linux/drivers/iommu/amd_iommu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <jroedel@suse.de>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
  20#include <linux/ratelimit.h>
  21#include <linux/pci.h>
  22#include <linux/acpi.h>
  23#include <linux/amba/bus.h>
  24#include <linux/platform_device.h>
  25#include <linux/pci-ats.h>
  26#include <linux/bitmap.h>
  27#include <linux/slab.h>
  28#include <linux/debugfs.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/dma-direct.h>
  32#include <linux/iommu-helper.h>
  33#include <linux/iommu.h>
  34#include <linux/delay.h>
  35#include <linux/amd-iommu.h>
  36#include <linux/notifier.h>
  37#include <linux/export.h>
  38#include <linux/irq.h>
  39#include <linux/msi.h>
  40#include <linux/dma-contiguous.h>
  41#include <linux/irqdomain.h>
  42#include <linux/percpu.h>
  43#include <linux/iova.h>
  44#include <asm/irq_remapping.h>
  45#include <asm/io_apic.h>
  46#include <asm/apic.h>
  47#include <asm/hw_irq.h>
  48#include <asm/msidef.h>
  49#include <asm/proto.h>
  50#include <asm/iommu.h>
  51#include <asm/gart.h>
  52#include <asm/dma.h>
  53
  54#include "amd_iommu_proto.h"
  55#include "amd_iommu_types.h"
  56#include "irq_remapping.h"
  57
  58#define AMD_IOMMU_MAPPING_ERROR 0
  59
  60#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  61
  62#define LOOP_TIMEOUT    100000
  63
  64/* IO virtual address start page frame number */
  65#define IOVA_START_PFN          (1)
  66#define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
  67
  68/* Reserved IOVA ranges */
  69#define MSI_RANGE_START         (0xfee00000)
  70#define MSI_RANGE_END           (0xfeefffff)
  71#define HT_RANGE_START          (0xfd00000000ULL)
  72#define HT_RANGE_END            (0xffffffffffULL)
  73
  74/*
  75 * This bitmap is used to advertise the page sizes our hardware support
  76 * to the IOMMU core, which will then use this information to split
  77 * physically contiguous memory regions it is mapping into page sizes
  78 * that we support.
  79 *
  80 * 512GB Pages are not supported due to a hardware bug
  81 */
  82#define AMD_IOMMU_PGSIZES       ((~0xFFFUL) & ~(2ULL << 38))
  83
  84static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
  85static DEFINE_SPINLOCK(pd_bitmap_lock);
  86
  87/* List of all available dev_data structures */
  88static LLIST_HEAD(dev_data_list);
  89
  90LIST_HEAD(ioapic_map);
  91LIST_HEAD(hpet_map);
  92LIST_HEAD(acpihid_map);
  93
  94/*
  95 * Domain for untranslated devices - only allocated
  96 * if iommu=pt passed on kernel cmd line.
  97 */
  98const struct iommu_ops amd_iommu_ops;
  99
 100static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
 101int amd_iommu_max_glx_val = -1;
 102
 103static const struct dma_map_ops amd_iommu_dma_ops;
 104
 105/*
 106 * general struct to manage commands send to an IOMMU
 107 */
 108struct iommu_cmd {
 109        u32 data[4];
 110};
 111
 112struct kmem_cache *amd_iommu_irq_cache;
 113
 114static void update_domain(struct protection_domain *domain);
 115static int protection_domain_init(struct protection_domain *domain);
 116static void detach_device(struct device *dev);
 117static void iova_domain_flush_tlb(struct iova_domain *iovad);
 118
 119/*
 120 * Data container for a dma_ops specific protection domain
 121 */
 122struct dma_ops_domain {
 123        /* generic protection domain information */
 124        struct protection_domain domain;
 125
 126        /* IOVA RB-Tree */
 127        struct iova_domain iovad;
 128};
 129
 130static struct iova_domain reserved_iova_ranges;
 131static struct lock_class_key reserved_rbtree_key;
 132
 133/****************************************************************************
 134 *
 135 * Helper functions
 136 *
 137 ****************************************************************************/
 138
 139static inline int match_hid_uid(struct device *dev,
 140                                struct acpihid_map_entry *entry)
 141{
 142        const char *hid, *uid;
 143
 144        hid = acpi_device_hid(ACPI_COMPANION(dev));
 145        uid = acpi_device_uid(ACPI_COMPANION(dev));
 146
 147        if (!hid || !(*hid))
 148                return -ENODEV;
 149
 150        if (!uid || !(*uid))
 151                return strcmp(hid, entry->hid);
 152
 153        if (!(*entry->uid))
 154                return strcmp(hid, entry->hid);
 155
 156        return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
 157}
 158
 159static inline u16 get_pci_device_id(struct device *dev)
 160{
 161        struct pci_dev *pdev = to_pci_dev(dev);
 162
 163        return PCI_DEVID(pdev->bus->number, pdev->devfn);
 164}
 165
 166static inline int get_acpihid_device_id(struct device *dev,
 167                                        struct acpihid_map_entry **entry)
 168{
 169        struct acpihid_map_entry *p;
 170
 171        list_for_each_entry(p, &acpihid_map, list) {
 172                if (!match_hid_uid(dev, p)) {
 173                        if (entry)
 174                                *entry = p;
 175                        return p->devid;
 176                }
 177        }
 178        return -EINVAL;
 179}
 180
 181static inline int get_device_id(struct device *dev)
 182{
 183        int devid;
 184
 185        if (dev_is_pci(dev))
 186                devid = get_pci_device_id(dev);
 187        else
 188                devid = get_acpihid_device_id(dev, NULL);
 189
 190        return devid;
 191}
 192
 193static struct protection_domain *to_pdomain(struct iommu_domain *dom)
 194{
 195        return container_of(dom, struct protection_domain, domain);
 196}
 197
 198static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
 199{
 200        BUG_ON(domain->flags != PD_DMA_OPS_MASK);
 201        return container_of(domain, struct dma_ops_domain, domain);
 202}
 203
 204static struct iommu_dev_data *alloc_dev_data(u16 devid)
 205{
 206        struct iommu_dev_data *dev_data;
 207
 208        dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 209        if (!dev_data)
 210                return NULL;
 211
 212        dev_data->devid = devid;
 213        ratelimit_default_init(&dev_data->rs);
 214
 215        llist_add(&dev_data->dev_data_list, &dev_data_list);
 216        return dev_data;
 217}
 218
 219static struct iommu_dev_data *search_dev_data(u16 devid)
 220{
 221        struct iommu_dev_data *dev_data;
 222        struct llist_node *node;
 223
 224        if (llist_empty(&dev_data_list))
 225                return NULL;
 226
 227        node = dev_data_list.first;
 228        llist_for_each_entry(dev_data, node, dev_data_list) {
 229                if (dev_data->devid == devid)
 230                        return dev_data;
 231        }
 232
 233        return NULL;
 234}
 235
 236static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
 237{
 238        *(u16 *)data = alias;
 239        return 0;
 240}
 241
 242static u16 get_alias(struct device *dev)
 243{
 244        struct pci_dev *pdev = to_pci_dev(dev);
 245        u16 devid, ivrs_alias, pci_alias;
 246
 247        /* The callers make sure that get_device_id() does not fail here */
 248        devid = get_device_id(dev);
 249        ivrs_alias = amd_iommu_alias_table[devid];
 250        pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
 251
 252        if (ivrs_alias == pci_alias)
 253                return ivrs_alias;
 254
 255        /*
 256         * DMA alias showdown
 257         *
 258         * The IVRS is fairly reliable in telling us about aliases, but it
 259         * can't know about every screwy device.  If we don't have an IVRS
 260         * reported alias, use the PCI reported alias.  In that case we may
 261         * still need to initialize the rlookup and dev_table entries if the
 262         * alias is to a non-existent device.
 263         */
 264        if (ivrs_alias == devid) {
 265                if (!amd_iommu_rlookup_table[pci_alias]) {
 266                        amd_iommu_rlookup_table[pci_alias] =
 267                                amd_iommu_rlookup_table[devid];
 268                        memcpy(amd_iommu_dev_table[pci_alias].data,
 269                               amd_iommu_dev_table[devid].data,
 270                               sizeof(amd_iommu_dev_table[pci_alias].data));
 271                }
 272
 273                return pci_alias;
 274        }
 275
 276        pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
 277                "for device %s[%04x:%04x], kernel reported alias "
 278                "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
 279                PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
 280                PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
 281                PCI_FUNC(pci_alias));
 282
 283        /*
 284         * If we don't have a PCI DMA alias and the IVRS alias is on the same
 285         * bus, then the IVRS table may know about a quirk that we don't.
 286         */
 287        if (pci_alias == devid &&
 288            PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
 289                pci_add_dma_alias(pdev, ivrs_alias & 0xff);
 290                pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
 291                        PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
 292                        dev_name(dev));
 293        }
 294
 295        return ivrs_alias;
 296}
 297
 298static struct iommu_dev_data *find_dev_data(u16 devid)
 299{
 300        struct iommu_dev_data *dev_data;
 301        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
 302
 303        dev_data = search_dev_data(devid);
 304
 305        if (dev_data == NULL) {
 306                dev_data = alloc_dev_data(devid);
 307                if (!dev_data)
 308                        return NULL;
 309
 310                if (translation_pre_enabled(iommu))
 311                        dev_data->defer_attach = true;
 312        }
 313
 314        return dev_data;
 315}
 316
 317struct iommu_dev_data *get_dev_data(struct device *dev)
 318{
 319        return dev->archdata.iommu;
 320}
 321EXPORT_SYMBOL(get_dev_data);
 322
 323/*
 324* Find or create an IOMMU group for a acpihid device.
 325*/
 326static struct iommu_group *acpihid_device_group(struct device *dev)
 327{
 328        struct acpihid_map_entry *p, *entry = NULL;
 329        int devid;
 330
 331        devid = get_acpihid_device_id(dev, &entry);
 332        if (devid < 0)
 333                return ERR_PTR(devid);
 334
 335        list_for_each_entry(p, &acpihid_map, list) {
 336                if ((devid == p->devid) && p->group)
 337                        entry->group = p->group;
 338        }
 339
 340        if (!entry->group)
 341                entry->group = generic_device_group(dev);
 342        else
 343                iommu_group_ref_get(entry->group);
 344
 345        return entry->group;
 346}
 347
 348static bool pci_iommuv2_capable(struct pci_dev *pdev)
 349{
 350        static const int caps[] = {
 351                PCI_EXT_CAP_ID_ATS,
 352                PCI_EXT_CAP_ID_PRI,
 353                PCI_EXT_CAP_ID_PASID,
 354        };
 355        int i, pos;
 356
 357        for (i = 0; i < 3; ++i) {
 358                pos = pci_find_ext_capability(pdev, caps[i]);
 359                if (pos == 0)
 360                        return false;
 361        }
 362
 363        return true;
 364}
 365
 366static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 367{
 368        struct iommu_dev_data *dev_data;
 369
 370        dev_data = get_dev_data(&pdev->dev);
 371
 372        return dev_data->errata & (1 << erratum) ? true : false;
 373}
 374
 375/*
 376 * This function checks if the driver got a valid device from the caller to
 377 * avoid dereferencing invalid pointers.
 378 */
 379static bool check_device(struct device *dev)
 380{
 381        int devid;
 382
 383        if (!dev || !dev->dma_mask)
 384                return false;
 385
 386        devid = get_device_id(dev);
 387        if (devid < 0)
 388                return false;
 389
 390        /* Out of our scope? */
 391        if (devid > amd_iommu_last_bdf)
 392                return false;
 393
 394        if (amd_iommu_rlookup_table[devid] == NULL)
 395                return false;
 396
 397        return true;
 398}
 399
 400static void init_iommu_group(struct device *dev)
 401{
 402        struct iommu_group *group;
 403
 404        group = iommu_group_get_for_dev(dev);
 405        if (IS_ERR(group))
 406                return;
 407
 408        iommu_group_put(group);
 409}
 410
 411static int iommu_init_device(struct device *dev)
 412{
 413        struct iommu_dev_data *dev_data;
 414        struct amd_iommu *iommu;
 415        int devid;
 416
 417        if (dev->archdata.iommu)
 418                return 0;
 419
 420        devid = get_device_id(dev);
 421        if (devid < 0)
 422                return devid;
 423
 424        iommu = amd_iommu_rlookup_table[devid];
 425
 426        dev_data = find_dev_data(devid);
 427        if (!dev_data)
 428                return -ENOMEM;
 429
 430        dev_data->alias = get_alias(dev);
 431
 432        if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
 433                struct amd_iommu *iommu;
 434
 435                iommu = amd_iommu_rlookup_table[dev_data->devid];
 436                dev_data->iommu_v2 = iommu->is_iommu_v2;
 437        }
 438
 439        dev->archdata.iommu = dev_data;
 440
 441        iommu_device_link(&iommu->iommu, dev);
 442
 443        return 0;
 444}
 445
 446static void iommu_ignore_device(struct device *dev)
 447{
 448        u16 alias;
 449        int devid;
 450
 451        devid = get_device_id(dev);
 452        if (devid < 0)
 453                return;
 454
 455        alias = get_alias(dev);
 456
 457        memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 458        memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 459
 460        amd_iommu_rlookup_table[devid] = NULL;
 461        amd_iommu_rlookup_table[alias] = NULL;
 462}
 463
 464static void iommu_uninit_device(struct device *dev)
 465{
 466        struct iommu_dev_data *dev_data;
 467        struct amd_iommu *iommu;
 468        int devid;
 469
 470        devid = get_device_id(dev);
 471        if (devid < 0)
 472                return;
 473
 474        iommu = amd_iommu_rlookup_table[devid];
 475
 476        dev_data = search_dev_data(devid);
 477        if (!dev_data)
 478                return;
 479
 480        if (dev_data->domain)
 481                detach_device(dev);
 482
 483        iommu_device_unlink(&iommu->iommu, dev);
 484
 485        iommu_group_remove_device(dev);
 486
 487        /* Remove dma-ops */
 488        dev->dma_ops = NULL;
 489
 490        /*
 491         * We keep dev_data around for unplugged devices and reuse it when the
 492         * device is re-plugged - not doing so would introduce a ton of races.
