linux/drivers/infiniband/ulp/srpt/ib_srpt.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
   3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/err.h>
  39#include <linux/ctype.h>
  40#include <linux/kthread.h>
  41#include <linux/string.h>
  42#include <linux/delay.h>
  43#include <linux/atomic.h>
  44#include <linux/inet.h>
  45#include <rdma/ib_cache.h>
  46#include <scsi/scsi_proto.h>
  47#include <scsi/scsi_tcq.h>
  48#include <target/target_core_base.h>
  49#include <target/target_core_fabric.h>
  50#include "ib_srpt.h"
  51
  52/* Name of this kernel module. */
  53#define DRV_NAME                "ib_srpt"
  54#define DRV_VERSION             "2.0.0"
  55#define DRV_RELDATE             "2011-02-14"
  56
  57#define SRPT_ID_STRING  "Linux SRP target"
  58
  59#undef pr_fmt
  60#define pr_fmt(fmt) DRV_NAME " " fmt
  61
  62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
  63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
  64                   "v" DRV_VERSION " (" DRV_RELDATE ")");
  65MODULE_LICENSE("Dual BSD/GPL");
  66
  67/*
  68 * Global Variables
  69 */
  70
  71static u64 srpt_service_guid;
  72static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
  73static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
  74
  75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
  76module_param(srp_max_req_size, int, 0444);
  77MODULE_PARM_DESC(srp_max_req_size,
  78                 "Maximum size of SRP request messages in bytes.");
  79
  80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
  81module_param(srpt_srq_size, int, 0444);
  82MODULE_PARM_DESC(srpt_srq_size,
  83                 "Shared receive queue (SRQ) size.");
  84
  85static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
  86{
  87        return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
  88}
  89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
  90                  0444);
  91MODULE_PARM_DESC(srpt_service_guid,
  92                 "Using this value for ioc_guid, id_ext, and cm_listen_id"
  93                 " instead of using the node_guid of the first HCA.");
  94
  95static struct ib_client srpt_client;
  96/* Protects both rdma_cm_port and rdma_cm_id. */
  97static DEFINE_MUTEX(rdma_cm_mutex);
  98/* Port number RDMA/CM will bind to. */
  99static u16 rdma_cm_port;
 100static struct rdma_cm_id *rdma_cm_id;
 101static void srpt_release_cmd(struct se_cmd *se_cmd);
 102static void srpt_free_ch(struct kref *kref);
 103static int srpt_queue_status(struct se_cmd *cmd);
 104static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 105static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
 106static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
 107
 108/*
 109 * The only allowed channel state changes are those that change the channel
 110 * state into a state with a higher numerical value. Hence the new > prev test.
 111 */
 112static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
 113{
 114        unsigned long flags;
 115        enum rdma_ch_state prev;
 116        bool changed = false;
 117
 118        spin_lock_irqsave(&ch->spinlock, flags);
 119        prev = ch->state;
 120        if (new > prev) {
 121                ch->state = new;
 122                changed = true;
 123        }
 124        spin_unlock_irqrestore(&ch->spinlock, flags);
 125
 126        return changed;
 127}
 128
 129/**
 130 * srpt_event_handler - asynchronous IB event callback function
 131 * @handler: IB event handler registered by ib_register_event_handler().
 132 * @event: Description of the event that occurred.
 133 *
 134 * Callback function called by the InfiniBand core when an asynchronous IB
 135 * event occurs. This callback may occur in interrupt context. See also
 136 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 137 * Architecture Specification.
 138 */
 139static void srpt_event_handler(struct ib_event_handler *handler,
 140                               struct ib_event *event)
 141{
 142        struct srpt_device *sdev;
 143        struct srpt_port *sport;
 144        u8 port_num;
 145
 146        sdev = ib_get_client_data(event->device, &srpt_client);
 147        if (!sdev || sdev->device != event->device)
 148                return;
 149
 150        pr_debug("ASYNC event= %d on device= %s\n", event->event,
 151                 sdev->device->name);
 152
 153        switch (event->event) {
 154        case IB_EVENT_PORT_ERR:
 155                port_num = event->element.port_num - 1;
 156                if (port_num < sdev->device->phys_port_cnt) {
 157                        sport = &sdev->port[port_num];
 158                        sport->lid = 0;
 159                        sport->sm_lid = 0;
 160                } else {
 161                        WARN(true, "event %d: port_num %d out of range 1..%d\n",
 162                             event->event, port_num + 1,
 163                             sdev->device->phys_port_cnt);
 164                }
 165                break;
 166        case IB_EVENT_PORT_ACTIVE:
 167        case IB_EVENT_LID_CHANGE:
 168        case IB_EVENT_PKEY_CHANGE:
 169        case IB_EVENT_SM_CHANGE:
 170        case IB_EVENT_CLIENT_REREGISTER:
 171        case IB_EVENT_GID_CHANGE:
 172                /* Refresh port data asynchronously. */
 173                port_num = event->element.port_num - 1;
 174                if (port_num < sdev->device->phys_port_cnt) {
 175                        sport = &sdev->port[port_num];
 176                        if (!sport->lid && !sport->sm_lid)
 177                                schedule_work(&sport->work);
 178                } else {
 179                        WARN(true, "event %d: port_num %d out of range 1..%d\n",
 180                             event->event, port_num + 1,
 181                             sdev->device->phys_port_cnt);
 182                }
 183                break;
 184        default:
 185                pr_err("received unrecognized IB event %d\n", event->event);
 186                break;
 187        }
 188}
 189
 190/**
 191 * srpt_srq_event - SRQ event callback function
 192 * @event: Description of the event that occurred.
 193 * @ctx: Context pointer specified at SRQ creation time.
 194 */
 195static void srpt_srq_event(struct ib_event *event, void *ctx)
 196{
 197        pr_debug("SRQ event %d\n", event->event);
 198}
 199
 200static const char *get_ch_state_name(enum rdma_ch_state s)
 201{
 202        switch (s) {
 203        case CH_CONNECTING:
 204                return "connecting";
 205        case CH_LIVE:
 206                return "live";
 207        case CH_DISCONNECTING:
 208                return "disconnecting";
 209        case CH_DRAINING:
 210                return "draining";
 211        case CH_DISCONNECTED:
 212                return "disconnected";
 213        }
 214        return "???";
 215}
 216
 217/**
 218 * srpt_qp_event - QP event callback function
 219 * @event: Description of the event that occurred.
 220 * @ch: SRPT RDMA channel.
 221 */
 222static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
 223{
 224        pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n",
 225                 event->event, ch, ch->sess_name, ch->state);
 226
 227        switch (event->event) {
 228        case IB_EVENT_COMM_EST:
 229                if (ch->using_rdma_cm)
 230                        rdma_notify(ch->rdma_cm.cm_id, event->event);
 231                else
 232                        ib_cm_notify(ch->ib_cm.cm_id, event->event);
 233                break;
 234        case IB_EVENT_QP_LAST_WQE_REACHED:
 235                pr_debug("%s-%d, state %s: received Last WQE event.\n",
 236                         ch->sess_name, ch->qp->qp_num,
 237                         get_ch_state_name(ch->state));
 238                break;
 239        default:
 240                pr_err("received unrecognized IB QP event %d\n", event->event);
 241                break;
 242        }
 243}
 244
 245/**
 246 * srpt_set_ioc - initialize a IOUnitInfo structure
 247 * @c_list: controller list.
 248 * @slot: one-based slot number.
 249 * @value: four-bit value.
 250 *
 251 * Copies the lowest four bits of value in element slot of the array of four
 252 * bit elements called c_list (controller list). The index slot is one-based.
 253 */
 254static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
 255{
 256        u16 id;
 257        u8 tmp;
 258
 259        id = (slot - 1) / 2;
 260        if (slot & 0x1) {
 261                tmp = c_list[id] & 0xf;
 262                c_list[id] = (value << 4) | tmp;
 263        } else {
 264                tmp = c_list[id] & 0xf0;
 265                c_list[id] = (value & 0xf) | tmp;
 266        }
 267}
 268
 269/**
 270 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 271 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
 272 *
 273 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 274 * Specification.
 275 */
 276static void srpt_get_class_port_info(struct ib_dm_mad *mad)
 277{
 278        struct ib_class_port_info *cif;
 279
 280        cif = (struct ib_class_port_info *)mad->data;
 281        memset(cif, 0, sizeof(*cif));
 282        cif->base_version = 1;
 283        cif->class_version = 1;
 284
 285        ib_set_cpi_resp_time(cif, 20);
 286        mad->mad_hdr.status = 0;
 287}
 288
 289/**
 290 * srpt_get_iou - write IOUnitInfo to a management datagram
 291 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
 292 *
 293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 295 */
 296static void srpt_get_iou(struct ib_dm_mad *mad)
 297{
 298        struct ib_dm_iou_info *ioui;
 299        u8 slot;
 300        int i;
 301
 302        ioui = (struct ib_dm_iou_info *)mad->data;
 303        ioui->change_id = cpu_to_be16(1);
 304        ioui->max_controllers = 16;
 305
 306        /* set present for slot 1 and empty for the rest */
 307        srpt_set_ioc(ioui->controller_list, 1, 1);
 308        for (i = 1, slot = 2; i < 16; i++, slot++)
 309                srpt_set_ioc(ioui->controller_list, slot, 0);
 310
 311        mad->mad_hdr.status = 0;
 312}
 313
 314/**
 315 * srpt_get_ioc - write IOControllerprofile to a management datagram
 316 * @sport: HCA port through which the MAD has been received.
 317 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 318 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
 319 *
 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 321 * Architecture Specification. See also section B.7, table B.7 in the SRP
 322 * r16a document.
 323 */
 324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
 325                         struct ib_dm_mad *mad)
 326{
 327        struct srpt_device *sdev = sport->sdev;
 328        struct ib_dm_ioc_profile *iocp;
 329        int send_queue_depth;
 330
 331        iocp = (struct ib_dm_ioc_profile *)mad->data;
 332
 333        if (!slot || slot > 16) {
 334                mad->mad_hdr.status
 335                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 336                return;
 337        }
 338
 339        if (slot > 2) {
 340                mad->mad_hdr.status
 341                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 342                return;
 343        }
 344
 345        if (sdev->use_srq)
 346                send_queue_depth = sdev->srq_size;
 347        else
 348                send_queue_depth = min(MAX_SRPT_RQ_SIZE,
 349                                       sdev->device->attrs.max_qp_wr);
 350
 351        memset(iocp, 0, sizeof(*iocp));
 352        strcpy(iocp->id_string, SRPT_ID_STRING);
 353        iocp->guid = cpu_to_be64(srpt_service_guid);
 354        iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
 355        iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
 356        iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
 357        iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
 358        iocp->subsys_device_id = 0x0;
 359        iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
 360        iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
 361        iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
 362        iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
 363        iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
 364        iocp->rdma_read_depth = 4;
 365        iocp->send_size = cpu_to_be32(srp_max_req_size);
 366        iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
 367                                          1U << 24));
 368        iocp->num_svc_entries = 1;
 369        iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
 370                SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
 371
 372        mad->mad_hdr.status = 0;
 373}
 374
 375/**
 376 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 377 * @ioc_guid: I/O controller GUID to use in reply.
 378 * @slot: I/O controller number.
 379 * @hi: End of the range of service entries to be specified in the reply.
 380 * @lo: Start of the range of service entries to be specified in the reply..
 381 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
 382 *
 383 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 384 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 385 */
 386static void srpt_get_svc_entries(u64 ioc_guid,
 387                                 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
 388{
 389        struct ib_dm_svc_entries *svc_entries;
 390
 391        WARN_ON(!ioc_guid);
 392
 393        if (!slot || slot > 16) {
 394                mad->mad_hdr.status
 395                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 396                return;
 397        }
 398
 399        if (slot > 2 || lo > hi || hi > 1) {
 400                mad->mad_hdr.status
 401                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 402                return;
 403        }
 404
 405        svc_entries = (struct ib_dm_svc_entries *)mad->data;
 406        memset(svc_entries, 0, sizeof(*svc_entries));
 407        svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
 408        snprintf(svc_entries->service_entries[0].name,
 409                 sizeof(svc_entries->service_entries[0].name),
 410                 "%s%016llx",
 411                 SRP_SERVICE_NAME_PREFIX,
 412                 ioc_guid);
 413
 414        mad->mad_hdr.status = 0;
 415}
 416
 417/**
 418 * srpt_mgmt_method_get - process a received management datagram
 419 * @sp:      HCA port through which the MAD has been received.
 420 * @rq_mad:  received MAD.
 421 * @rsp_mad: response MAD.
 422 */
 423static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
 424                                 struct ib_dm_mad *rsp_mad)
 425{
 426        u16 attr_id;
 427        u32 slot;
 428        u8 hi, lo;
 429
 430        attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
 431        switch (attr_id) {
 432        case DM_ATTR_CLASS_PORT_INFO:
 433                srpt_get_class_port_info(rsp_mad);
 434                break;
 435        case DM_ATTR_IOU_INFO:
 436                srpt_get_iou(rsp_mad);
 437                break;
 438        case DM_ATTR_IOC_PROFILE:
 439                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 440                srpt_get_ioc(sp, slot, rsp_mad);
 441                break;
 442        case DM_ATTR_SVC_ENTRIES:
 443                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 444                hi = (u8) ((slot >> 8) & 0xff);
 445                lo = (u8) (slot & 0xff);
 446                slot = (u16) ((slot >> 16) & 0xffff);
 447                srpt_get_svc_entries(srpt_service_guid,
 448                                     slot, hi, lo, rsp_mad);
 449                break;
 450        default:
 451                rsp_mad->mad_hdr.status =
 452                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 453                break;
 454        }
 455}
 456
 457/**
 458 * srpt_mad_send_handler - MAD send completion callback
 459 * @mad_agent: Return value of ib_register_mad_agent().
 460 * @mad_wc: Work completion reporting that the MAD has been sent.
 461 */
 462static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
 463                                  struct ib_mad_send_wc *mad_wc)
 464{
 465        rdma_destroy_ah(mad_wc->send_buf->ah);
 466        ib_free_send_mad(mad_wc->send_buf);
 467}
 468
 469/**
 470 * srpt_mad_recv_handler - MAD reception callback function
 471 * @mad_agent: Return value of ib_register_mad_agent().
