select sdma engine
 801 * @dd: devdata
 802 * @selector: a spreading factor
 803 * @sc5: the 5 bit sc
 804 *
 805 *
 806 * This function returns an engine based on the selector and an sc.
 807 */
 808struct sdma_engine *sdma_select_engine_sc(
 809        struct hfi1_devdata *dd,
 810        u32 selector,
 811        u8 sc5)
 812{
 813        u8 vl = sc_to_vlt(dd, sc5);
 814
 815        return sdma_select_engine_vl(dd, selector, vl);
 816}
 817
 818struct sdma_rht_map_elem {
 819        u32 mask;
 820        u8 ctr;
 821        struct sdma_engine *sde[0];
 822};
 823
 824struct sdma_rht_node {
 825        unsigned long cpu_id;
 826        struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
 827        struct rhash_head node;
 828};
 829
 830#define NR_CPUS_HINT 192
 831
 832static const struct rhashtable_params sdma_rht_params = {
 833        .nelem_hint = NR_CPUS_HINT,
 834        .head_offset = offsetof(struct sdma_rht_node, node),
 835        .key_offset = offsetof(struct sdma_rht_node, cpu_id),
 836        .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
 837        .max_size = NR_CPUS,
 838        .min_size = 8,
 839        .automatic_shrinking = true,
 840};
 841
 842/*
 843 * sdma_select_user_engine() - select sdma engine based on user setup
 844 * @dd: devdata
 845 * @selector: a spreading factor
 846 * @vl: this vl
 847 *
 848 * This function returns an sdma engine for a user sdma request.
 849 * User defined sdma engine affinity setting is honored when applicable,
 850 * otherwise system default sdma engine mapping is used. To ensure correct
 851 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
 852 */
 853struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
 854                                            u32 selector, u8 vl)
 855{
 856        struct sdma_rht_node *rht_node;
 857        struct sdma_engine *sde = NULL;
 858        const struct cpumask *current_mask = &current->cpus_allowed;
 859        unsigned long cpu_id;
 860
 861        /*
 862         * To ensure that always the same sdma engine(s) will be
 863         * selected make sure the process is pinned to this CPU only.
 864         */
 865        if (cpumask_weight(current_mask) != 1)
 866                goto out;
 867
 868        cpu_id = smp_processor_id();
 869        rcu_read_lock();
 870        rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
 871                                          sdma_rht_params);
 872
 873        if (rht_node && rht_node->map[vl]) {
 874                struct sdma_rht_map_elem *map = rht_node->map[vl];
 875
 876                sde = map->sde[selector & map->mask];
 877        }
 878        rcu_read_unlock();
 879
 880        if (sde)
 881                return sde;
 882
 883out:
 884        return sdma_select_engine_vl(dd, selector, vl);
 885}
 886
 887static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
 888{
 889        int i;
 890
 891        for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
 892                map->sde[map->ctr + i] = map->sde[i];
 893}
 894
 895static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
 896                                 struct sdma_engine *sde)
 897{
 898        unsigned int i, pow;
 899
 900        /* only need to check the first ctr entries for a match */
 901        for (i = 0; i < map->ctr; i++) {
 902                if (map->sde[i] == sde) {
 903                        memmove(&map->sde[i], &map->sde[i + 1],
 904                                (map->ctr - i - 1) * sizeof(map->sde[0]));
 905                        map->ctr--;
 906                        pow = roundup_pow_of_two(map->ctr ? : 1);
 907                        map->mask = pow - 1;
 908                        sdma_populate_sde_map(map);
 909                        break;
 910                }
 911        }
 912}
 913
 914/*
 915 * Prevents concurrent reads and writes of the sdma engine cpu_mask
 916 */
 917static DEFINE_MUTEX(process_to_sde_mutex);
 918
 919ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
 920                                size_t count)
 921{
 922        struct hfi1_devdata *dd = sde->dd;
 923        cpumask_var_t mask, new_mask;
 924        unsigned long cpu;
 925        int ret, vl, sz;
 926
 927        vl = sdma_engine_get_vl(sde);
 928        if (unlikely(vl < 0))
 929                return -EINVAL;
 930
 931        ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
 932        if (!ret)
 933                return -ENOMEM;
 934
 935        ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
 936        if (!ret) {
 937                free_cpumask_var(mask);
 938                return -ENOMEM;
 939        }
 940        ret = cpulist_parse(buf, mask);
 941        if (ret)
 942                goto out_free;
 943
 944        if (!cpumask_subset(mask, cpu_online_mask)) {
 945                dd_dev_warn(sde->dd, "Invalid CPU mask\n");
 946                ret = -EINVAL;
 947                goto out_free;
 948        }
 949
 950        sz = sizeof(struct sdma_rht_map_elem) +
 951                        (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
 952
 953        mutex_lock(&process_to_sde_mutex);
 954
 955        for_each_cpu(cpu, mask) {
 956                struct sdma_rht_node *rht_node;
 957
 958                /* Check if we have this already mapped */
 959                if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
 960                        cpumask_set_cpu(cpu, new_mask);
 961                        continue;
 962                }
 963
 964                if (vl >= ARRAY_SIZE(rht_node->map)) {
 965                        ret = -EINVAL;
 966                        goto out;
 967                }
 968
 969                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
 970                                                  sdma_rht_params);
 971                if (!rht_node) {
 972                        rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
 973                        if (!rht_node) {
 974                                ret = -ENOMEM;
 975                                goto out;
 976                        }
 977
 978                        rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
 979                        if (!rht_node->map[vl]) {
 980                                kfree(rht_node);
 981                                ret = -ENOMEM;
 982                                goto out;
 983                        }
 984                        rht_node->cpu_id = cpu;
 985                        rht_node->map[vl]->mask = 0;
 986                        rht_node->map[vl]->ctr = 1;
 987                        rht_node->map[vl]->sde[0] = sde;
 988
 989                        ret = rhashtable_insert_fast(dd->sdma_rht,
 990                                                     &rht_node->node,
 991                                                     sdma_rht_params);
 992                        if (ret) {
 993                                kfree(rht_node->map[vl]);
 994                                kfree(rht_node);
 995                                dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
 996                                           cpu);
 997                                goto out;
 998                        }
 999
1000                } else {
1001                        int ctr, pow;
1002
1003                        /* Add new user mappings */
1004                        if (!rht_node->map[vl])
1005                                rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1006
1007                        if (!rht_node->map[vl]) {
1008                                ret = -ENOMEM;
1009                                goto out;
1010                        }
1011
1012                        rht_node->map[vl]->ctr++;
1013                        ctr = rht_node->map[vl]->ctr;
1014                        rht_node->map[vl]->sde[ctr - 1] = sde;
1015                        pow = roundup_pow_of_two(ctr);
1016                        rht_node->map[vl]->mask = pow - 1;
1017
1018                        /* Populate the sde map table */
1019                        sdma_populate_sde_map(rht_node->map[vl]);
1020                }
1021                cpumask_set_cpu(cpu, new_mask);
1022        }
1023
1024        /* Clean up old mappings */
1025        for_each_cpu(cpu, cpu_online_mask) {
1026                struct sdma_rht_node *rht_node;
1027
1028                /* Don't cleanup sdes that are set in the new mask */
1029                if (cpumask_test_cpu(cpu, mask))
1030                        continue;
1031
1032                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1033                                                  sdma_rht_params);
1034                if (rht_node) {
1035                        bool empty = true;
1036                        int i;
1037
1038                        /* Remove mappings for old sde */
1039                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1040                                if (rht_node->map[i])
1041                                        sdma_cleanup_sde_map(rht_node->map[i],
1042                                                             sde);
1043
1044                        /* Free empty hash table entries */
1045                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1046                                if (!rht_node->map[i])
1047                                        continue;
1048
1049                                if (rht_node->map[i]->ctr) {
1050                                        empty = false;
1051                                        break;
1052                                }
1053                        }
1054
1055                        if (empty) {
1056                                ret = rhashtable_remove_fast(dd->sdma_rht,
1057                                                             &rht_node->node,
1058                                                             sdma_rht_params);
1059                                WARN_ON(ret);
1060
1061                                for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1062                                        kfree(rht_node->map[i]);
1063
1064                                kfree(rht_node);
1065                        }
1066                }
1067        }
1068
1069        cpumask_copy(&sde->cpu_mask, new_mask);
1070out:
1071        mutex_unlock(&process_to_sde_mutex);
1072out_free:
1073        free_cpumask_var(mask);
1074        free_cpumask_var(new_mask);
1075        return ret ? : strnlen(buf, PAGE_SIZE);
1076}
1077
1078ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1079{
1080        mutex_lock(&process_to_sde_mutex);
1081        if (cpumask_empty(&sde->cpu_mask))
1082                snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1083        else
1084                cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1085        mutex_unlock(&process_to_sde_mutex);
1086        return strnlen(buf, PAGE_SIZE);
1087}
1088
1089static void sdma_rht_free(void *ptr, void *arg)
1090{
1091        struct sdma_rht_node *rht_node = ptr;
1092        int i;
1093
1094        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1095                kfree(rht_node->map[i]);
1096
1097        kfree(rht_node);
1098}
1099
1100/**
1101 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1102 * @s: seq file
1103 * @dd: hfi1_devdata
1104 * @cpuid: cpu id
1105 *
1106 * This routine dumps the process to sde mappings per cpu
1107 */
1108void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1109                                struct hfi1_devdata *dd,
1110                                unsigned long cpuid)
1111{
1112        struct sdma_rht_node *rht_node;
1113        int i, j;
1114
1115        rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1116                                          sdma_rht_params);
1117        if (!rht_node)
1118                return;
1119
1120        seq_printf(s, "cpu%3lu: ", cpuid);
1121        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1122                if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1123                        continue;
1124
1125                seq_printf(s, " vl%d: [", i);
1126
1127                for (j = 0; j < rht_node->map[i]->ctr; j++) {
1128                        if (!rht_node->map[i]->sde[j])
1129                                continue;
1130
1131                        if (j > 0)
1132                                seq_puts(s, ",");
1133
1134                        seq_printf(s, " sdma%2d",
1135                                   rht_node->map[i]->sde[j]->this_idx);
1136                }
1137                seq_puts(s, " ]");
1138        }
1139
1140        seq_puts(s, "\n");
1141}
1142
1143/*
1144 * Free the indicated map struct
1145 */
1146static void sdma_map_free(struct sdma_vl_map *m)
1147{
1148        int i;
1149
1150        for (i = 0; m && i < m->actual_vls; i++)
1151                kfree(m->map[i]);
1152        kfree(m);
1153}
1154
1155/*
1156 * Handle RCU callback
1157 */
1158static void sdma_map_rcu_callback(struct rcu_head *list)
1159{
1160        struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1161
1162        sdma_map_free(m);
1163}
1164
1165/**
1166 * sdma_map_init - called when # vls change
1167 * @dd: hfi1_devdata
1168 * @port: port number
1169 * @num_vls: number of vls
1170 * @vl_engines: per vl engine mapping (optional)
1171 *
1172 * This routine changes the mapping based on the number of vls.