 493         */
 494}
 495
 496/****************************************************************************
 497 *
 498 * Interrupt handling functions
 499 *
 500 ****************************************************************************/
 501
 502static void dump_dte_entry(u16 devid)
 503{
 504        int i;
 505
 506        for (i = 0; i < 4; ++i)
 507                pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
 508                        amd_iommu_dev_table[devid].data[i]);
 509}
 510
 511static void dump_command(unsigned long phys_addr)
 512{
 513        struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
 514        int i;
 515
 516        for (i = 0; i < 4; ++i)
 517                pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 518}
 519
 520static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
 521                                        u64 address, int flags)
 522{
 523        struct iommu_dev_data *dev_data = NULL;
 524        struct pci_dev *pdev;
 525
 526        pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
 527                                           devid & 0xff);
 528        if (pdev)
 529                dev_data = get_dev_data(&pdev->dev);
 530
 531        if (dev_data && __ratelimit(&dev_data->rs)) {
 532                dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 533                        domain_id, address, flags);
 534        } else if (printk_ratelimit()) {
 535                pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 536                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 537                        domain_id, address, flags);
 538        }
 539
 540        if (pdev)
 541                pci_dev_put(pdev);
 542}
 543
 544static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 545{
 546        struct device *dev = iommu->iommu.dev;
 547        int type, devid, domid, flags;
 548        volatile u32 *event = __evt;
 549        int count = 0;
 550        u64 address;
 551
 552retry:
 553        type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 554        devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 555        domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
 556        flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 557        address = (u64)(((u64)event[3]) << 32) | event[2];
 558
 559        if (type == 0) {
 560                /* Did we hit the erratum? */
 561                if (++count == LOOP_TIMEOUT) {
 562                        pr_err("AMD-Vi: No event written to event log\n");
 563                        return;
 564                }
 565                udelay(1);
 566                goto retry;
 567        }
 568
 569        if (type == EVENT_TYPE_IO_FAULT) {
 570                amd_iommu_report_page_fault(devid, domid, address, flags);
 571                return;
 572        } else {
 573                dev_err(dev, "AMD-Vi: Event logged [");
 574        }
 575
 576        switch (type) {
 577        case EVENT_TYPE_ILL_DEV:
 578                dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
 579                        "address=0x%016llx flags=0x%04x]\n",
 580                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 581                        address, flags);
 582                dump_dte_entry(devid);
 583                break;
 584        case EVENT_TYPE_DEV_TAB_ERR:
 585                dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 586                        "address=0x%016llx flags=0x%04x]\n",
 587                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 588                        address, flags);
 589                break;
 590        case EVENT_TYPE_PAGE_TAB_ERR:
 591                dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 592                        "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 593                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 594                        domid, address, flags);
 595                break;
 596        case EVENT_TYPE_ILL_CMD:
 597                dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 598                dump_command(address);
 599                break;
 600        case EVENT_TYPE_CMD_HARD_ERR:
 601                dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx "
 602                        "flags=0x%04x]\n", address, flags);
 603                break;
 604        case EVENT_TYPE_IOTLB_INV_TO:
 605                dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
 606                        "address=0x%016llx]\n",
 607                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 608                        address);
 609                break;
 610        case EVENT_TYPE_INV_DEV_REQ:
 611                dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
 612                        "address=0x%016llx flags=0x%04x]\n",
 613                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 614                        address, flags);
 615                break;
 616        default:
 617                dev_err(dev, KERN_ERR "UNKNOWN event[0]=0x%08x event[1]=0x%08x "
 618                        "event[2]=0x%08x event[3]=0x%08x\n",
 619                        event[0], event[1], event[2], event[3]);
 620        }
 621
 622        memset(__evt, 0, 4 * sizeof(u32));
 623}
 624
 625static void iommu_poll_events(struct amd_iommu *iommu)
 626{
 627        u32 head, tail;
 628
 629        head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 630        tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 631
 632        while (head != tail) {
 633                iommu_print_event(iommu, iommu->evt_buf + head);
 634                head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
 635        }
 636
 637        writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 638}
 639
 640static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 641{
 642        struct amd_iommu_fault fault;
 643
 644        if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 645                pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
 646                return;
 647        }
 648
 649        fault.address   = raw[1];
 650        fault.pasid     = PPR_PASID(raw[0]);
 651        fault.device_id = PPR_DEVID(raw[0]);
 652        fault.tag       = PPR_TAG(raw[0]);
 653        fault.flags     = PPR_FLAGS(raw[0]);
 654
 655        atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 656}
 657
 658static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 659{
 660        u32 head, tail;
 661
 662        if (iommu->ppr_log == NULL)
 663                return;
 664
 665        head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 666        tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 667
 668        while (head != tail) {
 669                volatile u64 *raw;
 670                u64 entry[2];
 671                int i;
 672
 673                raw = (u64 *)(iommu->ppr_log + head);
 674
 675                /*
 676                 * Hardware bug: Interrupt may arrive before the entry is
 677                 * written to memory. If this happens we need to wait for the
 678                 * entry to arrive.
 679                 */
 680                for (i = 0; i < LOOP_TIMEOUT; ++i) {
 681                        if (PPR_REQ_TYPE(raw[0]) != 0)
 682                                break;
 683                        udelay(1);
 684                }
 685
 686                /* Avoid memcpy function-call overhead */
 687                entry[0] = raw[0];
 688                entry[1] = raw[1];
 689
 690                /*
 691                 * To detect the hardware bug we need to clear the entry
 692                 * back to zero.
 693                 */
 694                raw[0] = raw[1] = 0UL;
 695
 696                /* Update head pointer of hardware ring-buffer */
 697                head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 698                writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 699
 700                /* Handle PPR entry */
 701                iommu_handle_ppr_entry(iommu, entry);
 702
 703                /* Refresh ring-buffer information */
 704                head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 705                tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 706        }
 707}
 708
 709#ifdef CONFIG_IRQ_REMAP
 710static int (*iommu_ga_log_notifier)(u32);
 711
 712int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
 713{
 714        iommu_ga_log_notifier = notifier;
 715
 716        return 0;
 717}
 718EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
 719
 720static void iommu_poll_ga_log(struct amd_iommu *iommu)
 721{
 722        u32 head, tail, cnt = 0;
 723
 724        if (iommu->ga_log == NULL)
 725                return;
 726
 727        head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 728        tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
 729
 730        while (head != tail) {
 731                volatile u64 *raw;
 732                u64 log_entry;
 733
 734                raw = (u64 *)(iommu->ga_log + head);
 735                cnt++;
 736
 737                /* Avoid memcpy function-call overhead */
 738                log_entry = *raw;
 739
 740                /* Update head pointer of hardware ring-buffer */
 741                head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
 742                writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 743
 744                /* Handle GA entry */
 745                switch (GA_REQ_TYPE(log_entry)) {
 746                case GA_GUEST_NR:
 747                        if (!iommu_ga_log_notifier)
 748                                break;
 749
 750                        pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
 751                                 __func__, GA_DEVID(log_entry),
 752                                 GA_TAG(log_entry));
 753
 754                        if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
 755                                pr_err("AMD-Vi: GA log notifier failed.\n");
 756                        break;
 757                default:
 758                        break;
 759                }
 760        }
 761}
 762#endif /* CONFIG_IRQ_REMAP */
 763
 764#define AMD_IOMMU_INT_MASK      \
 765        (MMIO_STATUS_EVT_INT_MASK | \
 766         MMIO_STATUS_PPR_INT_MASK | \
 767         MMIO_STATUS_GALOG_INT_MASK)
 768
 769irqreturn_t amd_iommu_int_thread(int irq, void *data)
 770{
 771        struct amd_iommu *iommu = (struct amd_iommu *) data;
 772        u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 773
 774        while (status & AMD_IOMMU_INT_MASK) {
 775                /* Enable EVT and PPR and GA interrupts again */
 776                writel(AMD_IOMMU_INT_MASK,
 777                        iommu->mmio_base + MMIO_STATUS_OFFSET);
 778
 779                if (status & MMIO_STATUS_EVT_INT_MASK) {
 780                        pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
 781                        iommu_poll_events(iommu);
 782                }
 783
 784                if (status & MMIO_STATUS_PPR_INT_MASK) {
 785                        pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
 786                        iommu_poll_ppr_log(iommu);
 787                }
 788
 789#ifdef CONFIG_IRQ_REMAP
 790                if (status & MMIO_STATUS_GALOG_INT_MASK) {
 791                        pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
 792                        iommu_poll_ga_log(iommu);
 793                }
 794#endif
 795
 796                /*
 797                 * Hardware bug: ERBT1312
 798                 * When re-enabling interrupt (by writing 1
 799                 * to clear the bit), the hardware might also try to set
 800                 * the interrupt bit in the event status register.
 801                 * In this scenario, the bit will be set, and disable
 802                 * subsequent interrupts.
 803                 *
 804                 * Workaround: The IOMMU driver should read back the
 805                 * status register and check if the interrupt bits are cleared.
 806                 * If not, driver will need to go through the interrupt handler
 807                 * again and re-clear the bits
 808                 */
 809                status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 810        }
 811        return IRQ_HANDLED;
 812}
 813
 814irqreturn_t amd_iommu_int_handler(int irq, void *data)
 815{
 816        return IRQ_WAKE_THREAD;
 817}
 818
 819/****************************************************************************
 820 *
 821 * IOMMU command queuing functions
 822 *
 823 ****************************************************************************/
 824
 825static int wait_on_sem(volatile u64 *sem)
 826{
 827        int i = 0;
 828
 829        while (*sem == 0 && i < LOOP_TIMEOUT) {
 830                udelay(1);
 831                i += 1;
 832        }
 833
 834        if (i == LOOP_TIMEOUT) {
 835                pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 836                return -EIO;
 837        }
 838
 839        return 0;
 840}
 841
 842static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 843                               struct iommu_cmd *cmd)
 844{
 845        u8 *target;
 846
 847        target = iommu->cmd_buf + iommu->cmd_buf_tail;
 848
 849        iommu->cmd_buf_tail += sizeof(*cmd);
 850        iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
 851
 852        /* Copy command to buffer */
 853        memcpy(target, cmd, sizeof(*cmd));
 854
 855        /* Tell the IOMMU about it */
 856        writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 857}
 858
 859static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 860{
 861        u64 paddr = iommu_virt_to_phys((void *)address);
 862
 863        WARN_ON(address & 0x7ULL);
 864
 865        memset(cmd, 0, sizeof(*cmd));
 866        cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
 867        cmd->data[1] = upper_32_bits(paddr);
 868        cmd->data[2] = 1;
 869        CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 870}
 871
 872static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 873{
 874        memset(cmd, 0, sizeof(*cmd));
 875        cmd->data[0] = devid;
 876        CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 877}
 878
 879static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 880                                  size_t size, u16 domid, int pde)
 881{
 882        u64 pages;
 883        bool s;
 884
 885        pages = iommu_num_pages(address, size, PAGE_SIZE);
 886        s     = false;
 887
 888        if (pages > 1) {
 889                /*
 890                 * If we have to flush more than one page, flush all
 891                 * TLB entries for this domain
 892                 */
 893                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 894                s = true;
 895        }
 896
 897        address &= PAGE_MASK;
 898
 899        memset(cmd, 0, sizeof(*cmd));
 900        cmd->data[1] |= domid;
 901        cmd->data[2]  = lower_32_bits(address);
 902        cmd->data[3]  = upper_32_bits(address);
 903        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 904        if (s) /* size bit - we flush more than one 4kb page */
 905                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 906        if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 907                cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 908}
 909
 910static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 911                                  u64 address, size_t size)
 912{
 913        u64 pages;
 914        bool s;
 915
 916        pages = iommu_num_pages(address, size, PAGE_SIZE);
 917        s     = false;
 918
 919        if (pages > 1) {
 920                /*
 921                 * If we have to flush more than one page, flush all
 922                 * TLB entries for this domain
 923                 */
 924                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 925                s = true;
 926        }
 927
 928        address &= PAGE_MASK;
 929
 930        memset(cmd, 0, sizeof(*cmd));
 931        cmd->data[0]  = devid;
 932        cmd->data[0] |= (qdep & 0xff) << 24;
 933        cmd->data[1]  = devid;
 934        cmd->data[2]  = lower_32_bits(address);
 935        cmd->data[3]  = upper_32_bits(address);
 936        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 937        if (s)
 938                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 939}
 940
 941static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 942                                  u64 address, bool size)
 943{
 944        memset(cmd, 0, sizeof(*cmd));
 945
 946        address &= ~(0xfffULL);
 947
 948        cmd->data[0]  = pasid;
 949        cmd->data[1]  = domid;
 950        cmd->data[2]  = lower_32_bits(address);
 951        cmd->data[3]  = upper_32_bits(address);
 952        cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 953        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 954        if (size)
 955                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 956        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 957}
 958
 959static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 960                                  int qdep, u64 address, bool size)
 961{
 962        memset(cmd, 0, sizeof(*cmd));
 963
 964        address &= ~(0xfffULL);
 965
 966        cmd->data[0]  = devid;
 967        cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
 968        cmd->data[0] |= (qdep  & 0xff) << 24;
 969        cmd->data[1]  = devid;
 970        cmd->data[1] |= (pasid & 0xff) << 16;
 971        cmd->data[2]  = lower_32_bits(address);
 972        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 973        cmd->data[3]  = upper_32_bits(address);
 974        if (size)
 975                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 976        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 977}
 978
 979static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 980                               int status, int tag, bool gn)
 981{
 982        memset(cmd, 0, sizeof(*cmd));
 983
 984        cmd->data[0]  = devid;
 985        if (gn) {
 986                cmd->data[1]  = pasid;
 987                cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
 988        }
 989        cmd->data[3]  = tag & 0x1ff;
 990        cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
 991
 992        CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
 993}
 994
 995static void build_inv_all(struct iommu_cmd *cmd)
 996{
 997        memset(cmd, 0, sizeof(*cmd));
 998        CMD_SET_TYPE(cmd, CMD_INV_ALL);
 999}
1000
1001static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1002{
1003        memset(cmd, 0, sizeof(*cmd));
1004        cmd->data[0] = devid;
1005        CMD_SET_TYPE(cmd, CMD_INV_IRT);
1006}
1007
1008/*
1009 * Writes the command to the IOMMUs command buffer and informs the
1010 * hardware about the new command.
1011 */
1012static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1013                                      struct iommu_cmd *cmd,
1014                                      bool sync)
1015{
1016        unsigned int count = 0;
1017        u32 left, next_tail;
1018
1019        next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1020again:
1021        left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1022
1023        if (left <= 0x20) {
1024                /* Skip udelay() the first time around */
1025                if (count++) {
1026                        if (count == LOOP_TIMEOUT) {
1027                                pr_err("AMD-Vi: Command buffer timeout\n");
1028                                return -EIO;
1029                        }
1030
1031                        udelay(1);
1032                }
1033
1034                /* Update head and recheck remaining space */
1035                iommu->cmd_buf_head = readl(iommu->mmio_base +
1036                                            MMIO_CMD_HEAD_OFFSET);
1037
1038                goto again;
1039        }
1040
1041        copy_cmd_to_buffer(iommu, cmd);
1042
1043        /* Do we need to make sure all commands are processed? */
1044        iommu->need_sync = sync;
1045
1046        return 0;
1047}
1048
1049static int iommu_queue_command_sync(struct amd_iommu *iommu,
1050                                    struct iommu_cmd *cmd,
1051                                    bool sync)
1052{
1053        unsigned long flags;
1054        int ret;
1055
1056        raw_spin_lock_irqsave(&iommu->lock, flags);
1057        ret = __iommu_queue_command_sync(iommu, cmd, sync);
1058        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1059
1060        return ret;
1061}
1062
1063static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1064{
1065        return iommu_queue_command_sync(iommu, cmd, true);
1066}
1067
1068/*
1069 * This function queues a completion wait command into the command
1070 * buffer of an IOMMU
1071 */
1072static int iommu_completion_wait(struct amd_iommu *iommu)
1073{
1074        struct iommu_cmd cmd;
1075        unsigned long flags;
1076        int ret;
1077
1078        if (!iommu->need_sync)
1079                return 0;
1080
1081
1082        build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1083
1084        raw_spin_lock_irqsave(&iommu->lock, flags);
1085
1086        iommu->cmd_sem = 0;
1087
1088        ret = __iommu_queue_command_sync(iommu, &cmd, false);
1089        if (ret)
1090                goto out_unlock;
1091
1092        ret = wait_on_sem(&iommu->cmd_sem);
1093
1094out_unlock:
1095        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1096
1097        return ret;
1098}
1099
1100static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1101{
1102        struct iommu_cmd cmd;
1103
1104        build_inv_dte(&cmd, devid);
1105
1106        return iommu_queue_command(iommu, &cmd);
1107}
1108
1109static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1110{
1111        u32 devid;
1112
1113        for (devid = 0; devid <= 0xffff; ++devid)
1114                iommu_flush_dte(iommu, devid);
1115
1116        iommu_completion_wait(iommu);
1117}
1118
1119/*
1120 * This function uses heavy locking and may disable irqs for some time. But
1121 * this is no issue because it is only called during resume.
