linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  37#include <keys/user-type.h>
  38
  39#include <linux/device-mapper.h>
  40
  41#define DM_MSG_PREFIX "crypt"
  42
  43/*
  44 * context holding the current state of a multi-part conversion
  45 */
  46struct convert_context {
  47        struct completion restart;
  48        struct bio *bio_in;
  49        struct bio *bio_out;
  50        struct bvec_iter iter_in;
  51        struct bvec_iter iter_out;
  52        sector_t cc_sector;
  53        atomic_t cc_pending;
  54        union {
  55                struct skcipher_request *req;
  56                struct aead_request *req_aead;
  57        } r;
  58
  59};
  60
  61/*
  62 * per bio private data
  63 */
  64struct dm_crypt_io {
  65        struct crypt_config *cc;
  66        struct bio *base_bio;
  67        u8 *integrity_metadata;
  68        bool integrity_metadata_from_pool;
  69        struct work_struct work;
  70
  71        struct convert_context ctx;
  72
  73        atomic_t io_pending;
  74        blk_status_t error;
  75        sector_t sector;
  76
  77        struct rb_node rb_node;
  78} CRYPTO_MINALIGN_ATTR;
  79
  80struct dm_crypt_request {
  81        struct convert_context *ctx;
  82        struct scatterlist sg_in[4];
  83        struct scatterlist sg_out[4];
  84        sector_t iv_sector;
  85};
  86
  87struct crypt_config;
  88
  89struct crypt_iv_operations {
  90        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  91                   const char *opts);
  92        void (*dtr)(struct crypt_config *cc);
  93        int (*init)(struct crypt_config *cc);
  94        int (*wipe)(struct crypt_config *cc);
  95        int (*generator)(struct crypt_config *cc, u8 *iv,
  96                         struct dm_crypt_request *dmreq);
  97        int (*post)(struct crypt_config *cc, u8 *iv,
  98                    struct dm_crypt_request *dmreq);
  99};
 100
 101struct iv_essiv_private {
 102        struct crypto_ahash *hash_tfm;
 103        u8 *salt;
 104};
 105
 106struct iv_benbi_private {
 107        int shift;
 108};
 109
 110#define LMK_SEED_SIZE 64 /* hash + 0 */
 111struct iv_lmk_private {
 112        struct crypto_shash *hash_tfm;
 113        u8 *seed;
 114};
 115
 116#define TCW_WHITENING_SIZE 16
 117struct iv_tcw_private {
 118        struct crypto_shash *crc32_tfm;
 119        u8 *iv_seed;
 120        u8 *whitening;
 121};
 122
 123/*
 124 * Crypt: maps a linear range of a block device
 125 * and encrypts / decrypts at the same time.
 126 */
 127enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 128             DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 129
 130enum cipher_flags {
 131        CRYPT_MODE_INTEGRITY_AEAD,      /* Use authenticated mode for cihper */
 132        CRYPT_IV_LARGE_SECTORS,         /* Calculate IV from sector_size, not 512B sectors */
 133};
 134
 135/*
 136 * The fields in here must be read only after initialization.
 137 */
 138struct crypt_config {
 139        struct dm_dev *dev;
 140        sector_t start;
 141
 142        /*
 143         * pool for per bio private data, crypto requests,
 144         * encryption requeusts/buffer pages and integrity tags
 145         */
 146        mempool_t *req_pool;
 147        mempool_t *page_pool;
 148        mempool_t *tag_pool;
 149        unsigned tag_pool_max_sectors;
 150
 151        struct percpu_counter n_allocated_pages;
 152
 153        struct bio_set *bs;
 154        struct mutex bio_alloc_lock;
 155
 156        struct workqueue_struct *io_queue;
 157        struct workqueue_struct *crypt_queue;
 158
 159        struct task_struct *write_thread;
 160        wait_queue_head_t write_thread_wait;
 161        struct rb_root write_tree;
 162
 163        char *cipher;
 164        char *cipher_string;
 165        char *cipher_auth;
 166        char *key_string;
 167
 168        const struct crypt_iv_operations *iv_gen_ops;
 169        union {
 170                struct iv_essiv_private essiv;
 171                struct iv_benbi_private benbi;
 172                struct iv_lmk_private lmk;
 173                struct iv_tcw_private tcw;
 174        } iv_gen_private;
 175        sector_t iv_offset;
 176        unsigned int iv_size;
 177        unsigned short int sector_size;
 178        unsigned char sector_shift;
 179
 180        /* ESSIV: struct crypto_cipher *essiv_tfm */
 181        void *iv_private;
 182        union {
 183                struct crypto_skcipher **tfms;
 184                struct crypto_aead **tfms_aead;
 185        } cipher_tfm;
 186        unsigned tfms_count;
 187        unsigned long cipher_flags;
 188
 189        /*
 190         * Layout of each crypto request:
 191         *
 192         *   struct skcipher_request
 193         *      context
 194         *      padding
 195         *   struct dm_crypt_request
 196         *      padding
 197         *   IV
 198         *
 199         * The padding is added so that dm_crypt_request and the IV are
 200         * correctly aligned.
 201         */
 202        unsigned int dmreq_start;
 203
 204        unsigned int per_bio_data_size;
 205
 206        unsigned long flags;
 207        unsigned int key_size;
 208        unsigned int key_parts;      /* independent parts in key buffer */
 209        unsigned int key_extra_size; /* additional keys length */
 210        unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 211
 212        unsigned int integrity_tag_size;
 213        unsigned int integrity_iv_size;
 214        unsigned int on_disk_tag_size;
 215
 216        u8 *authenc_key; /* space for keys in authenc() format (if used) */
 217        u8 key[0];
 218};
 219
 220#define MIN_IOS         64
 221#define MAX_TAG_SIZE    480
 222#define POOL_ENTRY_SIZE 512
 223
 224static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 225static unsigned dm_crypt_clients_n = 0;
 226static volatile unsigned long dm_crypt_pages_per_client;
 227#define DM_CRYPT_MEMORY_PERCENT                 2
 228#define DM_CRYPT_MIN_PAGES_PER_CLIENT           (BIO_MAX_PAGES * 16)
 229
 230static void clone_init(struct dm_crypt_io *, struct bio *);
 231static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 232static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 233                                             struct scatterlist *sg);
 234
 235/*
 236 * Use this to access cipher attributes that are independent of the key.
 237 */
 238static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 239{
 240        return cc->cipher_tfm.tfms[0];
 241}
 242
 243static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 244{
 245        return cc->cipher_tfm.tfms_aead[0];
 246}
 247
 248/*
 249 * Different IV generation algorithms:
 250 *
 251 * plain: the initial vector is the 32-bit little-endian version of the sector
 252 *        number, padded with zeros if necessary.
 253 *
 254 * plain64: the initial vector is the 64-bit little-endian version of the sector
 255 *        number, padded with zeros if necessary.
 256 *
 257 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 258 *        number, padded with zeros if necessary.
 259 *
 260 * essiv: "encrypted sector|salt initial vector", the sector number is
 261 *        encrypted with the bulk cipher using a salt as key. The salt
 262 *        should be derived from the bulk cipher's key via hashing.
 263 *
 264 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 265 *        (needed for LRW-32-AES and possible other narrow block modes)
 266 *
 267 * null: the initial vector is always zero.  Provides compatibility with
 268 *       obsolete loop_fish2 devices.  Do not use for new devices.
 269 *
 270 * lmk:  Compatible implementation of the block chaining mode used
 271 *       by the Loop-AES block device encryption system
 272 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 273 *       It operates on full 512 byte sectors and uses CBC
 274 *       with an IV derived from the sector number, the data and
 275 *       optionally extra IV seed.