1173 *
1174 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1175 * implies auto computing the loading and giving each VLs a uniform
1176 * distribution of engines per VL.
1177 *
1178 * The auto algorithm computes the sde_per_vl and the number of extra
1179 * engines.  Any extra engines are added from the last VL on down.
1180 *
1181 * rcu locking is used here to control access to the mapping fields.
1182 *
1183 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1184 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1185 * up to the next highest power of 2 and the first entry is reused
1186 * in a round robin fashion.
1187 *
1188 * If an error occurs the map change is not done and the mapping is
1189 * not changed.
1190 *
1191 */
1192int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1193{
1194        int i, j;
1195        int extra, sde_per_vl;
1196        int engine = 0;
1197        u8 lvl_engines[OPA_MAX_VLS];
1198        struct sdma_vl_map *oldmap, *newmap;
1199
1200        if (!(dd->flags & HFI1_HAS_SEND_DMA))
1201                return 0;
1202
1203        if (!vl_engines) {
1204                /* truncate divide */
1205                sde_per_vl = dd->num_sdma / num_vls;
1206                /* extras */
1207                extra = dd->num_sdma % num_vls;
1208                vl_engines = lvl_engines;
1209                /* add extras from last vl down */
1210                for (i = num_vls - 1; i >= 0; i--, extra--)
1211                        vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1212        }
1213        /* build new map */
1214        newmap = kzalloc(
1215                sizeof(struct sdma_vl_map) +
1216                        roundup_pow_of_two(num_vls) *
1217                        sizeof(struct sdma_map_elem *),
1218                GFP_KERNEL);
1219        if (!newmap)
1220                goto bail;
1221        newmap->actual_vls = num_vls;
1222        newmap->vls = roundup_pow_of_two(num_vls);
1223        newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1224        /* initialize back-map */
1225        for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1226                newmap->engine_to_vl[i] = -1;
1227        for (i = 0; i < newmap->vls; i++) {
1228                /* save for wrap around */
1229                int first_engine = engine;
1230
1231                if (i < newmap->actual_vls) {
1232                        int sz = roundup_pow_of_two(vl_engines[i]);
1233
1234                        /* only allocate once */
1235                        newmap->map[i] = kzalloc(
1236                                sizeof(struct sdma_map_elem) +
1237                                        sz * sizeof(struct sdma_engine *),
1238                                GFP_KERNEL);
1239                        if (!newmap->map[i])
1240                                goto bail;
1241                        newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1242                        /* assign engines */
1243                        for (j = 0; j < sz; j++) {
1244                                newmap->map[i]->sde[j] =
1245                                        &dd->per_sdma[engine];
1246                                if (++engine >= first_engine + vl_engines[i])
1247                                        /* wrap back to first engine */
1248                                        engine = first_engine;
1249                        }
1250                        /* assign back-map */
1251                        for (j = 0; j < vl_engines[i]; j++)
1252                                newmap->engine_to_vl[first_engine + j] = i;
1253                } else {
1254                        /* just re-use entry without allocating */
1255                        newmap->map[i] = newmap->map[i % num_vls];
1256                }
1257                engine = first_engine + vl_engines[i];
1258        }
1259        /* newmap in hand, save old map */
1260        spin_lock_irq(&dd->sde_map_lock);
1261        oldmap = rcu_dereference_protected(dd->sdma_map,
1262                                           lockdep_is_held(&dd->sde_map_lock));
1263
1264        /* publish newmap */
1265        rcu_assign_pointer(dd->sdma_map, newmap);
1266
1267        spin_unlock_irq(&dd->sde_map_lock);
1268        /* success, free any old map after grace period */
1269        if (oldmap)
1270                call_rcu(&oldmap->list, sdma_map_rcu_callback);
1271        return 0;
1272bail:
1273        /* free any partial allocation */
1274        sdma_map_free(newmap);
1275        return -ENOMEM;
1276}
1277
1278/**
1279 * sdma_clean()  Clean up allocated memory
1280 * @dd:          struct hfi1_devdata
1281 * @num_engines: num sdma engines
1282 *
1283 * This routine can be called regardless of the success of
1284 * sdma_init()
1285 */
1286void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1287{
1288        size_t i;
1289        struct sdma_engine *sde;
1290
1291        if (dd->sdma_pad_dma) {
1292                dma_free_coherent(&dd->pcidev->dev, 4,
1293                                  (void *)dd->sdma_pad_dma,
1294                                  dd->sdma_pad_phys);
1295                dd->sdma_pad_dma = NULL;
1296                dd->sdma_pad_phys = 0;
1297        }
1298        if (dd->sdma_heads_dma) {
1299                dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1300                                  (void *)dd->sdma_heads_dma,
1301                                  dd->sdma_heads_phys);
1302                dd->sdma_heads_dma = NULL;
1303                dd->sdma_heads_phys = 0;
1304        }
1305        for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1306                sde = &dd->per_sdma[i];
1307
1308                sde->head_dma = NULL;
1309                sde->head_phys = 0;
1310
1311                if (sde->descq) {
1312                        dma_free_coherent(
1313                                &dd->pcidev->dev,
1314                                sde->descq_cnt * sizeof(u64[2]),
1315                                sde->descq,
1316                                sde->descq_phys
1317                        );
1318                        sde->descq = NULL;
1319                        sde->descq_phys = 0;
1320                }
1321                kvfree(sde->tx_ring);
1322                sde->tx_ring = NULL;
1323        }
1324        spin_lock_irq(&dd->sde_map_lock);
1325        sdma_map_free(rcu_access_pointer(dd->sdma_map));
1326        RCU_INIT_POINTER(dd->sdma_map, NULL);
1327        spin_unlock_irq(&dd->sde_map_lock);
1328        synchronize_rcu();
1329        kfree(dd->per_sdma);
1330        dd->per_sdma = NULL;
1331
1332        if (dd->sdma_rht) {
1333                rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1334                kfree(dd->sdma_rht);
1335                dd->sdma_rht = NULL;
1336        }
1337}
1338
1339/**
1340 * sdma_init() - called when device probed
1341 * @dd: hfi1_devdata
1342 * @port: port number (currently only zero)
1343 *
1344 * Initializes each sde and its csrs.
1345 * Interrupts are not required to be enabled.
1346 *
1347 * Returns:
1348 * 0 - success, -errno on failure
1349 */
1350int sdma_init(struct hfi1_devdata *dd, u8 port)
1351{
1352        unsigned this_idx;
1353        struct sdma_engine *sde;
1354        struct rhashtable *tmp_sdma_rht;
1355        u16 descq_cnt;
1356        void *curr_head;
1357        struct hfi1_pportdata *ppd = dd->pport + port;
1358        u32 per_sdma_credits;
1359        uint idle_cnt = sdma_idle_cnt;
1360        size_t num_engines = dd->chip_sdma_engines;
1361        int ret = -ENOMEM;
1362
1363        if (!HFI1_CAP_IS_KSET(SDMA)) {
1364                HFI1_CAP_CLEAR(SDMA_AHG);
1365                return 0;
1366        }
1367        if (mod_num_sdma &&
1368            /* can't exceed chip support */
1369            mod_num_sdma <= dd->chip_sdma_engines &&
1370            /* count must be >= vls */
1371            mod_num_sdma >= num_vls)
1372                num_engines = mod_num_sdma;
1373
1374        dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1375        dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1376        dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1377                    dd->chip_sdma_mem_size);
1378
1379        per_sdma_credits =
1380                dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1381
1382        /* set up freeze waitqueue */
1383        init_waitqueue_head(&dd->sdma_unfreeze_wq);
1384        atomic_set(&dd->sdma_unfreeze_count, 0);
1385
1386        descq_cnt = sdma_get_descq_cnt();
1387        dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1388                    num_engines, descq_cnt);
1389
1390        /* alloc memory for array of send engines */
1391        dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1392                                    GFP_KERNEL, dd->node);
1393        if (!dd->per_sdma)
1394                return ret;
1395
1396        idle_cnt = ns_to_cclock(dd, idle_cnt);
1397        if (idle_cnt)
1398                dd->default_desc1 =
1399                        SDMA_DESC1_HEAD_TO_HOST_FLAG;
1400        else
1401                dd->default_desc1 =
1402                        SDMA_DESC1_INT_REQ_FLAG;
1403
1404        if (!sdma_desct_intr)
1405                sdma_desct_intr = SDMA_DESC_INTR;
1406
1407        /* Allocate memory for SendDMA descriptor FIFOs */
1408        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1409                sde = &dd->per_sdma[this_idx];
1410                sde->dd = dd;
1411                sde->ppd = ppd;
1412                sde->this_idx = this_idx;
1413                sde->descq_cnt = descq_cnt;
1414                sde->desc_avail = sdma_descq_freecnt(sde);
1415                sde->sdma_shift = ilog2(descq_cnt);
1416                sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1417
1418                /* Create a mask specifically for each interrupt source */
1419                sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1420                                           this_idx);
1421                sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1422                                                this_idx);
1423                sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1424                                            this_idx);
1425                /* Create a combined mask to cover all 3 interrupt sources */
1426                sde->imask = sde->int_mask | sde->progress_mask |
1427                             sde->idle_mask;
1428
1429                spin_lock_init(&sde->tail_lock);
1430                seqlock_init(&sde->head_lock);
1431                spin_lock_init(&sde->senddmactrl_lock);
1432                spin_lock_init(&sde->flushlist_lock);
1433                /* insure there is always a zero bit */
1434                sde->ahg_bits = 0xfffffffe00000000ULL;
1435
1436                sdma_set_state(sde, sdma_state_s00_hw_down);
1437
1438                /* set up reference counting */
1439                kref_init(&sde->state.kref);
1440                init_completion(&sde->state.comp);
1441
1442                INIT_LIST_HEAD(&sde->flushlist);
1443                INIT_LIST_HEAD(&sde->dmawait);
1444
1445                sde->tail_csr =
1446                        get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1447
1448                tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1449                             (unsigned long)sde);
1450
1451                tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1452                             (unsigned long)sde);
1453                INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1454                INIT_WORK(&sde->flush_worker, sdma_field_flush);
1455
1456                sde->progress_check_head = 0;
1457
1458                timer_setup(&sde->err_progress_check_timer,
1459                            sdma_err_progress_check, 0);
1460
1461                sde->descq = dma_zalloc_coherent(
1462                        &dd->pcidev->dev,
1463                        descq_cnt * sizeof(u64[2]),
1464                        &sde->descq_phys,
1465                        GFP_KERNEL
1466                );
1467                if (!sde->descq)
1468                        goto bail;
1469                sde->tx_ring =
1470                        kvzalloc_node(sizeof(struct sdma_txreq *) * descq_cnt,
1471                                      GFP_KERNEL, dd->node);
1472                if (!sde->tx_ring)
1473                        goto bail;
1474        }
1475
1476        dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1477        /* Allocate memory for DMA of head registers to memory */
1478        dd->sdma_heads_dma = dma_zalloc_coherent(
1479                &dd->pcidev->dev,
1480                dd->sdma_heads_size,
1481                &dd->sdma_heads_phys,
1482                GFP_KERNEL
1483        );
1484        if (!dd->sdma_heads_dma) {
1485                dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1486                goto bail;
1487        }
1488
1489        /* Allocate memory for pad */
1490        dd->sdma_pad_dma = dma_zalloc_coherent(
1491                &dd->pcidev->dev,
1492                sizeof(u32),
1493                &dd->sdma_pad_phys,
1494                GFP_KERNEL
1495        );
1496        if (!dd->sdma_pad_dma) {
1497                dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1498                goto bail;
1499        }
1500
1501        /* assign each engine to different cacheline and init registers */
1502        curr_head = (void *)dd->sdma_heads_dma;
1503        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1504                unsigned long phys_offset;
1505
1506                sde = &dd->per_sdma[this_idx];
1507
1508                sde->head_dma = curr_head;
1509                curr_head += L1_CACHE_BYTES;
1510                phys_offset = (unsigned long)sde->head_dma -
1511                              (unsigned long)dd->sdma_heads_dma;
1512                sde->head_phys = dd->sdma_heads_phys + phys_offset;
1513                init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1514        }
1515        dd->flags |= HFI1_HAS_SEND_DMA;
1516        dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1517        dd->num_sdma = num_engines;
1518        ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1519        if (ret < 0)
1520                goto bail;
1521
1522        tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1523        if (!tmp_sdma_rht) {
1524                ret = -ENOMEM;
1525                goto bail;
1526        }
1527
1528        ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1529        if (ret < 0)
1530                goto bail;
1531        dd->sdma_rht = tmp_sdma_rht;
1532
1533        dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1534        return 0;
1535
1536bail:
1537        sdma_clean(dd, num_engines);
1538        return ret;
1539}
1540
1541/**
1542 * sdma_all_running() - called when the link goes up
1543 * @dd: hfi1_devdata
1544 *
1545 * This routine moves all engines to the running state.