1122 */
1123static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1124{
1125        u32 dom_id;
1126
1127        for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1128                struct iommu_cmd cmd;
1129                build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1130                                      dom_id, 1);
1131                iommu_queue_command(iommu, &cmd);
1132        }
1133
1134        iommu_completion_wait(iommu);
1135}
1136
1137static void amd_iommu_flush_all(struct amd_iommu *iommu)
1138{
1139        struct iommu_cmd cmd;
1140
1141        build_inv_all(&cmd);
1142
1143        iommu_queue_command(iommu, &cmd);
1144        iommu_completion_wait(iommu);
1145}
1146
1147static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1148{
1149        struct iommu_cmd cmd;
1150
1151        build_inv_irt(&cmd, devid);
1152
1153        iommu_queue_command(iommu, &cmd);
1154}
1155
1156static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1157{
1158        u32 devid;
1159
1160        for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1161                iommu_flush_irt(iommu, devid);
1162
1163        iommu_completion_wait(iommu);
1164}
1165
1166void iommu_flush_all_caches(struct amd_iommu *iommu)
1167{
1168        if (iommu_feature(iommu, FEATURE_IA)) {
1169                amd_iommu_flush_all(iommu);
1170        } else {
1171                amd_iommu_flush_dte_all(iommu);
1172                amd_iommu_flush_irt_all(iommu);
1173                amd_iommu_flush_tlb_all(iommu);
1174        }
1175}
1176
1177/*
1178 * Command send function for flushing on-device TLB
1179 */
1180static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1181                              u64 address, size_t size)
1182{
1183        struct amd_iommu *iommu;
1184        struct iommu_cmd cmd;
1185        int qdep;
1186
1187        qdep     = dev_data->ats.qdep;
1188        iommu    = amd_iommu_rlookup_table[dev_data->devid];
1189
1190        build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1191
1192        return iommu_queue_command(iommu, &cmd);
1193}
1194
1195/*
1196 * Command send function for invalidating a device table entry
1197 */
1198static int device_flush_dte(struct iommu_dev_data *dev_data)
1199{
1200        struct amd_iommu *iommu;
1201        u16 alias;
1202        int ret;
1203
1204        iommu = amd_iommu_rlookup_table[dev_data->devid];
1205        alias = dev_data->alias;
1206
1207        ret = iommu_flush_dte(iommu, dev_data->devid);
1208        if (!ret && alias != dev_data->devid)
1209                ret = iommu_flush_dte(iommu, alias);
1210        if (ret)
1211                return ret;
1212
1213        if (dev_data->ats.enabled)
1214                ret = device_flush_iotlb(dev_data, 0, ~0UL);
1215
1216        return ret;
1217}
1218
1219/*
1220 * TLB invalidation function which is called from the mapping functions.
1221 * It invalidates a single PTE if the range to flush is within a single
1222 * page. Otherwise it flushes the whole TLB of the IOMMU.
1223 */
1224static void __domain_flush_pages(struct protection_domain *domain,
1225                                 u64 address, size_t size, int pde)
1226{
1227        struct iommu_dev_data *dev_data;
1228        struct iommu_cmd cmd;
1229        int ret = 0, i;
1230
1231        build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1232
1233        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1234                if (!domain->dev_iommu[i])
1235                        continue;
1236
1237                /*
1238                 * Devices of this domain are behind this IOMMU
1239                 * We need a TLB flush
1240                 */
1241                ret |= iommu_queue_command(amd_iommus[i], &cmd);
1242        }
1243
1244        list_for_each_entry(dev_data, &domain->dev_list, list) {
1245
1246                if (!dev_data->ats.enabled)
1247                        continue;
1248
1249                ret |= device_flush_iotlb(dev_data, address, size);
1250        }
1251
1252        WARN_ON(ret);
1253}
1254
1255static void domain_flush_pages(struct protection_domain *domain,
1256                               u64 address, size_t size)
1257{
1258        __domain_flush_pages(domain, address, size, 0);
1259}
1260
1261/* Flush the whole IO/TLB for a given protection domain */
1262static void domain_flush_tlb(struct protection_domain *domain)
1263{
1264        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1265}
1266
1267/* Flush the whole IO/TLB for a given protection domain - including PDE */
1268static void domain_flush_tlb_pde(struct protection_domain *domain)
1269{
1270        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1271}
1272
1273static void domain_flush_complete(struct protection_domain *domain)
1274{
1275        int i;
1276
1277        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1278                if (domain && !domain->dev_iommu[i])
1279                        continue;
1280
1281                /*
1282                 * Devices of this domain are behind this IOMMU
1283                 * We need to wait for completion of all commands.
1284                 */
1285                iommu_completion_wait(amd_iommus[i]);
1286        }
1287}
1288
1289
1290/*
1291 * This function flushes the DTEs for all devices in domain
1292 */
1293static void domain_flush_devices(struct protection_domain *domain)
1294{
1295        struct iommu_dev_data *dev_data;
1296
1297        list_for_each_entry(dev_data, &domain->dev_list, list)
1298                device_flush_dte(dev_data);
1299}
1300
1301/****************************************************************************
1302 *
1303 * The functions below are used the create the page table mappings for
1304 * unity mapped regions.
1305 *
1306 ****************************************************************************/
1307
1308/*
1309 * This function is used to add another level to an IO page table. Adding
1310 * another level increases the size of the address space by 9 bits to a size up
1311 * to 64 bits.
1312 */
1313static bool increase_address_space(struct protection_domain *domain,
1314                                   gfp_t gfp)
1315{
1316        u64 *pte;
1317
1318        if (domain->mode == PAGE_MODE_6_LEVEL)
1319                /* address space already 64 bit large */
1320                return false;
1321
1322        pte = (void *)get_zeroed_page(gfp);
1323        if (!pte)
1324                return false;
1325
1326        *pte             = PM_LEVEL_PDE(domain->mode,
1327                                        iommu_virt_to_phys(domain->pt_root));
1328        domain->pt_root  = pte;
1329        domain->mode    += 1;
1330        domain->updated  = true;
1331
1332        return true;
1333}
1334
1335static u64 *alloc_pte(struct protection_domain *domain,
1336                      unsigned long address,
1337                      unsigned long page_size,
1338                      u64 **pte_page,
1339                      gfp_t gfp)
1340{
1341        int level, end_lvl;
1342        u64 *pte, *page;
1343
1344        BUG_ON(!is_power_of_2(page_size));
1345
1346        while (address > PM_LEVEL_SIZE(domain->mode))
1347                increase_address_space(domain, gfp);
1348
1349        level   = domain->mode - 1;
1350        pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1351        address = PAGE_SIZE_ALIGN(address, page_size);
1352        end_lvl = PAGE_SIZE_LEVEL(page_size);
1353
1354        while (level > end_lvl) {
1355                u64 __pte, __npte;
1356
1357                __pte = *pte;
1358
1359                if (!IOMMU_PTE_PRESENT(__pte)) {
1360                        page = (u64 *)get_zeroed_page(gfp);
1361                        if (!page)
1362                                return NULL;
1363
1364                        __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1365
1366                        /* pte could have been changed somewhere. */
1367                        if (cmpxchg64(pte, __pte, __npte) != __pte) {
1368                                free_page((unsigned long)page);
1369                                continue;
1370                        }
1371                }
1372
1373                /* No level skipping support yet */
1374                if (PM_PTE_LEVEL(*pte) != level)
1375                        return NULL;
1376
1377                level -= 1;
1378
1379                pte = IOMMU_PTE_PAGE(*pte);
1380
1381                if (pte_page && level == end_lvl)
1382                        *pte_page = pte;
1383
1384                pte = &pte[PM_LEVEL_INDEX(level, address)];
1385        }
1386
1387        return pte;
1388}
1389
1390/*
1391 * This function checks if there is a PTE for a given dma address. If
1392 * there is one, it returns the pointer to it.
1393 */
1394static u64 *fetch_pte(struct protection_domain *domain,
1395                      unsigned long address,
1396                      unsigned long *page_size)
1397{
1398        int level;
1399        u64 *pte;
1400
1401        if (address > PM_LEVEL_SIZE(domain->mode))
1402                return NULL;
1403
1404        level      =  domain->mode - 1;
1405        pte        = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1406        *page_size =  PTE_LEVEL_PAGE_SIZE(level);
1407
1408        while (level > 0) {
1409
1410                /* Not Present */
1411                if (!IOMMU_PTE_PRESENT(*pte))
1412                        return NULL;
1413
1414                /* Large PTE */
1415                if (PM_PTE_LEVEL(*pte) == 7 ||
1416                    PM_PTE_LEVEL(*pte) == 0)
1417                        break;
1418
1419                /* No level skipping support yet */
1420                if (PM_PTE_LEVEL(*pte) != level)
1421                        return NULL;
1422
1423                level -= 1;
1424
1425                /* Walk to the next level */
1426                pte        = IOMMU_PTE_PAGE(*pte);
1427                pte        = &pte[PM_LEVEL_INDEX(level, address)];
1428                *page_size = PTE_LEVEL_PAGE_SIZE(level);
1429        }
1430
1431        if (PM_PTE_LEVEL(*pte) == 0x07) {
1432                unsigned long pte_mask;
1433
1434                /*
1435                 * If we have a series of large PTEs, make
1436                 * sure to return a pointer to the first one.
1437                 */
1438                *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1439                pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1440                pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1441        }
1442
1443        return pte;
1444}
1445
1446/*
1447 * Generic mapping functions. It maps a physical address into a DMA
1448 * address space. It allocates the page table pages if necessary.
1449 * In the future it can be extended to a generic mapping function
1450 * supporting all features of AMD IOMMU page tables like level skipping
1451 * and full 64 bit address spaces.
1452 */
1453static int iommu_map_page(struct protection_domain *dom,
1454                          unsigned long bus_addr,
1455                          unsigned long phys_addr,
1456                          unsigned long page_size,
1457                          int prot,
1458                          gfp_t gfp)
1459{
1460        u64 __pte, *pte;
1461        int i, count;
1462
1463        BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1464        BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1465
1466        if (!(prot & IOMMU_PROT_MASK))
1467                return -EINVAL;
1468
1469        count = PAGE_SIZE_PTE_COUNT(page_size);
1470        pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1471
1472        if (!pte)
1473                return -ENOMEM;
1474
1475        for (i = 0; i < count; ++i)
1476                if (IOMMU_PTE_PRESENT(pte[i]))
1477                        return -EBUSY;
1478
1479        if (count > 1) {
1480                __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1481                __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1482        } else
1483                __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1484
1485        if (prot & IOMMU_PROT_IR)
1486                __pte |= IOMMU_PTE_IR;
1487        if (prot & IOMMU_PROT_IW)
1488                __pte |= IOMMU_PTE_IW;
1489
1490        for (i = 0; i < count; ++i)
1491                pte[i] = __pte;
1492
1493        update_domain(dom);
1494
1495        return 0;
1496}
1497
1498static unsigned long iommu_unmap_page(struct protection_domain *dom,
1499                                      unsigned long bus_addr,
1500                                      unsigned long page_size)
1501{
1502        unsigned long long unmapped;
1503        unsigned long unmap_size;
1504        u64 *pte;
1505
1506        BUG_ON(!is_power_of_2(page_size));
1507
1508        unmapped = 0;
1509
1510        while (unmapped < page_size) {
1511
1512                pte = fetch_pte(dom, bus_addr, &unmap_size);
1513
1514                if (pte) {
1515                        int i, count;
1516
1517                        count = PAGE_SIZE_PTE_COUNT(unmap_size);
1518                        for (i = 0; i < count; i++)
1519                                pte[i] = 0ULL;
1520                }
1521
1522                bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1523                unmapped += unmap_size;
1524        }
1525
1526        BUG_ON(unmapped && !is_power_of_2(unmapped));
1527
1528        return unmapped;
1529}
1530
1531/****************************************************************************
1532 *
1533 * The next functions belong to the address allocator for the dma_ops
1534 * interface functions.
1535 *
1536 ****************************************************************************/
1537
1538
1539static unsigned long dma_ops_alloc_iova(struct device *dev,
1540                                        struct dma_ops_domain *dma_dom,
1541                                        unsigned int pages, u64 dma_mask)
1542{
1543        unsigned long pfn = 0;
1544
1545        pages = __roundup_pow_of_two(pages);
1546
1547        if (dma_mask > DMA_BIT_MASK(32))
1548                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1549                                      IOVA_PFN(DMA_BIT_MASK(32)), false);
1550
1551        if (!pfn)
1552                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1553                                      IOVA_PFN(dma_mask), true);
1554
1555        return (pfn << PAGE_SHIFT);
1556}
1557
1558static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1559                              unsigned long address,
1560                              unsigned int pages)
1561{
1562        pages = __roundup_pow_of_two(pages);
1563        address >>= PAGE_SHIFT;
1564
1565        free_iova_fast(&dma_dom->iovad, address, pages);
1566}
1567
1568/****************************************************************************
1569 *
1570 * The next functions belong to the domain allocation. A domain is
1571 * allocated for every IOMMU as the default domain. If device isolation
1572 * is enabled, every device get its own domain. The most important thing
1573 * about domains is the page table mapping the DMA address space they
1574 * contain.
1575 *
1576 ****************************************************************************/
1577
1578/*
1579 * This function adds a protection domain to the global protection domain list
1580 */
1581static void add_domain_to_list(struct protection_domain *domain)
1582{
1583        unsigned long flags;
1584
1585        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1586        list_add(&domain->list, &amd_iommu_pd_list);
1587        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1588}
1589
1590/*
1591 * This function removes a protection domain to the global
1592 * protection domain list
1593 */
1594static void del_domain_from_list(struct protection_domain *domain)
1595{
1596        unsigned long flags;
1597
1598        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1599        list_del(&domain->list);
1600        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1601}
1602
1603static u16 domain_id_alloc(void)
1604{
1605        int id;
1606
1607        spin_lock(&pd_bitmap_lock);
1608        id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1609        BUG_ON(id == 0);
1610        if (id > 0 && id < MAX_DOMAIN_ID)
1611                __set_bit(id, amd_iommu_pd_alloc_bitmap);
1612        else
1613                id = 0;
1614        spin_unlock(&pd_bitmap_lock);
1615
1616        return id;
1617}
1618
1619static void domain_id_free(int id)
1620{
1621        spin_lock(&pd_bitmap_lock);
1622        if (id > 0 && id < MAX_DOMAIN_ID)
1623                __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1624        spin_unlock(&pd_bitmap_lock);
1625}
1626
1627#define DEFINE_FREE_PT_FN(LVL, FN)                              \
1628static void free_pt_##LVL (unsigned long __pt)                  \
1629{                                                               \
1630        unsigned long p;                                        \
1631        u64 *pt;                                                \
1632        int i;                                                  \
1633                                                                \
1634        pt = (u64 *)__pt;                                       \
1635                                                                \
1636        for (i = 0; i < 512; ++i) {                             \
1637                /* PTE present? */                              \
1638                if (!IOMMU_PTE_PRESENT(pt[i]))                  \
1639                        continue;                               \
1640                                                                \
1641                /* Large PTE? */                                \
1642                if (PM_PTE_LEVEL(pt[i]) == 0 ||                 \
1643                    PM_PTE_LEVEL(pt[i]) == 7)                   \
1644                        continue;                               \
1645                                                                \
1646                p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);       \
1647                FN(p);                                          \
1648        }                                                       \
1649        free_page((unsigned long)pt);                           \
1650}
1651
1652DEFINE_FREE_PT_FN(l2, free_page)
1653DEFINE_FREE_PT_FN(l3, free_pt_l2)
1654DEFINE_FREE_PT_FN(l4, free_pt_l3)
1655DEFINE_FREE_PT_FN(l5, free_pt_l4)
1656DEFINE_FREE_PT_FN(l6, free_pt_l5)
1657
1658static void free_pagetable(struct protection_domain *domain)
1659{
1660        unsigned long root = (unsigned long)domain->pt_root;
1661
1662        switch (domain->mode) {
1663        case PAGE_MODE_NONE:
1664                break;
1665        case PAGE_MODE_1_LEVEL:
1666                free_page(root);
1667                break;
1668        case PAGE_MODE_2_LEVEL:
1669                free_pt_l2(root);
1670                break;
1671        case PAGE_MODE_3_LEVEL:
1672                free_pt_l3(root);
1673                break;
1674        case PAGE_MODE_4_LEVEL:
1675                free_pt_l4(root);
1676                break;
1677        case PAGE_MODE_5_LEVEL:
1678                free_pt_l5(root);
1679                break;
1680        case PAGE_MODE_6_LEVEL:
1681                free_pt_l6(root);
1682                break;
1683        default:
1684                BUG();
1685        }
1686}
1687
1688static void free_gcr3_tbl_level1(u64 *tbl)
1689{
1690        u64 *ptr;
1691        int i;
1692
1693        for (i = 0; i < 512; ++i) {
1694                if (!(tbl[i] & GCR3_VALID))
1695                        continue;
1696
1697                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1698
1699                free_page((unsigned long)ptr);
1700        }
1701}
1702
1703static void free_gcr3_tbl_level2(u64 *tbl)
1704{
1705        u64 *ptr;
1706        int i;
1707
1708        for (i = 0; i < 512; ++i) {
1709                if (!(tbl[i] & GCR3_VALID))
1710                        continue;
1711
1712                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1713
1714                free_gcr3_tbl_level1(ptr);
1715        }
1716}
1717
1718static void free_gcr3_table(struct protection_domain *domain)
1719{
1720        if (domain->glx == 2)
1721                free_gcr3_tbl_level2(domain->gcr3_tbl);
1722        else if (domain->glx == 1)
1723                free_gcr3_tbl_level1(domain->gcr3_tbl);
1724        else
1725                BUG_ON(domain->glx != 0);
1726
1727        free_page((unsigned long)domain->gcr3_tbl);
1728}
1729
1730static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1731{
1732        domain_flush_tlb(&dom->domain);
1733        domain_flush_complete(&dom->domain);
1734}
1735
1736static void iova_domain_flush_tlb(struct iova_domain *iovad)
1737{
1738        struct dma_ops_domain *dom;
1739
1740        dom = container_of(iovad, struct dma_ops_domain, iovad);
1741
1742        dma_ops_domain_flush_tlb(dom);
1743}
1744
1745/*
1746 * Free a domain, only used if something went wrong in the
1747 * allocation path and we need to free an already allocated page table
1748 */
1749static void dma_ops_domain_free(struct dma_ops_domain *dom)
1750{
1751        if (!dom)
1752                return;
1753
1754        del_domain_from_list(&dom->domain);
1755
1756        put_iova_domain(&dom->iovad);
1757
1758        free_pagetable(&dom->domain);
1759
1760        if (dom->domain.id)
1761                domain_id_free(dom->domain.id);
1762
1763        kfree(dom);
1764}
1765
1766/*
1767 * Allocates a new protection domain usable for the dma_ops functions.