 276 *       This means that after decryption the first block
 277 *       of sector must be tweaked according to decrypted data.
 278 *       Loop-AES can use three encryption schemes:
 279 *         version 1: is plain aes-cbc mode
 280 *         version 2: uses 64 multikey scheme with lmk IV generator
 281 *         version 3: the same as version 2 with additional IV seed
 282 *                   (it uses 65 keys, last key is used as IV seed)
 283 *
 284 * tcw:  Compatible implementation of the block chaining mode used
 285 *       by the TrueCrypt device encryption system (prior to version 4.1).
 286 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 287 *       It operates on full 512 byte sectors and uses CBC
 288 *       with an IV derived from initial key and the sector number.
 289 *       In addition, whitening value is applied on every sector, whitening
 290 *       is calculated from initial key, sector number and mixed using CRC32.
 291 *       Note that this encryption scheme is vulnerable to watermarking attacks
 292 *       and should be used for old compatible containers access only.
 293 *
 294 * plumb: unimplemented, see:
 295 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 296 */
 297
 298static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 299                              struct dm_crypt_request *dmreq)
 300{
 301        memset(iv, 0, cc->iv_size);
 302        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 303
 304        return 0;
 305}
 306
 307static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 308                                struct dm_crypt_request *dmreq)
 309{
 310        memset(iv, 0, cc->iv_size);
 311        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 312
 313        return 0;
 314}
 315
 316static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 317                                  struct dm_crypt_request *dmreq)
 318{
 319        memset(iv, 0, cc->iv_size);
 320        /* iv_size is at least of size u64; usually it is 16 bytes */
 321        *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 322
 323        return 0;
 324}
 325
 326/* Initialise ESSIV - compute salt but no local memory allocations */
 327static int crypt_iv_essiv_init(struct crypt_config *cc)
 328{
 329        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 330        AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 331        struct scatterlist sg;
 332        struct crypto_cipher *essiv_tfm;
 333        int err;
 334
 335        sg_init_one(&sg, cc->key, cc->key_size);
 336        ahash_request_set_tfm(req, essiv->hash_tfm);
 337        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 338        ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 339
 340        err = crypto_ahash_digest(req);
 341        ahash_request_zero(req);
 342        if (err)
 343                return err;
 344
 345        essiv_tfm = cc->iv_private;
 346
 347        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 348                            crypto_ahash_digestsize(essiv->hash_tfm));
 349        if (err)
 350                return err;
 351
 352        return 0;
 353}
 354
 355/* Wipe salt and reset key derived from volume key */
 356static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 357{
 358        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 359        unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 360        struct crypto_cipher *essiv_tfm;
 361        int r, err = 0;
 362
 363        memset(essiv->salt, 0, salt_size);
 364
 365        essiv_tfm = cc->iv_private;
 366        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 367        if (r)
 368                err = r;
 369
 370        return err;
 371}
 372
 373/* Allocate the cipher for ESSIV */
 374static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
 375                                                struct dm_target *ti,
 376                                                const u8 *salt,
 377                                                unsigned int saltsize)
 378{
 379        struct crypto_cipher *essiv_tfm;
 380        int err;
 381
 382        /* Setup the essiv_tfm with the given salt */
 383        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 384        if (IS_ERR(essiv_tfm)) {
 385                ti->error = "Error allocating crypto tfm for ESSIV";
 386                return essiv_tfm;
 387        }
 388
 389        if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
 390                ti->error = "Block size of ESSIV cipher does "
 391                            "not match IV size of block cipher";
 392                crypto_free_cipher(essiv_tfm);
 393                return ERR_PTR(-EINVAL);
 394        }
 395
 396        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 397        if (err) {
 398                ti->error = "Failed to set key for ESSIV cipher";
 399                crypto_free_cipher(essiv_tfm);
 400                return ERR_PTR(err);
 401        }
 402
 403        return essiv_tfm;
 404}
 405
 406static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 407{
 408        struct crypto_cipher *essiv_tfm;
 409        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 410
 411        crypto_free_ahash(essiv->hash_tfm);
 412        essiv->hash_tfm = NULL;
 413
 414        kzfree(essiv->salt);
 415        essiv->salt = NULL;
 416
 417        essiv_tfm = cc->iv_private;
 418
 419        if (essiv_tfm)
 420                crypto_free_cipher(essiv_tfm);
 421
 422        cc->iv_private = NULL;
 423}
 424
 425static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 426                              const char *opts)
 427{
 428        struct crypto_cipher *essiv_tfm = NULL;
 429        struct crypto_ahash *hash_tfm = NULL;
 430        u8 *salt = NULL;
 431        int err;
 432
 433        if (!opts) {
 434                ti->error = "Digest algorithm missing for ESSIV mode";
 435                return -EINVAL;
 436        }
 437
 438        /* Allocate hash algorithm */
 439        hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 440        if (IS_ERR(hash_tfm)) {
 441                ti->error = "Error initializing ESSIV hash";
 442                err = PTR_ERR(hash_tfm);
 443                goto bad;
 444        }
 445
 446        salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 447        if (!salt) {
 448                ti->error = "Error kmallocing salt storage in ESSIV";
 449                err = -ENOMEM;
 450                goto bad;
 451        }
 452
 453        cc->iv_gen_private.essiv.salt = salt;
 454        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 455
 456        essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
 457                                       crypto_ahash_digestsize(hash_tfm));
 458        if (IS_ERR(essiv_tfm)) {
 459                crypt_iv_essiv_dtr(cc);
 460                return PTR_ERR(essiv_tfm);
 461        }
 462        cc->iv_private = essiv_tfm;
 463
 464        return 0;
 465
 466bad:
 467        if (hash_tfm && !IS_ERR(hash_tfm))
 468                crypto_free_ahash(hash_tfm);
 469        kfree(salt);
 470        return err;
 471}
 472
 473static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 474                              struct dm_crypt_request *dmreq)
 475{
 476        struct crypto_cipher *essiv_tfm = cc->iv_private;
 477
 478        memset(iv, 0, cc->iv_size);
 479        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 480        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 481
 482        return 0;
 483}
 484
 485static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 486                              const char *opts)
 487{
 488        unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 489        int log = ilog2(bs);
 490
 491        /* we need to calculate how far we must shift the sector count
 492         * to get the cipher block count, we use this shift in _gen */
 493
 494        if (1 << log != bs) {
 495                ti->error = "cypher blocksize is not a power of 2";
 496                return -EINVAL;
 497        }
 498
 499        if (log > 9) {
 500                ti->error = "cypher blocksize is > 512";
 501                return -EINVAL;
 502        }
 503
 504        cc->iv_gen_private.benbi.shift = 9 - log;
 505
 506        return 0;
 507}
 508
 509static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 510{
 511}
 512
 513static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 514                              struct dm_crypt_request *dmreq)
 515{
 516        __be64 val;
 517
 518        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 519
 520        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 521        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 522
 523        return 0;
 524}
 525
 526static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 527                             struct dm_crypt_request *dmreq)
 528{
 529        memset(iv, 0, cc->iv_size);
 530
 531        return 0;
 532}
 533
 534static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 535{
 536        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 537
 538        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 539                crypto_free_shash(lmk->hash_tfm);
 540        lmk->hash_tfm = NULL;
 541
 542        kzfree(lmk->seed);
 543        lmk->seed = NULL;
 544}
 545
 546static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 547                            const char *opts)
 548{
 549        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 550
 551        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 552                ti->error = "Unsupported sector size for LMK";
 553                return -EINVAL;
 554        }
 555
 556        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 557        if (IS_ERR(lmk->hash_tfm)) {
 558                ti->error = "Error initializing LMK hash";
 559                return PTR_ERR(lmk->hash_tfm);
 560        }
 561
 562        /* No seed in LMK version 2 */
 563        if (cc->key_parts == cc->tfms_count) {
 564                lmk->seed = NULL;
 565                return 0;
 566        }
 567
 568        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 569        if (!lmk->seed) {
 570                crypt_iv_lmk_dtr(cc);
 571                ti->error = "Error kmallocing seed storage in LMK";
 572                return -ENOMEM;