1546 */
1547void sdma_all_running(struct hfi1_devdata *dd)
1548{
1549        struct sdma_engine *sde;
1550        unsigned int i;
1551
1552        /* move all engines to running */
1553        for (i = 0; i < dd->num_sdma; ++i) {
1554                sde = &dd->per_sdma[i];
1555                sdma_process_event(sde, sdma_event_e30_go_running);
1556        }
1557}
1558
1559/**
1560 * sdma_all_idle() - called when the link goes down
1561 * @dd: hfi1_devdata
1562 *
1563 * This routine moves all engines to the idle state.
1564 */
1565void sdma_all_idle(struct hfi1_devdata *dd)
1566{
1567        struct sdma_engine *sde;
1568        unsigned int i;
1569
1570        /* idle all engines */
1571        for (i = 0; i < dd->num_sdma; ++i) {
1572                sde = &dd->per_sdma[i];
1573                sdma_process_event(sde, sdma_event_e70_go_idle);
1574        }
1575}
1576
1577/**
1578 * sdma_start() - called to kick off state processing for all engines
1579 * @dd: hfi1_devdata
1580 *
1581 * This routine is for kicking off the state processing for all required
1582 * sdma engines.  Interrupts need to be working at this point.
1583 *
1584 */
1585void sdma_start(struct hfi1_devdata *dd)
1586{
1587        unsigned i;
1588        struct sdma_engine *sde;
1589
1590        /* kick off the engines state processing */
1591        for (i = 0; i < dd->num_sdma; ++i) {
1592                sde = &dd->per_sdma[i];
1593                sdma_process_event(sde, sdma_event_e10_go_hw_start);
1594        }
1595}
1596
1597/**
1598 * sdma_exit() - used when module is removed
1599 * @dd: hfi1_devdata
1600 */
1601void sdma_exit(struct hfi1_devdata *dd)
1602{
1603        unsigned this_idx;
1604        struct sdma_engine *sde;
1605
1606        for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1607                        ++this_idx) {
1608                sde = &dd->per_sdma[this_idx];
1609                if (!list_empty(&sde->dmawait))
1610                        dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1611                                   sde->this_idx);
1612                sdma_process_event(sde, sdma_event_e00_go_hw_down);
1613
1614                del_timer_sync(&sde->err_progress_check_timer);
1615
1616                /*
1617                 * This waits for the state machine to exit so it is not
1618                 * necessary to kill the sdma_sw_clean_up_task to make sure
1619                 * it is not running.
1620                 */
1621                sdma_finalput(&sde->state);
1622        }
1623}
1624
1625/*
1626 * unmap the indicated descriptor
1627 */
1628static inline void sdma_unmap_desc(
1629        struct hfi1_devdata *dd,
1630        struct sdma_desc *descp)
1631{
1632        switch (sdma_mapping_type(descp)) {
1633        case SDMA_MAP_SINGLE:
1634                dma_unmap_single(
1635                        &dd->pcidev->dev,
1636                        sdma_mapping_addr(descp),
1637                        sdma_mapping_len(descp),
1638                        DMA_TO_DEVICE);
1639                break;
1640        case SDMA_MAP_PAGE:
1641                dma_unmap_page(
1642                        &dd->pcidev->dev,
1643                        sdma_mapping_addr(descp),
1644                        sdma_mapping_len(descp),
1645                        DMA_TO_DEVICE);
1646                break;
1647        }
1648}
1649
1650/*
1651 * return the mode as indicated by the first
1652 * descriptor in the tx.
1653 */
1654static inline u8 ahg_mode(struct sdma_txreq *tx)
1655{
1656        return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1657                >> SDMA_DESC1_HEADER_MODE_SHIFT;
1658}
1659
1660/**
1661 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1662 * @dd: hfi1_devdata for unmapping
1663 * @tx: tx request to clean
1664 *
1665 * This is used in the progress routine to clean the tx or
1666 * by the ULP to toss an in-process tx build.
1667 *
1668 * The code can be called multiple times without issue.
1669 *
1670 */
1671void __sdma_txclean(
1672        struct hfi1_devdata *dd,
1673        struct sdma_txreq *tx)
1674{
1675        u16 i;
1676
1677        if (tx->num_desc) {
1678                u8 skip = 0, mode = ahg_mode(tx);
1679
1680                /* unmap first */
1681                sdma_unmap_desc(dd, &tx->descp[0]);
1682                /* determine number of AHG descriptors to skip */
1683                if (mode > SDMA_AHG_APPLY_UPDATE1)
1684                        skip = mode >> 1;
1685                for (i = 1 + skip; i < tx->num_desc; i++)
1686                        sdma_unmap_desc(dd, &tx->descp[i]);
1687                tx->num_desc = 0;
1688        }
1689        kfree(tx->coalesce_buf);
1690        tx->coalesce_buf = NULL;
1691        /* kmalloc'ed descp */
1692        if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1693                tx->desc_limit = ARRAY_SIZE(tx->descs);
1694                kfree(tx->descp);
1695        }
1696}
1697
1698static inline u16 sdma_gethead(struct sdma_engine *sde)
1699{
1700        struct hfi1_devdata *dd = sde->dd;
1701        int use_dmahead;
1702        u16 hwhead;
1703
1704#ifdef CONFIG_SDMA_VERBOSITY
1705        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1706                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1707#endif
1708
1709retry:
1710        use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1711                                        (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1712        hwhead = use_dmahead ?
1713                (u16)le64_to_cpu(*sde->head_dma) :
1714                (u16)read_sde_csr(sde, SD(HEAD));
1715
1716        if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1717                u16 cnt;
1718                u16 swtail;
1719                u16 swhead;
1720                int sane;
1721
1722                swhead = sde->descq_head & sde->sdma_mask;
1723                /* this code is really bad for cache line trading */
1724                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1725                cnt = sde->descq_cnt;
1726
1727                if (swhead < swtail)
1728                        /* not wrapped */
1729                        sane = (hwhead >= swhead) & (hwhead <= swtail);
1730                else if (swhead > swtail)
1731                        /* wrapped around */
1732                        sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1733                                (hwhead <= swtail);
1734                else
1735                        /* empty */
1736                        sane = (hwhead == swhead);
1737
1738                if (unlikely(!sane)) {
1739                        dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1740                                   sde->this_idx,
1741                                   use_dmahead ? "dma" : "kreg",
1742                                   hwhead, swhead, swtail, cnt);
1743                        if (use_dmahead) {
1744                                /* try one more time, using csr */
1745                                use_dmahead = 0;
1746                                goto retry;
1747                        }
1748                        /* proceed as if no progress */
1749                        hwhead = swhead;
1750                }
1751        }
1752        return hwhead;
1753}
1754
1755/*
1756 * This is called when there are send DMA descriptors that might be
1757 * available.
1758 *
1759 * This is called with head_lock held.
1760 */
1761static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1762{
1763        struct iowait *wait, *nw;
1764        struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1765        uint i, n = 0, seq, max_idx = 0;
1766        struct sdma_txreq *stx;
1767        struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1768        u8 max_starved_cnt = 0;
1769
1770#ifdef CONFIG_SDMA_VERBOSITY
1771        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1772                   slashstrip(__FILE__), __LINE__, __func__);
1773        dd_dev_err(sde->dd, "avail: %u\n", avail);
1774#endif
1775
1776        do {
1777                seq = read_seqbegin(&dev->iowait_lock);
1778                if (!list_empty(&sde->dmawait)) {
1779                        /* at least one item */
1780                        write_seqlock(&dev->iowait_lock);
1781                        /* Harvest waiters wanting DMA descriptors */
1782                        list_for_each_entry_safe(
1783                                        wait,
1784                                        nw,
1785                                        &sde->dmawait,
1786                                        list) {
1787                                u16 num_desc = 0;
1788
1789                                if (!wait->wakeup)
1790                                        continue;
1791                                if (n == ARRAY_SIZE(waits))
1792                                        break;
1793                                if (!list_empty(&wait->tx_head)) {
1794                                        stx = list_first_entry(
1795                                                &wait->tx_head,
1796                                                struct sdma_txreq,
1797                                                list);
1798                                        num_desc = stx->num_desc;
1799                                }
1800                                if (num_desc > avail)
1801                                        break;
1802                                avail -= num_desc;
1803                                /* Find the most starved wait memeber */
1804                                iowait_starve_find_max(wait, &max_starved_cnt,
1805                                                       n, &max_idx);
1806                                list_del_init(&wait->list);
1807                                waits[n++] = wait;
1808                        }
1809                        write_sequnlock(&dev->iowait_lock);
1810                        break;
1811                }
1812        } while (read_seqretry(&dev->iowait_lock, seq));
1813
1814        /* Schedule the most starved one first */
1815        if (n)
1816                waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1817
1818        for (i = 0; i < n; i++)
1819                if (i != max_idx)
1820                        waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1821}
1822
1823/* head_lock must be held */
1824static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1825{
1826        struct sdma_txreq *txp = NULL;
1827        int progress = 0;
1828        u16 hwhead, swhead;
1829        int idle_check_done = 0;
1830
1831        hwhead = sdma_gethead(sde);
1832
1833        /* The reason for some of the complexity of this code is that
1834         * not all descriptors have corresponding txps.  So, we have to
1835         * be able to skip over descs until we wander into the range of
1836         * the next txp on the list.