1768 * It also initializes the page table and the address allocator data
1769 * structures required for the dma_ops interface
1770 */
1771static struct dma_ops_domain *dma_ops_domain_alloc(void)
1772{
1773        struct dma_ops_domain *dma_dom;
1774
1775        dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1776        if (!dma_dom)
1777                return NULL;
1778
1779        if (protection_domain_init(&dma_dom->domain))
1780                goto free_dma_dom;
1781
1782        dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1783        dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1784        dma_dom->domain.flags = PD_DMA_OPS_MASK;
1785        if (!dma_dom->domain.pt_root)
1786                goto free_dma_dom;
1787
1788        init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1789
1790        if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1791                goto free_dma_dom;
1792
1793        /* Initialize reserved ranges */
1794        copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1795
1796        add_domain_to_list(&dma_dom->domain);
1797
1798        return dma_dom;
1799
1800free_dma_dom:
1801        dma_ops_domain_free(dma_dom);
1802
1803        return NULL;
1804}
1805
1806/*
1807 * little helper function to check whether a given protection domain is a
1808 * dma_ops domain
1809 */
1810static bool dma_ops_domain(struct protection_domain *domain)
1811{
1812        return domain->flags & PD_DMA_OPS_MASK;
1813}
1814
1815static void set_dte_entry(u16 devid, struct protection_domain *domain,
1816                          bool ats, bool ppr)
1817{
1818        u64 pte_root = 0;
1819        u64 flags = 0;
1820
1821        if (domain->mode != PAGE_MODE_NONE)
1822                pte_root = iommu_virt_to_phys(domain->pt_root);
1823
1824        pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1825                    << DEV_ENTRY_MODE_SHIFT;
1826        pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1827
1828        flags = amd_iommu_dev_table[devid].data[1];
1829
1830        if (ats)
1831                flags |= DTE_FLAG_IOTLB;
1832
1833        if (ppr) {
1834                struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1835
1836                if (iommu_feature(iommu, FEATURE_EPHSUP))
1837                        pte_root |= 1ULL << DEV_ENTRY_PPR;
1838        }
1839
1840        if (domain->flags & PD_IOMMUV2_MASK) {
1841                u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1842                u64 glx  = domain->glx;
1843                u64 tmp;
1844
1845                pte_root |= DTE_FLAG_GV;
1846                pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1847
1848                /* First mask out possible old values for GCR3 table */
1849                tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1850                flags    &= ~tmp;
1851
1852                tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1853                flags    &= ~tmp;
1854
1855                /* Encode GCR3 table into DTE */
1856                tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1857                pte_root |= tmp;
1858
1859                tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1860                flags    |= tmp;
1861
1862                tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1863                flags    |= tmp;
1864        }
1865
1866        flags &= ~DEV_DOMID_MASK;
1867        flags |= domain->id;
1868
1869        amd_iommu_dev_table[devid].data[1]  = flags;
1870        amd_iommu_dev_table[devid].data[0]  = pte_root;
1871}
1872
1873static void clear_dte_entry(u16 devid)
1874{
1875        /* remove entry from the device table seen by the hardware */
1876        amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1877        amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1878
1879        amd_iommu_apply_erratum_63(devid);
1880}
1881
1882static void do_attach(struct iommu_dev_data *dev_data,
1883                      struct protection_domain *domain)
1884{
1885        struct amd_iommu *iommu;
1886        u16 alias;
1887        bool ats;
1888
1889        iommu = amd_iommu_rlookup_table[dev_data->devid];
1890        alias = dev_data->alias;
1891        ats   = dev_data->ats.enabled;
1892
1893        /* Update data structures */
1894        dev_data->domain = domain;
1895        list_add(&dev_data->list, &domain->dev_list);
1896
1897        /* Do reference counting */
1898        domain->dev_iommu[iommu->index] += 1;
1899        domain->dev_cnt                 += 1;
1900
1901        /* Update device table */
1902        set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1903        if (alias != dev_data->devid)
1904                set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1905
1906        device_flush_dte(dev_data);
1907}
1908
1909static void do_detach(struct iommu_dev_data *dev_data)
1910{
1911        struct amd_iommu *iommu;
1912        u16 alias;
1913
1914        /*
1915         * First check if the device is still attached. It might already
1916         * be detached from its domain because the generic
1917         * iommu_detach_group code detached it and we try again here in
1918         * our alias handling.
1919         */
1920        if (!dev_data->domain)
1921                return;
1922
1923        iommu = amd_iommu_rlookup_table[dev_data->devid];
1924        alias = dev_data->alias;
1925
1926        /* decrease reference counters */
1927        dev_data->domain->dev_iommu[iommu->index] -= 1;
1928        dev_data->domain->dev_cnt                 -= 1;
1929
1930        /* Update data structures */
1931        dev_data->domain = NULL;
1932        list_del(&dev_data->list);
1933        clear_dte_entry(dev_data->devid);
1934        if (alias != dev_data->devid)
1935                clear_dte_entry(alias);
1936
1937        /* Flush the DTE entry */
1938        device_flush_dte(dev_data);
1939}
1940
1941/*
1942 * If a device is not yet associated with a domain, this function does
1943 * assigns it visible for the hardware
1944 */
1945static int __attach_device(struct iommu_dev_data *dev_data,
1946                           struct protection_domain *domain)
1947{
1948        int ret;
1949
1950        /*
1951         * Must be called with IRQs disabled. Warn here to detect early
1952         * when its not.
1953         */
1954        WARN_ON(!irqs_disabled());
1955
1956        /* lock domain */
1957        spin_lock(&domain->lock);
1958
1959        ret = -EBUSY;
1960        if (dev_data->domain != NULL)
1961                goto out_unlock;
1962
1963        /* Attach alias group root */
1964        do_attach(dev_data, domain);
1965
1966        ret = 0;
1967
1968out_unlock:
1969
1970        /* ready */
1971        spin_unlock(&domain->lock);
1972
1973        return ret;
1974}
1975
1976
1977static void pdev_iommuv2_disable(struct pci_dev *pdev)
1978{
1979        pci_disable_ats(pdev);
1980        pci_disable_pri(pdev);
1981        pci_disable_pasid(pdev);
1982}
1983
1984/* FIXME: Change generic reset-function to do the same */
1985static int pri_reset_while_enabled(struct pci_dev *pdev)
1986{
1987        u16 control;
1988        int pos;
1989
1990        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1991        if (!pos)
1992                return -EINVAL;
1993
1994        pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1995        control |= PCI_PRI_CTRL_RESET;
1996        pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1997
1998        return 0;
1999}
2000
2001static int pdev_iommuv2_enable(struct pci_dev *pdev)
2002{
2003        bool reset_enable;
2004        int reqs, ret;
2005
2006        /* FIXME: Hardcode number of outstanding requests for now */
2007        reqs = 32;
2008        if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2009                reqs = 1;
2010        reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2011
2012        /* Only allow access to user-accessible pages */
2013        ret = pci_enable_pasid(pdev, 0);
2014        if (ret)
2015                goto out_err;
2016
2017        /* First reset the PRI state of the device */
2018        ret = pci_reset_pri(pdev);
2019        if (ret)
2020                goto out_err;
2021
2022        /* Enable PRI */
2023        ret = pci_enable_pri(pdev, reqs);
2024        if (ret)
2025                goto out_err;
2026
2027        if (reset_enable) {
2028                ret = pri_reset_while_enabled(pdev);
2029                if (ret)
2030                        goto out_err;
2031        }
2032
2033        ret = pci_enable_ats(pdev, PAGE_SHIFT);
2034        if (ret)
2035                goto out_err;
2036
2037        return 0;
2038
2039out_err:
2040        pci_disable_pri(pdev);
2041        pci_disable_pasid(pdev);
2042
2043        return ret;
2044}
2045
2046/* FIXME: Move this to PCI code */
2047#define PCI_PRI_TLP_OFF         (1 << 15)
2048
2049static bool pci_pri_tlp_required(struct pci_dev *pdev)
2050{
2051        u16 status;
2052        int pos;
2053
2054        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2055        if (!pos)
2056                return false;
2057
2058        pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2059
2060        return (status & PCI_PRI_TLP_OFF) ? true : false;
2061}
2062
2063/*
2064 * If a device is not yet associated with a domain, this function
2065 * assigns it visible for the hardware
2066 */
2067static int attach_device(struct device *dev,
2068                         struct protection_domain *domain)
2069{
2070        struct pci_dev *pdev;
2071        struct iommu_dev_data *dev_data;
2072        unsigned long flags;
2073        int ret;
2074
2075        dev_data = get_dev_data(dev);
2076
2077        if (!dev_is_pci(dev))
2078                goto skip_ats_check;
2079
2080        pdev = to_pci_dev(dev);
2081        if (domain->flags & PD_IOMMUV2_MASK) {
2082                if (!dev_data->passthrough)
2083                        return -EINVAL;
2084
2085                if (dev_data->iommu_v2) {
2086                        if (pdev_iommuv2_enable(pdev) != 0)
2087                                return -EINVAL;
2088
2089                        dev_data->ats.enabled = true;
2090                        dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2091                        dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2092                }
2093        } else if (amd_iommu_iotlb_sup &&
2094                   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2095                dev_data->ats.enabled = true;
2096                dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2097        }
2098
2099skip_ats_check:
2100        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2101        ret = __attach_device(dev_data, domain);
2102        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2103
2104        /*
2105         * We might boot into a crash-kernel here. The crashed kernel
2106         * left the caches in the IOMMU dirty. So we have to flush
2107         * here to evict all dirty stuff.
2108         */
2109        domain_flush_tlb_pde(domain);
2110
2111        return ret;
2112}
2113
2114/*
2115 * Removes a device from a protection domain (unlocked)
2116 */
2117static void __detach_device(struct iommu_dev_data *dev_data)
2118{
2119        struct protection_domain *domain;
2120
2121        /*
2122         * Must be called with IRQs disabled. Warn here to detect early
2123         * when its not.
2124         */
2125        WARN_ON(!irqs_disabled());
2126
2127        if (WARN_ON(!dev_data->domain))
2128                return;
2129
2130        domain = dev_data->domain;
2131
2132        spin_lock(&domain->lock);
2133
2134        do_detach(dev_data);
2135
2136        spin_unlock(&domain->lock);
2137}
2138
2139/*
2140 * Removes a device from a protection domain (with devtable_lock held)
2141 */
2142static void detach_device(struct device *dev)
2143{
2144        struct protection_domain *domain;
2145        struct iommu_dev_data *dev_data;
2146        unsigned long flags;
2147
2148        dev_data = get_dev_data(dev);
2149        domain   = dev_data->domain;
2150
2151        /* lock device table */
2152        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2153        __detach_device(dev_data);
2154        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2155
2156        if (!dev_is_pci(dev))
2157                return;
2158
2159        if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2160                pdev_iommuv2_disable(to_pci_dev(dev));
2161        else if (dev_data->ats.enabled)
2162                pci_disable_ats(to_pci_dev(dev));
2163
2164        dev_data->ats.enabled = false;
2165}
2166
2167static int amd_iommu_add_device(struct device *dev)
2168{
2169        struct iommu_dev_data *dev_data;
2170        struct iommu_domain *domain;
2171        struct amd_iommu *iommu;
2172        int ret, devid;
2173
2174        if (!check_device(dev) || get_dev_data(dev))
2175                return 0;
2176
2177        devid = get_device_id(dev);
2178        if (devid < 0)
2179                return devid;
2180
2181        iommu = amd_iommu_rlookup_table[devid];
2182
2183        ret = iommu_init_device(dev);
2184        if (ret) {
2185                if (ret != -ENOTSUPP)
2186                        pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2187                                dev_name(dev));
2188
2189                iommu_ignore_device(dev);
2190                dev->dma_ops = &dma_direct_ops;
2191                goto out;
2192        }
2193        init_iommu_group(dev);
2194
2195        dev_data = get_dev_data(dev);
2196
2197        BUG_ON(!dev_data);
2198
2199        if (iommu_pass_through || dev_data->iommu_v2)
2200                iommu_request_dm_for_dev(dev);
2201
2202        /* Domains are initialized for this device - have a look what we ended up with */
2203        domain = iommu_get_domain_for_dev(dev);
2204        if (domain->type == IOMMU_DOMAIN_IDENTITY)
2205                dev_data->passthrough = true;
2206        else
2207                dev->dma_ops = &amd_iommu_dma_ops;
2208
2209out:
2210        iommu_completion_wait(iommu);
2211
2212        return 0;
2213}
2214
2215static void amd_iommu_remove_device(struct device *dev)
2216{
2217        struct amd_iommu *iommu;
2218        int devid;
2219
2220        if (!check_device(dev))
2221                return;
2222
2223        devid = get_device_id(dev);
2224        if (devid < 0)
2225                return;
2226
2227        iommu = amd_iommu_rlookup_table[devid];
2228
2229        iommu_uninit_device(dev);
2230        iommu_completion_wait(iommu);
2231}
2232
2233static struct iommu_group *amd_iommu_device_group(struct device *dev)
2234{
2235        if (dev_is_pci(dev))
2236                return pci_device_group(dev);
2237
2238        return acpihid_device_group(dev);
2239}
2240
2241/*****************************************************************************
2242 *
2243 * The next functions belong to the dma_ops mapping/unmapping code.
2244 *
2245 *****************************************************************************/
2246
2247/*
2248 * In the dma_ops path we only have the struct device. This function
2249 * finds the corresponding IOMMU, the protection domain and the
2250 * requestor id for a given device.
2251 * If the device is not yet associated with a domain this is also done
2252 * in this function.