 573        }
 574
 575        return 0;
 576}
 577
 578static int crypt_iv_lmk_init(struct crypt_config *cc)
 579{
 580        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 581        int subkey_size = cc->key_size / cc->key_parts;
 582
 583        /* LMK seed is on the position of LMK_KEYS + 1 key */
 584        if (lmk->seed)
 585                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 586                       crypto_shash_digestsize(lmk->hash_tfm));
 587
 588        return 0;
 589}
 590
 591static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 592{
 593        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 594
 595        if (lmk->seed)
 596                memset(lmk->seed, 0, LMK_SEED_SIZE);
 597
 598        return 0;
 599}
 600
 601static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 602                            struct dm_crypt_request *dmreq,
 603                            u8 *data)
 604{
 605        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 606        SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 607        struct md5_state md5state;
 608        __le32 buf[4];
 609        int i, r;
 610
 611        desc->tfm = lmk->hash_tfm;
 612        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 613
 614        r = crypto_shash_init(desc);
 615        if (r)
 616                return r;
 617
 618        if (lmk->seed) {
 619                r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 620                if (r)
 621                        return r;
 622        }
 623
 624        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 625        r = crypto_shash_update(desc, data + 16, 16 * 31);
 626        if (r)
 627                return r;
 628
 629        /* Sector is cropped to 56 bits here */
 630        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 631        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 632        buf[2] = cpu_to_le32(4024);
 633        buf[3] = 0;
 634        r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 635        if (r)
 636                return r;
 637
 638        /* No MD5 padding here */
 639        r = crypto_shash_export(desc, &md5state);
 640        if (r)
 641                return r;
 642
 643        for (i = 0; i < MD5_HASH_WORDS; i++)
 644                __cpu_to_le32s(&md5state.hash[i]);
 645        memcpy(iv, &md5state.hash, cc->iv_size);
 646
 647        return 0;
 648}
 649
 650static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 651                            struct dm_crypt_request *dmreq)
 652{
 653        struct scatterlist *sg;
 654        u8 *src;
 655        int r = 0;
 656
 657        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 658                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 659                src = kmap_atomic(sg_page(sg));
 660                r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 661                kunmap_atomic(src);
 662        } else
 663                memset(iv, 0, cc->iv_size);
 664
 665        return r;
 666}
 667
 668static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 669                             struct dm_crypt_request *dmreq)
 670{
 671        struct scatterlist *sg;
 672        u8 *dst;
 673        int r;
 674
 675        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 676                return 0;
 677
 678        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 679        dst = kmap_atomic(sg_page(sg));
 680        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 681
 682        /* Tweak the first block of plaintext sector */
 683        if (!r)
 684                crypto_xor(dst + sg->offset, iv, cc->iv_size);
 685
 686        kunmap_atomic(dst);
 687        return r;
 688}
 689
 690static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 691{
 692        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 693
 694        kzfree(tcw->iv_seed);
 695        tcw->iv_seed = NULL;
 696        kzfree(tcw->whitening);
 697        tcw->whitening = NULL;
 698
 699        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 700                crypto_free_shash(tcw->crc32_tfm);
 701        tcw->crc32_tfm = NULL;
 702}
 703
 704static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 705                            const char *opts)
 706{
 707        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 708
 709        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 710                ti->error = "Unsupported sector size for TCW";
 711                return -EINVAL;
 712        }
 713
 714        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 715                ti->error = "Wrong key size for TCW";
 716                return -EINVAL;
 717        }
 718
 719        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 720        if (IS_ERR(tcw->crc32_tfm)) {
 721                ti->error = "Error initializing CRC32 in TCW";
 722                return PTR_ERR(tcw->crc32_tfm);
 723        }
 724
 725        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 726        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 727        if (!tcw->iv_seed || !tcw->whitening) {
 728                crypt_iv_tcw_dtr(cc);
 729                ti->error = "Error allocating seed storage in TCW";
 730                return -ENOMEM;
 731        }
 732
 733        return 0;
 734}
 735
 736static int crypt_iv_tcw_init(struct crypt_config *cc)
 737{
 738        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 739        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 740
 741        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 742        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 743               TCW_WHITENING_SIZE);
 744
 745        return 0;
 746}
 747
 748static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 749{
 750        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 751
 752        memset(tcw->iv_seed, 0, cc->iv_size);
 753        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 754
 755        return 0;
 756}
 757
 758static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 759                                  struct dm_crypt_request *dmreq,
 760                                  u8 *data)
 761{
 762        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 763        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 764        u8 buf[TCW_WHITENING_SIZE];
 765        SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 766        int i, r;
 767
 768        /* xor whitening with sector number */
 769        crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 770        crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 771
 772        /* calculate crc32 for every 32bit part and xor it */
 773        desc->tfm = tcw->crc32_tfm;
 774        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 775        for (i = 0; i < 4; i++) {
 776                r = crypto_shash_init(desc);
 777                if (r)
 778                        goto out;
 779                r = crypto_shash_update(desc, &buf[i * 4], 4);
 780                if (r)
 781                        goto out;
 782                r = crypto_shash_final(desc, &buf[i * 4]);
 783                if (r)
 784                        goto out;
 785        }
 786        crypto_xor(&buf[0], &buf[12], 4);
 787        crypto_xor(&buf[4], &buf[8], 4);
 788
 789        /* apply whitening (8 bytes) to whole sector */
 790        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 791                crypto_xor(data + i * 8, buf, 8);
 792out:
 793        memzero_explicit(buf, sizeof(buf));
 794        return r;
 795}
 796
 797static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 798                            struct dm_crypt_request *dmreq)
 799{
 800        struct scatterlist *sg;
 801        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 802        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 803        u8 *src;
 804        int r = 0;
 805
 806        /* Remove whitening from ciphertext */
 807        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 808                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 809                src = kmap_atomic(sg_page(sg));
 810                r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 811                kunmap_atomic(src);
 812        }
 813
 814        /* Calculate IV */
 815        crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 816        if (cc->iv_size > 8)
 817                crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 818                               cc->iv_size - 8);
 819
 820        return r;
 821}
 822
 823static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 824                             struct dm_crypt_request *dmreq)
 825{
 826        struct scatterlist *sg;
 827        u8 *dst;
 828        int r;
 829
 830        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 831                return 0;
 832
 833        /* Apply whitening on ciphertext */
 834        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 835        dst = kmap_atomic(sg_page(sg));
 836        r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 837        kunmap_atomic(dst);
 838
 839        return r;
 840}
 841
 842static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 843                                struct dm_crypt_request *dmreq)
 844{
 845        /* Used only for writes, there must be an additional space to store IV */
 846        get_random_bytes(iv, cc->iv_size);
 847        return 0;
 848}
 849
 850static const struct crypt_iv_operations crypt_iv_plain_ops = {
 851        .generator = crypt_iv_plain_gen
 852};
 853
 854static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 855        .generator = crypt_iv_plain64_gen
 856};
 857
 858static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
 859        .generator = crypt_iv_plain64be_gen
 860};
 861
 862static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 863        .ctr       = crypt_iv_essiv_ctr,
 864        .dtr       = crypt_iv_essiv_dtr,
 865        .init      = crypt_iv_essiv_init,
 866        .wipe      = crypt_iv_essiv_wipe,
 867        .generator = crypt_iv_essiv_gen
 868};
 869
 870static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 871        .ctr       = crypt_iv_benbi_ctr,
 872        .dtr       = crypt_iv_benbi_dtr,
 873        .generator = crypt_iv_benbi_gen
 874};