1837         */
1838
1839retry:
1840        txp = get_txhead(sde);
1841        swhead = sde->descq_head & sde->sdma_mask;
1842        trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1843        while (swhead != hwhead) {
1844                /* advance head, wrap if needed */
1845                swhead = ++sde->descq_head & sde->sdma_mask;
1846
1847                /* if now past this txp's descs, do the callback */
1848                if (txp && txp->next_descq_idx == swhead) {
1849                        /* remove from list */
1850                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1851                        complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1852                        /* see if there is another txp */
1853                        txp = get_txhead(sde);
1854                }
1855                trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1856                progress++;
1857        }
1858
1859        /*
1860         * The SDMA idle interrupt is not guaranteed to be ordered with respect
1861         * to updates to the the dma_head location in host memory. The head
1862         * value read might not be fully up to date. If there are pending
1863         * descriptors and the SDMA idle interrupt fired then read from the
1864         * CSR SDMA head instead to get the latest value from the hardware.
1865         * The hardware SDMA head should be read at most once in this invocation
1866         * of sdma_make_progress(..) which is ensured by idle_check_done flag
1867         */
1868        if ((status & sde->idle_mask) && !idle_check_done) {
1869                u16 swtail;
1870
1871                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1872                if (swtail != hwhead) {
1873                        hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1874                        idle_check_done = 1;
1875                        goto retry;
1876                }
1877        }
1878
1879        sde->last_status = status;
1880        if (progress)
1881                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1882}
1883
1884/*
1885 * sdma_engine_interrupt() - interrupt handler for engine
1886 * @sde: sdma engine
1887 * @status: sdma interrupt reason
1888 *
1889 * Status is a mask of the 3 possible interrupts for this engine.  It will
1890 * contain bits _only_ for this SDMA engine.  It will contain at least one
1891 * bit, it may contain more.
1892 */
1893void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1894{
1895        trace_hfi1_sdma_engine_interrupt(sde, status);
1896        write_seqlock(&sde->head_lock);
1897        sdma_set_desc_cnt(sde, sdma_desct_intr);
1898        if (status & sde->idle_mask)
1899                sde->idle_int_cnt++;
1900        else if (status & sde->progress_mask)
1901                sde->progress_int_cnt++;
1902        else if (status & sde->int_mask)
1903                sde->sdma_int_cnt++;
1904        sdma_make_progress(sde, status);
1905        write_sequnlock(&sde->head_lock);
1906}
1907
1908/**
1909 * sdma_engine_error() - error handler for engine
1910 * @sde: sdma engine
1911 * @status: sdma interrupt reason
1912 */
1913void sdma_engine_error(struct sdma_engine *sde, u64 status)
1914{
1915        unsigned long flags;
1916
1917#ifdef CONFIG_SDMA_VERBOSITY
1918        dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1919                   sde->this_idx,
1920                   (unsigned long long)status,
1921                   sdma_state_names[sde->state.current_state]);
1922#endif
1923        spin_lock_irqsave(&sde->tail_lock, flags);
1924        write_seqlock(&sde->head_lock);
1925        if (status & ALL_SDMA_ENG_HALT_ERRS)
1926                __sdma_process_event(sde, sdma_event_e60_hw_halted);
1927        if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1928                dd_dev_err(sde->dd,
1929                           "SDMA (%u) engine error: 0x%llx state %s\n",
1930                           sde->this_idx,
1931                           (unsigned long long)status,
1932                           sdma_state_names[sde->state.current_state]);
1933                dump_sdma_state(sde);
1934        }
1935        write_sequnlock(&sde->head_lock);
1936        spin_unlock_irqrestore(&sde->tail_lock, flags);
1937}
1938
1939static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1940{
1941        u64 set_senddmactrl = 0;
1942        u64 clr_senddmactrl = 0;
1943        unsigned long flags;
1944
1945#ifdef CONFIG_SDMA_VERBOSITY
1946        dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1947                   sde->this_idx,
1948                   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1949                   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1950                   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1951                   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1952#endif
1953
1954        if (op & SDMA_SENDCTRL_OP_ENABLE)
1955                set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1956        else
1957                clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1958
1959        if (op & SDMA_SENDCTRL_OP_INTENABLE)
1960                set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1961        else
1962                clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1963
1964        if (op & SDMA_SENDCTRL_OP_HALT)
1965                set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1966        else
1967                clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1968
1969        spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1970
1971        sde->p_senddmactrl |= set_senddmactrl;
1972        sde->p_senddmactrl &= ~clr_senddmactrl;
1973
1974        if (op & SDMA_SENDCTRL_OP_CLEANUP)
1975                write_sde_csr(sde, SD(CTRL),
1976                              sde->p_senddmactrl |
1977                              SD(CTRL_SDMA_CLEANUP_SMASK));
1978        else
1979                write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1980
1981        spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1982
1983#ifdef CONFIG_SDMA_VERBOSITY
1984        sdma_dumpstate(sde);
1985#endif
1986}
1987
1988static void sdma_setlengen(struct sdma_engine *sde)
1989{
1990#ifdef CONFIG_SDMA_VERBOSITY
1991        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1992                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1993#endif
1994
1995        /*
1996         * Set SendDmaLenGen and clear-then-set the MSB of the generation
1997         * count to enable generation checking and load the internal
1998         * generation counter.
1999         */
2000        write_sde_csr(sde, SD(LEN_GEN),
2001                      (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2002        write_sde_csr(sde, SD(LEN_GEN),
2003                      ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2004                      (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2005}
2006
2007static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2008{
2009        /* Commit writes to memory and advance the tail on the chip */
2010        smp_wmb(); /* see get_txhead() */
2011        writeq(tail, sde->tail_csr);
2012}
2013
2014/*
2015 * This is called when changing to state s10_hw_start_up_halt_wait as
2016 * a result of send buffer errors or send DMA descriptor errors.
2017 */
2018static void sdma_hw_start_up(struct sdma_engine *sde)
2019{
2020        u64 reg;
2021
2022#ifdef CONFIG_SDMA_VERBOSITY
2023        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2024                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2025#endif
2026
2027        sdma_setlengen(sde);
2028        sdma_update_tail(sde, 0); /* Set SendDmaTail */
2029        *sde->head_dma = 0;
2030
2031        reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2032              SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2033        write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2034}
2035
2036/*
2037 * set_sdma_integrity
2038 *
2039 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2040 */
2041static void set_sdma_integrity(struct sdma_engine *sde)
2042{
2043        struct hfi1_devdata *dd = sde->dd;
2044
2045        write_sde_csr(sde, SD(CHECK_ENABLE),
2046                      hfi1_pkt_base_sdma_integrity(dd));
2047}
2048
2049static void init_sdma_regs(
2050        struct sdma_engine *sde,
2051        u32 credits,
2052        uint idle_cnt)
2053{
2054        u8 opval, opmask;
2055#ifdef CONFIG_SDMA_VERBOSITY
2056        struct hfi1_devdata *dd = sde->dd;
2057
2058        dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2059                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2060#endif
2061
2062        write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2063        sdma_setlengen(sde);
2064        sdma_update_tail(sde, 0); /* Set SendDmaTail */
2065        write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2066        write_sde_csr(sde, SD(DESC_CNT), 0);
2067        write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2068        write_sde_csr(sde, SD(MEMORY),
2069                      ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2070                      ((u64)(credits * sde->this_idx) <<
2071                       SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2072        write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2073        set_sdma_integrity(sde);
2074        opmask = OPCODE_CHECK_MASK_DISABLED;
2075        opval = OPCODE_CHECK_VAL_DISABLED;
2076        write_sde_csr(sde, SD(CHECK_OPCODE),
2077                      (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2078                      (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2079}
2080
2081#ifdef CONFIG_SDMA_VERBOSITY
2082
2083#define sdma_dumpstate_helper0(reg) do { \
2084                csr = read_csr(sde->dd, reg); \
2085                dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2086        } while (0)
2087
2088#define sdma_dumpstate_helper(reg) do { \
2089                csr = read_sde_csr(sde, reg); \
2090                dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2091                        #reg, sde->this_idx, csr); \
2092        } while (0)
2093
2094#define sdma_dumpstate_helper2(reg) do { \
2095                csr = read_csr(sde->dd, reg + (8 * i)); \
2096                dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2097                                #reg, i, csr); \
2098        } while (0)
2099
2100void sdma_dumpstate(struct sdma_engine *sde)
2101{
2102        u64 csr;
2103        unsigned i;
2104
2105        sdma_dumpstate_helper(SD(CTRL));
2106        sdma_dumpstate_helper(SD(STATUS));
2107        sdma_dumpstate_helper0(SD(ERR_STATUS));
2108        sdma_dumpstate_helper0(SD(ERR_MASK));
2109        sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2110        sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2111
2112        for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2113                sdma_dumpstate_helper2(CCE_INT_STATUS);
2114                sdma_dumpstate_helper2(CCE_INT_MASK);
2115                sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2116        }
2117
2118        sdma_dumpstate_helper(SD(TAIL));
2119        sdma_dumpstate_helper(SD(HEAD));
2120        sdma_dumpstate_helper(SD(PRIORITY_THLD));
2121        sdma_dumpstate_helper(SD(IDLE_CNT));
2122        sdma_dumpstate_helper(SD(RELOAD_CNT));
2123        sdma_dumpstate_helper(SD(DESC_CNT));
2124        sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2125        sdma_dumpstate_helper(SD(MEMORY));
2126        sdma_dumpstate_helper0(SD(ENGINES));
2127        sdma_dumpstate_helper0(SD(MEM_SIZE));
2128        /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2129        sdma_dumpstate_helper(SD(BASE_ADDR));
2130        sdma_dumpstate_helper(SD(LEN_GEN));
2131        sdma_dumpstate_helper(SD(HEAD_ADDR));
2132        sdma_dumpstate_helper(SD(CHECK_ENABLE));
2133        sdma_dumpstate_helper(SD(CHECK_VL));
2134        sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2135        sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2136        sdma_dumpstate_helper(SD(CHECK_SLID));
2137        sdma_dumpstate_helper(SD(CHECK_OPCODE));
2138}
2139#endif
2140
2141static void dump_sdma_state(struct sdma_engine *sde)
2142{
2143        struct hw_sdma_desc *descqp;
2144        u64 desc[2];
2145        u64 addr;
2146        u8 gen;
2147        u16 len;
2148        u16 head, tail, cnt;
2149
2150        head = sde->descq_head & sde->sdma_mask;
2151        tail = sde->descq_tail & sde->sdma_mask;
2152        cnt = sdma_descq_freecnt(sde);
2153
2154        dd_dev_err(sde->dd,
2155                   "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2156                   sde->this_idx, head, tail, cnt,
2157                   !list_empty(&sde->flushlist));
2158
2159        /* print info for each entry in the descriptor queue */
2160        while (head != tail) {
2161                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2162
2163                descqp = &sde->descq[head];
2164                desc[0] = le64_to_cpu(descqp->qw[0]);
2165                desc[1] = le64_to_cpu(descqp->qw[1]);
2166                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2167                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2168                                'H' : '-';
2169                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2170                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2171                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2172                        & SDMA_DESC0_PHY_ADDR_MASK;
2173                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2174                        & SDMA_DESC1_GENERATION_MASK;
2175                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2176                        & SDMA_DESC0_BYTE_COUNT_MASK;
2177                dd_dev_err(sde->dd,
2178                           "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2179                           head, flags, addr, gen, len);
2180                dd_dev_err(sde->dd,
2181                           "\tdesc0:0x%016llx desc1 0x%016llx\n",
2182                           desc[0], desc[1]);
2183                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2184                        dd_dev_err(sde->dd,
2185                                   "\taidx: %u amode: %u alen: %u\n",
2186                                   (u8)((desc[1] &
2187                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2188                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2189                                   (u8)((desc[1] &
2190                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2191                                        SDMA_DESC1_HEADER_MODE_SHIFT),
2192                                   (u8)((desc[1] &
2193                                         SDMA_DESC1_HEADER_DWS_SMASK) >>
2194                                        SDMA_DESC1_HEADER_DWS_SHIFT));
2195                head++;
2196                head &= sde->sdma_mask;
2197        }
2198}
2199
2200#define SDE_FMT \
2201        "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2202/**
2203 * sdma_seqfile_dump_sde() - debugfs dump of sde
2204 * @s: seq file
2205 * @sde: send dma engine to dump
2206 *
2207 * This routine dumps the sde to the indicated seq file.