 472 * @send_buf: Not used.
 473 * @mad_wc: Work completion reporting that a MAD has been received.
 474 */
 475static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
 476                                  struct ib_mad_send_buf *send_buf,
 477                                  struct ib_mad_recv_wc *mad_wc)
 478{
 479        struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
 480        struct ib_ah *ah;
 481        struct ib_mad_send_buf *rsp;
 482        struct ib_dm_mad *dm_mad;
 483
 484        if (!mad_wc || !mad_wc->recv_buf.mad)
 485                return;
 486
 487        ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
 488                                  mad_wc->recv_buf.grh, mad_agent->port_num);
 489        if (IS_ERR(ah))
 490                goto err;
 491
 492        BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
 493
 494        rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
 495                                 mad_wc->wc->pkey_index, 0,
 496                                 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
 497                                 GFP_KERNEL,
 498                                 IB_MGMT_BASE_VERSION);
 499        if (IS_ERR(rsp))
 500                goto err_rsp;
 501
 502        rsp->ah = ah;
 503
 504        dm_mad = rsp->mad;
 505        memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
 506        dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
 507        dm_mad->mad_hdr.status = 0;
 508
 509        switch (mad_wc->recv_buf.mad->mad_hdr.method) {
 510        case IB_MGMT_METHOD_GET:
 511                srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
 512                break;
 513        case IB_MGMT_METHOD_SET:
 514                dm_mad->mad_hdr.status =
 515                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 516                break;
 517        default:
 518                dm_mad->mad_hdr.status =
 519                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
 520                break;
 521        }
 522
 523        if (!ib_post_send_mad(rsp, NULL)) {
 524                ib_free_recv_mad(mad_wc);
 525                /* will destroy_ah & free_send_mad in send completion */
 526                return;
 527        }
 528
 529        ib_free_send_mad(rsp);
 530
 531err_rsp:
 532        rdma_destroy_ah(ah);
 533err:
 534        ib_free_recv_mad(mad_wc);
 535}
 536
 537static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
 538{
 539        const __be16 *g = (const __be16 *)guid;
 540
 541        return snprintf(buf, size, "%04x:%04x:%04x:%04x",
 542                        be16_to_cpu(g[0]), be16_to_cpu(g[1]),
 543                        be16_to_cpu(g[2]), be16_to_cpu(g[3]));
 544}
 545
 546/**
 547 * srpt_refresh_port - configure a HCA port
 548 * @sport: SRPT HCA port.
 549 *
 550 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 551 * lid and gid values, and register a callback function for processing MADs
 552 * on the specified port.
 553 *
 554 * Note: It is safe to call this function more than once for the same port.
 555 */
 556static int srpt_refresh_port(struct srpt_port *sport)
 557{
 558        struct ib_mad_reg_req reg_req;
 559        struct ib_port_modify port_modify;
 560        struct ib_port_attr port_attr;
 561        int ret;
 562
 563        memset(&port_modify, 0, sizeof(port_modify));
 564        port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 565        port_modify.clr_port_cap_mask = 0;
 566
 567        ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 568        if (ret)
 569                goto err_mod_port;
 570
 571        ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
 572        if (ret)
 573                goto err_query_port;
 574
 575        sport->sm_lid = port_attr.sm_lid;
 576        sport->lid = port_attr.lid;
 577
 578        ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
 579                           NULL);
 580        if (ret)
 581                goto err_query_port;
 582
 583        sport->port_guid_wwn.priv = sport;
 584        srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
 585                         &sport->gid.global.interface_id);
 586        sport->port_gid_wwn.priv = sport;
 587        snprintf(sport->port_gid, sizeof(sport->port_gid),
 588                 "0x%016llx%016llx",
 589                 be64_to_cpu(sport->gid.global.subnet_prefix),
 590                 be64_to_cpu(sport->gid.global.interface_id));
 591
 592        if (!sport->mad_agent) {
 593                memset(&reg_req, 0, sizeof(reg_req));
 594                reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
 595                reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
 596                set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
 597                set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
 598
 599                sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
 600                                                         sport->port,
 601                                                         IB_QPT_GSI,
 602                                                         &reg_req, 0,
 603                                                         srpt_mad_send_handler,
 604                                                         srpt_mad_recv_handler,
 605                                                         sport, 0);
 606                if (IS_ERR(sport->mad_agent)) {
 607                        ret = PTR_ERR(sport->mad_agent);
 608                        sport->mad_agent = NULL;
 609                        goto err_query_port;
 610                }
 611        }
 612
 613        return 0;
 614
 615err_query_port:
 616
 617        port_modify.set_port_cap_mask = 0;
 618        port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 619        ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 620
 621err_mod_port:
 622
 623        return ret;
 624}
 625
 626/**
 627 * srpt_unregister_mad_agent - unregister MAD callback functions
 628 * @sdev: SRPT HCA pointer.
 629 *
 630 * Note: It is safe to call this function more than once for the same device.
 631 */
 632static void srpt_unregister_mad_agent(struct srpt_device *sdev)
 633{
 634        struct ib_port_modify port_modify = {
 635                .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
 636        };
 637        struct srpt_port *sport;
 638        int i;
 639
 640        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
 641                sport = &sdev->port[i - 1];
 642                WARN_ON(sport->port != i);
 643                if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
 644                        pr_err("disabling MAD processing failed.\n");
 645                if (sport->mad_agent) {
 646                        ib_unregister_mad_agent(sport->mad_agent);
 647                        sport->mad_agent = NULL;
 648                }
 649        }
 650}
 651
 652/**
 653 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 654 * @sdev: SRPT HCA pointer.
 655 * @ioctx_size: I/O context size.
 656 * @dma_size: Size of I/O context DMA buffer.
 657 * @dir: DMA data direction.
 658 */
 659static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
 660                                           int ioctx_size, int dma_size,
 661                                           enum dma_data_direction dir)
 662{
 663        struct srpt_ioctx *ioctx;
 664
 665        ioctx = kmalloc(ioctx_size, GFP_KERNEL);
 666        if (!ioctx)
 667                goto err;
 668
 669        ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
 670        if (!ioctx->buf)
 671                goto err_free_ioctx;
 672
 673        ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
 674        if (ib_dma_mapping_error(sdev->device, ioctx->dma))
 675                goto err_free_buf;
 676
 677        return ioctx;
 678
 679err_free_buf:
 680        kfree(ioctx->buf);
 681err_free_ioctx:
 682        kfree(ioctx);
 683err:
 684        return NULL;
 685}
 686
 687/**
 688 * srpt_free_ioctx - free a SRPT I/O context structure
 689 * @sdev: SRPT HCA pointer.
 690 * @ioctx: I/O context pointer.
 691 * @dma_size: Size of I/O context DMA buffer.
 692 * @dir: DMA data direction.
 693 */
 694static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
 695                            int dma_size, enum dma_data_direction dir)
 696{
 697        if (!ioctx)
 698                return;
 699
 700        ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
 701        kfree(ioctx->buf);
 702        kfree(ioctx);
 703}
 704
 705/**
 706 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
 707 * @sdev:       Device to allocate the I/O context ring for.
 708 * @ring_size:  Number of elements in the I/O context ring.
 709 * @ioctx_size: I/O context size.
 710 * @dma_size:   DMA buffer size.
 711 * @dir:        DMA data direction.
 712 */
 713static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
 714                                int ring_size, int ioctx_size,
 715                                int dma_size, enum dma_data_direction dir)
 716{
 717        struct srpt_ioctx **ring;
 718        int i;
 719
 720        WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
 721                && ioctx_size != sizeof(struct srpt_send_ioctx));
 722
 723        ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
 724        if (!ring)
 725                goto out;
 726        for (i = 0; i < ring_size; ++i) {
 727                ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
 728                if (!ring[i])
 729                        goto err;
 730                ring[i]->index = i;
 731        }
 732        goto out;
 733
 734err:
 735        while (--i >= 0)
 736                srpt_free_ioctx(sdev, ring[i], dma_size, dir);
 737        kfree(ring);
 738        ring = NULL;
 739out:
 740        return ring;
 741}
 742
 743/**
 744 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 745 * @ioctx_ring: I/O context ring to be freed.
 746 * @sdev: SRPT HCA pointer.
 747 * @ring_size: Number of ring elements.
 748 * @dma_size: Size of I/O context DMA buffer.
 749 * @dir: DMA data direction.
 750 */
 751static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
 752                                 struct srpt_device *sdev, int ring_size,
 753                                 int dma_size, enum dma_data_direction dir)
 754{
 755        int i;
 756
 757        if (!ioctx_ring)
 758                return;
 759
 760        for (i = 0; i < ring_size; ++i)
 761                srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
 762        kfree(ioctx_ring);
 763}
 764
 765/**
 766 * srpt_set_cmd_state - set the state of a SCSI command
 767 * @ioctx: Send I/O context.
 768 * @new: New I/O context state.
 769 *
 770 * Does not modify the state of aborted commands. Returns the previous command
 771 * state.
 772 */
 773static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
 774                                                  enum srpt_command_state new)
 775{
 776        enum srpt_command_state previous;
 777
 778        previous = ioctx->state;
 779        if (previous != SRPT_STATE_DONE)
 780                ioctx->state = new;
 781
 782        return previous;
 783}
 784
 785/**
 786 * srpt_test_and_set_cmd_state - test and set the state of a command
 787 * @ioctx: Send I/O context.
 788 * @old: Current I/O context state.
 789 * @new: New I/O context state.
 790 *
 791 * Returns true if and only if the previous command state was equal to 'old'.
 792 */
 793static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
 794                                        enum srpt_command_state old,
 795                                        enum srpt_command_state new)
 796{
 797        enum srpt_command_state previous;
 798
 799        WARN_ON(!ioctx);
 800        WARN_ON(old == SRPT_STATE_DONE);
 801        WARN_ON(new == SRPT_STATE_NEW);
 802
 803        previous = ioctx->state;
 804        if (previous == old)
 805                ioctx->state = new;
 806
 807        return previous == old;
 808}
 809
 810/**
 811 * srpt_post_recv - post an IB receive request
 812 * @sdev: SRPT HCA pointer.
 813 * @ch: SRPT RDMA channel.
 814 * @ioctx: Receive I/O context pointer.
 815 */
 816static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
 817                          struct srpt_recv_ioctx *ioctx)
 818{
 819        struct ib_sge list;
 820        struct ib_recv_wr wr, *bad_wr;
 821
 822        BUG_ON(!sdev);
 823        list.addr = ioctx->ioctx.dma;
 824        list.length = srp_max_req_size;
 825        list.lkey = sdev->lkey;
 826
 827        ioctx->ioctx.cqe.done = srpt_recv_done;
 828        wr.wr_cqe = &ioctx->ioctx.cqe;
 829        wr.next = NULL;
 830        wr.sg_list = &list;
 831        wr.num_sge = 1;
 832
 833        if (sdev->use_srq)
 834                return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
 835        else
 836                return ib_post_recv(ch->qp, &wr, &bad_wr);
 837}
 838
 839/**
 840 * srpt_zerolength_write - perform a zero-length RDMA write
 841 * @ch: SRPT RDMA channel.
 842 *
 843 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 844 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 845 * request, the R_Key shall not be validated, even if the request includes
 846 * Immediate data.
 847 */
 848static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
 849{
 850        struct ib_send_wr *bad_wr;
 851        struct ib_rdma_wr wr = {
 852                .wr = {
 853                        .next           = NULL,
 854                        { .wr_cqe       = &ch->zw_cqe, },
 855                        .opcode         = IB_WR_RDMA_WRITE,
 856                        .send_flags     = IB_SEND_SIGNALED,
 857                }
 858        };
 859
 860        pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
 861                 ch->qp->qp_num);
 862
 863        return ib_post_send(ch->qp, &wr.wr, &bad_wr);
 864}
 865
 866static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
 867{
 868        struct srpt_rdma_ch *ch = cq->cq_context;
 869
 870        pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
 871                 wc->status);
 872
 873        if (wc->status == IB_WC_SUCCESS) {
 874                srpt_process_wait_list(ch);
 875        } else {
 876                if (srpt_set_ch_state(ch, CH_DISCONNECTED))
 877                        schedule_work(&ch->release_work);
 878                else
 879                        pr_debug("%s-%d: already disconnected.\n",
 880                                 ch->sess_name, ch->qp->qp_num);
 881        }
 882}
 883
 884static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
 885                struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
 886                unsigned *sg_cnt)
 887{
 888        enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
 889        struct srpt_rdma_ch *ch = ioctx->ch;
 890        struct scatterlist *prev = NULL;
 891        unsigned prev_nents;
 892        int ret, i;
 893
 894        if (nbufs == 1) {
 895                ioctx->rw_ctxs = &ioctx->s_rw_ctx;
 896        } else {
 897                ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
 898                        GFP_KERNEL);
 899                if (!ioctx->rw_ctxs)
 900                        return -ENOMEM;
 901        }
 902
 903        for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
 904                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 905                u64 remote_addr = be64_to_cpu(db->va);
 906                u32 size = be32_to_cpu(db->len);
 907                u32 rkey = be32_to_cpu(db->key);
 908
 909                ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
 910                                i < nbufs - 1);
 911                if (ret)
 912                        goto unwind;
 913
 914                ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
 915                                ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
 916                if (ret < 0) {
 917                        target_free_sgl(ctx->sg, ctx->nents);
 918                        goto unwind;
 919                }
 920
 921                ioctx->n_rdma += ret;
 922                ioctx->n_rw_ctx++;
 923
 924                if (prev) {
 925                        sg_unmark_end(&prev[prev_nents - 1]);
 926                        sg_chain(prev, prev_nents + 1, ctx->sg);
 927                } else {
 928                        *sg = ctx->sg;
 929                }
 930
 931                prev = ctx->sg;
 932                prev_nents = ctx->nents;
 933
 934                *sg_cnt += ctx->nents;
 935        }
 936
 937        return 0;
 938
 939unwind:
 940        while (--i >= 0) {
 941                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 942
 943                rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
 944                                ctx->sg, ctx->nents, dir);
 945                target_free_sgl(ctx->sg, ctx->nents);
 946        }
 947        if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
 948                kfree(ioctx->rw_ctxs);
 949        return ret;
 950}
 951
 952static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
 953                                    struct srpt_send_ioctx *ioctx)
 954{
 955        enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
 956        int i;
 957
 958        for (i = 0; i < ioctx->n_rw_ctx; i++) {
 959                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 960
 961                rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
 962                                ctx->sg, ctx->nents, dir);
 963                target_free_sgl(ctx->sg, ctx->nents);
 964        }
 965
 966        if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
 967                kfree(ioctx->rw_ctxs);
 968}
 969
 970static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
 971{
 972        /*
 973         * The pointer computations below will only be compiled correctly
 974         * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
 975         * whether srp_cmd::add_data has been declared as a byte pointer.