 875
 876static const struct crypt_iv_operations crypt_iv_null_ops = {
 877        .generator = crypt_iv_null_gen
 878};
 879
 880static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 881        .ctr       = crypt_iv_lmk_ctr,
 882        .dtr       = crypt_iv_lmk_dtr,
 883        .init      = crypt_iv_lmk_init,
 884        .wipe      = crypt_iv_lmk_wipe,
 885        .generator = crypt_iv_lmk_gen,
 886        .post      = crypt_iv_lmk_post
 887};
 888
 889static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 890        .ctr       = crypt_iv_tcw_ctr,
 891        .dtr       = crypt_iv_tcw_dtr,
 892        .init      = crypt_iv_tcw_init,
 893        .wipe      = crypt_iv_tcw_wipe,
 894        .generator = crypt_iv_tcw_gen,
 895        .post      = crypt_iv_tcw_post
 896};
 897
 898static struct crypt_iv_operations crypt_iv_random_ops = {
 899        .generator = crypt_iv_random_gen
 900};
 901
 902/*
 903 * Integrity extensions
 904 */
 905static bool crypt_integrity_aead(struct crypt_config *cc)
 906{
 907        return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
 908}
 909
 910static bool crypt_integrity_hmac(struct crypt_config *cc)
 911{
 912        return crypt_integrity_aead(cc) && cc->key_mac_size;
 913}
 914
 915/* Get sg containing data */
 916static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 917                                             struct scatterlist *sg)
 918{
 919        if (unlikely(crypt_integrity_aead(cc)))
 920                return &sg[2];
 921
 922        return sg;
 923}
 924
 925static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
 926{
 927        struct bio_integrity_payload *bip;
 928        unsigned int tag_len;
 929        int ret;
 930
 931        if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
 932                return 0;
 933
 934        bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
 935        if (IS_ERR(bip))
 936                return PTR_ERR(bip);
 937
 938        tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
 939
 940        bip->bip_iter.bi_size = tag_len;
 941        bip->bip_iter.bi_sector = io->cc->start + io->sector;
 942
 943        ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
 944                                     tag_len, offset_in_page(io->integrity_metadata));
 945        if (unlikely(ret != tag_len))
 946                return -ENOMEM;
 947
 948        return 0;
 949}
 950
 951static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
 952{
 953#ifdef CONFIG_BLK_DEV_INTEGRITY
 954        struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
 955
 956        /* From now we require underlying device with our integrity profile */
 957        if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
 958                ti->error = "Integrity profile not supported.";
 959                return -EINVAL;
 960        }
 961
 962        if (bi->tag_size != cc->on_disk_tag_size ||
 963            bi->tuple_size != cc->on_disk_tag_size) {
 964                ti->error = "Integrity profile tag size mismatch.";
 965                return -EINVAL;
 966        }
 967        if (1 << bi->interval_exp != cc->sector_size) {
 968                ti->error = "Integrity profile sector size mismatch.";
 969                return -EINVAL;
 970        }
 971
 972        if (crypt_integrity_aead(cc)) {
 973                cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
 974                DMINFO("Integrity AEAD, tag size %u, IV size %u.",
 975                       cc->integrity_tag_size, cc->integrity_iv_size);
 976
 977                if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
 978                        ti->error = "Integrity AEAD auth tag size is not supported.";
 979                        return -EINVAL;
 980                }
 981        } else if (cc->integrity_iv_size)
 982                DMINFO("Additional per-sector space %u bytes for IV.",
 983                       cc->integrity_iv_size);
 984
 985        if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
 986                ti->error = "Not enough space for integrity tag in the profile.";
 987                return -EINVAL;
 988        }
 989
 990        return 0;
 991#else
 992        ti->error = "Integrity profile not supported.";
 993        return -EINVAL;
 994#endif
 995}
 996
 997static void crypt_convert_init(struct crypt_config *cc,
 998                               struct convert_context *ctx,
 999                               struct bio *bio_out, struct bio *bio_in,
1000                               sector_t sector)
1001{
1002        ctx->bio_in = bio_in;
1003        ctx->bio_out = bio_out;
1004        if (bio_in)
1005                ctx->iter_in = bio_in->bi_iter;
1006        if (bio_out)
1007                ctx->iter_out = bio_out->bi_iter;
1008        ctx->cc_sector = sector + cc->iv_offset;
1009        init_completion(&ctx->restart);
1010}
1011
1012static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1013                                             void *req)
1014{
1015        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1016}
1017
1018static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1019{
1020        return (void *)((char *)dmreq - cc->dmreq_start);
1021}
1022
1023static u8 *iv_of_dmreq(struct crypt_config *cc,
1024                       struct dm_crypt_request *dmreq)
1025{
1026        if (crypt_integrity_aead(cc))
1027                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1028                        crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1029        else
1030                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1031                        crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1032}
1033
1034static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1035                       struct dm_crypt_request *dmreq)
1036{
1037        return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1038}
1039
1040static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1041                       struct dm_crypt_request *dmreq)
1042{
1043        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1044        return (uint64_t*) ptr;
1045}
1046
1047static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1048                       struct dm_crypt_request *dmreq)
1049{
1050        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1051                  cc->iv_size + sizeof(uint64_t);
1052        return (unsigned int*)ptr;
1053}
1054
1055static void *tag_from_dmreq(struct crypt_config *cc,
1056                                struct dm_crypt_request *dmreq)
1057{
1058        struct convert_context *ctx = dmreq->ctx;
1059        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1060
1061        return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1062                cc->on_disk_tag_size];
1063}
1064
1065static void *iv_tag_from_dmreq(struct crypt_config *cc,
1066                               struct dm_crypt_request *dmreq)
1067{
1068        return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1069}
1070
1071static int crypt_convert_block_aead(struct crypt_config *cc,
1072                                     struct convert_context *ctx,
1073                                     struct aead_request *req,
1074                                     unsigned int tag_offset)
1075{
1076        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1077        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1078        struct dm_crypt_request *dmreq;
1079        u8 *iv, *org_iv, *tag_iv, *tag;
1080        uint64_t *sector;
1081        int r = 0;
1082
1083        BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1084
1085        /* Reject unexpected unaligned bio. */
1086        if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1087                return -EIO;
1088
1089        dmreq = dmreq_of_req(cc, req);
1090        dmreq->iv_sector = ctx->cc_sector;
1091        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1092                dmreq->iv_sector >>= cc->sector_shift;
1093        dmreq->ctx = ctx;
1094
1095        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1096
1097        sector = org_sector_of_dmreq(cc, dmreq);
1098        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1099
1100        iv = iv_of_dmreq(cc, dmreq);
1101        org_iv = org_iv_of_dmreq(cc, dmreq);
1102        tag = tag_from_dmreq(cc, dmreq);
1103        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1104
1105        /* AEAD request:
1106         *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1107         *  | (authenticated) | (auth+encryption) |              |
1108         *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1109         */
1110        sg_init_table(dmreq->sg_in, 4);
1111        sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1112        sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1113        sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1114        sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1115
1116        sg_init_table(dmreq->sg_out, 4);
1117        sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1118        sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1119        sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1120        sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1121
1122        if (cc->iv_gen_ops) {
1123                /* For READs use IV stored in integrity metadata */
1124                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1125                        memcpy(org_iv, tag_iv, cc->iv_size);
1126                } else {
1127                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1128                        if (r < 0)
1129                                return r;
1130                        /* Store generated IV in integrity metadata */
1131                        if (cc->integrity_iv_size)
1132                                memcpy(tag_iv, org_iv, cc->iv_size);
1133                }
1134                /* Working copy of IV, to be modified in crypto API */
1135                memcpy(iv, org_iv, cc->iv_size);
1136        }
1137
1138        aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1139        if (bio_data_dir(ctx->bio_in) == WRITE) {
1140                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1141                                       cc->sector_size, iv);
1142                r = crypto_aead_encrypt(req);