2208 */
2209void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2210{
2211        u16 head, tail;
2212        struct hw_sdma_desc *descqp;
2213        u64 desc[2];
2214        u64 addr;
2215        u8 gen;
2216        u16 len;
2217
2218        head = sde->descq_head & sde->sdma_mask;
2219        tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2220        seq_printf(s, SDE_FMT, sde->this_idx,
2221                   sde->cpu,
2222                   sdma_state_name(sde->state.current_state),
2223                   (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2224                   (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2225                   (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2226                   (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2227                   (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2228                   (unsigned long long)le64_to_cpu(*sde->head_dma),
2229                   (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2230                   (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2231                   (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2232                   (unsigned long long)sde->last_status,
2233                   (unsigned long long)sde->ahg_bits,
2234                   sde->tx_tail,
2235                   sde->tx_head,
2236                   sde->descq_tail,
2237                   sde->descq_head,
2238                   !list_empty(&sde->flushlist),
2239                   sde->descq_full_count,
2240                   (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2241
2242        /* print info for each entry in the descriptor queue */
2243        while (head != tail) {
2244                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2245
2246                descqp = &sde->descq[head];
2247                desc[0] = le64_to_cpu(descqp->qw[0]);
2248                desc[1] = le64_to_cpu(descqp->qw[1]);
2249                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2250                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2251                                'H' : '-';
2252                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2253                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2254                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2255                        & SDMA_DESC0_PHY_ADDR_MASK;
2256                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2257                        & SDMA_DESC1_GENERATION_MASK;
2258                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2259                        & SDMA_DESC0_BYTE_COUNT_MASK;
2260                seq_printf(s,
2261                           "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2262                           head, flags, addr, gen, len);
2263                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2264                        seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2265                                   (u8)((desc[1] &
2266                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2267                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2268                                   (u8)((desc[1] &
2269                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2270                                        SDMA_DESC1_HEADER_MODE_SHIFT));
2271                head = (head + 1) & sde->sdma_mask;
2272        }
2273}
2274
2275/*
2276 * add the generation number into
2277 * the qw1 and return
2278 */
2279static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2280{
2281        u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2282
2283        qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2284        qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2285                        << SDMA_DESC1_GENERATION_SHIFT;
2286        return qw1;
2287}
2288
2289/*
2290 * This routine submits the indicated tx
2291 *
2292 * Space has already been guaranteed and
2293 * tail side of ring is locked.
2294 *
2295 * The hardware tail update is done
2296 * in the caller and that is facilitated
2297 * by returning the new tail.
2298 *
2299 * There is special case logic for ahg
2300 * to not add the generation number for
2301 * up to 2 descriptors that follow the
2302 * first descriptor.
2303 *
2304 */
2305static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2306{
2307        int i;
2308        u16 tail;
2309        struct sdma_desc *descp = tx->descp;
2310        u8 skip = 0, mode = ahg_mode(tx);
2311
2312        tail = sde->descq_tail & sde->sdma_mask;
2313        sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2314        sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2315        trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2316                                   tail, &sde->descq[tail]);
2317        tail = ++sde->descq_tail & sde->sdma_mask;
2318        descp++;
2319        if (mode > SDMA_AHG_APPLY_UPDATE1)
2320                skip = mode >> 1;
2321        for (i = 1; i < tx->num_desc; i++, descp++) {
2322                u64 qw1;
2323
2324                sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2325                if (skip) {
2326                        /* edits don't have generation */
2327                        qw1 = descp->qw[1];
2328                        skip--;
2329                } else {
2330                        /* replace generation with real one for non-edits */
2331                        qw1 = add_gen(sde, descp->qw[1]);
2332                }
2333                sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2334                trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2335                                           tail, &sde->descq[tail]);
2336                tail = ++sde->descq_tail & sde->sdma_mask;
2337        }
2338        tx->next_descq_idx = tail;
2339#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2340        tx->sn = sde->tail_sn++;
2341        trace_hfi1_sdma_in_sn(sde, tx->sn);
2342        WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2343#endif
2344        sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2345        sde->desc_avail -= tx->num_desc;
2346        return tail;
2347}
2348
2349/*
2350 * Check for progress
2351 */
2352static int sdma_check_progress(
2353        struct sdma_engine *sde,
2354        struct iowait *wait,
2355        struct sdma_txreq *tx,
2356        bool pkts_sent)
2357{
2358        int ret;
2359
2360        sde->desc_avail = sdma_descq_freecnt(sde);
2361        if (tx->num_desc <= sde->desc_avail)
2362                return -EAGAIN;
2363        /* pulse the head_lock */
2364        if (wait && wait->sleep) {
2365                unsigned seq;
2366
2367                seq = raw_seqcount_begin(
2368                        (const seqcount_t *)&sde->head_lock.seqcount);
2369                ret = wait->sleep(sde, wait, tx, seq, pkts_sent);
2370                if (ret == -EAGAIN)
2371                        sde->desc_avail = sdma_descq_freecnt(sde);
2372        } else {
2373                ret = -EBUSY;
2374        }
2375        return ret;
2376}
2377
2378/**
2379 * sdma_send_txreq() - submit a tx req to ring
2380 * @sde: sdma engine to use
2381 * @wait: wait structure to use when full (may be NULL)
2382 * @tx: sdma_txreq to submit
2383 * @pkts_sent: has any packet been sent yet?
2384 *
2385 * The call submits the tx into the ring.  If a iowait structure is non-NULL
2386 * the packet will be queued to the list in wait.
2387 *
2388 * Return:
2389 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2390 * ring (wait == NULL)
2391 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2392 */
2393int sdma_send_txreq(struct sdma_engine *sde,
2394                    struct iowait *wait,
2395                    struct sdma_txreq *tx,
2396                    bool pkts_sent)
2397{
2398        int ret = 0;
2399        u16 tail;
2400        unsigned long flags;
2401
2402        /* user should have supplied entire packet */
2403        if (unlikely(tx->tlen))
2404                return -EINVAL;
2405        tx->wait = wait;
2406        spin_lock_irqsave(&sde->tail_lock, flags);
2407retry:
2408        if (unlikely(!__sdma_running(sde)))
2409                goto unlock_noconn;
2410        if (unlikely(tx->num_desc > sde->desc_avail))
2411                goto nodesc;
2412        tail = submit_tx(sde, tx);
2413        if (wait)
2414                iowait_sdma_inc(wait);
2415        sdma_update_tail(sde, tail);
2416unlock:
2417        spin_unlock_irqrestore(&sde->tail_lock, flags);
2418        return ret;
2419unlock_noconn:
2420        if (wait)
2421                iowait_sdma_inc(wait);
2422        tx->next_descq_idx = 0;
2423#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2424        tx->sn = sde->tail_sn++;
2425        trace_hfi1_sdma_in_sn(sde, tx->sn);
2426#endif
2427        spin_lock(&sde->flushlist_lock);
2428        list_add_tail(&tx->list, &sde->flushlist);
2429        spin_unlock(&sde->flushlist_lock);
2430        if (wait) {
2431                wait->tx_count++;
2432                wait->count += tx->num_desc;
2433        }
2434        schedule_work(&sde->flush_worker);
2435        ret = -ECOMM;
2436        goto unlock;
2437nodesc:
2438        ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2439        if (ret == -EAGAIN) {
2440                ret = 0;
2441                goto retry;
2442        }
2443        sde->descq_full_count++;
2444        goto unlock;
2445}
2446
2447/**
2448 * sdma_send_txlist() - submit a list of tx req to ring
2449 * @sde: sdma engine to use
2450 * @wait: wait structure to use when full (may be NULL)
2451 * @tx_list: list of sdma_txreqs to submit
2452 * @count: pointer to a u32 which, after return will contain the total number of
2453 *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2454 *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2455 *         which are added to SDMA engine flush list if the SDMA engine state is
2456 *         not running.
2457 *
2458 * The call submits the list into the ring.
2459 *
2460 * If the iowait structure is non-NULL and not equal to the iowait list
2461 * the unprocessed part of the list  will be appended to the list in wait.