 976         */
 977        BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
 978                     !__same_type(srp_cmd->add_data[0], (u8)0));
 979
 980        /*
 981         * According to the SRP spec, the lower two bits of the 'ADDITIONAL
 982         * CDB LENGTH' field are reserved and the size in bytes of this field
 983         * is four times the value specified in bits 3..7. Hence the "& ~3".
 984         */
 985        return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
 986}
 987
 988/**
 989 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
 990 * @ioctx: Pointer to the I/O context associated with the request.
 991 * @srp_cmd: Pointer to the SRP_CMD request data.
 992 * @dir: Pointer to the variable to which the transfer direction will be
 993 *   written.
 994 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
 995 * @sg_cnt: [out] length of @sg.
 996 * @data_len: Pointer to the variable to which the total data length of all
 997 *   descriptors in the SRP_CMD request will be written.
 998 *
 999 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1000 *
1001 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1002 * -ENOMEM when memory allocation fails and zero upon success.
1003 */
1004static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
1005                struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1006                struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
1007{
1008        BUG_ON(!dir);
1009        BUG_ON(!data_len);
1010
1011        /*
1012         * The lower four bits of the buffer format field contain the DATA-IN
1013         * buffer descriptor format, and the highest four bits contain the
1014         * DATA-OUT buffer descriptor format.
1015         */
1016        if (srp_cmd->buf_fmt & 0xf)
1017                /* DATA-IN: transfer data from target to initiator (read). */
1018                *dir = DMA_FROM_DEVICE;
1019        else if (srp_cmd->buf_fmt >> 4)
1020                /* DATA-OUT: transfer data from initiator to target (write). */
1021                *dir = DMA_TO_DEVICE;
1022        else
1023                *dir = DMA_NONE;
1024
1025        /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1026        ioctx->cmd.data_direction = *dir;
1027
1028        if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1029            ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1030                struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1031
1032                *data_len = be32_to_cpu(db->len);
1033                return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1034        } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1035                   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1036                struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1037                int nbufs = be32_to_cpu(idb->table_desc.len) /
1038                                sizeof(struct srp_direct_buf);
1039
1040                if (nbufs >
1041                    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1042                        pr_err("received unsupported SRP_CMD request"
1043                               " type (%u out + %u in != %u / %zu)\n",
1044                               srp_cmd->data_out_desc_cnt,
1045                               srp_cmd->data_in_desc_cnt,
1046                               be32_to_cpu(idb->table_desc.len),
1047                               sizeof(struct srp_direct_buf));
1048                        return -EINVAL;
1049                }
1050
1051                *data_len = be32_to_cpu(idb->len);
1052                return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1053                                sg, sg_cnt);
1054        } else {
1055                *data_len = 0;
1056                return 0;
1057        }
1058}
1059
1060/**
1061 * srpt_init_ch_qp - initialize queue pair attributes
1062 * @ch: SRPT RDMA channel.
1063 * @qp: Queue pair pointer.
1064 *
1065 * Initialized the attributes of queue pair 'qp' by allowing local write,
1066 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1067 */
1068static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1069{
1070        struct ib_qp_attr *attr;
1071        int ret;
1072
1073        WARN_ON_ONCE(ch->using_rdma_cm);
1074
1075        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1076        if (!attr)
1077                return -ENOMEM;
1078
1079        attr->qp_state = IB_QPS_INIT;
1080        attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1081        attr->port_num = ch->sport->port;
1082
1083        ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1084                                  ch->pkey, &attr->pkey_index);
1085        if (ret < 0)
1086                pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1087                       ch->pkey, ret);
1088
1089        ret = ib_modify_qp(qp, attr,
1090                           IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1091                           IB_QP_PKEY_INDEX);
1092
1093        kfree(attr);
1094        return ret;
1095}
1096
1097/**
1098 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1099 * @ch: channel of the queue pair.
1100 * @qp: queue pair to change the state of.
1101 *
1102 * Returns zero upon success and a negative value upon failure.
1103 *
1104 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1105 * If this structure ever becomes larger, it might be necessary to allocate
1106 * it dynamically instead of on the stack.
1107 */
1108static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1109{
1110        struct ib_qp_attr qp_attr;
1111        int attr_mask;
1112        int ret;
1113
1114        WARN_ON_ONCE(ch->using_rdma_cm);
1115
1116        qp_attr.qp_state = IB_QPS_RTR;
1117        ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1118        if (ret)
1119                goto out;
1120
1121        qp_attr.max_dest_rd_atomic = 4;
1122
1123        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1124
1125out:
1126        return ret;
1127}
1128
1129/**
1130 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1131 * @ch: channel of the queue pair.
1132 * @qp: queue pair to change the state of.
1133 *
1134 * Returns zero upon success and a negative value upon failure.
1135 *
1136 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1137 * If this structure ever becomes larger, it might be necessary to allocate
1138 * it dynamically instead of on the stack.
1139 */
1140static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1141{
1142        struct ib_qp_attr qp_attr;
1143        int attr_mask;
1144        int ret;
1145
1146        qp_attr.qp_state = IB_QPS_RTS;
1147        ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1148        if (ret)
1149                goto out;
1150
1151        qp_attr.max_rd_atomic = 4;
1152
1153        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1154
1155out:
1156        return ret;
1157}
1158
1159/**
1160 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1161 * @ch: SRPT RDMA channel.
1162 */
1163static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1164{
1165        struct ib_qp_attr qp_attr;
1166
1167        qp_attr.qp_state = IB_QPS_ERR;
1168        return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1169}
1170
1171/**
1172 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1173 * @ch: SRPT RDMA channel.
1174 */
1175static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1176{
1177        struct srpt_send_ioctx *ioctx;
1178        unsigned long flags;
1179
1180        BUG_ON(!ch);
1181
1182        ioctx = NULL;
1183        spin_lock_irqsave(&ch->spinlock, flags);
1184        if (!list_empty(&ch->free_list)) {
1185                ioctx = list_first_entry(&ch->free_list,
1186                                         struct srpt_send_ioctx, free_list);
1187                list_del(&ioctx->free_list);
1188        }
1189        spin_unlock_irqrestore(&ch->spinlock, flags);
1190
1191        if (!ioctx)
1192                return ioctx;
1193
1194        BUG_ON(ioctx->ch != ch);
1195        ioctx->state = SRPT_STATE_NEW;
1196        ioctx->n_rdma = 0;
1197        ioctx->n_rw_ctx = 0;
1198        ioctx->queue_status_only = false;
1199        /*
1200         * transport_init_se_cmd() does not initialize all fields, so do it
1201         * here.
1202         */
1203        memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1204        memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1205
1206        return ioctx;
1207}
1208
1209/**
1210 * srpt_abort_cmd - abort a SCSI command
1211 * @ioctx:   I/O context associated with the SCSI command.
1212 */
1213static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1214{
1215        enum srpt_command_state state;
1216
1217        BUG_ON(!ioctx);
1218
1219        /*
1220         * If the command is in a state where the target core is waiting for
1221         * the ib_srpt driver, change the state to the next state.
1222         */
1223
1224        state = ioctx->state;
1225        switch (state) {
1226        case SRPT_STATE_NEED_DATA:
1227                ioctx->state = SRPT_STATE_DATA_IN;
1228                break;
1229        case SRPT_STATE_CMD_RSP_SENT:
1230        case SRPT_STATE_MGMT_RSP_SENT:
1231                ioctx->state = SRPT_STATE_DONE;
1232                break;
1233        default:
1234                WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1235                          __func__, state);
1236                break;
1237        }
1238
1239        pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1240                 ioctx->state, ioctx->cmd.tag);
1241
1242        switch (state) {
1243        case SRPT_STATE_NEW:
1244        case SRPT_STATE_DATA_IN:
1245        case SRPT_STATE_MGMT:
1246        case SRPT_STATE_DONE:
1247                /*
1248                 * Do nothing - defer abort processing until
1249                 * srpt_queue_response() is invoked.
1250                 */
1251                break;
1252        case SRPT_STATE_NEED_DATA:
1253                pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1254                transport_generic_request_failure(&ioctx->cmd,
1255                                        TCM_CHECK_CONDITION_ABORT_CMD);
1256                break;
1257        case SRPT_STATE_CMD_RSP_SENT:
1258                /*
1259                 * SRP_RSP sending failed or the SRP_RSP send completion has
1260                 * not been received in time.
1261                 */
1262                transport_generic_free_cmd(&ioctx->cmd, 0);
1263                break;
1264        case SRPT_STATE_MGMT_RSP_SENT:
1265                transport_generic_free_cmd(&ioctx->cmd, 0);
1266                break;
1267        default:
1268                WARN(1, "Unexpected command state (%d)", state);
1269                break;
1270        }
1271
1272        return state;
1273}
1274
1275/**
1276 * srpt_rdma_read_done - RDMA read completion callback
1277 * @cq: Completion queue.
1278 * @wc: Work completion.
1279 *
1280 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1281 * the data that has been transferred via IB RDMA had to be postponed until the
1282 * check_stop_free() callback.  None of this is necessary anymore and needs to
1283 * be cleaned up.
1284 */
1285static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1286{
1287        struct srpt_rdma_ch *ch = cq->cq_context;
1288        struct srpt_send_ioctx *ioctx =
1289                container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1290
1291        WARN_ON(ioctx->n_rdma <= 0);
1292        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1293        ioctx->n_rdma = 0;
1294
1295        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1296                pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1297                        ioctx, wc->status);
1298                srpt_abort_cmd(ioctx);
1299                return;
1300        }
1301
1302        if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1303                                        SRPT_STATE_DATA_IN))
1304                target_execute_cmd(&ioctx->cmd);
1305        else
1306                pr_err("%s[%d]: wrong state = %d\n", __func__,
1307                       __LINE__, ioctx->state);
1308}
1309
1310/**
1311 * srpt_build_cmd_rsp - build a SRP_RSP response
1312 * @ch: RDMA channel through which the request has been received.
1313 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1314 *   be built in the buffer ioctx->buf points at and hence this function will
1315 *   overwrite the request data.
1316 * @tag: tag of the request for which this response is being generated.
1317 * @status: value for the STATUS field of the SRP_RSP information unit.
1318 *
1319 * Returns the size in bytes of the SRP_RSP response.
1320 *
1321 * An SRP_RSP response contains a SCSI status or service response. See also
1322 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1323 * response. See also SPC-2 for more information about sense data.
1324 */
1325static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1326                              struct srpt_send_ioctx *ioctx, u64 tag,
1327                              int status)
1328{
1329        struct srp_rsp *srp_rsp;
1330        const u8 *sense_data;
1331        int sense_data_len, max_sense_len;
1332
1333        /*
1334         * The lowest bit of all SAM-3 status codes is zero (see also
1335         * paragraph 5.3 in SAM-3).
1336         */
1337        WARN_ON(status & 1);
1338
1339        srp_rsp = ioctx->ioctx.buf;
1340        BUG_ON(!srp_rsp);
1341
1342        sense_data = ioctx->sense_data;
1343        sense_data_len = ioctx->cmd.scsi_sense_length;
1344        WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1345
1346        memset(srp_rsp, 0, sizeof(*srp_rsp));
1347        srp_rsp->opcode = SRP_RSP;
1348        srp_rsp->req_lim_delta =
1349                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1350        srp_rsp->tag = tag;
1351        srp_rsp->status = status;
1352
1353        if (sense_data_len) {
1354                BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1355                max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1356                if (sense_data_len > max_sense_len) {
1357                        pr_warn("truncated sense data from %d to %d"
1358                                " bytes\n", sense_data_len, max_sense_len);
1359                        sense_data_len = max_sense_len;
1360                }
1361
1362                srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1363                srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1364                memcpy(srp_rsp + 1, sense_data, sense_data_len);
1365        }
1366
1367        return sizeof(*srp_rsp) + sense_data_len;
1368}
1369
1370/**
1371 * srpt_build_tskmgmt_rsp - build a task management response
1372 * @ch:       RDMA channel through which the request has been received.
1373 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1374 * @rsp_code: RSP_CODE that will be stored in the response.
1375 * @tag:      Tag of the request for which this response is being generated.
1376 *
1377 * Returns the size in bytes of the SRP_RSP response.
1378 *
1379 * An SRP_RSP response contains a SCSI status or service response. See also
1380 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1381 * response.
1382 */
1383static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1384                                  struct srpt_send_ioctx *ioctx,
1385                                  u8 rsp_code, u64 tag)
1386{
1387        struct srp_rsp *srp_rsp;
1388        int resp_data_len;
1389        int resp_len;
1390
1391        resp_data_len = 4;
1392        resp_len = sizeof(*srp_rsp) + resp_data_len;
1393
1394        srp_rsp = ioctx->ioctx.buf;
1395        BUG_ON(!srp_rsp);
1396        memset(srp_rsp, 0, sizeof(*srp_rsp));
1397
1398        srp_rsp->opcode = SRP_RSP;
1399        srp_rsp->req_lim_delta =
1400                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1401        srp_rsp->tag = tag;
1402
1403        srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1404        srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1405        srp_rsp->data[3] = rsp_code;
1406
1407        return resp_len;
1408}
1409
1410static int srpt_check_stop_free(struct se_cmd *cmd)
1411{
1412        struct srpt_send_ioctx *ioctx = container_of(cmd,
1413                                struct srpt_send_ioctx, cmd);
1414
1415        return target_put_sess_cmd(&ioctx->cmd);
1416}
1417
1418/**
1419 * srpt_handle_cmd - process a SRP_CMD information unit
1420 * @ch: SRPT RDMA channel.
1421 * @recv_ioctx: Receive I/O context.