1143                if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1144                        memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1145                               cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1146        } else {
1147                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1148                                       cc->sector_size + cc->integrity_tag_size, iv);
1149                r = crypto_aead_decrypt(req);
1150        }
1151
1152        if (r == -EBADMSG)
1153                DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1154                            (unsigned long long)le64_to_cpu(*sector));
1155
1156        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1157                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1158
1159        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1160        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1161
1162        return r;
1163}
1164
1165static int crypt_convert_block_skcipher(struct crypt_config *cc,
1166                                        struct convert_context *ctx,
1167                                        struct skcipher_request *req,
1168                                        unsigned int tag_offset)
1169{
1170        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1171        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1172        struct scatterlist *sg_in, *sg_out;
1173        struct dm_crypt_request *dmreq;
1174        u8 *iv, *org_iv, *tag_iv;
1175        uint64_t *sector;
1176        int r = 0;
1177
1178        /* Reject unexpected unaligned bio. */
1179        if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1180                return -EIO;
1181
1182        dmreq = dmreq_of_req(cc, req);
1183        dmreq->iv_sector = ctx->cc_sector;
1184        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1185                dmreq->iv_sector >>= cc->sector_shift;
1186        dmreq->ctx = ctx;
1187
1188        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1189
1190        iv = iv_of_dmreq(cc, dmreq);
1191        org_iv = org_iv_of_dmreq(cc, dmreq);
1192        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1193
1194        sector = org_sector_of_dmreq(cc, dmreq);
1195        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1196
1197        /* For skcipher we use only the first sg item */
1198        sg_in  = &dmreq->sg_in[0];
1199        sg_out = &dmreq->sg_out[0];
1200
1201        sg_init_table(sg_in, 1);
1202        sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1203
1204        sg_init_table(sg_out, 1);
1205        sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1206
1207        if (cc->iv_gen_ops) {
1208                /* For READs use IV stored in integrity metadata */
1209                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1210                        memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1211                } else {
1212                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1213                        if (r < 0)
1214                                return r;
1215                        /* Store generated IV in integrity metadata */
1216                        if (cc->integrity_iv_size)
1217                                memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1218                }
1219                /* Working copy of IV, to be modified in crypto API */
1220                memcpy(iv, org_iv, cc->iv_size);
1221        }
1222
1223        skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1224
1225        if (bio_data_dir(ctx->bio_in) == WRITE)
1226                r = crypto_skcipher_encrypt(req);
1227        else
1228                r = crypto_skcipher_decrypt(req);
1229
1230        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1231                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1232
1233        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1234        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1235
1236        return r;
1237}
1238
1239static void kcryptd_async_done(struct crypto_async_request *async_req,
1240                               int error);
1241
1242static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1243                                     struct convert_context *ctx)
1244{
1245        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1246
1247        if (!ctx->r.req)
1248                ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1249
1250        skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1251
1252        /*
1253         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1254         * requests if driver request queue is full.
1255         */
1256        skcipher_request_set_callback(ctx->r.req,
1257            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1258            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1259}
1260
1261static void crypt_alloc_req_aead(struct crypt_config *cc,
1262                                 struct convert_context *ctx)
1263{
1264        if (!ctx->r.req_aead)
1265                ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1266
1267        aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1268
1269        /*
1270         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1271         * requests if driver request queue is full.
1272         */
1273        aead_request_set_callback(ctx->r.req_aead,
1274            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1275            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1276}
1277
1278static void crypt_alloc_req(struct crypt_config *cc,
1279                            struct convert_context *ctx)
1280{
1281        if (crypt_integrity_aead(cc))
1282                crypt_alloc_req_aead(cc, ctx);
1283        else
1284                crypt_alloc_req_skcipher(cc, ctx);
1285}
1286
1287static void crypt_free_req_skcipher(struct crypt_config *cc,
1288                                    struct skcipher_request *req, struct bio *base_bio)
1289{
1290        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1291
1292        if ((struct skcipher_request *)(io + 1) != req)
1293                mempool_free(req, cc->req_pool);
1294}
1295
1296static void crypt_free_req_aead(struct crypt_config *cc,
1297                                struct aead_request *req, struct bio *base_bio)
1298{
1299        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1300
1301        if ((struct aead_request *)(io + 1) != req)
1302                mempool_free(req, cc->req_pool);
1303}
1304
1305static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1306{
1307        if (crypt_integrity_aead(cc))
1308                crypt_free_req_aead(cc, req, base_bio);
1309        else
1310                crypt_free_req_skcipher(cc, req, base_bio);
1311}
1312
1313/*
1314 * Encrypt / decrypt data from one bio to another one (can be the same one)
1315 */
1316static blk_status_t crypt_convert(struct crypt_config *cc,
1317                         struct convert_context *ctx)
1318{
1319        unsigned int tag_offset = 0;
1320        unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1321        int r;
1322
1323        atomic_set(&ctx->cc_pending, 1);
1324
1325        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1326
1327                crypt_alloc_req(cc, ctx);
1328                atomic_inc(&ctx->cc_pending);
1329
1330                if (crypt_integrity_aead(cc))
1331                        r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1332                else
1333                        r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1334
1335                switch (r) {
1336                /*
1337                 * The request was queued by a crypto driver
1338                 * but the driver request queue is full, let's wait.
1339                 */
1340                case -EBUSY:
1341                        wait_for_completion(&ctx->restart);
1342                        reinit_completion(&ctx->restart);
1343                        /* fall through */
1344                /*
1345                 * The request is queued and processed asynchronously,
1346                 * completion function kcryptd_async_done() will be called.
1347                 */
1348                case -EINPROGRESS:
1349                        ctx->r.req = NULL;
1350                        ctx->cc_sector += sector_step;
1351                        tag_offset++;
1352                        continue;
1353                /*
1354                 * The request was already processed (synchronously).
1355                 */
1356                case 0:
1357                        atomic_dec(&ctx->cc_pending);
1358                        ctx->cc_sector += sector_step;
1359                        tag_offset++;
1360                        cond_resched();
1361                        continue;
1362                /*
1363                 * There was a data integrity error.
1364                 */
1365                case -EBADMSG:
1366                        atomic_dec(&ctx->cc_pending);
1367                        return BLK_STS_PROTECTION;
1368                /*
1369                 * There was an error while processing the request.
1370                 */
1371                default:
1372                        atomic_dec(&ctx->cc_pending);
1373                        return BLK_STS_IOERR;
1374                }
1375        }
1376
1377        return 0;
1378}
1379
1380static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1381
1382/*
1383 * Generate a new unfragmented bio with the given size
1384 * This should never violate the device limitations (but only because
1385 * max_segment_size is being constrained to PAGE_SIZE).
1386 *
1387 * This function may be called concurrently. If we allocate from the mempool
1388 * concurrently, there is a possibility of deadlock. For example, if we have
1389 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1390 * the mempool concurrently, it may deadlock in a situation where both processes
1391 * have allocated 128 pages and the mempool is exhausted.
1392 *
1393 * In order to avoid this scenario we allocate the pages under a mutex.
1394 *
1395 * In order to not degrade performance with excessive locking, we try
1396 * non-blocking allocations without a mutex first but on failure we fallback
1397 * to blocking allocations with a mutex.