2462 *
2463 * In all cases, the tx_list will be updated so the head of the tx_list is
2464 * the list of descriptors that have yet to be transmitted.
2465 *
2466 * The intent of this call is to provide a more efficient
2467 * way of submitting multiple packets to SDMA while holding the tail
2468 * side locking.
2469 *
2470 * Return:
2471 * 0 - Success,
2472 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2473 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2474 */
2475int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2476                     struct list_head *tx_list, u32 *count_out)
2477{
2478        struct sdma_txreq *tx, *tx_next;
2479        int ret = 0;
2480        unsigned long flags;
2481        u16 tail = INVALID_TAIL;
2482        u32 submit_count = 0, flush_count = 0, total_count;
2483
2484        spin_lock_irqsave(&sde->tail_lock, flags);
2485retry:
2486        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2487                tx->wait = wait;
2488                if (unlikely(!__sdma_running(sde)))
2489                        goto unlock_noconn;
2490                if (unlikely(tx->num_desc > sde->desc_avail))
2491                        goto nodesc;
2492                if (unlikely(tx->tlen)) {
2493                        ret = -EINVAL;
2494                        goto update_tail;
2495                }
2496                list_del_init(&tx->list);
2497                tail = submit_tx(sde, tx);
2498                submit_count++;
2499                if (tail != INVALID_TAIL &&
2500                    (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2501                        sdma_update_tail(sde, tail);
2502                        tail = INVALID_TAIL;
2503                }
2504        }
2505update_tail:
2506        total_count = submit_count + flush_count;
2507        if (wait) {
2508                iowait_sdma_add(wait, total_count);
2509                iowait_starve_clear(submit_count > 0, wait);
2510        }
2511        if (tail != INVALID_TAIL)
2512                sdma_update_tail(sde, tail);
2513        spin_unlock_irqrestore(&sde->tail_lock, flags);
2514        *count_out = total_count;
2515        return ret;
2516unlock_noconn:
2517        spin_lock(&sde->flushlist_lock);
2518        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2519                tx->wait = wait;
2520                list_del_init(&tx->list);
2521                tx->next_descq_idx = 0;
2522#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2523                tx->sn = sde->tail_sn++;
2524                trace_hfi1_sdma_in_sn(sde, tx->sn);
2525#endif
2526                list_add_tail(&tx->list, &sde->flushlist);
2527                flush_count++;
2528                if (wait) {
2529                        wait->tx_count++;
2530                        wait->count += tx->num_desc;
2531                }
2532        }
2533        spin_unlock(&sde->flushlist_lock);
2534        schedule_work(&sde->flush_worker);
2535        ret = -ECOMM;
2536        goto update_tail;
2537nodesc:
2538        ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2539        if (ret == -EAGAIN) {
2540                ret = 0;
2541                goto retry;
2542        }
2543        sde->descq_full_count++;
2544        goto update_tail;
2545}
2546
2547static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2548{
2549        unsigned long flags;
2550
2551        spin_lock_irqsave(&sde->tail_lock, flags);
2552        write_seqlock(&sde->head_lock);
2553
2554        __sdma_process_event(sde, event);
2555
2556        if (sde->state.current_state == sdma_state_s99_running)
2557                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2558
2559        write_sequnlock(&sde->head_lock);
2560        spin_unlock_irqrestore(&sde->tail_lock, flags);
2561}
2562
2563static void __sdma_process_event(struct sdma_engine *sde,
2564                                 enum sdma_events event)
2565{
2566        struct sdma_state *ss = &sde->state;
2567        int need_progress = 0;
2568
2569        /* CONFIG SDMA temporary */
2570#ifdef CONFIG_SDMA_VERBOSITY
2571        dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2572                   sdma_state_names[ss->current_state],
2573                   sdma_event_names[event]);
2574#endif
2575
2576        switch (ss->current_state) {
2577        case sdma_state_s00_hw_down:
2578                switch (event) {
2579                case sdma_event_e00_go_hw_down:
2580                        break;
2581                case sdma_event_e30_go_running:
2582                        /*
2583                         * If down, but running requested (usually result
2584                         * of link up, then we need to start up.
2585                         * This can happen when hw down is requested while
2586                         * bringing the link up with traffic active on
2587                         * 7220, e.g.
2588                         */
2589                        ss->go_s99_running = 1;
2590                        /* fall through -- and start dma engine */
2591                case sdma_event_e10_go_hw_start:
2592                        /* This reference means the state machine is started */
2593                        sdma_get(&sde->state);
2594                        sdma_set_state(sde,
2595                                       sdma_state_s10_hw_start_up_halt_wait);
2596                        break;
2597                case sdma_event_e15_hw_halt_done:
2598                        break;
2599                case sdma_event_e25_hw_clean_up_done:
2600                        break;
2601                case sdma_event_e40_sw_cleaned:
2602                        sdma_sw_tear_down(sde);
2603                        break;
2604                case sdma_event_e50_hw_cleaned:
2605                        break;
2606                case sdma_event_e60_hw_halted:
2607                        break;
2608                case sdma_event_e70_go_idle:
2609                        break;
2610                case sdma_event_e80_hw_freeze:
2611                        break;
2612                case sdma_event_e81_hw_frozen:
2613                        break;
2614                case sdma_event_e82_hw_unfreeze:
2615                        break;
2616                case sdma_event_e85_link_down:
2617                        break;
2618                case sdma_event_e90_sw_halted:
2619                        break;
2620                }
2621                break;
2622
2623        case sdma_state_s10_hw_start_up_halt_wait:
2624                switch (event) {
2625                case sdma_event_e00_go_hw_down:
2626                        sdma_set_state(sde, sdma_state_s00_hw_down);
2627                        sdma_sw_tear_down(sde);
2628                        break;
2629                case sdma_event_e10_go_hw_start:
2630                        break;
2631                case sdma_event_e15_hw_halt_done:
2632                        sdma_set_state(sde,
2633                                       sdma_state_s15_hw_start_up_clean_wait);
2634                        sdma_start_hw_clean_up(sde);
2635                        break;
2636                case sdma_event_e25_hw_clean_up_done:
2637                        break;
2638                case sdma_event_e30_go_running:
2639                        ss->go_s99_running = 1;
2640                        break;
2641                case sdma_event_e40_sw_cleaned:
2642                        break;
2643                case sdma_event_e50_hw_cleaned:
2644                        break;
2645                case sdma_event_e60_hw_halted:
2646                        schedule_work(&sde->err_halt_worker);
2647                        break;
2648                case sdma_event_e70_go_idle:
2649                        ss->go_s99_running = 0;
2650                        break;
2651                case sdma_event_e80_hw_freeze:
2652                        break;
2653                case sdma_event_e81_hw_frozen:
2654                        break;
2655                case sdma_event_e82_hw_unfreeze:
2656                        break;
2657                case sdma_event_e85_link_down:
2658                        break;
2659                case sdma_event_e90_sw_halted:
2660                        break;
2661                }
2662                break;
2663
2664        case sdma_state_s15_hw_start_up_clean_wait:
2665                switch (event) {
2666                case sdma_event_e00_go_hw_down:
2667                        sdma_set_state(sde, sdma_state_s00_hw_down);
2668                        sdma_sw_tear_down(sde);
2669                        break;
2670                case sdma_event_e10_go_hw_start:
2671                        break;
2672                case sdma_event_e15_hw_halt_done:
2673                        break;
2674                case sdma_event_e25_hw_clean_up_done:
2675                        sdma_hw_start_up(sde);
2676                        sdma_set_state(sde, ss->go_s99_running ?
2677                                       sdma_state_s99_running :
2678                                       sdma_state_s20_idle);
2679                        break;
2680                case sdma_event_e30_go_running:
2681                        ss->go_s99_running = 1;
2682                        break;
2683                case sdma_event_e40_sw_cleaned:
2684                        break;
2685                case sdma_event_e50_hw_cleaned:
2686                        break;
2687                case sdma_event_e60_hw_halted:
2688                        break;
2689                case sdma_event_e70_go_idle:
2690                        ss->go_s99_running = 0;
2691                        break;
2692                case sdma_event_e80_hw_freeze:
2693                        break;
2694                case sdma_event_e81_hw_frozen:
2695                        break;
2696                case sdma_event_e82_hw_unfreeze:
2697                        break;
2698                case sdma_event_e85_link_down:
2699                        break;
2700                case sdma_event_e90_sw_halted:
2701                        break;
2702                }
2703                break;
2704
2705        case sdma_state_s20_idle:
2706                switch (event) {
2707                case sdma_event_e00_go_hw_down:
2708                        sdma_set_state(sde, sdma_state_s00_hw_down);
2709                        sdma_sw_tear_down(sde);
2710                        break;
2711                case sdma_event_e10_go_hw_start:
2712                        break;
2713                case sdma_event_e15_hw_halt_done:
2714                        break;
2715                case sdma_event_e25_hw_clean_up_done:
2716                        break;
2717                case sdma_event_e30_go_running:
2718                        sdma_set_state(sde, sdma_state_s99_running);
2719                        ss->go_s99_running = 1;
2720                        break;
2721                case sdma_event_e40_sw_cleaned:
2722                        break;
2723                case sdma_event_e50_hw_cleaned:
2724                        break;
2725                case sdma_event_e60_hw_halted:
2726                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2727                        schedule_work(&sde->err_halt_worker);
2728                        break;
2729                case sdma_event_e70_go_idle:
2730                        break;
2731                case sdma_event_e85_link_down:
2732                        /* fall through */
2733                case sdma_event_e80_hw_freeze:
2734                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
2735                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2736                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2737                        break;
2738                case sdma_event_e81_hw_frozen:
2739                        break;
2740                case sdma_event_e82_hw_unfreeze:
2741                        break;
2742                case sdma_event_e90_sw_halted:
2743                        break;
2744                }
2745                break;
2746
2747        case sdma_state_s30_sw_clean_up_wait:
2748                switch (event) {
2749                case sdma_event_e00_go_hw_down:
2750                        sdma_set_state(sde, sdma_state_s00_hw_down);
2751                        break;
2752                case sdma_event_e10_go_hw_start:
2753                        break;
2754                case sdma_event_e15_hw_halt_done:
2755                        break;
2756                case sdma_event_e25_hw_clean_up_done:
2757                        break;
2758                case sdma_event_e30_go_running:
2759                        ss->go_s99_running = 1;
2760                        break;
2761                case sdma_event_e40_sw_cleaned:
2762                        sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2763                        sdma_start_hw_clean_up(sde);
2764                        break;
2765                case sdma_event_e50_hw_cleaned:
2766                        break;
2767                case sdma_event_e60_hw_halted:
2768                        break;
2769                case sdma_event_e70_go_idle:
2770                        ss->go_s99_running = 0;
2771                        break;
2772                case sdma_event_e80_hw_freeze:
2773                        break;
2774                case sdma_event_e81_hw_frozen:
2775                        break;
2776                case sdma_event_e82_hw_unfreeze:
2777                        break;
2778                case sdma_event_e85_link_down:
2779                        ss->go_s99_running = 0;
2780                        break;
2781                case sdma_event_e90_sw_halted:
2782                        break;
2783                }
2784                break;
2785
2786        case sdma_state_s40_hw_clean_up_wait:
2787                switch (event) {
2788                case sdma_event_e00_go_hw_down:
2789                        sdma_set_state(sde, sdma_state_s00_hw_down);
2790                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2791                        break;
2792                case sdma_event_e10_go_hw_start:
2793                        break;
2794                case sdma_event_e15_hw_halt_done:
2795                        break;
2796                case sdma_event_e25_hw_clean_up_done:
2797                        sdma_hw_start_up(sde);
2798                        sdma_set_state(sde, ss->go_s99_running ?