2253 */
2254static struct protection_domain *get_domain(struct device *dev)
2255{
2256        struct protection_domain *domain;
2257        struct iommu_domain *io_domain;
2258
2259        if (!check_device(dev))
2260                return ERR_PTR(-EINVAL);
2261
2262        domain = get_dev_data(dev)->domain;
2263        if (domain == NULL && get_dev_data(dev)->defer_attach) {
2264                get_dev_data(dev)->defer_attach = false;
2265                io_domain = iommu_get_domain_for_dev(dev);
2266                domain = to_pdomain(io_domain);
2267                attach_device(dev, domain);
2268        }
2269        if (domain == NULL)
2270                return ERR_PTR(-EBUSY);
2271
2272        if (!dma_ops_domain(domain))
2273                return ERR_PTR(-EBUSY);
2274
2275        return domain;
2276}
2277
2278static void update_device_table(struct protection_domain *domain)
2279{
2280        struct iommu_dev_data *dev_data;
2281
2282        list_for_each_entry(dev_data, &domain->dev_list, list) {
2283                set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2284                              dev_data->iommu_v2);
2285
2286                if (dev_data->devid == dev_data->alias)
2287                        continue;
2288
2289                /* There is an alias, update device table entry for it */
2290                set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2291                              dev_data->iommu_v2);
2292        }
2293}
2294
2295static void update_domain(struct protection_domain *domain)
2296{
2297        if (!domain->updated)
2298                return;
2299
2300        update_device_table(domain);
2301
2302        domain_flush_devices(domain);
2303        domain_flush_tlb_pde(domain);
2304
2305        domain->updated = false;
2306}
2307
2308static int dir2prot(enum dma_data_direction direction)
2309{
2310        if (direction == DMA_TO_DEVICE)
2311                return IOMMU_PROT_IR;
2312        else if (direction == DMA_FROM_DEVICE)
2313                return IOMMU_PROT_IW;
2314        else if (direction == DMA_BIDIRECTIONAL)
2315                return IOMMU_PROT_IW | IOMMU_PROT_IR;
2316        else
2317                return 0;
2318}
2319
2320/*
2321 * This function contains common code for mapping of a physically
2322 * contiguous memory region into DMA address space. It is used by all
2323 * mapping functions provided with this IOMMU driver.
2324 * Must be called with the domain lock held.
2325 */
2326static dma_addr_t __map_single(struct device *dev,
2327                               struct dma_ops_domain *dma_dom,
2328                               phys_addr_t paddr,
2329                               size_t size,
2330                               enum dma_data_direction direction,
2331                               u64 dma_mask)
2332{
2333        dma_addr_t offset = paddr & ~PAGE_MASK;
2334        dma_addr_t address, start, ret;
2335        unsigned int pages;
2336        int prot = 0;
2337        int i;
2338
2339        pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2340        paddr &= PAGE_MASK;
2341
2342        address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2343        if (address == AMD_IOMMU_MAPPING_ERROR)
2344                goto out;
2345
2346        prot = dir2prot(direction);
2347
2348        start = address;
2349        for (i = 0; i < pages; ++i) {
2350                ret = iommu_map_page(&dma_dom->domain, start, paddr,
2351                                     PAGE_SIZE, prot, GFP_ATOMIC);
2352                if (ret)
2353                        goto out_unmap;
2354
2355                paddr += PAGE_SIZE;
2356                start += PAGE_SIZE;
2357        }
2358        address += offset;
2359
2360        if (unlikely(amd_iommu_np_cache)) {
2361                domain_flush_pages(&dma_dom->domain, address, size);
2362                domain_flush_complete(&dma_dom->domain);
2363        }
2364
2365out:
2366        return address;
2367
2368out_unmap:
2369
2370        for (--i; i >= 0; --i) {
2371                start -= PAGE_SIZE;
2372                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2373        }
2374
2375        domain_flush_tlb(&dma_dom->domain);
2376        domain_flush_complete(&dma_dom->domain);
2377
2378        dma_ops_free_iova(dma_dom, address, pages);
2379
2380        return AMD_IOMMU_MAPPING_ERROR;
2381}
2382
2383/*
2384 * Does the reverse of the __map_single function. Must be called with
2385 * the domain lock held too
2386 */
2387static void __unmap_single(struct dma_ops_domain *dma_dom,
2388                           dma_addr_t dma_addr,
2389                           size_t size,
2390                           int dir)
2391{
2392        dma_addr_t i, start;
2393        unsigned int pages;
2394
2395        pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2396        dma_addr &= PAGE_MASK;
2397        start = dma_addr;
2398
2399        for (i = 0; i < pages; ++i) {
2400                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2401                start += PAGE_SIZE;
2402        }
2403
2404        if (amd_iommu_unmap_flush) {
2405                dma_ops_free_iova(dma_dom, dma_addr, pages);
2406                domain_flush_tlb(&dma_dom->domain);
2407                domain_flush_complete(&dma_dom->domain);
2408        } else {
2409                pages = __roundup_pow_of_two(pages);
2410                queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2411        }
2412}
2413
2414/*
2415 * The exported map_single function for dma_ops.
2416 */
2417static dma_addr_t map_page(struct device *dev, struct page *page,
2418                           unsigned long offset, size_t size,
2419                           enum dma_data_direction dir,
2420                           unsigned long attrs)
2421{
2422        phys_addr_t paddr = page_to_phys(page) + offset;
2423        struct protection_domain *domain;
2424        struct dma_ops_domain *dma_dom;
2425        u64 dma_mask;
2426
2427        domain = get_domain(dev);
2428        if (PTR_ERR(domain) == -EINVAL)
2429                return (dma_addr_t)paddr;
2430        else if (IS_ERR(domain))
2431                return AMD_IOMMU_MAPPING_ERROR;
2432
2433        dma_mask = *dev->dma_mask;
2434        dma_dom = to_dma_ops_domain(domain);
2435
2436        return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2437}
2438
2439/*
2440 * The exported unmap_single function for dma_ops.
2441 */
2442static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2443                       enum dma_data_direction dir, unsigned long attrs)
2444{
2445        struct protection_domain *domain;
2446        struct dma_ops_domain *dma_dom;
2447
2448        domain = get_domain(dev);
2449        if (IS_ERR(domain))
2450                return;
2451
2452        dma_dom = to_dma_ops_domain(domain);
2453
2454        __unmap_single(dma_dom, dma_addr, size, dir);
2455}
2456
2457static int sg_num_pages(struct device *dev,
2458                        struct scatterlist *sglist,
2459                        int nelems)
2460{
2461        unsigned long mask, boundary_size;
2462        struct scatterlist *s;
2463        int i, npages = 0;
2464
2465        mask          = dma_get_seg_boundary(dev);
2466        boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2467                                   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2468
2469        for_each_sg(sglist, s, nelems, i) {
2470                int p, n;
2471
2472                s->dma_address = npages << PAGE_SHIFT;
2473                p = npages % boundary_size;
2474                n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2475                if (p + n > boundary_size)
2476                        npages += boundary_size - p;
2477                npages += n;
2478        }
2479
2480        return npages;
2481}
2482
2483/*
2484 * The exported map_sg function for dma_ops (handles scatter-gather
2485 * lists).
2486 */
2487static int map_sg(struct device *dev, struct scatterlist *sglist,
2488                  int nelems, enum dma_data_direction direction,
2489                  unsigned long attrs)
2490{
2491        int mapped_pages = 0, npages = 0, prot = 0, i;
2492        struct protection_domain *domain;
2493        struct dma_ops_domain *dma_dom;
2494        struct scatterlist *s;
2495        unsigned long address;
2496        u64 dma_mask;
2497
2498        domain = get_domain(dev);
2499        if (IS_ERR(domain))
2500                return 0;
2501
2502        dma_dom  = to_dma_ops_domain(domain);
2503        dma_mask = *dev->dma_mask;
2504
2505        npages = sg_num_pages(dev, sglist, nelems);
2506
2507        address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2508        if (address == AMD_IOMMU_MAPPING_ERROR)
2509                goto out_err;
2510
2511        prot = dir2prot(direction);
2512
2513        /* Map all sg entries */
2514        for_each_sg(sglist, s, nelems, i) {
2515                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2516
2517                for (j = 0; j < pages; ++j) {
2518                        unsigned long bus_addr, phys_addr;
2519                        int ret;
2520
2521                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2522                        phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2523                        ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2524                        if (ret)
2525                                goto out_unmap;
2526
2527                        mapped_pages += 1;
2528                }
2529        }
2530
2531        /* Everything is mapped - write the right values into s->dma_address */
2532        for_each_sg(sglist, s, nelems, i) {
2533                s->dma_address += address + s->offset;
2534                s->dma_length   = s->length;
2535        }
2536
2537        return nelems;
2538
2539out_unmap:
2540        pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2541               dev_name(dev), npages);
2542
2543        for_each_sg(sglist, s, nelems, i) {
2544                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2545
2546                for (j = 0; j < pages; ++j) {
2547                        unsigned long bus_addr;
2548
2549                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2550                        iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2551
2552                        if (--mapped_pages)
2553                                goto out_free_iova;
2554                }
2555        }
2556
2557out_free_iova:
2558        free_iova_fast(&dma_dom->iovad, address, npages);
2559
2560out_err:
2561        return 0;
2562}
2563
2564/*
2565 * The exported map_sg function for dma_ops (handles scatter-gather
2566 * lists).
2567 */
2568static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2569                     int nelems, enum dma_data_direction dir,
2570                     unsigned long attrs)
2571{
2572        struct protection_domain *domain;
2573        struct dma_ops_domain *dma_dom;
2574        unsigned long startaddr;
2575        int npages = 2;
2576
2577        domain = get_domain(dev);
2578        if (IS_ERR(domain))
2579                return;
2580
2581        startaddr = sg_dma_address(sglist) & PAGE_MASK;
2582        dma_dom   = to_dma_ops_domain(domain);
2583        npages    = sg_num_pages(dev, sglist, nelems);
2584
2585        __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2586}
2587
2588/*
2589 * The exported alloc_coherent function for dma_ops.
2590 */
2591static void *alloc_coherent(struct device *dev, size_t size,
2592                            dma_addr_t *dma_addr, gfp_t flag,
2593                            unsigned long attrs)
2594{
2595        u64 dma_mask = dev->coherent_dma_mask;
2596        struct protection_domain *domain = get_domain(dev);
2597        bool is_direct = false;
2598        void *virt_addr;
2599
2600        if (IS_ERR(domain)) {
2601                if (PTR_ERR(domain) != -EINVAL)
2602                        return NULL;
2603                is_direct = true;
2604        }
2605
2606        virt_addr = dma_direct_alloc(dev, size, dma_addr, flag, attrs);
2607        if (!virt_addr || is_direct)
2608                return virt_addr;
2609
2610        if (!dma_mask)
2611                dma_mask = *dev->dma_mask;
2612
2613        *dma_addr = __map_single(dev, to_dma_ops_domain(domain),
2614                        virt_to_phys(virt_addr), PAGE_ALIGN(size),
2615                        DMA_BIDIRECTIONAL, dma_mask);
2616        if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2617                goto out_free;
2618        return virt_addr;
2619
2620out_free:
2621        dma_direct_free(dev, size, virt_addr, *dma_addr, attrs);
2622        return NULL;
2623}
2624
2625/*
2626 * The exported free_coherent function for dma_ops.
2627 */
2628static void free_coherent(struct device *dev, size_t size,
2629                          void *virt_addr, dma_addr_t dma_addr,
2630                          unsigned long attrs)
2631{
2632        struct protection_domain *domain = get_domain(dev);
2633
2634        size = PAGE_ALIGN(size);
2635
2636        if (!IS_ERR(domain)) {
2637                struct dma_ops_domain *dma_dom = to_dma_ops_domain(domain);
2638
2639                __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2640        }
2641
2642        dma_direct_free(dev, size, virt_addr, dma_addr, attrs);
2643}
2644
2645/*
2646 * This function is called by the DMA layer to find out if we can handle a
2647 * particular device. It is part of the dma_ops.
2648 */
2649static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2650{
2651        if (!dma_direct_supported(dev, mask))
2652                return 0;
2653        return check_device(dev);
2654}
2655
2656static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2657{
2658        return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2659}
2660
2661static const struct dma_map_ops amd_iommu_dma_ops = {
2662        .alloc          = alloc_coherent,
2663        .free           = free_coherent,
2664        .map_page       = map_page,
2665        .unmap_page     = unmap_page,
2666        .map_sg         = map_sg,
2667        .unmap_sg       = unmap_sg,
2668        .dma_supported  = amd_iommu_dma_supported,
2669        .mapping_error  = amd_iommu_mapping_error,
2670};
2671
2672static int init_reserved_iova_ranges(void)
2673{
2674        struct pci_dev *pdev = NULL;
2675        struct iova *val;
2676
2677        init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2678
2679        lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2680                          &reserved_rbtree_key);
2681
2682        /* MSI memory range */
2683        val = reserve_iova(&reserved_iova_ranges,
2684                           IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2685        if (!val) {
2686                pr_err("Reserving MSI range failed\n");
2687                return -ENOMEM;
2688        }
2689
2690        /* HT memory range */
2691        val = reserve_iova(&reserved_iova_ranges,
2692                           IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2693        if (!val) {
2694                pr_err("Reserving HT range failed\n");
2695                return -ENOMEM;
2696        }
2697
2698        /*
2699         * Memory used for PCI resources
2700         * FIXME: Check whether we can reserve the PCI-hole completly
2701         */
2702        for_each_pci_dev(pdev) {
2703                int i;
2704
2705                for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2706                        struct resource *r = &pdev->resource[i];
2707
2708                        if (!(r->flags & IORESOURCE_MEM))
2709                                continue;
2710
2711                        val = reserve_iova(&reserved_iova_ranges,
2712                                           IOVA_PFN(r->start),
2713                                           IOVA_PFN(r->end));
2714                        if (!val) {
2715                                pr_err("Reserve pci-resource range failed\n");
2716                                return -ENOMEM;
2717                        }
2718                }
2719        }
2720
2721        return 0;
2722}
2723
2724int __init amd_iommu_init_api(void)
2725{
2726        int ret, err = 0;
2727
2728        ret = iova_cache_get();
2729        if (ret)
2730                return ret;
2731
2732        ret = init_reserved_iova_ranges();
2733        if (ret)
2734                return ret;
2735
2736        err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2737        if (err)
2738                return err;
2739#ifdef CONFIG_ARM_AMBA
2740        err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2741        if (err)
2742                return err;
2743#endif
2744        err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2745        if (err)
2746                return err;
2747
2748        return 0;
2749}
2750
2751int __init amd_iommu_init_dma_ops(void)
2752{
2753        swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2754        iommu_detected = 1;
2755
2756        /*
2757         * In case we don't initialize SWIOTLB (actually the common case
2758         * when AMD IOMMU is enabled and SME is not active), make sure there
2759         * are global dma_ops set as a fall-back for devices not handled by
2760         * this driver (for example non-PCI devices). When SME is active,
2761         * make sure that swiotlb variable remains set so the global dma_ops
2762         * continue to be SWIOTLB.
2763         */
2764        if (!swiotlb)
2765                dma_ops = &dma_direct_ops;
2766
2767        if (amd_iommu_unmap_flush)
2768                pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2769        else
2770                pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2771
2772        return 0;
2773
2774}
2775
2776/*****************************************************************************
2777 *
2778 * The following functions belong to the exported interface of AMD IOMMU
2779 *
2780 * This interface allows access to lower level functions of the IOMMU
2781 * like protection domain handling and assignement of devices to domains
2782 * which is not possible with the dma_ops interface.