1422 * @send_ioctx: Send I/O context.
1423 */
1424static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1425                            struct srpt_recv_ioctx *recv_ioctx,
1426                            struct srpt_send_ioctx *send_ioctx)
1427{
1428        struct se_cmd *cmd;
1429        struct srp_cmd *srp_cmd;
1430        struct scatterlist *sg = NULL;
1431        unsigned sg_cnt = 0;
1432        u64 data_len;
1433        enum dma_data_direction dir;
1434        int rc;
1435
1436        BUG_ON(!send_ioctx);
1437
1438        srp_cmd = recv_ioctx->ioctx.buf;
1439        cmd = &send_ioctx->cmd;
1440        cmd->tag = srp_cmd->tag;
1441
1442        switch (srp_cmd->task_attr) {
1443        case SRP_CMD_SIMPLE_Q:
1444                cmd->sam_task_attr = TCM_SIMPLE_TAG;
1445                break;
1446        case SRP_CMD_ORDERED_Q:
1447        default:
1448                cmd->sam_task_attr = TCM_ORDERED_TAG;
1449                break;
1450        case SRP_CMD_HEAD_OF_Q:
1451                cmd->sam_task_attr = TCM_HEAD_TAG;
1452                break;
1453        case SRP_CMD_ACA:
1454                cmd->sam_task_attr = TCM_ACA_TAG;
1455                break;
1456        }
1457
1458        rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
1459                        &data_len);
1460        if (rc) {
1461                if (rc != -EAGAIN) {
1462                        pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1463                               srp_cmd->tag);
1464                }
1465                goto release_ioctx;
1466        }
1467
1468        rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1469                               &send_ioctx->sense_data[0],
1470                               scsilun_to_int(&srp_cmd->lun), data_len,
1471                               TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1472                               sg, sg_cnt, NULL, 0, NULL, 0);
1473        if (rc != 0) {
1474                pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1475                         srp_cmd->tag);
1476                goto release_ioctx;
1477        }
1478        return;
1479
1480release_ioctx:
1481        send_ioctx->state = SRPT_STATE_DONE;
1482        srpt_release_cmd(cmd);
1483}
1484
1485static int srp_tmr_to_tcm(int fn)
1486{
1487        switch (fn) {
1488        case SRP_TSK_ABORT_TASK:
1489                return TMR_ABORT_TASK;
1490        case SRP_TSK_ABORT_TASK_SET:
1491                return TMR_ABORT_TASK_SET;
1492        case SRP_TSK_CLEAR_TASK_SET:
1493                return TMR_CLEAR_TASK_SET;
1494        case SRP_TSK_LUN_RESET:
1495                return TMR_LUN_RESET;
1496        case SRP_TSK_CLEAR_ACA:
1497                return TMR_CLEAR_ACA;
1498        default:
1499                return -1;
1500        }
1501}
1502
1503/**
1504 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1505 * @ch: SRPT RDMA channel.
1506 * @recv_ioctx: Receive I/O context.
1507 * @send_ioctx: Send I/O context.
1508 *
1509 * Returns 0 if and only if the request will be processed by the target core.
1510 *
1511 * For more information about SRP_TSK_MGMT information units, see also section
1512 * 6.7 in the SRP r16a document.
1513 */
1514static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1515                                 struct srpt_recv_ioctx *recv_ioctx,
1516                                 struct srpt_send_ioctx *send_ioctx)
1517{
1518        struct srp_tsk_mgmt *srp_tsk;
1519        struct se_cmd *cmd;
1520        struct se_session *sess = ch->sess;
1521        int tcm_tmr;
1522        int rc;
1523
1524        BUG_ON(!send_ioctx);
1525
1526        srp_tsk = recv_ioctx->ioctx.buf;
1527        cmd = &send_ioctx->cmd;
1528
1529        pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1530                 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1531                 ch->sess);
1532
1533        srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1534        send_ioctx->cmd.tag = srp_tsk->tag;
1535        tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1536        rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1537                               scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1538                               GFP_KERNEL, srp_tsk->task_tag,
1539                               TARGET_SCF_ACK_KREF);
1540        if (rc != 0) {
1541                send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1542                goto fail;
1543        }
1544        return;
1545fail:
1546        transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1547}
1548
1549/**
1550 * srpt_handle_new_iu - process a newly received information unit
1551 * @ch:    RDMA channel through which the information unit has been received.
1552 * @recv_ioctx: Receive I/O context associated with the information unit.
1553 */
1554static bool
1555srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1556{
1557        struct srpt_send_ioctx *send_ioctx = NULL;
1558        struct srp_cmd *srp_cmd;
1559        bool res = false;
1560        u8 opcode;
1561
1562        BUG_ON(!ch);
1563        BUG_ON(!recv_ioctx);
1564
1565        if (unlikely(ch->state == CH_CONNECTING))
1566                goto push;
1567
1568        ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1569                                   recv_ioctx->ioctx.dma, srp_max_req_size,
1570                                   DMA_FROM_DEVICE);
1571
1572        srp_cmd = recv_ioctx->ioctx.buf;
1573        opcode = srp_cmd->opcode;
1574        if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1575                send_ioctx = srpt_get_send_ioctx(ch);
1576                if (unlikely(!send_ioctx))
1577                        goto push;
1578        }
1579
1580        if (!list_empty(&recv_ioctx->wait_list)) {
1581                WARN_ON_ONCE(!ch->processing_wait_list);
1582                list_del_init(&recv_ioctx->wait_list);
1583        }
1584
1585        switch (opcode) {
1586        case SRP_CMD:
1587                srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1588                break;
1589        case SRP_TSK_MGMT:
1590                srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1591                break;
1592        case SRP_I_LOGOUT:
1593                pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1594                break;
1595        case SRP_CRED_RSP:
1596                pr_debug("received SRP_CRED_RSP\n");
1597                break;
1598        case SRP_AER_RSP:
1599                pr_debug("received SRP_AER_RSP\n");
1600                break;
1601        case SRP_RSP:
1602                pr_err("Received SRP_RSP\n");
1603                break;
1604        default:
1605                pr_err("received IU with unknown opcode 0x%x\n", opcode);
1606                break;
1607        }
1608
1609        srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1610        res = true;
1611
1612out:
1613        return res;
1614
1615push:
1616        if (list_empty(&recv_ioctx->wait_list)) {
1617                WARN_ON_ONCE(ch->processing_wait_list);
1618                list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1619        }
1620        goto out;
1621}
1622
1623static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1624{
1625        struct srpt_rdma_ch *ch = cq->cq_context;
1626        struct srpt_recv_ioctx *ioctx =
1627                container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1628
1629        if (wc->status == IB_WC_SUCCESS) {
1630                int req_lim;
1631
1632                req_lim = atomic_dec_return(&ch->req_lim);
1633                if (unlikely(req_lim < 0))
1634                        pr_err("req_lim = %d < 0\n", req_lim);
1635                srpt_handle_new_iu(ch, ioctx);
1636        } else {
1637                pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1638                                    ioctx, wc->status);
1639        }
1640}
1641
1642/*
1643 * This function must be called from the context in which RDMA completions are
1644 * processed because it accesses the wait list without protection against
1645 * access from other threads.
1646 */
1647static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1648{
1649        struct srpt_recv_ioctx *recv_ioctx, *tmp;
1650
1651        WARN_ON_ONCE(ch->state == CH_CONNECTING);
1652
1653        if (list_empty(&ch->cmd_wait_list))
1654                return;
1655
1656        WARN_ON_ONCE(ch->processing_wait_list);
1657        ch->processing_wait_list = true;
1658        list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1659                                 wait_list) {
1660                if (!srpt_handle_new_iu(ch, recv_ioctx))
1661                        break;
1662        }
1663        ch->processing_wait_list = false;
1664}
1665
1666/**
1667 * srpt_send_done - send completion callback
1668 * @cq: Completion queue.
1669 * @wc: Work completion.
1670 *
1671 * Note: Although this has not yet been observed during tests, at least in
1672 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1673 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1674 * value in each response is set to one, and it is possible that this response
1675 * makes the initiator send a new request before the send completion for that
1676 * response has been processed. This could e.g. happen if the call to
1677 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1678 * if IB retransmission causes generation of the send completion to be
1679 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1680 * are queued on cmd_wait_list. The code below processes these delayed
1681 * requests one at a time.
1682 */
1683static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1684{
1685        struct srpt_rdma_ch *ch = cq->cq_context;
1686        struct srpt_send_ioctx *ioctx =
1687                container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1688        enum srpt_command_state state;
1689
1690        state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1691
1692        WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1693                state != SRPT_STATE_MGMT_RSP_SENT);
1694
1695        atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1696
1697        if (wc->status != IB_WC_SUCCESS)
1698                pr_info("sending response for ioctx 0x%p failed"
1699                        " with status %d\n", ioctx, wc->status);
1700
1701        if (state != SRPT_STATE_DONE) {
1702                transport_generic_free_cmd(&ioctx->cmd, 0);
1703        } else {
1704                pr_err("IB completion has been received too late for"
1705                       " wr_id = %u.\n", ioctx->ioctx.index);
1706        }
1707
1708        srpt_process_wait_list(ch);
1709}
1710
1711/**
1712 * srpt_create_ch_ib - create receive and send completion queues
1713 * @ch: SRPT RDMA channel.
1714 */
1715static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1716{
1717        struct ib_qp_init_attr *qp_init;
1718        struct srpt_port *sport = ch->sport;
1719        struct srpt_device *sdev = sport->sdev;
1720        const struct ib_device_attr *attrs = &sdev->device->attrs;
1721        int sq_size = sport->port_attrib.srp_sq_size;
1722        int i, ret;
1723
1724        WARN_ON(ch->rq_size < 1);
1725
1726        ret = -ENOMEM;
1727        qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1728        if (!qp_init)
1729                goto out;
1730
1731retry:
1732        ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1733                        0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1734        if (IS_ERR(ch->cq)) {
1735                ret = PTR_ERR(ch->cq);
1736                pr_err("failed to create CQ cqe= %d ret= %d\n",
1737                       ch->rq_size + sq_size, ret);
1738                goto out;
1739        }
1740
1741        qp_init->qp_context = (void *)ch;
1742        qp_init->event_handler
1743                = (void(*)(struct ib_event *, void*))srpt_qp_event;
1744        qp_init->send_cq = ch->cq;
1745        qp_init->recv_cq = ch->cq;
1746        qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1747        qp_init->qp_type = IB_QPT_RC;
1748        /*
1749         * We divide up our send queue size into half SEND WRs to send the
1750         * completions, and half R/W contexts to actually do the RDMA
1751         * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1752         * both both, as RDMA contexts will also post completions for the
1753         * RDMA READ case.
1754         */
1755        qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1756        qp_init->cap.max_rdma_ctxs = sq_size / 2;
1757        qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1758        qp_init->port_num = ch->sport->port;
1759        if (sdev->use_srq) {
1760                qp_init->srq = sdev->srq;
1761        } else {
1762                qp_init->cap.max_recv_wr = ch->rq_size;
1763                qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
1764        }
1765
1766        if (ch->using_rdma_cm) {
1767                ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1768                ch->qp = ch->rdma_cm.cm_id->qp;
1769        } else {
1770                ch->qp = ib_create_qp(sdev->pd, qp_init);
1771                if (!IS_ERR(ch->qp)) {
1772                        ret = srpt_init_ch_qp(ch, ch->qp);
1773                        if (ret)
1774                                ib_destroy_qp(ch->qp);
1775                } else {
1776                        ret = PTR_ERR(ch->qp);
1777                }
1778        }
1779        if (ret) {
1780                bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1781
1782                if (retry) {
1783                        pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1784                                 sq_size, ret);
1785                        ib_free_cq(ch->cq);
1786                        sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1787                        goto retry;
1788                } else {
1789                        pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1790                               sq_size, ret);
1791                        goto err_destroy_cq;
1792                }
1793        }
1794
1795        atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1796
1797        pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1798                 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1799                 qp_init->cap.max_send_wr, ch);
1800
1801        if (!sdev->use_srq)
1802                for (i = 0; i < ch->rq_size; i++)
1803                        srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1804
1805out:
1806        kfree(qp_init);
1807        return ret;
1808
1809err_destroy_cq:
1810        ch->qp = NULL;
1811        ib_free_cq(ch->cq);
1812        goto out;
1813}
1814
1815static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1816{
1817        ib_destroy_qp(ch->qp);
1818        ib_free_cq(ch->cq);
1819}
1820
1821/**
1822 * srpt_close_ch - close a RDMA channel
1823 * @ch: SRPT RDMA channel.
1824 *
1825 * Make sure all resources associated with the channel will be deallocated at
1826 * an appropriate time.
1827 *
1828 * Returns true if and only if the channel state has been modified into
1829 * CH_DRAINING.
1830 */
1831static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1832{
1833        int ret;
1834
1835        if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1836                pr_debug("%s-%d: already closed\n", ch->sess_name,
1837                         ch->qp->qp_num);
1838                return false;
1839        }
1840
1841        kref_get(&ch->kref);
1842
1843        ret = srpt_ch_qp_err(ch);
1844        if (ret < 0)
1845                pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1846                       ch->sess_name, ch->qp->qp_num, ret);
1847
1848        ret = srpt_zerolength_write(ch);
1849        if (ret < 0) {
1850                pr_err("%s-%d: queuing zero-length write failed: %d\n",
1851                       ch->sess_name, ch->qp->qp_num, ret);
1852                if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1853                        schedule_work(&ch->release_work);
1854                else
1855                        WARN_ON_ONCE(true);
1856        }
1857
1858        kref_put(&ch->kref, srpt_free_ch);
1859
1860        return true;
1861}
1862
1863/*
1864 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1865 * reached the connected state, close it. If a channel is in the connected
1866 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1867 * the responsibility of the caller to ensure that this function is not
1868 * invoked concurrently with the code that accepts a connection. This means
1869 * that this function must either be invoked from inside a CM callback
1870 * function or that it must be invoked with the srpt_port.mutex held.