1398 */
1399static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1400{
1401        struct crypt_config *cc = io->cc;
1402        struct bio *clone;
1403        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1404        gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1405        unsigned i, len, remaining_size;
1406        struct page *page;
1407
1408retry:
1409        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1410                mutex_lock(&cc->bio_alloc_lock);
1411
1412        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1413        if (!clone)
1414                goto out;
1415
1416        clone_init(io, clone);
1417
1418        remaining_size = size;
1419
1420        for (i = 0; i < nr_iovecs; i++) {
1421                page = mempool_alloc(cc->page_pool, gfp_mask);
1422                if (!page) {
1423                        crypt_free_buffer_pages(cc, clone);
1424                        bio_put(clone);
1425                        gfp_mask |= __GFP_DIRECT_RECLAIM;
1426                        goto retry;
1427                }
1428
1429                len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1430
1431                bio_add_page(clone, page, len, 0);
1432
1433                remaining_size -= len;
1434        }
1435
1436        /* Allocate space for integrity tags */
1437        if (dm_crypt_integrity_io_alloc(io, clone)) {
1438                crypt_free_buffer_pages(cc, clone);
1439                bio_put(clone);
1440                clone = NULL;
1441        }
1442out:
1443        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1444                mutex_unlock(&cc->bio_alloc_lock);
1445
1446        return clone;
1447}
1448
1449static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1450{
1451        unsigned int i;
1452        struct bio_vec *bv;
1453
1454        bio_for_each_segment_all(bv, clone, i) {
1455                BUG_ON(!bv->bv_page);
1456                mempool_free(bv->bv_page, cc->page_pool);
1457        }
1458}
1459
1460static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1461                          struct bio *bio, sector_t sector)
1462{
1463        io->cc = cc;
1464        io->base_bio = bio;
1465        io->sector = sector;
1466        io->error = 0;
1467        io->ctx.r.req = NULL;
1468        io->integrity_metadata = NULL;
1469        io->integrity_metadata_from_pool = false;
1470        atomic_set(&io->io_pending, 0);
1471}
1472
1473static void crypt_inc_pending(struct dm_crypt_io *io)
1474{
1475        atomic_inc(&io->io_pending);
1476}
1477
1478/*
1479 * One of the bios was finished. Check for completion of
1480 * the whole request and correctly clean up the buffer.
1481 */
1482static void crypt_dec_pending(struct dm_crypt_io *io)
1483{
1484        struct crypt_config *cc = io->cc;
1485        struct bio *base_bio = io->base_bio;
1486        blk_status_t error = io->error;
1487
1488        if (!atomic_dec_and_test(&io->io_pending))
1489                return;
1490
1491        if (io->ctx.r.req)
1492                crypt_free_req(cc, io->ctx.r.req, base_bio);
1493
1494        if (unlikely(io->integrity_metadata_from_pool))
1495                mempool_free(io->integrity_metadata, io->cc->tag_pool);
1496        else
1497                kfree(io->integrity_metadata);
1498
1499        base_bio->bi_status = error;
1500        bio_endio(base_bio);
1501}
1502
1503/*
1504 * kcryptd/kcryptd_io:
1505 *
1506 * Needed because it would be very unwise to do decryption in an
1507 * interrupt context.
1508 *
1509 * kcryptd performs the actual encryption or decryption.
1510 *
1511 * kcryptd_io performs the IO submission.
1512 *
1513 * They must be separated as otherwise the final stages could be
1514 * starved by new requests which can block in the first stages due
1515 * to memory allocation.
1516 *
1517 * The work is done per CPU global for all dm-crypt instances.
1518 * They should not depend on each other and do not block.
1519 */
1520static void crypt_endio(struct bio *clone)
1521{
1522        struct dm_crypt_io *io = clone->bi_private;
1523        struct crypt_config *cc = io->cc;
1524        unsigned rw = bio_data_dir(clone);
1525        blk_status_t error;
1526
1527        /*
1528         * free the processed pages
1529         */
1530        if (rw == WRITE)
1531                crypt_free_buffer_pages(cc, clone);
1532
1533        error = clone->bi_status;
1534        bio_put(clone);
1535
1536        if (rw == READ && !error) {
1537                kcryptd_queue_crypt(io);
1538                return;
1539        }
1540
1541        if (unlikely(error))
1542                io->error = error;
1543
1544        crypt_dec_pending(io);
1545}
1546
1547static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1548{
1549        struct crypt_config *cc = io->cc;
1550
1551        clone->bi_private = io;
1552        clone->bi_end_io  = crypt_endio;
1553        bio_set_dev(clone, cc->dev->bdev);
1554        clone->bi_opf     = io->base_bio->bi_opf;
1555}
1556
1557static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1558{
1559        struct crypt_config *cc = io->cc;
1560        struct bio *clone;
1561
1562        /*
1563         * We need the original biovec array in order to decrypt
1564         * the whole bio data *afterwards* -- thanks to immutable
1565         * biovecs we don't need to worry about the block layer
1566         * modifying the biovec array; so leverage bio_clone_fast().
1567         */
1568        clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1569        if (!clone)
1570                return 1;
1571
1572        crypt_inc_pending(io);
1573
1574        clone_init(io, clone);
1575        clone->bi_iter.bi_sector = cc->start + io->sector;
1576
1577        if (dm_crypt_integrity_io_alloc(io, clone)) {
1578                crypt_dec_pending(io);
1579                bio_put(clone);
1580                return 1;
1581        }
1582
1583        generic_make_request(clone);
1584        return 0;
1585}
1586
1587static void kcryptd_io_read_work(struct work_struct *work)
1588{
1589        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1590
1591        crypt_inc_pending(io);
1592        if (kcryptd_io_read(io, GFP_NOIO))
1593                io->error = BLK_STS_RESOURCE;
1594        crypt_dec_pending(io);
1595}
1596
1597static void kcryptd_queue_read(struct dm_crypt_io *io)
1598{
1599        struct crypt_config *cc = io->cc;
1600
1601        INIT_WORK(&io->work, kcryptd_io_read_work);
1602        queue_work(cc->io_queue, &io->work);
1603}
1604
1605static void kcryptd_io_write(struct dm_crypt_io *io)
1606{
1607        struct bio *clone = io->ctx.bio_out;
1608
1609        generic_make_request(clone);
1610}
1611
1612#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1613
1614static int dmcrypt_write(void *data)
1615{
1616        struct crypt_config *cc = data;
1617        struct dm_crypt_io *io;
1618
1619        while (1) {
1620                struct rb_root write_tree;
1621                struct blk_plug plug;
1622
1623                DECLARE_WAITQUEUE(wait, current);
1624
1625                spin_lock_irq(&cc->write_thread_wait.lock);
1626continue_locked:
1627
1628                if (!RB_EMPTY_ROOT(&cc->write_tree))
1629                        goto pop_from_list;
1630
1631                set_current_state(TASK_INTERRUPTIBLE);
1632                __add_wait_queue(&cc->write_thread_wait, &wait);
1633
1634                spin_unlock_irq(&cc->write_thread_wait.lock);
1635
1636                if (unlikely(kthread_should_stop())) {
1637                        set_current_state(TASK_RUNNING);
1638                        remove_wait_queue(&cc->write_thread_wait, &wait);
1639                        break;
1640                }
1641
1642                schedule();
1643
1644                set_current_state(TASK_RUNNING);
1645                spin_lock_irq(&cc->write_thread_wait.lock);
1646                __remove_wait_queue(&cc->write_thread_wait, &wait);
1647                goto continue_locked;
1648
1649pop_from_list:
1650                write_tree = cc->write_tree;
1651                cc->write_tree = RB_ROOT;
1652                spin_unlock_irq(&cc->write_thread_wait.lock);
1653
1654                BUG_ON(rb_parent(write_tree.rb_node));
1655
1656                /*
1657                 * Note: we cannot walk the tree here with rb_next because
1658                 * the structures may be freed when kcryptd_io_write is called.