2799                                       sdma_state_s99_running :
2800                                       sdma_state_s20_idle);
2801                        break;
2802                case sdma_event_e30_go_running:
2803                        ss->go_s99_running = 1;
2804                        break;
2805                case sdma_event_e40_sw_cleaned:
2806                        break;
2807                case sdma_event_e50_hw_cleaned:
2808                        break;
2809                case sdma_event_e60_hw_halted:
2810                        break;
2811                case sdma_event_e70_go_idle:
2812                        ss->go_s99_running = 0;
2813                        break;
2814                case sdma_event_e80_hw_freeze:
2815                        break;
2816                case sdma_event_e81_hw_frozen:
2817                        break;
2818                case sdma_event_e82_hw_unfreeze:
2819                        break;
2820                case sdma_event_e85_link_down:
2821                        ss->go_s99_running = 0;
2822                        break;
2823                case sdma_event_e90_sw_halted:
2824                        break;
2825                }
2826                break;
2827
2828        case sdma_state_s50_hw_halt_wait:
2829                switch (event) {
2830                case sdma_event_e00_go_hw_down:
2831                        sdma_set_state(sde, sdma_state_s00_hw_down);
2832                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2833                        break;
2834                case sdma_event_e10_go_hw_start:
2835                        break;
2836                case sdma_event_e15_hw_halt_done:
2837                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2838                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2839                        break;
2840                case sdma_event_e25_hw_clean_up_done:
2841                        break;
2842                case sdma_event_e30_go_running:
2843                        ss->go_s99_running = 1;
2844                        break;
2845                case sdma_event_e40_sw_cleaned:
2846                        break;
2847                case sdma_event_e50_hw_cleaned:
2848                        break;
2849                case sdma_event_e60_hw_halted:
2850                        schedule_work(&sde->err_halt_worker);
2851                        break;
2852                case sdma_event_e70_go_idle:
2853                        ss->go_s99_running = 0;
2854                        break;
2855                case sdma_event_e80_hw_freeze:
2856                        break;
2857                case sdma_event_e81_hw_frozen:
2858                        break;
2859                case sdma_event_e82_hw_unfreeze:
2860                        break;
2861                case sdma_event_e85_link_down:
2862                        ss->go_s99_running = 0;
2863                        break;
2864                case sdma_event_e90_sw_halted:
2865                        break;
2866                }
2867                break;
2868
2869        case sdma_state_s60_idle_halt_wait:
2870                switch (event) {
2871                case sdma_event_e00_go_hw_down:
2872                        sdma_set_state(sde, sdma_state_s00_hw_down);
2873                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2874                        break;
2875                case sdma_event_e10_go_hw_start:
2876                        break;
2877                case sdma_event_e15_hw_halt_done:
2878                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2879                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2880                        break;
2881                case sdma_event_e25_hw_clean_up_done:
2882                        break;
2883                case sdma_event_e30_go_running:
2884                        ss->go_s99_running = 1;
2885                        break;
2886                case sdma_event_e40_sw_cleaned:
2887                        break;
2888                case sdma_event_e50_hw_cleaned:
2889                        break;
2890                case sdma_event_e60_hw_halted:
2891                        schedule_work(&sde->err_halt_worker);
2892                        break;
2893                case sdma_event_e70_go_idle:
2894                        ss->go_s99_running = 0;
2895                        break;
2896                case sdma_event_e80_hw_freeze:
2897                        break;
2898                case sdma_event_e81_hw_frozen:
2899                        break;
2900                case sdma_event_e82_hw_unfreeze:
2901                        break;
2902                case sdma_event_e85_link_down:
2903                        break;
2904                case sdma_event_e90_sw_halted:
2905                        break;
2906                }
2907                break;
2908
2909        case sdma_state_s80_hw_freeze:
2910                switch (event) {
2911                case sdma_event_e00_go_hw_down:
2912                        sdma_set_state(sde, sdma_state_s00_hw_down);
2913                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2914                        break;
2915                case sdma_event_e10_go_hw_start:
2916                        break;
2917                case sdma_event_e15_hw_halt_done:
2918                        break;
2919                case sdma_event_e25_hw_clean_up_done:
2920                        break;
2921                case sdma_event_e30_go_running:
2922                        ss->go_s99_running = 1;
2923                        break;
2924                case sdma_event_e40_sw_cleaned:
2925                        break;
2926                case sdma_event_e50_hw_cleaned:
2927                        break;
2928                case sdma_event_e60_hw_halted:
2929                        break;
2930                case sdma_event_e70_go_idle:
2931                        ss->go_s99_running = 0;
2932                        break;
2933                case sdma_event_e80_hw_freeze:
2934                        break;
2935                case sdma_event_e81_hw_frozen:
2936                        sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2937                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2938                        break;
2939                case sdma_event_e82_hw_unfreeze:
2940                        break;
2941                case sdma_event_e85_link_down:
2942                        break;
2943                case sdma_event_e90_sw_halted:
2944                        break;
2945                }
2946                break;
2947
2948        case sdma_state_s82_freeze_sw_clean:
2949                switch (event) {
2950                case sdma_event_e00_go_hw_down:
2951                        sdma_set_state(sde, sdma_state_s00_hw_down);
2952                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2953                        break;
2954                case sdma_event_e10_go_hw_start:
2955                        break;
2956                case sdma_event_e15_hw_halt_done:
2957                        break;
2958                case sdma_event_e25_hw_clean_up_done:
2959                        break;
2960                case sdma_event_e30_go_running:
2961                        ss->go_s99_running = 1;
2962                        break;
2963                case sdma_event_e40_sw_cleaned:
2964                        /* notify caller this engine is done cleaning */
2965                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2966                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2967                        break;
2968                case sdma_event_e50_hw_cleaned:
2969                        break;
2970                case sdma_event_e60_hw_halted:
2971                        break;
2972                case sdma_event_e70_go_idle:
2973                        ss->go_s99_running = 0;
2974                        break;
2975                case sdma_event_e80_hw_freeze:
2976                        break;
2977                case sdma_event_e81_hw_frozen:
2978                        break;
2979                case sdma_event_e82_hw_unfreeze:
2980                        sdma_hw_start_up(sde);
2981                        sdma_set_state(sde, ss->go_s99_running ?
2982                                       sdma_state_s99_running :
2983                                       sdma_state_s20_idle);
2984                        break;
2985                case sdma_event_e85_link_down:
2986                        break;
2987                case sdma_event_e90_sw_halted:
2988                        break;
2989                }
2990                break;
2991
2992        case sdma_state_s99_running:
2993                switch (event) {
2994                case sdma_event_e00_go_hw_down:
2995                        sdma_set_state(sde, sdma_state_s00_hw_down);
2996                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2997                        break;
2998                case sdma_event_e10_go_hw_start:
2999                        break;
3000                case sdma_event_e15_hw_halt_done:
3001                        break;
3002                case sdma_event_e25_hw_clean_up_done:
3003                        break;
3004                case sdma_event_e30_go_running:
3005                        break;
3006                case sdma_event_e40_sw_cleaned:
3007                        break;
3008                case sdma_event_e50_hw_cleaned:
3009                        break;
3010                case sdma_event_e60_hw_halted:
3011                        need_progress = 1;
3012                        sdma_err_progress_check_schedule(sde);
3013                        /* fall through */
3014                case sdma_event_e90_sw_halted:
3015                        /*
3016                        * SW initiated halt does not perform engines
3017                        * progress check
3018                        */
3019                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3020                        schedule_work(&sde->err_halt_worker);
3021                        break;
3022                case sdma_event_e70_go_idle:
3023                        sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3024                        break;
3025                case sdma_event_e85_link_down:
3026                        ss->go_s99_running = 0;
3027                        /* fall through */
3028                case sdma_event_e80_hw_freeze:
3029                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
3030                        atomic_dec(&sde->dd->sdma_unfreeze_count);
3031                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3032                        break;
3033                case sdma_event_e81_hw_frozen:
3034                        break;
3035                case sdma_event_e82_hw_unfreeze:
3036                        break;
3037                }
3038                break;
3039        }
3040
3041        ss->last_event = event;
3042        if (need_progress)
3043                sdma_make_progress(sde, 0);
3044}
3045
3046/*
3047 * _extend_sdma_tx_descs() - helper to extend txreq
3048 *
3049 * This is called once the initial nominal allocation
3050 * of descriptors in the sdma_txreq is exhausted.
3051 *
3052 * The code will bump the allocation up to the max
3053 * of MAX_DESC (64) descriptors. There doesn't seem
3054 * much point in an interim step. The last descriptor
3055 * is reserved for coalesce buffer in order to support
3056 * cases where input packet has >MAX_DESC iovecs.
3057 *
3058 */
3059static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3060{
3061        int i;
3062
3063        /* Handle last descriptor */
3064        if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3065                /* if tlen is 0, it is for padding, release last descriptor */
3066                if (!tx->tlen) {
3067                        tx->desc_limit = MAX_DESC;
3068                } else if (!tx->coalesce_buf) {
3069                        /* allocate coalesce buffer with space for padding */
3070                        tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3071                                                   GFP_ATOMIC);
3072                        if (!tx->coalesce_buf)
3073                                goto enomem;
3074                        tx->coalesce_idx = 0;
3075                }
3076                return 0;
3077        }
3078
3079        if (unlikely(tx->num_desc == MAX_DESC))
3080                goto enomem;
3081
3082        tx->descp = kmalloc_array(
3083                        MAX_DESC,
3084                        sizeof(struct sdma_desc),
3085                        GFP_ATOMIC);
3086        if (!tx->descp)
3087                goto enomem;
3088
3089        /* reserve last descriptor for coalescing */
3090        tx->desc_limit = MAX_DESC - 1;
3091        /* copy ones already built */
3092        for (i = 0; i < tx->num_desc; i++)
3093                tx->descp[i] = tx->descs[i];
3094        return 0;
3095enomem:
3096        __sdma_txclean(dd, tx);
3097        return -ENOMEM;
3098}
3099
3100/*
3101 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3102 *
3103 * This is called once the initial nominal allocation of descriptors
3104 * in the sdma_txreq is exhausted.