1871 */
1872static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1873{
1874        int ret;
1875
1876        if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1877                return -ENOTCONN;
1878
1879        if (ch->using_rdma_cm) {
1880                ret = rdma_disconnect(ch->rdma_cm.cm_id);
1881        } else {
1882                ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1883                if (ret < 0)
1884                        ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1885        }
1886
1887        if (ret < 0 && srpt_close_ch(ch))
1888                ret = 0;
1889
1890        return ret;
1891}
1892
1893static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch)
1894{
1895        struct srpt_nexus *nexus;
1896        struct srpt_rdma_ch *ch2;
1897        bool res = true;
1898
1899        rcu_read_lock();
1900        list_for_each_entry(nexus, &sport->nexus_list, entry) {
1901                list_for_each_entry(ch2, &nexus->ch_list, list) {
1902                        if (ch2 == ch) {
1903                                res = false;
1904                                goto done;
1905                        }
1906                }
1907        }
1908done:
1909        rcu_read_unlock();
1910
1911        return res;
1912}
1913
1914/* Send DREQ and wait for DREP. */
1915static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1916{
1917        struct srpt_port *sport = ch->sport;
1918
1919        pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1920                 ch->state);
1921
1922        mutex_lock(&sport->mutex);
1923        srpt_disconnect_ch(ch);
1924        mutex_unlock(&sport->mutex);
1925
1926        while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch),
1927                                  5 * HZ) == 0)
1928                pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1929                        ch->sess_name, ch->qp->qp_num, ch->state);
1930
1931}
1932
1933static void __srpt_close_all_ch(struct srpt_port *sport)
1934{
1935        struct srpt_nexus *nexus;
1936        struct srpt_rdma_ch *ch;
1937
1938        lockdep_assert_held(&sport->mutex);
1939
1940        list_for_each_entry(nexus, &sport->nexus_list, entry) {
1941                list_for_each_entry(ch, &nexus->ch_list, list) {
1942                        if (srpt_disconnect_ch(ch) >= 0)
1943                                pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1944                                        ch->sess_name, ch->qp->qp_num,
1945                                        sport->sdev->device->name, sport->port);
1946                        srpt_close_ch(ch);
1947                }
1948        }
1949}
1950
1951/*
1952 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1953 * it does not yet exist.
1954 */
1955static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
1956                                         const u8 i_port_id[16],
1957                                         const u8 t_port_id[16])
1958{
1959        struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
1960
1961        for (;;) {
1962                mutex_lock(&sport->mutex);
1963                list_for_each_entry(n, &sport->nexus_list, entry) {
1964                        if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
1965                            memcmp(n->t_port_id, t_port_id, 16) == 0) {
1966                                nexus = n;
1967                                break;
1968                        }
1969                }
1970                if (!nexus && tmp_nexus) {
1971                        list_add_tail_rcu(&tmp_nexus->entry,
1972                                          &sport->nexus_list);
1973                        swap(nexus, tmp_nexus);
1974                }
1975                mutex_unlock(&sport->mutex);
1976
1977                if (nexus)
1978                        break;
1979                tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
1980                if (!tmp_nexus) {
1981                        nexus = ERR_PTR(-ENOMEM);
1982                        break;
1983                }
1984                INIT_LIST_HEAD(&tmp_nexus->ch_list);
1985                memcpy(tmp_nexus->i_port_id, i_port_id, 16);
1986                memcpy(tmp_nexus->t_port_id, t_port_id, 16);
1987        }
1988
1989        kfree(tmp_nexus);
1990
1991        return nexus;
1992}
1993
1994static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
1995        __must_hold(&sport->mutex)
1996{
1997        lockdep_assert_held(&sport->mutex);
1998
1999        if (sport->enabled == enabled)
2000                return;
2001        sport->enabled = enabled;
2002        if (!enabled)
2003                __srpt_close_all_ch(sport);
2004}
2005
2006static void srpt_free_ch(struct kref *kref)
2007{
2008        struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2009
2010        kfree_rcu(ch, rcu);
2011}
2012
2013static void srpt_release_channel_work(struct work_struct *w)
2014{
2015        struct srpt_rdma_ch *ch;
2016        struct srpt_device *sdev;
2017        struct srpt_port *sport;
2018        struct se_session *se_sess;
2019
2020        ch = container_of(w, struct srpt_rdma_ch, release_work);
2021        pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2022
2023        sdev = ch->sport->sdev;
2024        BUG_ON(!sdev);
2025
2026        se_sess = ch->sess;
2027        BUG_ON(!se_sess);
2028
2029        target_sess_cmd_list_set_waiting(se_sess);
2030        target_wait_for_sess_cmds(se_sess);
2031
2032        transport_deregister_session_configfs(se_sess);
2033        transport_deregister_session(se_sess);
2034        ch->sess = NULL;
2035
2036        if (ch->using_rdma_cm)
2037                rdma_destroy_id(ch->rdma_cm.cm_id);
2038        else
2039                ib_destroy_cm_id(ch->ib_cm.cm_id);
2040
2041        srpt_destroy_ch_ib(ch);
2042
2043        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2044                             ch->sport->sdev, ch->rq_size,
2045                             ch->max_rsp_size, DMA_TO_DEVICE);
2046
2047        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2048                             sdev, ch->rq_size,
2049                             srp_max_req_size, DMA_FROM_DEVICE);
2050
2051        sport = ch->sport;
2052        mutex_lock(&sport->mutex);
2053        list_del_rcu(&ch->list);
2054        mutex_unlock(&sport->mutex);
2055
2056        wake_up(&sport->ch_releaseQ);
2057
2058        kref_put(&ch->kref, srpt_free_ch);
2059}
2060
2061/**
2062 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2063 * @sdev: HCA through which the login request was received.
2064 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2065 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2066 * @port_num: Port through which the REQ message was received.
2067 * @pkey: P_Key of the incoming connection.
2068 * @req: SRP login request.
2069 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2070 * the login request.
2071 *
2072 * Ownership of the cm_id is transferred to the target session if this
2073 * function returns zero. Otherwise the caller remains the owner of cm_id.
2074 */
2075static int srpt_cm_req_recv(struct srpt_device *const sdev,
2076                            struct ib_cm_id *ib_cm_id,
2077                            struct rdma_cm_id *rdma_cm_id,
2078                            u8 port_num, __be16 pkey,
2079                            const struct srp_login_req *req,
2080                            const char *src_addr)
2081{
2082        struct srpt_port *sport = &sdev->port[port_num - 1];
2083        struct srpt_nexus *nexus;
2084        struct srp_login_rsp *rsp = NULL;
2085        struct srp_login_rej *rej = NULL;
2086        union {
2087                struct rdma_conn_param rdma_cm;
2088                struct ib_cm_rep_param ib_cm;
2089        } *rep_param = NULL;
2090        struct srpt_rdma_ch *ch;
2091        char i_port_id[36];
2092        u32 it_iu_len;
2093        int i, ret;
2094
2095        WARN_ON_ONCE(irqs_disabled());
2096
2097        if (WARN_ON(!sdev || !req))
2098                return -EINVAL;
2099
2100        it_iu_len = be32_to_cpu(req->req_it_iu_len);
2101
2102        pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2103                req->initiator_port_id, req->target_port_id, it_iu_len,
2104                port_num, &sport->gid, be16_to_cpu(pkey));
2105
2106        nexus = srpt_get_nexus(sport, req->initiator_port_id,
2107                               req->target_port_id);
2108        if (IS_ERR(nexus)) {
2109                ret = PTR_ERR(nexus);
2110                goto out;
2111        }
2112
2113        ret = -ENOMEM;
2114        rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2115        rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2116        rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2117        if (!rsp || !rej || !rep_param)
2118                goto out;
2119
2120        ret = -EINVAL;
2121        if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2122                rej->reason = cpu_to_be32(
2123                                SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2124                pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2125                       it_iu_len, 64, srp_max_req_size);
2126                goto reject;
2127        }
2128
2129        if (!sport->enabled) {
2130                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2131                pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2132                        sport->sdev->device->name, port_num);
2133                goto reject;
2134        }
2135
2136        if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2137            || *(__be64 *)(req->target_port_id + 8) !=
2138               cpu_to_be64(srpt_service_guid)) {
2139                rej->reason = cpu_to_be32(
2140                                SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2141                pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2142                goto reject;
2143        }
2144
2145        ret = -ENOMEM;
2146        ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2147        if (!ch) {
2148                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2149                pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2150                goto reject;
2151        }
2152
2153        kref_init(&ch->kref);
2154        ch->pkey = be16_to_cpu(pkey);
2155        ch->nexus = nexus;
2156        ch->zw_cqe.done = srpt_zerolength_write_done;
2157        INIT_WORK(&ch->release_work, srpt_release_channel_work);
2158        ch->sport = sport;
2159        if (ib_cm_id) {
2160                ch->ib_cm.cm_id = ib_cm_id;
2161                ib_cm_id->context = ch;
2162        } else {
2163                ch->using_rdma_cm = true;
2164                ch->rdma_cm.cm_id = rdma_cm_id;
2165                rdma_cm_id->context = ch;
2166        }
2167        /*
2168         * ch->rq_size should be at least as large as the initiator queue
2169         * depth to avoid that the initiator driver has to report QUEUE_FULL
2170         * to the SCSI mid-layer.
2171         */
2172        ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2173        spin_lock_init(&ch->spinlock);
2174        ch->state = CH_CONNECTING;
2175        INIT_LIST_HEAD(&ch->cmd_wait_list);
2176        ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2177
2178        ch->ioctx_ring = (struct srpt_send_ioctx **)
2179                srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2180                                      sizeof(*ch->ioctx_ring[0]),
2181                                      ch->max_rsp_size, DMA_TO_DEVICE);
2182        if (!ch->ioctx_ring) {
2183                pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2184                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2185                goto free_ch;
2186        }
2187
2188        INIT_LIST_HEAD(&ch->free_list);
2189        for (i = 0; i < ch->rq_size; i++) {
2190                ch->ioctx_ring[i]->ch = ch;
2191                list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2192        }
2193        if (!sdev->use_srq) {
2194                ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2195                        srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2196                                              sizeof(*ch->ioctx_recv_ring[0]),
2197                                              srp_max_req_size,
2198                                              DMA_FROM_DEVICE);
2199                if (!ch->ioctx_recv_ring) {
2200                        pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2201                        rej->reason =
2202                            cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2203                        goto free_ring;
2204                }
2205                for (i = 0; i < ch->rq_size; i++)
2206                        INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2207        }
2208
2209        ret = srpt_create_ch_ib(ch);
2210        if (ret) {
2211                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2212                pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2213                goto free_recv_ring;
2214        }
2215
2216        strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2217        snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2218                        be64_to_cpu(*(__be64 *)nexus->i_port_id),
2219                        be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2220
2221        pr_debug("registering session %s\n", ch->sess_name);
2222
2223        if (sport->port_guid_tpg.se_tpg_wwn)
2224                ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
2225                                                TARGET_PROT_NORMAL,
2226                                                ch->sess_name, ch, NULL);
2227        if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2228                ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2229                                        TARGET_PROT_NORMAL, i_port_id, ch,
2230                                        NULL);
2231        /* Retry without leading "0x" */
2232        if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2233                ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2234                                                TARGET_PROT_NORMAL,
2235                                                i_port_id + 2, ch, NULL);
2236        if (IS_ERR_OR_NULL(ch->sess)) {
2237                ret = PTR_ERR(ch->sess);
2238                pr_info("Rejected login for initiator %s: ret = %d.\n",
2239                        ch->sess_name, ret);
2240                rej->reason = cpu_to_be32(ret == -ENOMEM ?
2241                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2242                                SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2243                goto reject;
2244        }
2245
2246        mutex_lock(&sport->mutex);
2247
2248        if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2249                struct srpt_rdma_ch *ch2;
2250
2251                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2252
2253                list_for_each_entry(ch2, &nexus->ch_list, list) {
2254                        if (srpt_disconnect_ch(ch2) < 0)
2255                                continue;
2256                        pr_info("Relogin - closed existing channel %s\n",
2257                                ch2->sess_name);
2258                        rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2259                }
2260        } else {
2261                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2262        }
2263
2264        list_add_tail_rcu(&ch->list, &nexus->ch_list);
2265
2266        if (!sport->enabled) {
2267                rej->reason = cpu_to_be32(
2268                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2269                pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2270                        sdev->device->name, port_num);
2271                mutex_unlock(&sport->mutex);
2272                goto reject;
2273        }
2274
2275        mutex_unlock(&sport->mutex);
2276
2277        ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2278        if (ret) {
2279                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2280                pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2281                       ret);
2282                goto destroy_ib;
2283        }
2284
2285        pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2286                 ch->sess_name, ch);
2287
2288        /* create srp_login_response */
2289        rsp->opcode = SRP_LOGIN_RSP;
2290        rsp->tag = req->tag;
2291        rsp->max_it_iu_len = req->req_it_iu_len;
2292        rsp->max_ti_iu_len = req->req_it_iu_len;
2293        ch->max_ti_iu_len = it_iu_len;
2294        rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2295                                   SRP_BUF_FORMAT_INDIRECT);
2296        rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2297        atomic_set(&ch->req_lim, ch->rq_size);
2298        atomic_set(&ch->req_lim_delta, 0);
2299
2300        /* create cm reply */
2301        if (ch->using_rdma_cm) {
2302                rep_param->rdma_cm.private_data = (void *)rsp;
2303                rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2304                rep_param->rdma_cm.rnr_retry_count = 7;
2305                rep_param->rdma_cm.flow_control = 1;
2306                rep_param->rdma_cm.responder_resources = 4;
2307                rep_param->rdma_cm.initiator_depth = 4;
2308        } else {
2309                rep_param->ib_cm.qp_num = ch->qp->qp_num;
2310                rep_param->ib_cm.private_data = (void *)rsp;
2311                rep_param->ib_cm.private_data_len = sizeof(*rsp);
2312                rep_param->ib_cm.rnr_retry_count = 7;
2313                rep_param->ib_cm.flow_control = 1;
2314                rep_param->ib_cm.failover_accepted = 0;
2315                rep_param->ib_cm.srq = 1;
2316                rep_param->ib_cm.responder_resources = 4;
2317                rep_param->ib_cm.initiator_depth = 4;
2318        }
2319
2320        /*
2321         * Hold the sport mutex while accepting a connection to avoid that
2322         * srpt_disconnect_ch() is invoked concurrently with this code.