1659                 */
1660                blk_start_plug(&plug);
1661                do {
1662                        io = crypt_io_from_node(rb_first(&write_tree));
1663                        rb_erase(&io->rb_node, &write_tree);
1664                        kcryptd_io_write(io);
1665                } while (!RB_EMPTY_ROOT(&write_tree));
1666                blk_finish_plug(&plug);
1667        }
1668        return 0;
1669}
1670
1671static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1672{
1673        struct bio *clone = io->ctx.bio_out;
1674        struct crypt_config *cc = io->cc;
1675        unsigned long flags;
1676        sector_t sector;
1677        struct rb_node **rbp, *parent;
1678
1679        if (unlikely(io->error)) {
1680                crypt_free_buffer_pages(cc, clone);
1681                bio_put(clone);
1682                crypt_dec_pending(io);
1683                return;
1684        }
1685
1686        /* crypt_convert should have filled the clone bio */
1687        BUG_ON(io->ctx.iter_out.bi_size);
1688
1689        clone->bi_iter.bi_sector = cc->start + io->sector;
1690
1691        if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1692                generic_make_request(clone);
1693                return;
1694        }
1695
1696        spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1697        rbp = &cc->write_tree.rb_node;
1698        parent = NULL;
1699        sector = io->sector;
1700        while (*rbp) {
1701                parent = *rbp;
1702                if (sector < crypt_io_from_node(parent)->sector)
1703                        rbp = &(*rbp)->rb_left;
1704                else
1705                        rbp = &(*rbp)->rb_right;
1706        }
1707        rb_link_node(&io->rb_node, parent, rbp);
1708        rb_insert_color(&io->rb_node, &cc->write_tree);
1709
1710        wake_up_locked(&cc->write_thread_wait);
1711        spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1712}
1713
1714static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1715{
1716        struct crypt_config *cc = io->cc;
1717        struct bio *clone;
1718        int crypt_finished;
1719        sector_t sector = io->sector;
1720        blk_status_t r;
1721
1722        /*
1723         * Prevent io from disappearing until this function completes.
1724         */
1725        crypt_inc_pending(io);
1726        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1727
1728        clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1729        if (unlikely(!clone)) {
1730                io->error = BLK_STS_IOERR;
1731                goto dec;
1732        }
1733
1734        io->ctx.bio_out = clone;
1735        io->ctx.iter_out = clone->bi_iter;
1736
1737        sector += bio_sectors(clone);
1738
1739        crypt_inc_pending(io);
1740        r = crypt_convert(cc, &io->ctx);
1741        if (r)
1742                io->error = r;
1743        crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1744
1745        /* Encryption was already finished, submit io now */
1746        if (crypt_finished) {
1747                kcryptd_crypt_write_io_submit(io, 0);
1748                io->sector = sector;
1749        }
1750
1751dec:
1752        crypt_dec_pending(io);
1753}
1754
1755static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1756{
1757        crypt_dec_pending(io);
1758}
1759
1760static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1761{
1762        struct crypt_config *cc = io->cc;
1763        blk_status_t r;
1764
1765        crypt_inc_pending(io);
1766
1767        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1768                           io->sector);
1769
1770        r = crypt_convert(cc, &io->ctx);
1771        if (r)
1772                io->error = r;
1773
1774        if (atomic_dec_and_test(&io->ctx.cc_pending))
1775                kcryptd_crypt_read_done(io);
1776
1777        crypt_dec_pending(io);
1778}
1779
1780static void kcryptd_async_done(struct crypto_async_request *async_req,
1781                               int error)
1782{
1783        struct dm_crypt_request *dmreq = async_req->data;
1784        struct convert_context *ctx = dmreq->ctx;
1785        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1786        struct crypt_config *cc = io->cc;
1787
1788        /*
1789         * A request from crypto driver backlog is going to be processed now,
1790         * finish the completion and continue in crypt_convert().
1791         * (Callback will be called for the second time for this request.)
1792         */
1793        if (error == -EINPROGRESS) {
1794                complete(&ctx->restart);
1795                return;
1796        }
1797
1798        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1799                error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1800
1801        if (error == -EBADMSG) {
1802                DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1803                            (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1804                io->error = BLK_STS_PROTECTION;
1805        } else if (error < 0)
1806                io->error = BLK_STS_IOERR;
1807
1808        crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1809
1810        if (!atomic_dec_and_test(&ctx->cc_pending))
1811                return;
1812
1813        if (bio_data_dir(io->base_bio) == READ)
1814                kcryptd_crypt_read_done(io);
1815        else
1816                kcryptd_crypt_write_io_submit(io, 1);
1817}
1818
1819static void kcryptd_crypt(struct work_struct *work)
1820{
1821        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1822
1823        if (bio_data_dir(io->base_bio) == READ)
1824                kcryptd_crypt_read_convert(io);
1825        else
1826                kcryptd_crypt_write_convert(io);
1827}
1828
1829static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1830{
1831        struct crypt_config *cc = io->cc;
1832
1833        INIT_WORK(&io->work, kcryptd_crypt);
1834        queue_work(cc->crypt_queue, &io->work);
1835}
1836
1837static void crypt_free_tfms_aead(struct crypt_config *cc)
1838{
1839        if (!cc->cipher_tfm.tfms_aead)
1840                return;
1841
1842        if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1843                crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1844                cc->cipher_tfm.tfms_aead[0] = NULL;
1845        }
1846
1847        kfree(cc->cipher_tfm.tfms_aead);
1848        cc->cipher_tfm.tfms_aead = NULL;
1849}
1850
1851static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1852{
1853        unsigned i;
1854
1855        if (!cc->cipher_tfm.tfms)
1856                return;
1857
1858        for (i = 0; i < cc->tfms_count; i++)
1859                if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1860                        crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1861                        cc->cipher_tfm.tfms[i] = NULL;
1862                }
1863
1864        kfree(cc->cipher_tfm.tfms);
1865        cc->cipher_tfm.tfms = NULL;
1866}
1867
1868static void crypt_free_tfms(struct crypt_config *cc)
1869{
1870        if (crypt_integrity_aead(cc))
1871                crypt_free_tfms_aead(cc);
1872        else
1873                crypt_free_tfms_skcipher(cc);
1874}
1875
1876static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1877{
1878        unsigned i;
1879        int err;
1880
1881        cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1882                                      sizeof(struct crypto_skcipher *), GFP_KERNEL);
1883        if (!cc->cipher_tfm.tfms)
1884                return -ENOMEM;
1885
1886        for (i = 0; i < cc->tfms_count; i++) {
1887                cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1888                if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1889                        err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1890                        crypt_free_tfms(cc);
1891                        return err;
1892                }
1893        }
1894
1895        return 0;
1896}
1897
1898static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1899{
1900        int err;
1901
1902        cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1903        if (!cc->cipher_tfm.tfms)
1904                return -ENOMEM;
1905
1906        cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1907        if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1908                err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1909                crypt_free_tfms(cc);
1910                return err;
1911        }
1912
1913        return 0;
1914}
1915
1916static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1917{
1918        if (crypt_integrity_aead(cc))
1919                return crypt_alloc_tfms_aead(cc, ciphermode);
1920        else
1921                return crypt_alloc_tfms_skcipher(cc, ciphermode);
1922}
1923
1924static unsigned crypt_subkey_size(struct crypt_config *cc)
1925{
1926        return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1927}
1928
1929static unsigned crypt_authenckey_size(struct crypt_config *cc)
1930{
1931        return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1932}
1933
1934/*
1935 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1936 * the key must be for some reason in special format.