3105 *
3106 * This function calls _extend_sdma_tx_descs to extend or allocate
3107 * coalesce buffer. If there is a allocated coalesce buffer, it will
3108 * copy the input packet data into the coalesce buffer. It also adds
3109 * coalesce buffer descriptor once when whole packet is received.
3110 *
3111 * Return:
3112 * <0 - error
3113 * 0 - coalescing, don't populate descriptor
3114 * 1 - continue with populating descriptor
3115 */
3116int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3117                           int type, void *kvaddr, struct page *page,
3118                           unsigned long offset, u16 len)
3119{
3120        int pad_len, rval;
3121        dma_addr_t addr;
3122
3123        rval = _extend_sdma_tx_descs(dd, tx);
3124        if (rval) {
3125                __sdma_txclean(dd, tx);
3126                return rval;
3127        }
3128
3129        /* If coalesce buffer is allocated, copy data into it */
3130        if (tx->coalesce_buf) {
3131                if (type == SDMA_MAP_NONE) {
3132                        __sdma_txclean(dd, tx);
3133                        return -EINVAL;
3134                }
3135
3136                if (type == SDMA_MAP_PAGE) {
3137                        kvaddr = kmap(page);
3138                        kvaddr += offset;
3139                } else if (WARN_ON(!kvaddr)) {
3140                        __sdma_txclean(dd, tx);
3141                        return -EINVAL;
3142                }
3143
3144                memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3145                tx->coalesce_idx += len;
3146                if (type == SDMA_MAP_PAGE)
3147                        kunmap(page);
3148
3149                /* If there is more data, return */
3150                if (tx->tlen - tx->coalesce_idx)
3151                        return 0;
3152
3153                /* Whole packet is received; add any padding */
3154                pad_len = tx->packet_len & (sizeof(u32) - 1);
3155                if (pad_len) {
3156                        pad_len = sizeof(u32) - pad_len;
3157                        memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3158                        /* padding is taken care of for coalescing case */
3159                        tx->packet_len += pad_len;
3160                        tx->tlen += pad_len;
3161                }
3162
3163                /* dma map the coalesce buffer */
3164                addr = dma_map_single(&dd->pcidev->dev,
3165                                      tx->coalesce_buf,
3166                                      tx->tlen,
3167                                      DMA_TO_DEVICE);
3168
3169                if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3170                        __sdma_txclean(dd, tx);
3171                        return -ENOSPC;
3172                }
3173
3174                /* Add descriptor for coalesce buffer */
3175                tx->desc_limit = MAX_DESC;
3176                return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3177                                         addr, tx->tlen);
3178        }
3179
3180        return 1;
3181}
3182
3183/* Update sdes when the lmc changes */
3184void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3185{
3186        struct sdma_engine *sde;
3187        int i;
3188        u64 sreg;
3189
3190        sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3191                SD(CHECK_SLID_MASK_SHIFT)) |
3192                (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3193                SD(CHECK_SLID_VALUE_SHIFT));
3194
3195        for (i = 0; i < dd->num_sdma; i++) {
3196                hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3197                          i, (u32)sreg);
3198                sde = &dd->per_sdma[i];
3199                write_sde_csr(sde, SD(CHECK_SLID), sreg);
3200        }
3201}
3202
3203/* tx not dword sized - pad */
3204int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3205{
3206        int rval = 0;
3207
3208        tx->num_desc++;
3209        if ((unlikely(tx->num_desc == tx->desc_limit))) {
3210                rval = _extend_sdma_tx_descs(dd, tx);
3211                if (rval) {
3212                        __sdma_txclean(dd, tx);
3213                        return rval;
3214                }
3215        }
3216        /* finish the one just added */
3217        make_tx_sdma_desc(
3218                tx,
3219                SDMA_MAP_NONE,
3220                dd->sdma_pad_phys,
3221                sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3222        _sdma_close_tx(dd, tx);
3223        return rval;
3224}
3225
3226/*
3227 * Add ahg to the sdma_txreq
3228 *
3229 * The logic will consume up to 3
3230 * descriptors at the beginning of
3231 * sdma_txreq.
3232 */
3233void _sdma_txreq_ahgadd(
3234        struct sdma_txreq *tx,
3235        u8 num_ahg,
3236        u8 ahg_entry,
3237        u32 *ahg,
3238        u8 ahg_hlen)
3239{
3240        u32 i, shift = 0, desc = 0;
3241        u8 mode;
3242
3243        WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3244        /* compute mode */
3245        if (num_ahg == 1)
3246                mode = SDMA_AHG_APPLY_UPDATE1;
3247        else if (num_ahg <= 5)
3248                mode = SDMA_AHG_APPLY_UPDATE2;
3249        else
3250                mode = SDMA_AHG_APPLY_UPDATE3;
3251        tx->num_desc++;
3252        /* initialize to consumed descriptors to zero */
3253        switch (mode) {
3254        case SDMA_AHG_APPLY_UPDATE3:
3255                tx->num_desc++;
3256                tx->descs[2].qw[0] = 0;
3257                tx->descs[2].qw[1] = 0;
3258                /* FALLTHROUGH */
3259        case SDMA_AHG_APPLY_UPDATE2:
3260                tx->num_desc++;
3261                tx->descs[1].qw[0] = 0;
3262                tx->descs[1].qw[1] = 0;
3263                break;
3264        }
3265        ahg_hlen >>= 2;
3266        tx->descs[0].qw[1] |=
3267                (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3268                        << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3269                (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3270                        << SDMA_DESC1_HEADER_DWS_SHIFT) |
3271                (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3272                        << SDMA_DESC1_HEADER_MODE_SHIFT) |
3273                (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3274                        << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3275        for (i = 0; i < (num_ahg - 1); i++) {
3276                if (!shift && !(i & 2))
3277                        desc++;
3278                tx->descs[desc].qw[!!(i & 2)] |=
3279                        (((u64)ahg[i + 1])
3280                                << shift);
3281                shift = (shift + 32) & 63;
3282        }
3283}
3284
3285/**
3286 * sdma_ahg_alloc - allocate an AHG entry
3287 * @sde: engine to allocate from
3288 *
3289 * Return:
3290 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3291 * -ENOSPC if an entry is not available
3292 */
3293int sdma_ahg_alloc(struct sdma_engine *sde)
3294{
3295        int nr;
3296        int oldbit;
3297
3298        if (!sde) {
3299                trace_hfi1_ahg_allocate(sde, -EINVAL);
3300                return -EINVAL;
3301        }
3302        while (1) {
3303                nr = ffz(READ_ONCE(sde->ahg_bits));
3304                if (nr > 31) {
3305                        trace_hfi1_ahg_allocate(sde, -ENOSPC);
3306                        return -ENOSPC;
3307                }
3308                oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3309                if (!oldbit)
3310                        break;
3311                cpu_relax();
3312        }
3313        trace_hfi1_ahg_allocate(sde, nr);
3314        return nr;
3315}
3316
3317/**
3318 * sdma_ahg_free - free an AHG entry
3319 * @sde: engine to return AHG entry
3320 * @ahg_index: index to free
3321 *
3322 * This routine frees the indicate AHG entry.
3323 */
3324void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3325{
3326        if (!sde)
3327                return;
3328        trace_hfi1_ahg_deallocate(sde, ahg_index);
3329        if (ahg_index < 0 || ahg_index > 31)
3330                return;
3331        clear_bit(ahg_index, &sde->ahg_bits);
3332}
3333
3334/*
3335 * SPC freeze handling for SDMA engines.  Called when the driver knows
3336 * the SPC is going into a freeze but before the freeze is fully
3337 * settled.  Generally an error interrupt.
3338 *
3339 * This event will pull the engine out of running so no more entries can be
3340 * added to the engine's queue.
3341 */
3342void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3343{
3344        int i;
3345        enum sdma_events event = link_down ? sdma_event_e85_link_down :
3346                                             sdma_event_e80_hw_freeze;
3347
3348        /* set up the wait but do not wait here */
3349        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3350
3351        /* tell all engines to stop running and wait */
3352        for (i = 0; i < dd->num_sdma; i++)
3353                sdma_process_event(&dd->per_sdma[i], event);
3354
3355        /* sdma_freeze() will wait for all engines to have stopped */
3356}
3357
3358/*
3359 * SPC freeze handling for SDMA engines.  Called when the driver knows
3360 * the SPC is fully frozen.
3361 */
3362void sdma_freeze(struct hfi1_devdata *dd)
3363{
3364        int i;
3365        int ret;
3366
3367        /*
3368         * Make sure all engines have moved out of the running state before
3369         * continuing.
3370         */
3371        ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3372                                       atomic_read(&dd->sdma_unfreeze_count) <=
3373                                       0);
3374        /* interrupted or count is negative, then unloading - just exit */
3375        if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3376                return;
3377
3378        /* set up the count for the next wait */
3379        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3380
3381        /* tell all engines that the SPC is frozen, they can start cleaning */
3382        for (i = 0; i < dd->num_sdma; i++)
3383                sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3384
3385        /*
3386         * Wait for everyone to finish software clean before exiting.  The
3387         * software clean will read engine CSRs, so must be completed before
3388         * the next step, which will clear the engine CSRs.
3389         */
3390        (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3391                                atomic_read(&dd->sdma_unfreeze_count) <= 0);
3392        /* no need to check results - done no matter what */
3393}
3394
3395/*
3396 * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3397 *
3398 * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3399 * that is left is a software clean.  We could do it after the SPC is fully
3400 * frozen, but then we'd have to add another state to wait for the unfreeze.
3401 * Instead, just defer the software clean until the unfreeze step.
3402 */
3403void sdma_unfreeze(struct hfi1_devdata *dd)
3404{
3405        int i;
3406
3407        /* tell all engines start freeze clean up */
3408        for (i = 0; i < dd->num_sdma; i++)
3409                sdma_process_event(&dd->per_sdma[i],
3410                                   sdma_event_e82_hw_unfreeze);
3411}
3412
3413/**
3414 * _sdma_engine_progress_schedule() - schedule progress on engine
3415 * @sde: sdma_engine to schedule progress
3416 *
3417 */
3418void _sdma_engine_progress_schedule(
3419        struct sdma_engine *sde)
3420{
3421        trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3422        /* assume we have selected a good cpu */
3423        write_csr(sde->dd,
3424                  CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3425                  sde->progress_mask);
3426}
3427