2323         */
2324        mutex_lock(&sport->mutex);
2325        if (sport->enabled && ch->state == CH_CONNECTING) {
2326                if (ch->using_rdma_cm)
2327                        ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2328                else
2329                        ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2330        } else {
2331                ret = -EINVAL;
2332        }
2333        mutex_unlock(&sport->mutex);
2334
2335        switch (ret) {
2336        case 0:
2337                break;
2338        case -EINVAL:
2339                goto reject;
2340        default:
2341                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2342                pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2343                       ret);
2344                goto reject;
2345        }
2346
2347        goto out;
2348
2349destroy_ib:
2350        srpt_destroy_ch_ib(ch);
2351
2352free_recv_ring:
2353        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2354                             ch->sport->sdev, ch->rq_size,
2355                             srp_max_req_size, DMA_FROM_DEVICE);
2356
2357free_ring:
2358        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2359                             ch->sport->sdev, ch->rq_size,
2360                             ch->max_rsp_size, DMA_TO_DEVICE);
2361free_ch:
2362        if (ib_cm_id)
2363                ib_cm_id->context = NULL;
2364        kfree(ch);
2365        ch = NULL;
2366
2367        WARN_ON_ONCE(ret == 0);
2368
2369reject:
2370        pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2371        rej->opcode = SRP_LOGIN_REJ;
2372        rej->tag = req->tag;
2373        rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2374                                   SRP_BUF_FORMAT_INDIRECT);
2375
2376        if (rdma_cm_id)
2377                rdma_reject(rdma_cm_id, rej, sizeof(*rej));
2378        else
2379                ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2380                               rej, sizeof(*rej));
2381
2382out:
2383        kfree(rep_param);
2384        kfree(rsp);
2385        kfree(rej);
2386
2387        return ret;
2388}
2389
2390static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2391                               struct ib_cm_req_event_param *param,
2392                               void *private_data)
2393{
2394        char sguid[40];
2395
2396        srpt_format_guid(sguid, sizeof(sguid),
2397                         &param->primary_path->dgid.global.interface_id);
2398
2399        return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2400                                param->primary_path->pkey,
2401                                private_data, sguid);
2402}
2403
2404static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2405                                 struct rdma_cm_event *event)
2406{
2407        struct srpt_device *sdev;
2408        struct srp_login_req req;
2409        const struct srp_login_req_rdma *req_rdma;
2410        char src_addr[40];
2411
2412        sdev = ib_get_client_data(cm_id->device, &srpt_client);
2413        if (!sdev)
2414                return -ECONNREFUSED;
2415
2416        if (event->param.conn.private_data_len < sizeof(*req_rdma))
2417                return -EINVAL;
2418
2419        /* Transform srp_login_req_rdma into srp_login_req. */
2420        req_rdma = event->param.conn.private_data;
2421        memset(&req, 0, sizeof(req));
2422        req.opcode              = req_rdma->opcode;
2423        req.tag                 = req_rdma->tag;
2424        req.req_it_iu_len       = req_rdma->req_it_iu_len;
2425        req.req_buf_fmt         = req_rdma->req_buf_fmt;
2426        req.req_flags           = req_rdma->req_flags;
2427        memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2428        memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2429
2430        snprintf(src_addr, sizeof(src_addr), "%pIS",
2431                 &cm_id->route.addr.src_addr);
2432
2433        return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2434                                cm_id->route.path_rec->pkey, &req, src_addr);
2435}
2436
2437static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2438                             enum ib_cm_rej_reason reason,
2439                             const u8 *private_data,
2440                             u8 private_data_len)
2441{
2442        char *priv = NULL;
2443        int i;
2444
2445        if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2446                                                GFP_KERNEL))) {
2447                for (i = 0; i < private_data_len; i++)
2448                        sprintf(priv + 3 * i, " %02x", private_data[i]);
2449        }
2450        pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2451                ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2452                "; private data" : "", priv ? priv : " (?)");
2453        kfree(priv);
2454}
2455
2456/**
2457 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2458 * @ch: SRPT RDMA channel.
2459 *
2460 * An RTU (ready to use) message indicates that the connection has been
2461 * established and that the recipient may begin transmitting.
2462 */
2463static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2464{
2465        int ret;
2466
2467        ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2468        if (ret < 0) {
2469                pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2470                       ch->qp->qp_num);
2471                srpt_close_ch(ch);
2472                return;
2473        }
2474
2475        /*
2476         * Note: calling srpt_close_ch() if the transition to the LIVE state
2477         * fails is not necessary since that means that that function has
2478         * already been invoked from another thread.
2479         */
2480        if (!srpt_set_ch_state(ch, CH_LIVE)) {
2481                pr_err("%s-%d: channel transition to LIVE state failed\n",
2482                       ch->sess_name, ch->qp->qp_num);
2483                return;
2484        }
2485
2486        /* Trigger wait list processing. */
2487        ret = srpt_zerolength_write(ch);
2488        WARN_ONCE(ret < 0, "%d\n", ret);
2489}
2490
2491/**
2492 * srpt_cm_handler - IB connection manager callback function
2493 * @cm_id: IB/CM connection identifier.
2494 * @event: IB/CM event.
2495 *
2496 * A non-zero return value will cause the caller destroy the CM ID.
2497 *
2498 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2499 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2500 * a non-zero value in any other case will trigger a race with the
2501 * ib_destroy_cm_id() call in srpt_release_channel().
2502 */
2503static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2504{
2505        struct srpt_rdma_ch *ch = cm_id->context;
2506        int ret;
2507
2508        ret = 0;
2509        switch (event->event) {
2510        case IB_CM_REQ_RECEIVED:
2511                ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2512                                          event->private_data);
2513                break;
2514        case IB_CM_REJ_RECEIVED:
2515                srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2516                                 event->private_data,
2517                                 IB_CM_REJ_PRIVATE_DATA_SIZE);
2518                break;
2519        case IB_CM_RTU_RECEIVED:
2520        case IB_CM_USER_ESTABLISHED:
2521                srpt_cm_rtu_recv(ch);
2522                break;
2523        case IB_CM_DREQ_RECEIVED:
2524                srpt_disconnect_ch(ch);
2525                break;
2526        case IB_CM_DREP_RECEIVED:
2527                pr_info("Received CM DREP message for ch %s-%d.\n",
2528                        ch->sess_name, ch->qp->qp_num);
2529                srpt_close_ch(ch);
2530                break;
2531        case IB_CM_TIMEWAIT_EXIT:
2532                pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2533                        ch->sess_name, ch->qp->qp_num);
2534                srpt_close_ch(ch);
2535                break;
2536        case IB_CM_REP_ERROR:
2537                pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2538                        ch->qp->qp_num);
2539                break;
2540        case IB_CM_DREQ_ERROR:
2541                pr_info("Received CM DREQ ERROR event.\n");
2542                break;
2543        case IB_CM_MRA_RECEIVED:
2544                pr_info("Received CM MRA event\n");
2545                break;
2546        default:
2547                pr_err("received unrecognized CM event %d\n", event->event);
2548                break;
2549        }
2550
2551        return ret;
2552}
2553
2554static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2555                                struct rdma_cm_event *event)
2556{
2557        struct srpt_rdma_ch *ch = cm_id->context;
2558        int ret = 0;
2559
2560        switch (event->event) {
2561        case RDMA_CM_EVENT_CONNECT_REQUEST:
2562                ret = srpt_rdma_cm_req_recv(cm_id, event);
2563                break;
2564        case RDMA_CM_EVENT_REJECTED:
2565                srpt_cm_rej_recv(ch, event->status,
2566                                 event->param.conn.private_data,
2567                                 event->param.conn.private_data_len);
2568                break;
2569        case RDMA_CM_EVENT_ESTABLISHED:
2570                srpt_cm_rtu_recv(ch);
2571                break;
2572        case RDMA_CM_EVENT_DISCONNECTED:
2573                if (ch->state < CH_DISCONNECTING)
2574                        srpt_disconnect_ch(ch);
2575                else
2576                        srpt_close_ch(ch);
2577                break;
2578        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2579                srpt_close_ch(ch);
2580                break;
2581        case RDMA_CM_EVENT_UNREACHABLE:
2582                pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2583                        ch->qp->qp_num);
2584                break;
2585        case RDMA_CM_EVENT_DEVICE_REMOVAL:
2586        case RDMA_CM_EVENT_ADDR_CHANGE:
2587                break;
2588        default:
2589                pr_err("received unrecognized RDMA CM event %d\n",
2590                       event->event);
2591                break;
2592        }
2593
2594        return ret;
2595}
2596
2597static int srpt_write_pending_status(struct se_cmd *se_cmd)
2598{
2599        struct srpt_send_ioctx *ioctx;
2600
2601        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2602        return ioctx->state == SRPT_STATE_NEED_DATA;
2603}
2604
2605/*
2606 * srpt_write_pending - Start data transfer from initiator to target (write).
2607 */
2608static int srpt_write_pending(struct se_cmd *se_cmd)
2609{
2610        struct srpt_send_ioctx *ioctx =
2611                container_of(se_cmd, struct srpt_send_ioctx, cmd);
2612        struct srpt_rdma_ch *ch = ioctx->ch;
2613        struct ib_send_wr *first_wr = NULL, *bad_wr;
2614        struct ib_cqe *cqe = &ioctx->rdma_cqe;
2615        enum srpt_command_state new_state;
2616        int ret, i;
2617
2618        new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2619        WARN_ON(new_state == SRPT_STATE_DONE);
2620
2621        if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2622                pr_warn("%s: IB send queue full (needed %d)\n",
2623                                __func__, ioctx->n_rdma);
2624                ret = -ENOMEM;
2625                goto out_undo;
2626        }
2627
2628        cqe->done = srpt_rdma_read_done;
2629        for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2630                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2631
2632                first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2633                                cqe, first_wr);
2634                cqe = NULL;
2635        }
2636
2637        ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2638        if (ret) {
2639                pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2640                         __func__, ret, ioctx->n_rdma,
2641                         atomic_read(&ch->sq_wr_avail));
2642                goto out_undo;
2643        }
2644
2645        return 0;
2646out_undo:
2647        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2648        return ret;
2649}
2650
2651static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2652{
2653        switch (tcm_mgmt_status) {
2654        case TMR_FUNCTION_COMPLETE:
2655                return SRP_TSK_MGMT_SUCCESS;
2656        case TMR_FUNCTION_REJECTED:
2657                return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2658        }
2659        return SRP_TSK_MGMT_FAILED;
2660}
2661
2662/**
2663 * srpt_queue_response - transmit the response to a SCSI command
2664 * @cmd: SCSI target command.
2665 *
2666 * Callback function called by the TCM core. Must not block since it can be
2667 * invoked on the context of the IB completion handler.
2668 */
2669static void srpt_queue_response(struct se_cmd *cmd)
2670{
2671        struct srpt_send_ioctx *ioctx =
2672                container_of(cmd, struct srpt_send_ioctx, cmd);
2673        struct srpt_rdma_ch *ch = ioctx->ch;
2674        struct srpt_device *sdev = ch->sport->sdev;
2675        struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2676        struct ib_sge sge;
2677        enum srpt_command_state state;
2678        int resp_len, ret, i;
2679        u8 srp_tm_status;
2680
2681        BUG_ON(!ch);
2682
2683        state = ioctx->state;
2684        switch (state) {
2685        case SRPT_STATE_NEW:
2686        case SRPT_STATE_DATA_IN:
2687                ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2688                break;
2689        case SRPT_STATE_MGMT:
2690                ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2691                break;
2692        default:
2693                WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2694                        ch, ioctx->ioctx.index, ioctx->state);
2695                break;
2696        }
2697
2698        if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2699                return;
2700
2701        /* For read commands, transfer the data to the initiator. */
2702        if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2703            ioctx->cmd.data_length &&
2704            !ioctx->queue_status_only) {
2705                for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2706                        struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2707
2708                        first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2709                                        ch->sport->port, NULL, first_wr);
2710                }
2711        }
2712
2713        if (state != SRPT_STATE_MGMT)
2714                resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2715                                              cmd->scsi_status);
2716        else {
2717                srp_tm_status
2718                        = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2719                resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2720                                                 ioctx->cmd.tag);
2721        }
2722
2723        atomic_inc(&ch->req_lim);
2724
2725        if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2726                        &ch->sq_wr_avail) < 0)) {
2727                pr_warn("%s: IB send queue full (needed %d)\n",
2728                                __func__, ioctx->n_rdma);
2729                ret = -ENOMEM;
2730                goto out;
2731        }
2732
2733        ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2734                                      DMA_TO_DEVICE);
2735
2736        sge.addr = ioctx->ioctx.dma;
2737        sge.length = resp_len;
2738        sge.lkey = sdev->lkey;
2739
2740        ioctx->ioctx.cqe.done = srpt_send_done;
2741        send_wr.next = NULL;
2742        send_wr.wr_cqe = &ioctx->ioctx.cqe;
2743        send_wr.sg_list = &sge;
2744        send_wr.num_sge = 1;
2745        send_wr.opcode = IB_WR_SEND;
2746        send_wr.send_flags = IB_SEND_SIGNALED;
2747
2748        ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2749        if (ret < 0) {
2750                pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2751                        __func__, ioctx->cmd.tag, ret);
2752                goto out;
2753        }
2754
2755        return;
2756
2757out:
2758        atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2759        atomic_dec(&ch->req_lim);
2760        srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2761        target_put_sess_cmd(&ioctx->cmd);
2762}
2763
2764static int srpt_queue_data_in(struct se_cmd *cmd)
2765{
2766        srpt_queue_response(cmd);
2767        return 0;
2768}
2769
2770static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2771{
2772        srpt_queue_response(cmd);
2773}
2774
2775static void srpt_aborted_task(struct se_cmd *cmd)
2776{
2777}
2778
2779static int srpt_queue_status(struct se_cmd *cmd)
2780{
2781        struct srpt_send_ioctx *ioctx;
2782
2783        ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2784        BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2785        if (cmd->se_cmd_flags &
2786            (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2787                WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2788        ioctx->queue_status_only = true;
2789        srpt_queue_response(cmd);
2790        return 0;
2791}
2792
2793static void srpt_refresh_port_work(struct work_struct *work)
2794{
2795        struct srpt_port *sport = container_of(work, struct srpt_port, work);
2796
2797        srpt_refresh_port(sport);
2798}
2799
2800static bool srpt_ch_list_empty(struct srpt_port *sport)
2801{
2802        struct srpt_nexus *nexus;
2803        bool res = true;
2804
2805        rcu_read_lock();
2806        list_for_each_entry(nexus, &sport->nexus_list, entry)
2807                if (!list_empty(&nexus->ch_list))
2808                        res = false;
2809        rcu_read_unlock();
2810
2811        return res;
2812}
2813
2814/**
2815 * srpt_release_sport - disable login and wait for associated channels
2816 * @sport: SRPT HCA port.