2783 *
2784 *****************************************************************************/
2785
2786static void cleanup_domain(struct protection_domain *domain)
2787{
2788        struct iommu_dev_data *entry;
2789        unsigned long flags;
2790
2791        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2792
2793        while (!list_empty(&domain->dev_list)) {
2794                entry = list_first_entry(&domain->dev_list,
2795                                         struct iommu_dev_data, list);
2796                __detach_device(entry);
2797        }
2798
2799        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2800}
2801
2802static void protection_domain_free(struct protection_domain *domain)
2803{
2804        if (!domain)
2805                return;
2806
2807        del_domain_from_list(domain);
2808
2809        if (domain->id)
2810                domain_id_free(domain->id);
2811
2812        kfree(domain);
2813}
2814
2815static int protection_domain_init(struct protection_domain *domain)
2816{
2817        spin_lock_init(&domain->lock);
2818        mutex_init(&domain->api_lock);
2819        domain->id = domain_id_alloc();
2820        if (!domain->id)
2821                return -ENOMEM;
2822        INIT_LIST_HEAD(&domain->dev_list);
2823
2824        return 0;
2825}
2826
2827static struct protection_domain *protection_domain_alloc(void)
2828{
2829        struct protection_domain *domain;
2830
2831        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2832        if (!domain)
2833                return NULL;
2834
2835        if (protection_domain_init(domain))
2836                goto out_err;
2837
2838        add_domain_to_list(domain);
2839
2840        return domain;
2841
2842out_err:
2843        kfree(domain);
2844
2845        return NULL;
2846}
2847
2848static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2849{
2850        struct protection_domain *pdomain;
2851        struct dma_ops_domain *dma_domain;
2852
2853        switch (type) {
2854        case IOMMU_DOMAIN_UNMANAGED:
2855                pdomain = protection_domain_alloc();
2856                if (!pdomain)
2857                        return NULL;
2858
2859                pdomain->mode    = PAGE_MODE_3_LEVEL;
2860                pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2861                if (!pdomain->pt_root) {
2862                        protection_domain_free(pdomain);
2863                        return NULL;
2864                }
2865
2866                pdomain->domain.geometry.aperture_start = 0;
2867                pdomain->domain.geometry.aperture_end   = ~0ULL;
2868                pdomain->domain.geometry.force_aperture = true;
2869
2870                break;
2871        case IOMMU_DOMAIN_DMA:
2872                dma_domain = dma_ops_domain_alloc();
2873                if (!dma_domain) {
2874                        pr_err("AMD-Vi: Failed to allocate\n");
2875                        return NULL;
2876                }
2877                pdomain = &dma_domain->domain;
2878                break;
2879        case IOMMU_DOMAIN_IDENTITY:
2880                pdomain = protection_domain_alloc();
2881                if (!pdomain)
2882                        return NULL;
2883
2884                pdomain->mode = PAGE_MODE_NONE;
2885                break;
2886        default:
2887                return NULL;
2888        }
2889
2890        return &pdomain->domain;
2891}
2892
2893static void amd_iommu_domain_free(struct iommu_domain *dom)
2894{
2895        struct protection_domain *domain;
2896        struct dma_ops_domain *dma_dom;
2897
2898        domain = to_pdomain(dom);
2899
2900        if (domain->dev_cnt > 0)
2901                cleanup_domain(domain);
2902
2903        BUG_ON(domain->dev_cnt != 0);
2904
2905        if (!dom)
2906                return;
2907
2908        switch (dom->type) {
2909        case IOMMU_DOMAIN_DMA:
2910                /* Now release the domain */
2911                dma_dom = to_dma_ops_domain(domain);
2912                dma_ops_domain_free(dma_dom);
2913                break;
2914        default:
2915                if (domain->mode != PAGE_MODE_NONE)
2916                        free_pagetable(domain);
2917
2918                if (domain->flags & PD_IOMMUV2_MASK)
2919                        free_gcr3_table(domain);
2920
2921                protection_domain_free(domain);
2922                break;
2923        }
2924}
2925
2926static void amd_iommu_detach_device(struct iommu_domain *dom,
2927                                    struct device *dev)
2928{
2929        struct iommu_dev_data *dev_data = dev->archdata.iommu;
2930        struct amd_iommu *iommu;
2931        int devid;
2932
2933        if (!check_device(dev))
2934                return;
2935
2936        devid = get_device_id(dev);
2937        if (devid < 0)
2938                return;
2939
2940        if (dev_data->domain != NULL)
2941                detach_device(dev);
2942
2943        iommu = amd_iommu_rlookup_table[devid];
2944        if (!iommu)
2945                return;
2946
2947#ifdef CONFIG_IRQ_REMAP
2948        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2949            (dom->type == IOMMU_DOMAIN_UNMANAGED))
2950                dev_data->use_vapic = 0;
2951#endif
2952
2953        iommu_completion_wait(iommu);
2954}
2955
2956static int amd_iommu_attach_device(struct iommu_domain *dom,
2957                                   struct device *dev)
2958{
2959        struct protection_domain *domain = to_pdomain(dom);
2960        struct iommu_dev_data *dev_data;
2961        struct amd_iommu *iommu;
2962        int ret;
2963
2964        if (!check_device(dev))
2965                return -EINVAL;
2966
2967        dev_data = dev->archdata.iommu;
2968
2969        iommu = amd_iommu_rlookup_table[dev_data->devid];
2970        if (!iommu)
2971                return -EINVAL;
2972
2973        if (dev_data->domain)
2974                detach_device(dev);
2975
2976        ret = attach_device(dev, domain);
2977
2978#ifdef CONFIG_IRQ_REMAP
2979        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2980                if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2981                        dev_data->use_vapic = 1;
2982                else
2983                        dev_data->use_vapic = 0;
2984        }
2985#endif
2986
2987        iommu_completion_wait(iommu);
2988
2989        return ret;
2990}
2991
2992static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2993                         phys_addr_t paddr, size_t page_size, int iommu_prot)
2994{
2995        struct protection_domain *domain = to_pdomain(dom);
2996        int prot = 0;
2997        int ret;
2998
2999        if (domain->mode == PAGE_MODE_NONE)
3000                return -EINVAL;
3001
3002        if (iommu_prot & IOMMU_READ)
3003                prot |= IOMMU_PROT_IR;
3004        if (iommu_prot & IOMMU_WRITE)
3005                prot |= IOMMU_PROT_IW;
3006
3007        mutex_lock(&domain->api_lock);
3008        ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3009        mutex_unlock(&domain->api_lock);
3010
3011        return ret;
3012}
3013
3014static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3015                           size_t page_size)
3016{
3017        struct protection_domain *domain = to_pdomain(dom);
3018        size_t unmap_size;
3019
3020        if (domain->mode == PAGE_MODE_NONE)
3021                return 0;
3022
3023        mutex_lock(&domain->api_lock);
3024        unmap_size = iommu_unmap_page(domain, iova, page_size);
3025        mutex_unlock(&domain->api_lock);
3026
3027        return unmap_size;
3028}
3029
3030static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3031                                          dma_addr_t iova)
3032{
3033        struct protection_domain *domain = to_pdomain(dom);
3034        unsigned long offset_mask, pte_pgsize;
3035        u64 *pte, __pte;
3036
3037        if (domain->mode == PAGE_MODE_NONE)
3038                return iova;
3039
3040        pte = fetch_pte(domain, iova, &pte_pgsize);
3041
3042        if (!pte || !IOMMU_PTE_PRESENT(*pte))
3043                return 0;
3044
3045        offset_mask = pte_pgsize - 1;
3046        __pte       = *pte & PM_ADDR_MASK;
3047
3048        return (__pte & ~offset_mask) | (iova & offset_mask);
3049}
3050
3051static bool amd_iommu_capable(enum iommu_cap cap)
3052{
3053        switch (cap) {
3054        case IOMMU_CAP_CACHE_COHERENCY:
3055                return true;
3056        case IOMMU_CAP_INTR_REMAP:
3057                return (irq_remapping_enabled == 1);
3058        case IOMMU_CAP_NOEXEC:
3059                return false;
3060        }
3061
3062        return false;
3063}
3064
3065static void amd_iommu_get_resv_regions(struct device *dev,
3066                                       struct list_head *head)
3067{
3068        struct iommu_resv_region *region;
3069        struct unity_map_entry *entry;
3070        int devid;
3071
3072        devid = get_device_id(dev);
3073        if (devid < 0)
3074                return;
3075
3076        list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3077                size_t length;
3078                int prot = 0;
3079
3080                if (devid < entry->devid_start || devid > entry->devid_end)
3081                        continue;
3082
3083                length = entry->address_end - entry->address_start;
3084                if (entry->prot & IOMMU_PROT_IR)
3085                        prot |= IOMMU_READ;
3086                if (entry->prot & IOMMU_PROT_IW)
3087                        prot |= IOMMU_WRITE;
3088
3089                region = iommu_alloc_resv_region(entry->address_start,
3090                                                 length, prot,
3091                                                 IOMMU_RESV_DIRECT);
3092                if (!region) {
3093                        pr_err("Out of memory allocating dm-regions for %s\n",
3094                                dev_name(dev));
3095                        return;
3096                }
3097                list_add_tail(&region->list, head);
3098        }
3099
3100        region = iommu_alloc_resv_region(MSI_RANGE_START,
3101                                         MSI_RANGE_END - MSI_RANGE_START + 1,
3102                                         0, IOMMU_RESV_MSI);
3103        if (!region)
3104                return;
3105        list_add_tail(&region->list, head);
3106
3107        region = iommu_alloc_resv_region(HT_RANGE_START,
3108                                         HT_RANGE_END - HT_RANGE_START + 1,
3109                                         0, IOMMU_RESV_RESERVED);
3110        if (!region)
3111                return;
3112        list_add_tail(&region->list, head);
3113}
3114
3115static void amd_iommu_put_resv_regions(struct device *dev,
3116                                     struct list_head *head)
3117{
3118        struct iommu_resv_region *entry, *next;
3119
3120        list_for_each_entry_safe(entry, next, head, list)
3121                kfree(entry);
3122}
3123
3124static void amd_iommu_apply_resv_region(struct device *dev,
3125                                      struct iommu_domain *domain,
3126                                      struct iommu_resv_region *region)
3127{
3128        struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3129        unsigned long start, end;
3130
3131        start = IOVA_PFN(region->start);
3132        end   = IOVA_PFN(region->start + region->length - 1);
3133
3134        WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3135}
3136
3137static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3138                                         struct device *dev)
3139{
3140        struct iommu_dev_data *dev_data = dev->archdata.iommu;
3141        return dev_data->defer_attach;
3142}
3143
3144static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3145{
3146        struct protection_domain *dom = to_pdomain(domain);
3147
3148        domain_flush_tlb_pde(dom);
3149        domain_flush_complete(dom);
3150}
3151
3152static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3153                                      unsigned long iova, size_t size)
3154{
3155}
3156
3157const struct iommu_ops amd_iommu_ops = {
3158        .capable = amd_iommu_capable,
3159        .domain_alloc = amd_iommu_domain_alloc,
3160        .domain_free  = amd_iommu_domain_free,
3161        .attach_dev = amd_iommu_attach_device,
3162        .detach_dev = amd_iommu_detach_device,
3163        .map = amd_iommu_map,
3164        .unmap = amd_iommu_unmap,
3165        .map_sg = default_iommu_map_sg,
3166        .iova_to_phys = amd_iommu_iova_to_phys,
3167        .add_device = amd_iommu_add_device,
3168        .remove_device = amd_iommu_remove_device,
3169        .device_group = amd_iommu_device_group,
3170        .get_resv_regions = amd_iommu_get_resv_regions,
3171        .put_resv_regions = amd_iommu_put_resv_regions,
3172        .apply_resv_region = amd_iommu_apply_resv_region,
3173        .is_attach_deferred = amd_iommu_is_attach_deferred,
3174        .pgsize_bitmap  = AMD_IOMMU_PGSIZES,
3175        .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3176        .iotlb_range_add = amd_iommu_iotlb_range_add,
3177        .iotlb_sync = amd_iommu_flush_iotlb_all,
3178};
3179
3180/*****************************************************************************
3181 *
3182 * The next functions do a basic initialization of IOMMU for pass through
3183 * mode
3184 *
3185 * In passthrough mode the IOMMU is initialized and enabled but not used for
3186 * DMA-API translation.
3187 *
3188 *****************************************************************************/
3189
3190/* IOMMUv2 specific functions */
3191int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3192{
3193        return atomic_notifier_chain_register(&ppr_notifier, nb);
3194}
3195EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3196
3197int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3198{
3199        return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3200}
3201EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3202
3203void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3204{
3205        struct protection_domain *domain = to_pdomain(dom);
3206        unsigned long flags;
3207
3208        spin_lock_irqsave(&domain->lock, flags);
3209
3210        /* Update data structure */
3211        domain->mode    = PAGE_MODE_NONE;
3212        domain->updated = true;
3213
3214        /* Make changes visible to IOMMUs */
3215        update_domain(domain);
3216
3217        /* Page-table is not visible to IOMMU anymore, so free it */
3218        free_pagetable(domain);
3219
3220        spin_unlock_irqrestore(&domain->lock, flags);
3221}
3222EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3223
3224int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3225{
3226        struct protection_domain *domain = to_pdomain(dom);
3227        unsigned long flags;
3228        int levels, ret;
3229
3230        if (pasids <= 0 || pasids > (PASID_MASK + 1))
3231                return -EINVAL;
3232
3233        /* Number of GCR3 table levels required */
3234        for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3235                levels += 1;
3236
3237        if (levels > amd_iommu_max_glx_val)
3238                return -EINVAL;
3239
3240        spin_lock_irqsave(&domain->lock, flags);
3241
3242        /*
3243         * Save us all sanity checks whether devices already in the
3244         * domain support IOMMUv2. Just force that the domain has no
3245         * devices attached when it is switched into IOMMUv2 mode.
3246         */
3247        ret = -EBUSY;
3248        if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3249                goto out;
3250
3251        ret = -ENOMEM;
3252        domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3253        if (domain->gcr3_tbl == NULL)
3254                goto out;
3255
3256        domain->glx      = levels;
3257        domain->flags   |= PD_IOMMUV2_MASK;
3258        domain->updated  = true;
3259
3260        update_domain(domain);
3261
3262        ret = 0;
3263
3264out:
3265        spin_unlock_irqrestore(&domain->lock, flags);
3266
3267        return ret;
3268}
3269EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3270
3271static int __flush_pasid(struct protection_domain *domain, int pasid,
3272                         u64 address, bool size)
3273{
3274        struct iommu_dev_data *dev_data;
3275        struct iommu_cmd cmd;
3276        int i, ret;
3277
3278        if (!(domain->flags & PD_IOMMUV2_MASK))
3279                return -EINVAL;
3280
3281        build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3282
3283        /*
3284         * IOMMU TLB needs to be flushed before Device TLB to
3285         * prevent device TLB refill from IOMMU TLB
3286         */
3287        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3288                if (domain->dev_iommu[i] == 0)
3289                        continue;
3290
3291                ret = iommu_queue_command(amd_iommus[i], &cmd);
3292                if (ret != 0)
3293                        goto out;
3294        }
3295
3296        /* Wait until IOMMU TLB flushes are complete */
3297        domain_flush_complete(domain);
3298
3299        /* Now flush device TLBs */
3300        list_for_each_entry(dev_data, &domain->dev_list, list) {
3301                struct amd_iommu *iommu;
3302                int qdep;
3303
3304                /*
3305                   There might be non-IOMMUv2 capable devices in an IOMMUv2
3306                 * domain.