2817 */
2818static int srpt_release_sport(struct srpt_port *sport)
2819{
2820        struct srpt_nexus *nexus, *next_n;
2821        struct srpt_rdma_ch *ch;
2822
2823        WARN_ON_ONCE(irqs_disabled());
2824
2825        mutex_lock(&sport->mutex);
2826        srpt_set_enabled(sport, false);
2827        mutex_unlock(&sport->mutex);
2828
2829        while (wait_event_timeout(sport->ch_releaseQ,
2830                                  srpt_ch_list_empty(sport), 5 * HZ) <= 0) {
2831                pr_info("%s_%d: waiting for session unregistration ...\n",
2832                        sport->sdev->device->name, sport->port);
2833                rcu_read_lock();
2834                list_for_each_entry(nexus, &sport->nexus_list, entry) {
2835                        list_for_each_entry(ch, &nexus->ch_list, list) {
2836                                pr_info("%s-%d: state %s\n",
2837                                        ch->sess_name, ch->qp->qp_num,
2838                                        get_ch_state_name(ch->state));
2839                        }
2840                }
2841                rcu_read_unlock();
2842        }
2843
2844        mutex_lock(&sport->mutex);
2845        list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2846                list_del(&nexus->entry);
2847                kfree_rcu(nexus, rcu);
2848        }
2849        mutex_unlock(&sport->mutex);
2850
2851        return 0;
2852}
2853
2854static struct se_wwn *__srpt_lookup_wwn(const char *name)
2855{
2856        struct ib_device *dev;
2857        struct srpt_device *sdev;
2858        struct srpt_port *sport;
2859        int i;
2860
2861        list_for_each_entry(sdev, &srpt_dev_list, list) {
2862                dev = sdev->device;
2863                if (!dev)
2864                        continue;
2865
2866                for (i = 0; i < dev->phys_port_cnt; i++) {
2867                        sport = &sdev->port[i];
2868
2869                        if (strcmp(sport->port_guid, name) == 0)
2870                                return &sport->port_guid_wwn;
2871                        if (strcmp(sport->port_gid, name) == 0)
2872                                return &sport->port_gid_wwn;
2873                }
2874        }
2875
2876        return NULL;
2877}
2878
2879static struct se_wwn *srpt_lookup_wwn(const char *name)
2880{
2881        struct se_wwn *wwn;
2882
2883        spin_lock(&srpt_dev_lock);
2884        wwn = __srpt_lookup_wwn(name);
2885        spin_unlock(&srpt_dev_lock);
2886
2887        return wwn;
2888}
2889
2890static void srpt_free_srq(struct srpt_device *sdev)
2891{
2892        if (!sdev->srq)
2893                return;
2894
2895        ib_destroy_srq(sdev->srq);
2896        srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2897                             sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
2898        sdev->srq = NULL;
2899}
2900
2901static int srpt_alloc_srq(struct srpt_device *sdev)
2902{
2903        struct ib_srq_init_attr srq_attr = {
2904                .event_handler = srpt_srq_event,
2905                .srq_context = (void *)sdev,
2906                .attr.max_wr = sdev->srq_size,
2907                .attr.max_sge = 1,
2908                .srq_type = IB_SRQT_BASIC,
2909        };
2910        struct ib_device *device = sdev->device;
2911        struct ib_srq *srq;
2912        int i;
2913
2914        WARN_ON_ONCE(sdev->srq);
2915        srq = ib_create_srq(sdev->pd, &srq_attr);
2916        if (IS_ERR(srq)) {
2917                pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
2918                return PTR_ERR(srq);
2919        }
2920
2921        pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
2922                 sdev->device->attrs.max_srq_wr, device->name);
2923
2924        sdev->ioctx_ring = (struct srpt_recv_ioctx **)
2925                srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
2926                                      sizeof(*sdev->ioctx_ring[0]),
2927                                      srp_max_req_size, DMA_FROM_DEVICE);
2928        if (!sdev->ioctx_ring) {
2929                ib_destroy_srq(srq);
2930                return -ENOMEM;
2931        }
2932
2933        sdev->use_srq = true;
2934        sdev->srq = srq;
2935
2936        for (i = 0; i < sdev->srq_size; ++i) {
2937                INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
2938                srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
2939        }
2940
2941        return 0;
2942}
2943
2944static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
2945{
2946        struct ib_device *device = sdev->device;
2947        int ret = 0;
2948
2949        if (!use_srq) {
2950                srpt_free_srq(sdev);
2951                sdev->use_srq = false;
2952        } else if (use_srq && !sdev->srq) {
2953                ret = srpt_alloc_srq(sdev);
2954        }
2955        pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
2956                 sdev->use_srq, ret);
2957        return ret;
2958}
2959
2960/**
2961 * srpt_add_one - InfiniBand device addition callback function
2962 * @device: Describes a HCA.
2963 */
2964static void srpt_add_one(struct ib_device *device)
2965{
2966        struct srpt_device *sdev;
2967        struct srpt_port *sport;
2968        int i, ret;
2969
2970        pr_debug("device = %p\n", device);
2971
2972        sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2973        if (!sdev)
2974                goto err;
2975
2976        sdev->device = device;
2977        mutex_init(&sdev->sdev_mutex);
2978
2979        sdev->pd = ib_alloc_pd(device, 0);
2980        if (IS_ERR(sdev->pd))
2981                goto free_dev;
2982
2983        sdev->lkey = sdev->pd->local_dma_lkey;
2984
2985        sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2986
2987        srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2988
2989        if (!srpt_service_guid)
2990                srpt_service_guid = be64_to_cpu(device->node_guid);
2991
2992        if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
2993                sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
2994        if (IS_ERR(sdev->cm_id)) {
2995                pr_info("ib_create_cm_id() failed: %ld\n",
2996                        PTR_ERR(sdev->cm_id));
2997                sdev->cm_id = NULL;
2998                if (!rdma_cm_id)
2999                        goto err_ring;
3000        }
3001
3002        /* print out target login information */
3003        pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3004                 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3005                 srpt_service_guid, srpt_service_guid);
3006
3007        /*
3008         * We do not have a consistent service_id (ie. also id_ext of target_id)
3009         * to identify this target. We currently use the guid of the first HCA
3010         * in the system as service_id; therefore, the target_id will change
3011         * if this HCA is gone bad and replaced by different HCA
3012         */
3013        ret = sdev->cm_id ?
3014                ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3015                0;
3016        if (ret < 0) {
3017                pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3018                       sdev->cm_id->state);
3019                goto err_cm;
3020        }
3021
3022        INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3023                              srpt_event_handler);
3024        ib_register_event_handler(&sdev->event_handler);
3025
3026        WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3027
3028        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3029                sport = &sdev->port[i - 1];
3030                INIT_LIST_HEAD(&sport->nexus_list);
3031                init_waitqueue_head(&sport->ch_releaseQ);
3032                mutex_init(&sport->mutex);
3033                sport->sdev = sdev;
3034                sport->port = i;
3035                sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3036                sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3037                sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3038                sport->port_attrib.use_srq = false;
3039                INIT_WORK(&sport->work, srpt_refresh_port_work);
3040
3041                if (srpt_refresh_port(sport)) {
3042                        pr_err("MAD registration failed for %s-%d.\n",
3043                               sdev->device->name, i);
3044                        goto err_event;
3045                }
3046        }
3047
3048        spin_lock(&srpt_dev_lock);
3049        list_add_tail(&sdev->list, &srpt_dev_list);
3050        spin_unlock(&srpt_dev_lock);
3051
3052out:
3053        ib_set_client_data(device, &srpt_client, sdev);
3054        pr_debug("added %s.\n", device->name);
3055        return;
3056
3057err_event:
3058        ib_unregister_event_handler(&sdev->event_handler);
3059err_cm:
3060        if (sdev->cm_id)
3061                ib_destroy_cm_id(sdev->cm_id);
3062err_ring:
3063        srpt_free_srq(sdev);
3064        ib_dealloc_pd(sdev->pd);
3065free_dev:
3066        kfree(sdev);
3067err:
3068        sdev = NULL;
3069        pr_info("%s(%s) failed.\n", __func__, device->name);
3070        goto out;
3071}
3072
3073/**
3074 * srpt_remove_one - InfiniBand device removal callback function
3075 * @device: Describes a HCA.
3076 * @client_data: The value passed as the third argument to ib_set_client_data().
3077 */
3078static void srpt_remove_one(struct ib_device *device, void *client_data)
3079{
3080        struct srpt_device *sdev = client_data;
3081        int i;
3082
3083        if (!sdev) {
3084                pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3085                return;
3086        }
3087
3088        srpt_unregister_mad_agent(sdev);
3089
3090        ib_unregister_event_handler(&sdev->event_handler);
3091
3092        /* Cancel any work queued by the just unregistered IB event handler. */
3093        for (i = 0; i < sdev->device->phys_port_cnt; i++)
3094                cancel_work_sync(&sdev->port[i].work);
3095
3096        if (sdev->cm_id)
3097                ib_destroy_cm_id(sdev->cm_id);
3098
3099        ib_set_client_data(device, &srpt_client, NULL);
3100
3101        /*
3102         * Unregistering a target must happen after destroying sdev->cm_id
3103         * such that no new SRP_LOGIN_REQ information units can arrive while
3104         * destroying the target.
3105         */
3106        spin_lock(&srpt_dev_lock);
3107        list_del(&sdev->list);
3108        spin_unlock(&srpt_dev_lock);
3109
3110        for (i = 0; i < sdev->device->phys_port_cnt; i++)
3111                srpt_release_sport(&sdev->port[i]);
3112
3113        srpt_free_srq(sdev);
3114
3115        ib_dealloc_pd(sdev->pd);
3116
3117        kfree(sdev);
3118}
3119
3120static struct ib_client srpt_client = {
3121        .name = DRV_NAME,
3122        .add = srpt_add_one,
3123        .remove = srpt_remove_one
3124};
3125
3126static int srpt_check_true(struct se_portal_group *se_tpg)
3127{
3128        return 1;
3129}
3130
3131static int srpt_check_false(struct se_portal_group *se_tpg)
3132{
3133        return 0;
3134}
3135
3136static char *srpt_get_fabric_name(void)
3137{
3138        return "srpt";
3139}
3140
3141static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3142{
3143        return tpg->se_tpg_wwn->priv;
3144}
3145
3146static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3147{
3148        struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3149
3150        WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
3151                     tpg != &sport->port_gid_tpg);
3152        return tpg == &sport->port_guid_tpg ? sport->port_guid :
3153                sport->port_gid;
3154}
3155
3156static u16 srpt_get_tag(struct se_portal_group *tpg)
3157{
3158        return 1;
3159}
3160
3161static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3162{
3163        return 1;
3164}
3165
3166static void srpt_release_cmd(struct se_cmd *se_cmd)
3167{
3168        struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3169                                struct srpt_send_ioctx, cmd);
3170        struct srpt_rdma_ch *ch = ioctx->ch;
3171        unsigned long flags;
3172
3173        WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3174                     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3175
3176        if (ioctx->n_rw_ctx) {
3177                srpt_free_rw_ctxs(ch, ioctx);
3178                ioctx->n_rw_ctx = 0;
3179        }
3180
3181        spin_lock_irqsave(&ch->spinlock, flags);
3182        list_add(&ioctx->free_list, &ch->free_list);
3183        spin_unlock_irqrestore(&ch->spinlock, flags);
3184}
3185
3186/**
3187 * srpt_close_session - forcibly close a session
3188 * @se_sess: SCSI target session.
3189 *
3190 * Callback function invoked by the TCM core to clean up sessions associated
3191 * with a node ACL when the user invokes
3192 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3193 */
3194static void srpt_close_session(struct se_session *se_sess)
3195{
3196        struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3197
3198        srpt_disconnect_ch_sync(ch);
3199}
3200
3201/**
3202 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3203 * @se_sess: SCSI target session.
3204 *
3205 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3206 * This object represents an arbitrary integer used to uniquely identify a
3207 * particular attached remote initiator port to a particular SCSI target port
3208 * within a particular SCSI target device within a particular SCSI instance.
3209 */
3210static u32 srpt_sess_get_index(struct se_session *se_sess)
3211{
3212        return 0;
3213}
3214
3215static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3216{
3217}
3218
3219/* Note: only used from inside debug printk's by the TCM core. */
3220static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3221{
3222        struct srpt_send_ioctx *ioctx;
3223
3224        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3225        return ioctx->state;
3226}
3227
3228static int srpt_parse_guid(u64 *guid, const char *name)
3229{
3230        u16 w[4];
3231        int ret = -EINVAL;
3232
3233        if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3234                goto out;
3235        *guid = get_unaligned_be64(w);
3236        ret = 0;
3237out:
3238        return ret;
3239}
3240
3241/**
3242 * srpt_parse_i_port_id - parse an initiator port ID
3243 * @name: ASCII representation of a 128-bit initiator port ID.
3244 * @i_port_id: Binary 128-bit port ID.
3245 */
3246static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3247{
3248        const char *p;
3249        unsigned len, count, leading_zero_bytes;
3250        int ret;
3251
3252        p = name;
3253        if (strncasecmp(p, "0x", 2) == 0)
3254                p += 2;
3255        ret = -EINVAL;
3256        len = strlen(p);
3257        if (len % 2)
3258                goto out;
3259        count = min(len / 2, 16U);
3260        leading_zero_bytes = 16 - count;
3261        memset(i_port_id, 0, leading_zero_bytes);
3262        ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3263
3264out:
3265        return ret;
3266}
3267
3268/*
3269 * configfs callback function invoked for mkdir
3270 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3271 *
3272 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3273 * target_alloc_session() calls in this driver. Examples of valid initiator
3274 * port IDs:
3275 * 0x0000000000000000505400fffe4a0b7b
3276 * 0000000000000000505400fffe4a0b7b
3277 * 5054:00ff:fe4a:0b7b
3278 * 192.168.122.76
3279 */
3280static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3281{
3282        struct sockaddr_storage sa;
3283        u64 guid;
3284        u8 i_port_id[16];
3285        int ret;
3286
3287        ret = srpt_parse_guid(&guid, name);
3288        if (ret < 0)
3289                ret = srpt_parse_i_port_id(i_port_id, name);
3290        if (ret < 0)
3291                ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3292                                           &sa);
3293        if (ret < 0)
3294                pr_err("invalid initiator port ID %s\n", name);
3295        return ret;
3296}
3297
3298static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3299                char *page)
3300{
3301        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3302        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3303
3304        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3305}
3306
3307static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3308                const char *page, size_t count)
3309{
3310        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3311        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3312        unsigned long val;
3313        int ret;
3314
3315        ret = kstrtoul(page, 0, &val);
3316        if (ret < 0) {
3317                pr_err("kstrtoul() failed with ret: %d\n", ret);
3318                return -EINVAL;
3319        }
3320        if (val > MAX_SRPT_RDMA_SIZE) {
3321                pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3322                        MAX_SRPT_RDMA_SIZE);
3323                return -EINVAL;
3324        }
3325        if (val < DEFAULT_MAX_RDMA_SIZE) {
3326                pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3327                        val, DEFAULT_MAX_RDMA_SIZE);
3328                return -EINVAL;
3329        }
3330        sport->port_attrib.srp_max_rdma_size = val;
3331
3332        return count;
3333}
3334
3335static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3336                char *page)
3337{
3338        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3339        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3340
3341        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3342}
3343
3344static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3345                const char *page, size_t count)
3346{
3347        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3348        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3349        unsigned long val;
3350        int ret;
3351
3352        ret = kstrtoul(page, 0, &val);
3353        if (ret < 0) {
3354                pr_err("kstrtoul() failed with ret: %d\n", ret);
3355                return -EINVAL;
3356        }
3357        if (val > MAX_SRPT_RSP_SIZE) {
3358                pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3359                        MAX_SRPT_RSP_SIZE);
3360                return -EINVAL;
3361        }
3362        if (val < MIN_MAX_RSP_SIZE) {
3363                pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3364                        MIN_MAX_RSP_SIZE);
3365                return -EINVAL;
3366        }
3367        sport->port_attrib.srp_max_rsp_size = val;
3368
3369        return count;
3370}
3371
3372static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3373                char *page)
3374{
3375        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3376        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3377
3378        return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3379}
3380
3381static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3382                const char *page, size_t count)
3383{
3384        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3385        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3386        unsigned long val;
3387        int ret;
3388
3389        ret = kstrtoul(page, 0, &val);
3390        if (ret < 0) {
3391                pr_err("kstrtoul() failed with ret: %d\n", ret);
3392                return -EINVAL;
3393        }
3394        if (val > MAX_SRPT_SRQ_SIZE) {
3395                pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3396                        MAX_SRPT_SRQ_SIZE);
3397                return -EINVAL;
3398        }
3399        if (val < MIN_SRPT_SRQ_SIZE) {
3400                pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3401                        MIN_SRPT_SRQ_SIZE);
3402                return -EINVAL;
3403        }
3404        sport->port_attrib.srp_sq_size = val;
3405
3406        return count;
3407}
3408
3409static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3410                                            char *page)
3411{
3412        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3413        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3414
3415        return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3416}
3417
3418static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3419                                             const char *page, size_t count)
3420{
3421        struct se_portal_group *se_tpg = attrib_to_tpg(item);
3422        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3423        struct srpt_device *sdev = sport->sdev;
3424        unsigned long val;
3425        bool enabled;
3426        int ret;
3427
3428        ret = kstrtoul(page, 0, &val);
3429        if (ret < 0)
3430                return ret;
3431        if (val != !!val)
3432                return -EINVAL;
3433
3434        ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3435        if (ret < 0)
3436                return ret;
3437        ret = mutex_lock_interruptible(&sport->mutex);
3438        if (ret < 0)
3439                goto unlock_sdev;
3440        enabled = sport->enabled;
3441        /* Log out all initiator systems before changing 'use_srq'. */
3442        srpt_set_enabled(sport, false);
3443        sport->port_attrib.use_srq = val;
3444        srpt_use_srq(sdev, sport->port_attrib.use_srq);
3445        srpt_set_enabled(sport, enabled);
3446        ret = count;
3447        mutex_unlock(&sport->mutex);
3448unlock_sdev:
3449        mutex_unlock(&sdev->sdev_mutex);
3450
3451        return ret;
3452}
3453
3454CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3455CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3456CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3457CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3458
3459static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3460        &srpt_tpg_attrib_attr_srp_max_rdma_size,
3461        &srpt_tpg_attrib_attr_srp_max_rsp_size,
3462        &srpt_tpg_attrib_attr_srp_sq_size,
3463        &srpt_tpg_attrib_attr_use_srq,
3464        NULL,
3465};
3466
3467static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3468{
3469        struct rdma_cm_id *rdma_cm_id;
3470        int ret;
3471
3472        rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3473                                    NULL, RDMA_PS_TCP, IB_QPT_RC);
3474        if (IS_ERR(rdma_cm_id)) {
3475                pr_err("RDMA/CM ID creation failed: %ld\n",
3476                       PTR_ERR(rdma_cm_id));
3477                goto out;
3478        }
3479
3480        ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3481        if (ret) {
3482                char addr_str[64];
3483
3484                snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3485                pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3486                       addr_str, ret);
3487                rdma_destroy_id(rdma_cm_id);
3488                rdma_cm_id = ERR_PTR(ret);
3489                goto out;
3490        }
3491
3492        ret = rdma_listen(rdma_cm_id, 128);
3493        if (ret) {
3494                pr_err("rdma_listen() failed: %d\n", ret);
3495                rdma_destroy_id(rdma_cm_id);
3496                rdma_cm_id = ERR_PTR(ret);
3497        }
3498
3499out:
3500        return rdma_cm_id;
3501}
3502
3503static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3504{
3505        return sprintf(page, "%d\n", rdma_cm_port);
3506}
3507
3508static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3509                                       const char *page, size_t count)
3510{
3511        struct sockaddr_in  addr4 = { .sin_family  = AF_INET  };
3512        struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3513        struct rdma_cm_id *new_id = NULL;
3514        u16 val;
3515        int ret;
3516
3517        ret = kstrtou16(page, 0, &val);
3518        if (ret < 0)
3519                return ret;
3520        ret = count;
3521        if (rdma_cm_port == val)
3522                goto out;
3523
3524        if (val) {
3525                addr6.sin6_port = cpu_to_be16(val);
3526                new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3527                if (IS_ERR(new_id)) {
3528                        addr4.sin_port = cpu_to_be16(val);
3529                        new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3530                        if (IS_ERR(new_id)) {
3531                                ret = PTR_ERR(new_id);
3532                                goto out;
3533                        }
3534                }
3535        }
3536
3537        mutex_lock(&rdma_cm_mutex);
3538        rdma_cm_port = val;
3539        swap(rdma_cm_id, new_id);
3540        mutex_unlock(&rdma_cm_mutex);
3541
3542        if (new_id)
3543                rdma_destroy_id(new_id);
3544        ret = count;
3545out:
3546        return ret;
3547}
3548
3549CONFIGFS_ATTR(srpt_, rdma_cm_port);
3550
3551static struct configfs_attribute *srpt_da_attrs[] = {
3552        &srpt_attr_rdma_cm_port,
3553        NULL,
3554};
3555
3556static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3557{
3558        struct se_portal_group *se_tpg = to_tpg(item);
3559        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3560
3561        return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3562}
3563
3564static ssize_t srpt_tpg_enable_store(struct config_item *item,
3565                const char *page, size_t count)
3566{
3567        struct se_portal_group *se_tpg = to_tpg(item);
3568        struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3569        unsigned long tmp;
3570        int ret;
3571
3572        ret = kstrtoul(page, 0, &tmp);
3573        if (ret < 0) {
3574                pr_err("Unable to extract srpt_tpg_store_enable\n");
3575                return -EINVAL;
3576        }
3577
3578        if ((tmp != 0) && (tmp != 1)) {
3579                pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3580                return -EINVAL;
3581        }
3582
3583        mutex_lock(&sport->mutex);
3584        srpt_set_enabled(sport, tmp);
3585        mutex_unlock(&sport->mutex);
3586
3587        return count;
3588}
3589
3590CONFIGFS_ATTR(srpt_tpg_, enable);
3591
3592static struct configfs_attribute *srpt_tpg_attrs[] = {
3593        &srpt_tpg_attr_enable,
3594        NULL,
3595};
3596
3597/**
3598 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3599 * @wwn: Corresponds to $driver/$port.
3600 * @group: Not used.
3601 * @name: $tpg.
3602 */
3603static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3604                                             struct config_group *group,
3605                                             const char *name)
3606{
3607        struct srpt_port *sport = wwn->priv;
3608        static struct se_portal_group *tpg;
3609        int res;
3610
3611        WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
3612                     wwn != &sport->port_gid_wwn);
3613        tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
3614                &sport->port_gid_tpg;
3615        res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3616        if (res)
3617                return ERR_PTR(res);
3618
3619        return tpg;
3620}
3621
3622/**
3623 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3624 * @tpg: Target portal group to deregister.
3625 */
3626static void srpt_drop_tpg(struct se_portal_group *tpg)
3627{
3628        struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3629
3630        sport->enabled = false;
3631        core_tpg_deregister(tpg);
3632}
3633
3634/**
3635 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3636 * @tf: Not used.
3637 * @group: Not used.
3638 * @name: $port.
3639 */
3640static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3641                                      struct config_group *group,
3642                                      const char *name)
3643{
3644        return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3645}
3646
3647/**
3648 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3649 * @wwn: $port.
3650 */
3651static void srpt_drop_tport(struct se_wwn *wwn)
3652{
3653}
3654
3655static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3656{
3657        return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3658}
3659
3660CONFIGFS_ATTR_RO(srpt_wwn_, version);
3661
3662static struct configfs_attribute *srpt_wwn_attrs[] = {
3663        &srpt_wwn_attr_version,
3664        NULL,
3665};
3666
3667static const struct target_core_fabric_ops srpt_template = {
3668        .module                         = THIS_MODULE,
3669        .name                           = "srpt",
3670        .get_fabric_name                = srpt_get_fabric_name,
3671        .tpg_get_wwn                    = srpt_get_fabric_wwn,
3672        .tpg_get_tag                    = srpt_get_tag,
3673        .tpg_check_demo_mode            = srpt_check_false,
3674        .tpg_check_demo_mode_cache      = srpt_check_true,
3675        .tpg_check_demo_mode_write_protect = srpt_check_true,
3676        .tpg_check_prod_mode_write_protect = srpt_check_false,
3677        .tpg_get_inst_index             = srpt_tpg_get_inst_index,
3678        .release_cmd                    = srpt_release_cmd,
3679        .check_stop_free                = srpt_check_stop_free,
3680        .close_session                  = srpt_close_session,
3681        .sess_get_index                 = srpt_sess_get_index,
3682        .sess_get_initiator_sid         = NULL,
3683        .write_pending                  = srpt_write_pending,
3684        .write_pending_status           = srpt_write_pending_status,
3685        .set_default_node_attributes    = srpt_set_default_node_attrs,
3686        .get_cmd_state                  = srpt_get_tcm_cmd_state,
3687        .queue_data_in                  = srpt_queue_data_in,
3688        .queue_status                   = srpt_queue_status,
3689        .queue_tm_rsp                   = srpt_queue_tm_rsp,
3690        .aborted_task                   = srpt_aborted_task,
3691        /*
3692         * Setup function pointers for generic logic in
3693         * target_core_fabric_configfs.c
3694         */
3695        .fabric_make_wwn                = srpt_make_tport,
3696        .fabric_drop_wwn                = srpt_drop_tport,
3697        .fabric_make_tpg                = srpt_make_tpg,
3698        .fabric_drop_tpg                = srpt_drop_tpg,
3699        .fabric_init_nodeacl            = srpt_init_nodeacl,
3700
3701        .tfc_discovery_attrs            = srpt_da_attrs,
3702        .tfc_wwn_attrs                  = srpt_wwn_attrs,
3703        .tfc_tpg_base_attrs             = srpt_tpg_attrs,
3704        .tfc_tpg_attrib_attrs           = srpt_tpg_attrib_attrs,
3705};
3706
3707/**
3708 * srpt_init_module - kernel module initialization
3709 *
3710 * Note: Since ib_register_client() registers callback functions, and since at
3711 * least one of these callback functions (srpt_add_one()) calls target core
3712 * functions, this driver must be registered with the target core before
3713 * ib_register_client() is called.
3714 */
3715static int __init srpt_init_module(void)
3716{
3717        int ret;
3718
3719        ret = -EINVAL;
3720        if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3721                pr_err("invalid value %d for kernel module parameter"
3722                       " srp_max_req_size -- must be at least %d.\n",
3723                       srp_max_req_size, MIN_MAX_REQ_SIZE);
3724                goto out;
3725        }
3726
3727        if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3728            || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3729                pr_err("invalid value %d for kernel module parameter"
3730                       " srpt_srq_size -- must be in the range [%d..%d].\n",
3731                       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3732                goto out;
3733        }
3734
3735        ret = target_register_template(&srpt_template);
3736        if (ret)
3737                goto out;
3738
3739        ret = ib_register_client(&srpt_client);
3740        if (ret) {
3741                pr_err("couldn't register IB client\n");
3742                goto out_unregister_target;
3743        }
3744
3745        return 0;
3746
3747out_unregister_target:
3748        target_unregister_template(&srpt_template);
3749out:
3750        return ret;
3751}
3752
3753static void __exit srpt_cleanup_module(void)
3754{
3755        if (rdma_cm_id)
3756                rdma_destroy_id(rdma_cm_id);
3757        ib_unregister_client(&srpt_client);
3758        target_unregister_template(&srpt_template);
3759}
3760
3761module_init(srpt_init_module);
3762module_exit(srpt_cleanup_module);
3763