3307                 */
3308                if (!dev_data->ats.enabled)
3309                        continue;
3310
3311                qdep  = dev_data->ats.qdep;
3312                iommu = amd_iommu_rlookup_table[dev_data->devid];
3313
3314                build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3315                                      qdep, address, size);
3316
3317                ret = iommu_queue_command(iommu, &cmd);
3318                if (ret != 0)
3319                        goto out;
3320        }
3321
3322        /* Wait until all device TLBs are flushed */
3323        domain_flush_complete(domain);
3324
3325        ret = 0;
3326
3327out:
3328
3329        return ret;
3330}
3331
3332static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3333                                  u64 address)
3334{
3335        return __flush_pasid(domain, pasid, address, false);
3336}
3337
3338int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3339                         u64 address)
3340{
3341        struct protection_domain *domain = to_pdomain(dom);
3342        unsigned long flags;
3343        int ret;
3344
3345        spin_lock_irqsave(&domain->lock, flags);
3346        ret = __amd_iommu_flush_page(domain, pasid, address);
3347        spin_unlock_irqrestore(&domain->lock, flags);
3348
3349        return ret;
3350}
3351EXPORT_SYMBOL(amd_iommu_flush_page);
3352
3353static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3354{
3355        return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3356                             true);
3357}
3358
3359int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3360{
3361        struct protection_domain *domain = to_pdomain(dom);
3362        unsigned long flags;
3363        int ret;
3364
3365        spin_lock_irqsave(&domain->lock, flags);
3366        ret = __amd_iommu_flush_tlb(domain, pasid);
3367        spin_unlock_irqrestore(&domain->lock, flags);
3368
3369        return ret;
3370}
3371EXPORT_SYMBOL(amd_iommu_flush_tlb);
3372
3373static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3374{
3375        int index;
3376        u64 *pte;
3377
3378        while (true) {
3379
3380                index = (pasid >> (9 * level)) & 0x1ff;
3381                pte   = &root[index];
3382
3383                if (level == 0)
3384                        break;
3385
3386                if (!(*pte & GCR3_VALID)) {
3387                        if (!alloc)
3388                                return NULL;
3389
3390                        root = (void *)get_zeroed_page(GFP_ATOMIC);
3391                        if (root == NULL)
3392                                return NULL;
3393
3394                        *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3395                }
3396
3397                root = iommu_phys_to_virt(*pte & PAGE_MASK);
3398
3399                level -= 1;
3400        }
3401
3402        return pte;
3403}
3404
3405static int __set_gcr3(struct protection_domain *domain, int pasid,
3406                      unsigned long cr3)
3407{
3408        u64 *pte;
3409
3410        if (domain->mode != PAGE_MODE_NONE)
3411                return -EINVAL;
3412
3413        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3414        if (pte == NULL)
3415                return -ENOMEM;
3416
3417        *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3418
3419        return __amd_iommu_flush_tlb(domain, pasid);
3420}
3421
3422static int __clear_gcr3(struct protection_domain *domain, int pasid)
3423{
3424        u64 *pte;
3425
3426        if (domain->mode != PAGE_MODE_NONE)
3427                return -EINVAL;
3428
3429        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3430        if (pte == NULL)
3431                return 0;
3432
3433        *pte = 0;
3434
3435        return __amd_iommu_flush_tlb(domain, pasid);
3436}
3437
3438int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3439                              unsigned long cr3)
3440{
3441        struct protection_domain *domain = to_pdomain(dom);
3442        unsigned long flags;
3443        int ret;
3444
3445        spin_lock_irqsave(&domain->lock, flags);
3446        ret = __set_gcr3(domain, pasid, cr3);
3447        spin_unlock_irqrestore(&domain->lock, flags);
3448
3449        return ret;
3450}
3451EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3452
3453int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3454{
3455        struct protection_domain *domain = to_pdomain(dom);
3456        unsigned long flags;
3457        int ret;
3458
3459        spin_lock_irqsave(&domain->lock, flags);
3460        ret = __clear_gcr3(domain, pasid);
3461        spin_unlock_irqrestore(&domain->lock, flags);
3462
3463        return ret;
3464}
3465EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3466
3467int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3468                           int status, int tag)
3469{
3470        struct iommu_dev_data *dev_data;
3471        struct amd_iommu *iommu;
3472        struct iommu_cmd cmd;
3473
3474        dev_data = get_dev_data(&pdev->dev);
3475        iommu    = amd_iommu_rlookup_table[dev_data->devid];
3476
3477        build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3478                           tag, dev_data->pri_tlp);
3479
3480        return iommu_queue_command(iommu, &cmd);
3481}
3482EXPORT_SYMBOL(amd_iommu_complete_ppr);
3483
3484struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3485{
3486        struct protection_domain *pdomain;
3487
3488        pdomain = get_domain(&pdev->dev);
3489        if (IS_ERR(pdomain))
3490                return NULL;
3491
3492        /* Only return IOMMUv2 domains */
3493        if (!(pdomain->flags & PD_IOMMUV2_MASK))
3494                return NULL;
3495
3496        return &pdomain->domain;
3497}
3498EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3499
3500void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3501{
3502        struct iommu_dev_data *dev_data;
3503
3504        if (!amd_iommu_v2_supported())
3505                return;
3506
3507        dev_data = get_dev_data(&pdev->dev);
3508        dev_data->errata |= (1 << erratum);
3509}
3510EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3511
3512int amd_iommu_device_info(struct pci_dev *pdev,
3513                          struct amd_iommu_device_info *info)
3514{
3515        int max_pasids;
3516        int pos;
3517
3518        if (pdev == NULL || info == NULL)
3519                return -EINVAL;
3520
3521        if (!amd_iommu_v2_supported())
3522                return -EINVAL;
3523
3524        memset(info, 0, sizeof(*info));
3525
3526        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3527        if (pos)
3528                info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3529
3530        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3531        if (pos)
3532                info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3533
3534        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3535        if (pos) {
3536                int features;
3537
3538                max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3539                max_pasids = min(max_pasids, (1 << 20));
3540
3541                info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3542                info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3543
3544                features = pci_pasid_features(pdev);
3545                if (features & PCI_PASID_CAP_EXEC)
3546                        info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3547                if (features & PCI_PASID_CAP_PRIV)
3548                        info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3549        }
3550
3551        return 0;
3552}
3553EXPORT_SYMBOL(amd_iommu_device_info);
3554
3555#ifdef CONFIG_IRQ_REMAP
3556
3557/*****************************************************************************
3558 *
3559 * Interrupt Remapping Implementation
3560 *
3561 *****************************************************************************/
3562
3563static struct irq_chip amd_ir_chip;
3564static DEFINE_SPINLOCK(iommu_table_lock);
3565
3566static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3567{
3568        u64 dte;
3569
3570        dte     = amd_iommu_dev_table[devid].data[2];
3571        dte     &= ~DTE_IRQ_PHYS_ADDR_MASK;
3572        dte     |= iommu_virt_to_phys(table->table);
3573        dte     |= DTE_IRQ_REMAP_INTCTL;
3574        dte     |= DTE_IRQ_TABLE_LEN;
3575        dte     |= DTE_IRQ_REMAP_ENABLE;
3576
3577        amd_iommu_dev_table[devid].data[2] = dte;
3578}
3579
3580static struct irq_remap_table *get_irq_table(u16 devid)
3581{
3582        struct irq_remap_table *table;
3583
3584        if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3585                      "%s: no iommu for devid %x\n", __func__, devid))
3586                return NULL;
3587
3588        table = irq_lookup_table[devid];
3589        if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3590                return NULL;
3591
3592        return table;
3593}
3594
3595static struct irq_remap_table *__alloc_irq_table(void)
3596{
3597        struct irq_remap_table *table;
3598
3599        table = kzalloc(sizeof(*table), GFP_KERNEL);
3600        if (!table)
3601                return NULL;
3602
3603        table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3604        if (!table->table) {
3605                kfree(table);
3606                return NULL;
3607        }
3608        raw_spin_lock_init(&table->lock);
3609
3610        if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3611                memset(table->table, 0,
3612                       MAX_IRQS_PER_TABLE * sizeof(u32));
3613        else
3614                memset(table->table, 0,
3615                       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3616        return table;
3617}
3618
3619static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3620                                  struct irq_remap_table *table)
3621{
3622        irq_lookup_table[devid] = table;
3623        set_dte_irq_entry(devid, table);
3624        iommu_flush_dte(iommu, devid);
3625}
3626
3627static struct irq_remap_table *alloc_irq_table(u16 devid)
3628{
3629        struct irq_remap_table *table = NULL;
3630        struct irq_remap_table *new_table = NULL;
3631        struct amd_iommu *iommu;
3632        unsigned long flags;
3633        u16 alias;
3634
3635        spin_lock_irqsave(&iommu_table_lock, flags);
3636
3637        iommu = amd_iommu_rlookup_table[devid];
3638        if (!iommu)
3639                goto out_unlock;
3640
3641        table = irq_lookup_table[devid];
3642        if (table)
3643                goto out_unlock;
3644
3645        alias = amd_iommu_alias_table[devid];
3646        table = irq_lookup_table[alias];
3647        if (table) {
3648                set_remap_table_entry(iommu, devid, table);
3649                goto out_wait;
3650        }
3651        spin_unlock_irqrestore(&iommu_table_lock, flags);
3652
3653        /* Nothing there yet, allocate new irq remapping table */
3654        new_table = __alloc_irq_table();
3655        if (!new_table)
3656                return NULL;
3657
3658        spin_lock_irqsave(&iommu_table_lock, flags);
3659
3660        table = irq_lookup_table[devid];
3661        if (table)
3662                goto out_unlock;
3663
3664        table = irq_lookup_table[alias];
3665        if (table) {
3666                set_remap_table_entry(iommu, devid, table);
3667                goto out_wait;
3668        }
3669
3670        table = new_table;
3671        new_table = NULL;
3672
3673        set_remap_table_entry(iommu, devid, table);
3674        if (devid != alias)
3675                set_remap_table_entry(iommu, alias, table);
3676
3677out_wait:
3678        iommu_completion_wait(iommu);
3679
3680out_unlock:
3681        spin_unlock_irqrestore(&iommu_table_lock, flags);
3682
3683        if (new_table) {
3684                kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3685                kfree(new_table);
3686        }
3687        return table;
3688}
3689
3690static int alloc_irq_index(u16 devid, int count, bool align)
3691{
3692        struct irq_remap_table *table;
3693        int index, c, alignment = 1;
3694        unsigned long flags;
3695        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3696
3697        if (!iommu)
3698                return -ENODEV;
3699
3700        table = alloc_irq_table(devid);
3701        if (!table)
3702                return -ENODEV;
3703
3704        if (align)
3705                alignment = roundup_pow_of_two(count);
3706
3707        raw_spin_lock_irqsave(&table->lock, flags);
3708
3709        /* Scan table for free entries */
3710        for (index = ALIGN(table->min_index, alignment), c = 0;
3711             index < MAX_IRQS_PER_TABLE;) {
3712                if (!iommu->irte_ops->is_allocated(table, index)) {
3713                        c += 1;
3714                } else {
3715                        c     = 0;
3716                        index = ALIGN(index + 1, alignment);
3717                        continue;
3718                }
3719
3720                if (c == count) {
3721                        for (; c != 0; --c)
3722                                iommu->irte_ops->set_allocated(table, index - c + 1);
3723
3724                        index -= count - 1;
3725                        goto out;
3726                }
3727
3728                index++;
3729        }
3730
3731        index = -ENOSPC;
3732
3733out:
3734        raw_spin_unlock_irqrestore(&table->lock, flags);
3735
3736        return index;
3737}
3738
3739static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3740                          struct amd_ir_data *data)
3741{
3742        struct irq_remap_table *table;
3743        struct amd_iommu *iommu;
3744        unsigned long flags;
3745        struct irte_ga *entry;
3746
3747        iommu = amd_iommu_rlookup_table[devid];
3748        if (iommu == NULL)
3749                return -EINVAL;
3750
3751        table = get_irq_table(devid);
3752        if (!table)
3753                return -ENOMEM;
3754
3755        raw_spin_lock_irqsave(&table->lock, flags);
3756
3757        entry = (struct irte_ga *)table->table;
3758        entry = &entry[index];
3759        entry->lo.fields_remap.valid = 0;
3760        entry->hi.val = irte->hi.val;
3761        entry->lo.val = irte->lo.val;
3762        entry->lo.fields_remap.valid = 1;
3763        if (data)
3764                data->ref = entry;
3765
3766        raw_spin_unlock_irqrestore(&table->lock, flags);
3767
3768        iommu_flush_irt(iommu, devid);
3769        iommu_completion_wait(iommu);
3770
3771        return 0;
3772}
3773
3774static int modify_irte(u16 devid, int index, union irte *irte)
3775{
3776        struct irq_remap_table *table;
3777        struct amd_iommu *iommu;
3778        unsigned long flags;
3779
3780        iommu = amd_iommu_rlookup_table[devid];
3781        if (iommu == NULL)
3782                return -EINVAL;
3783
3784        table = get_irq_table(devid);
3785        if (!table)
3786                return -ENOMEM;
3787
3788        raw_spin_lock_irqsave(&table->lock, flags);
3789        table->table[index] = irte->val;
3790        raw_spin_unlock_irqrestore(&table->lock, flags);
3791
3792        iommu_flush_irt(iommu, devid);
3793        iommu_completion_wait(iommu);
3794
3795        return 0;
3796}
3797
3798static void free_irte(u16 devid, int index)
3799{
3800        struct irq_remap_table *table;
3801        struct amd_iommu *iommu;
3802        unsigned long flags;
3803
3804        iommu = amd_iommu_rlookup_table[devid];
3805        if (iommu == NULL)
3806                return;
3807
3808        table = get_irq_table(devid);
3809        if (!table)
3810                return;
3811
3812        raw_spin_lock_irqsave(&table->lock, flags);
3813        iommu->irte_ops->clear_allocated(table, index);
3814        raw_spin_unlock_irqrestore(&table->lock, flags);
3815
3816        iommu_flush_irt(iommu, devid);
3817        iommu_completion_wait(iommu);
3818}
3819
3820static void irte_prepare(void *entry,
3821                         u32 delivery_mode, u32 dest_mode,
3822                         u8 vector, u32 dest_apicid, int devid)
3823{
3824        union irte *irte = (union irte *) entry;
3825
3826        irte->val                = 0;
3827        irte->fields.vector      = vector;
3828        irte->fields.int_type    = delivery_mode;
3829        irte->fields.destination = dest_apicid;
3830        irte->fields.dm          = dest_mode;
3831        irte->fields.valid       = 1;
3832}
3833
3834static void irte_ga_prepare(void *entry,
3835                            u32 delivery_mode, u32 dest_mode,
3836                            u8 vector, u32 dest_apicid, int devid)
3837{
3838        struct irte_ga *irte = (struct irte_ga *) entry;
3839
3840        irte->lo.val                      = 0;
3841        irte->hi.val                      = 0;
3842        irte->lo.fields_remap.int_type    = delivery_mode;
3843        irte->lo.fields_remap.dm          = dest_mode;
3844        irte->hi.fields.vector            = vector;
3845        irte->lo.fields_remap.destination = dest_apicid;
3846        irte->lo.fields_remap.valid       = 1;
3847}
3848
3849static void irte_activate(void *entry, u16 devid, u16 index)
3850{
3851        union irte *irte = (union irte *) entry;
3852
3853        irte->fields.valid = 1;
3854        modify_irte(devid, index, irte);
3855}
3856
3857static void irte_ga_activate(void *entry, u16 devid, u16 index)
3858{
3859        struct irte_ga *irte = (struct irte_ga *) entry;
3860
3861        irte->lo.fields_remap.valid = 1;
3862        modify_irte_ga(devid, index, irte, NULL);
3863}
3864
3865static void irte_deactivate(void *entry, u16 devid, u16 index)
3866{
3867        union irte *irte = (union irte *) entry;
3868
3869        irte->fields.valid = 0;
3870        modify_irte(devid, index, irte);
3871}
3872
3873static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3874{
3875        struct irte_ga *irte = (struct irte_ga *) entry;
3876
3877        irte->lo.fields_remap.valid = 0;
3878        modify_irte_ga(devid, index, irte, NULL);
3879}
3880
3881static void irte_set_affinity(void *entry, u16 devid, u16 index,
3882                              u8 vector, u32 dest_apicid)
3883{
3884        union irte *irte = (union irte *) entry;
3885
3886        irte->fields.vector = vector;
3887        irte->fields.destination = dest_apicid;
3888        modify_irte(devid, index, irte);
3889}
3890
3891static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3892                                 u8 vector, u32 dest_apicid)
3893{
3894        struct irte_ga *irte = (struct irte_ga *) entry;
3895
3896        if (!irte->lo.fields_remap.guest_mode) {
3897                irte->hi.fields.vector = vector;
3898                irte->lo.fields_remap.destination = dest_apicid;
3899                modify_irte_ga(devid, index, irte, NULL);
3900        }
3901}
3902
3903#define IRTE_ALLOCATED (~1U)
3904static void irte_set_allocated(struct irq_remap_table *table, int index)
3905{
3906        table->table[index] = IRTE_ALLOCATED;
3907}
3908
3909static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3910{
3911        struct irte_ga *ptr = (struct irte_ga *)table->table;
3912        struct irte_ga *irte = &ptr[index];
3913
3914        memset(&irte->lo.val, 0, sizeof(u64));
3915        memset(&irte->hi.val, 0, sizeof(u64));
3916        irte->hi.fields.vector = 0xff;
3917}
3918
3919static bool irte_is_allocated(struct irq_remap_table *table, int index)
3920{
3921        union irte *ptr = (union irte *)table->table;
3922        union irte *irte = &ptr[index];
3923
3924        return irte->val != 0;
3925}
3926
3927static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3928{
3929        struct irte_ga *ptr = (struct irte_ga *)table->table;
3930        struct irte_ga *irte = &ptr[index];
3931
3932        return irte->hi.fields.vector != 0;
3933}
3934
3935static void irte_clear_allocated(struct irq_remap_table *table, int index)
3936{
3937        table->table[index] = 0;
3938}
3939
3940static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3941{
3942        struct irte_ga *ptr = (struct irte_ga *)table->table;
3943        struct irte_ga *irte = &ptr[index];
3944
3945        memset(&irte->lo.val, 0, sizeof(u64));
3946        memset(&irte->hi.val, 0, sizeof(u64));
3947}
3948
3949static int get_devid(struct irq_alloc_info *info)
3950{
3951        int devid = -1;
3952
3953        switch (info->type) {
3954        case X86_IRQ_ALLOC_TYPE_IOAPIC:
3955                devid     = get_ioapic_devid(info->ioapic_id);
3956                break;
3957        case X86_IRQ_ALLOC_TYPE_HPET:
3958                devid     = get_hpet_devid(info->hpet_id);
3959                break;
3960        case X86_IRQ_ALLOC_TYPE_MSI:
3961        case X86_IRQ_ALLOC_TYPE_MSIX:
3962                devid = get_device_id(&info->msi_dev->dev);
3963                break;
3964        default:
3965                BUG_ON(1);
3966                break;
3967        }
3968
3969        return devid;
3970}
3971
3972static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3973{
3974        struct amd_iommu *iommu;
3975        int devid;
3976
3977        if (!info)
3978                return NULL;
3979
3980        devid = get_devid(info);
3981        if (devid >= 0) {
3982                iommu = amd_iommu_rlookup_table[devid];
3983                if (iommu)
3984                        return iommu->ir_domain;
3985        }
3986
3987        return NULL;
3988}
3989
3990static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3991{
3992        struct amd_iommu *iommu;
3993        int devid;
3994
3995        if (!info)
3996                return NULL;
3997
3998        switch (info->type) {
3999        case X86_IRQ_ALLOC_TYPE_MSI:
4000        case X86_IRQ_ALLOC_TYPE_MSIX:
4001                devid = get_device_id(&info->msi_dev->dev);
4002                if (devid < 0)
4003                        return NULL;
4004
4005                iommu = amd_iommu_rlookup_table[devid];
4006                if (iommu)
4007                        return iommu->msi_domain;
4008                break;
4009        default:
4010                break;
4011        }
4012
4013        return NULL;
4014}
4015
4016struct irq_remap_ops amd_iommu_irq_ops = {
4017        .prepare                = amd_iommu_prepare,
4018        .enable                 = amd_iommu_enable,
4019        .disable                = amd_iommu_disable,
4020        .reenable               = amd_iommu_reenable,
4021        .enable_faulting        = amd_iommu_enable_faulting,
4022        .get_ir_irq_domain      = get_ir_irq_domain,
4023        .get_irq_domain         = get_irq_domain,
4024};
4025
4026static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4027                                       struct irq_cfg *irq_cfg,
4028                                       struct irq_alloc_info *info,
4029                                       int devid, int index, int sub_handle)
4030{
4031        struct irq_2_irte *irte_info = &data->irq_2_irte;
4032        struct msi_msg *msg = &data->msi_entry;
4033        struct IO_APIC_route_entry *entry;
4034        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4035
4036        if (!iommu)
4037                return;
4038
4039        data->irq_2_irte.devid = devid;
4040        data->irq_2_irte.index = index + sub_handle;
4041        iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4042                                 apic->irq_dest_mode, irq_cfg->vector,
4043                                 irq_cfg->dest_apicid, devid);
4044
4045        switch (info->type) {
4046        case X86_IRQ_ALLOC_TYPE_IOAPIC:
4047                /* Setup IOAPIC entry */
4048                entry = info->ioapic_entry;
4049                info->ioapic_entry = NULL;
4050                memset(entry, 0, sizeof(*entry));
4051                entry->vector        = index;
4052                entry->mask          = 0;
4053                entry->trigger       = info->ioapic_trigger;
4054                entry->polarity      = info->ioapic_polarity;
4055                /* Mask level triggered irqs. */
4056                if (info->ioapic_trigger)
4057                        entry->mask = 1;
4058                break;
4059
4060        case X86_IRQ_ALLOC_TYPE_HPET:
4061        case X86_IRQ_ALLOC_TYPE_MSI:
4062        case X86_IRQ_ALLOC_TYPE_MSIX:
4063                msg->address_hi = MSI_ADDR_BASE_HI;
4064                msg->address_lo = MSI_ADDR_BASE_LO;
4065                msg->data = irte_info->index;
4066                break;
4067
4068        default:
4069                BUG_ON(1);
4070                break;
4071        }
4072}
4073
4074struct amd_irte_ops irte_32_ops = {
4075        .prepare = irte_prepare,
4076        .activate = irte_activate,
4077        .deactivate = irte_deactivate,
4078        .set_affinity = irte_set_affinity,
4079        .set_allocated = irte_set_allocated,
4080        .is_allocated = irte_is_allocated,
4081        .clear_allocated = irte_clear_allocated,
4082};
4083
4084struct amd_irte_ops irte_128_ops = {
4085        .prepare = irte_ga_prepare,
4086        .activate = irte_ga_activate,
4087        .deactivate = irte_ga_deactivate,
4088        .set_affinity = irte_ga_set_affinity,
4089        .set_allocated = irte_ga_set_allocated,
4090        .is_allocated = irte_ga_is_allocated,
4091        .clear_allocated = irte_ga_clear_allocated,
4092};
4093
4094static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4095                               unsigned int nr_irqs, void *arg)
4096{
4097        struct irq_alloc_info *info = arg;
4098        struct irq_data *irq_data;
4099        struct amd_ir_data *data = NULL;
4100        struct irq_cfg *cfg;
4101        int i, ret, devid;
4102        int index;
4103
4104        if (!info)
4105                return -EINVAL;
4106        if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4107            info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4108                return -EINVAL;
4109
4110        /*
4111         * With IRQ remapping enabled, don't need contiguous CPU vectors
4112         * to support multiple MSI interrupts.
4113         */
4114        if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4115                info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4116
4117        devid = get_devid(info);
4118        if (devid < 0)
4119                return -EINVAL;
4120
4121        ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4122        if (ret < 0)
4123                return ret;
4124
4125        if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4126                struct irq_remap_table *table;
4127                struct amd_iommu *iommu;
4128
4129                table = alloc_irq_table(devid);
4130                if (table) {
4131                        if (!table->min_index) {
4132                                /*
4133                                 * Keep the first 32 indexes free for IOAPIC
4134                                 * interrupts.
4135                                 */
4136                                table->min_index = 32;
4137                                iommu = amd_iommu_rlookup_table[devid];
4138                                for (i = 0; i < 32; ++i)
4139                                        iommu->irte_ops->set_allocated(table, i);
4140                        }
4141                        WARN_ON(table->min_index != 32);
4142                        index = info->ioapic_pin;
4143                } else {
4144                        index = -ENOMEM;
4145                }
4146        } else {
4147                bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4148
4149                index = alloc_irq_index(devid, nr_irqs, align);
4150        }
4151        if (index < 0) {
4152                pr_warn("Failed to allocate IRTE\n");
4153                ret = index;
4154                goto out_free_parent;
4155        }
4156
4157        for (i = 0; i < nr_irqs; i++) {
4158                irq_data = irq_domain_get_irq_data(domain, virq + i);
4159                cfg = irqd_cfg(irq_data);
4160                if (!irq_data || !cfg) {
4161                        ret = -EINVAL;
4162                        goto out_free_data;
4163                }
4164
4165                ret = -ENOMEM;
4166                data = kzalloc(sizeof(*data), GFP_KERNEL);
4167                if (!data)
4168                        goto out_free_data;
4169
4170                if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4171                        data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4172                else
4173                        data->entry = kzalloc(sizeof(struct irte_ga),
4174                                                     GFP_KERNEL);
4175                if (!data->entry) {
4176                        kfree(data);
4177                        goto out_free_data;
4178                }
4179
4180                irq_data->hwirq = (devid << 16) + i;
4181                irq_data->chip_data = data;
4182                irq_data->chip = &amd_ir_chip;
4183                irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4184                irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4185        }
4186
4187        return 0;
4188
4189out_free_data:
4190        for (i--; i >= 0; i--) {
4191                irq_data = irq_domain_get_irq_data(domain, virq + i);
4192                if (irq_data)
4193                        kfree(irq_data->chip_data);
4194        }
4195        for (i = 0; i < nr_irqs; i++)
4196                free_irte(devid, index + i);
4197out_free_parent:
4198        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4199        return ret;
4200}
4201
4202static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4203                               unsigned int nr_irqs)
4204{
4205        struct irq_2_irte *irte_info;
4206        struct irq_data *irq_data;
4207        struct amd_ir_data *data;
4208        int i;
4209
4210        for (i = 0; i < nr_irqs; i++) {
4211                irq_data = irq_domain_get_irq_data(domain, virq  + i);
4212                if (irq_data && irq_data->chip_data) {
4213                        data = irq_data->chip_data;
4214                        irte_info = &data->irq_2_irte;
4215                        free_irte(irte_info->devid, irte_info->index);
4216                        kfree(data->entry);
4217                        kfree(data);
4218                }
4219        }
4220        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4221}
4222
4223static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4224                               struct amd_ir_data *ir_data,
4225                               struct irq_2_irte *irte_info,
4226                               struct irq_cfg *cfg);
4227
4228static int irq_remapping_activate(struct irq_domain *domain,
4229                                  struct irq_data *irq_data, bool reserve)
4230{
4231        struct amd_ir_data *data = irq_data->chip_data;
4232        struct irq_2_irte *irte_info = &data->irq_2_irte;
4233        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4234        struct irq_cfg *cfg = irqd_cfg(irq_data);
4235
4236        if (!iommu)
4237                return 0;
4238
4239        iommu->irte_ops->activate(data->entry, irte_info->devid,
4240                                  irte_info->index);
4241        amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4242        return 0;
4243}
4244
4245static void irq_remapping_deactivate(struct irq_domain *domain,
4246                                     struct irq_data *irq_data)
4247{
4248        struct amd_ir_data *data = irq_data->chip_data;
4249        struct irq_2_irte *irte_info = &data->irq_2_irte;
4250        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4251
4252        if (iommu)
4253                iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4254                                            irte_info->index);
4255}
4256
4257static const struct irq_domain_ops amd_ir_domain_ops = {
4258        .alloc = irq_remapping_alloc,
4259        .free = irq_remapping_free,
4260        .activate = irq_remapping_activate,
4261        .deactivate = irq_remapping_deactivate,
4262};
4263
4264static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4265{
4266        struct amd_iommu *iommu;
4267        struct amd_iommu_pi_data *pi_data = vcpu_info;
4268        struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4269        struct amd_ir_data *ir_data = data->chip_data;
4270        struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4271        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4272        struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4273
4274        /* Note:
4275         * This device has never been set up for guest mode.
4276         * we should not modify the IRTE
4277         */
4278        if (!dev_data || !dev_data->use_vapic)
4279                return 0;
4280
4281        pi_data->ir_data = ir_data;
4282
4283        /* Note:
4284         * SVM tries to set up for VAPIC mode, but we are in
4285         * legacy mode. So, we force legacy mode instead.
4286         */
4287        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4288                pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4289                         __func__);
4290                pi_data->is_guest_mode = false;
4291        }
4292
4293        iommu = amd_iommu_rlookup_table[irte_info->devid];
4294        if (iommu == NULL)
4295                return -EINVAL;
4296
4297        pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4298        if (pi_data->is_guest_mode) {
4299                /* Setting */
4300                irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4301                irte->hi.fields.vector = vcpu_pi_info->vector;
4302                irte->lo.fields_vapic.ga_log_intr = 1;
4303                irte->lo.fields_vapic.guest_mode = 1;
4304                irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4305
4306                ir_data->cached_ga_tag = pi_data->ga_tag;
4307        } else {
4308                /* Un-Setting */
4309                struct irq_cfg *cfg = irqd_cfg(data);
4310
4311                irte->hi.val = 0;
4312                irte->lo.val = 0;
4313                irte->hi.fields.vector = cfg->vector;
4314                irte->lo.fields_remap.guest_mode = 0;
4315                irte->lo.fields_remap.destination = cfg->dest_apicid;
4316                irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4317                irte->lo.fields_remap.dm = apic->irq_dest_mode;
4318
4319                /*
4320                 * This communicates the ga_tag back to the caller
4321                 * so that it can do all the necessary clean up.
4322                 */
4323                ir_data->cached_ga_tag = 0;
4324        }
4325
4326        return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4327}
4328
4329
4330static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4331                               struct amd_ir_data *ir_data,
4332                               struct irq_2_irte *irte_info,
4333                               struct irq_cfg *cfg)
4334{
4335
4336        /*
4337         * Atomically updates the IRTE with the new destination, vector
4338         * and flushes the interrupt entry cache.
4339         */
4340        iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4341                                      irte_info->index, cfg->vector,
4342                                      cfg->dest_apicid);
4343}
4344
4345static int amd_ir_set_affinity(struct irq_data *data,
4346                               const struct cpumask *mask, bool force)
4347{
4348        struct amd_ir_data *ir_data = data->chip_data;
4349        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4350        struct irq_cfg *cfg = irqd_cfg(data);
4351        struct irq_data *parent = data->parent_data;
4352        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4353        int ret;
4354
4355        if (!iommu)
4356                return -ENODEV;
4357
4358        ret = parent->chip->irq_set_affinity(parent, mask, force);
4359        if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4360                return ret;
4361
4362        amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4363        /*
4364         * After this point, all the interrupts will start arriving
4365         * at the new destination. So, time to cleanup the previous
4366         * vector allocation.
4367         */
4368        send_cleanup_vector(cfg);
4369
4370        return IRQ_SET_MASK_OK_DONE;
4371}
4372
4373static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4374{
4375        struct amd_ir_data *ir_data = irq_data->chip_data;
4376
4377        *msg = ir_data->msi_entry;
4378}
4379
4380static struct irq_chip amd_ir_chip = {
4381        .name                   = "AMD-IR",
4382        .irq_ack                = ir_ack_apic_edge,
4383        .irq_set_affinity       = amd_ir_set_affinity,
4384        .irq_set_vcpu_affinity  = amd_ir_set_vcpu_affinity,
4385        .irq_compose_msi_msg    = ir_compose_msi_msg,
4386};
4387
4388int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4389{
4390        struct fwnode_handle *fn;
4391
4392        fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4393        if (!fn)
4394                return -ENOMEM;
4395        iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4396        irq_domain_free_fwnode(fn);
4397        if (!iommu->ir_domain)
4398                return -ENOMEM;
4399
4400        iommu->ir_domain->parent = arch_get_ir_parent_domain();
4401        iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4402                                                             "AMD-IR-MSI",
4403                                                             iommu->index);
4404        return 0;
4405}
4406
4407int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4408{
4409        unsigned long flags;
4410        struct amd_iommu *iommu;
4411        struct irq_remap_table *table;
4412        struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4413        int devid = ir_data->irq_2_irte.devid;
4414        struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4415        struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4416
4417        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4418            !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4419                return 0;
4420
4421        iommu = amd_iommu_rlookup_table[devid];
4422        if (!iommu)
4423                return -ENODEV;
4424
4425        table = get_irq_table(devid);
4426        if (!table)
4427                return -ENODEV;
4428
4429        raw_spin_lock_irqsave(&table->lock, flags);
4430
4431        if (ref->lo.fields_vapic.guest_mode) {
4432                if (cpu >= 0)
4433                        ref->lo.fields_vapic.destination = cpu;
4434                ref->lo.fields_vapic.is_run = is_run;
4435                barrier();
4436        }
4437
4438        raw_spin_unlock_irqrestore(&table->lock, flags);
4439
4440        iommu_flush_irt(iommu, devid);
4441        iommu_completion_wait(iommu);
4442        return 0;
4443}
4444EXPORT_SYMBOL(amd_iommu_update_ga);
4445#endif
4446