1937 * This funcion converts cc->key to this special format.
1938 */
1939static void crypt_copy_authenckey(char *p, const void *key,
1940                                  unsigned enckeylen, unsigned authkeylen)
1941{
1942        struct crypto_authenc_key_param *param;
1943        struct rtattr *rta;
1944
1945        rta = (struct rtattr *)p;
1946        param = RTA_DATA(rta);
1947        param->enckeylen = cpu_to_be32(enckeylen);
1948        rta->rta_len = RTA_LENGTH(sizeof(*param));
1949        rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1950        p += RTA_SPACE(sizeof(*param));
1951        memcpy(p, key + enckeylen, authkeylen);
1952        p += authkeylen;
1953        memcpy(p, key, enckeylen);
1954}
1955
1956static int crypt_setkey(struct crypt_config *cc)
1957{
1958        unsigned subkey_size;
1959        int err = 0, i, r;
1960
1961        /* Ignore extra keys (which are used for IV etc) */
1962        subkey_size = crypt_subkey_size(cc);
1963
1964        if (crypt_integrity_hmac(cc)) {
1965                if (subkey_size < cc->key_mac_size)
1966                        return -EINVAL;
1967
1968                crypt_copy_authenckey(cc->authenc_key, cc->key,
1969                                      subkey_size - cc->key_mac_size,
1970                                      cc->key_mac_size);
1971        }
1972
1973        for (i = 0; i < cc->tfms_count; i++) {
1974                if (crypt_integrity_hmac(cc))
1975                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1976                                cc->authenc_key, crypt_authenckey_size(cc));
1977                else if (crypt_integrity_aead(cc))
1978                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1979                                               cc->key + (i * subkey_size),
1980                                               subkey_size);
1981                else
1982                        r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1983                                                   cc->key + (i * subkey_size),
1984                                                   subkey_size);
1985                if (r)
1986                        err = r;
1987        }
1988
1989        if (crypt_integrity_hmac(cc))
1990                memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1991
1992        return err;
1993}
1994
1995#ifdef CONFIG_KEYS
1996
1997static bool contains_whitespace(const char *str)
1998{
1999        while (*str)
2000                if (isspace(*str++))
2001                        return true;
2002        return false;
2003}
2004
2005static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2006{
2007        char *new_key_string, *key_desc;
2008        int ret;
2009        struct key *key;
2010        const struct user_key_payload *ukp;
2011
2012        /*
2013         * Reject key_string with whitespace. dm core currently lacks code for
2014         * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2015         */
2016        if (contains_whitespace(key_string)) {
2017                DMERR("whitespace chars not allowed in key string");
2018                return -EINVAL;
2019        }
2020
2021        /* look for next ':' separating key_type from key_description */
2022        key_desc = strpbrk(key_string, ":");
2023        if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2024                return -EINVAL;
2025
2026        if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2027            strncmp(key_string, "user:", key_desc - key_string + 1))
2028                return -EINVAL;
2029
2030        new_key_string = kstrdup(key_string, GFP_KERNEL);
2031        if (!new_key_string)
2032                return -ENOMEM;
2033
2034        key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2035                          key_desc + 1, NULL);
2036        if (IS_ERR(key)) {
2037                kzfree(new_key_string);
2038                return PTR_ERR(key);
2039        }
2040
2041        down_read(&key->sem);
2042
2043        ukp = user_key_payload_locked(key);
2044        if (!ukp) {
2045                up_read(&key->sem);
2046                key_put(key);
2047                kzfree(new_key_string);
2048                return -EKEYREVOKED;
2049        }
2050
2051        if (cc->key_size != ukp->datalen) {
2052                up_read(&key->sem);
2053                key_put(key);
2054                kzfree(new_key_string);
2055                return -EINVAL;
2056        }
2057
2058        memcpy(cc->key, ukp->data, cc->key_size);
2059
2060        up_read(&key->sem);
2061        key_put(key);
2062
2063        /* clear the flag since following operations may invalidate previously valid key */
2064        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2065
2066        ret = crypt_setkey(cc);
2067
2068        if (!ret) {
2069                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2070                kzfree(cc->key_string);
2071                cc->key_string = new_key_string;
2072        } else
2073                kzfree(new_key_string);
2074
2075        return ret;
2076}
2077
2078static int get_key_size(char **key_string)
2079{
2080        char *colon, dummy;
2081        int ret;
2082
2083        if (*key_string[0] != ':')
2084                return strlen(*key_string) >> 1;
2085
2086        /* look for next ':' in key string */
2087        colon = strpbrk(*key_string + 1, ":");
2088        if (!colon)
2089                return -EINVAL;
2090
2091        if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2092                return -EINVAL;
2093
2094        *key_string = colon;
2095
2096        /* remaining key string should be :<logon|user>:<key_desc> */
2097
2098        return ret;
2099}
2100
2101#else
2102
2103static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2104{
2105        return -EINVAL;
2106}
2107
2108static int get_key_size(char **key_string)
2109{
2110        return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2111}
2112
2113#endif
2114
2115static int crypt_set_key(struct crypt_config *cc, char *key)
2116{
2117        int r = -EINVAL;
2118        int key_string_len = strlen(key);
2119
2120        /* Hyphen (which gives a key_size of zero) means there is no key. */
2121        if (!cc->key_size && strcmp(key, "-"))
2122                goto out;
2123
2124        /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2125        if (key[0] == ':') {
2126                r = crypt_set_keyring_key(cc, key + 1);
2127                goto out;
2128        }
2129
2130        /* clear the flag since following operations may invalidate previously valid key */
2131        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2132
2133        /* wipe references to any kernel keyring key */
2134        kzfree(cc->key_string);
2135        cc->key_string = NULL;
2136
2137        /* Decode key from its hex representation. */
2138        if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2139                goto out;
2140
2141        r = crypt_setkey(cc);
2142        if (!r)
2143                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2144
2145out:
2146        /* Hex key string not needed after here, so wipe it. */
2147        memset(key, '0', key_string_len);
2148
2149        return r;
2150}
2151
2152static int crypt_wipe_key(struct crypt_config *cc)
2153{
2154        int r;
2155
2156        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2157        get_random_bytes(&cc->key, cc->key_size);
2158        kzfree(cc->key_string);
2159        cc->key_string = NULL;
2160        r = crypt_setkey(cc);
2161        memset(&cc->key, 0, cc->key_size * sizeof(u8));
2162
2163        return r;
2164}
2165
2166static void crypt_calculate_pages_per_client(void)
2167{
2168        unsigned long pages = (totalram_pages - totalhigh_pages) * DM_CRYPT_MEMORY_PERCENT / 100;
2169
2170        if (!dm_crypt_clients_n)
2171                return;
2172
2173        pages /= dm_crypt_clients_n;
2174        if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2175                pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2176        dm_crypt_pages_per_client = pages;
2177}
2178
2179static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2180{
2181        struct crypt_config *cc = pool_data;
2182        struct page *page;
2183
2184        if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2185            likely(gfp_mask & __GFP_NORETRY))
2186                return NULL;
2187
2188        page = alloc_page(gfp_mask);
2189        if (likely(page != NULL))
2190                percpu_counter_add(&cc->n_allocated_pages, 1);
2191
2192        return page;
2193}
2194
2195static void crypt_page_free(void *page, void *pool_data)
2196{
2197        struct crypt_config *cc = pool_data;
2198
2199        __free_page(page);
2200        percpu_counter_sub(&cc->n_allocated_pages, 1);
2201}
2202
2203static void crypt_dtr(struct dm_target *ti)
2204{
2205        struct crypt_config *cc = ti->private;
2206
2207        ti->private = NULL;
2208
2209        if (!cc)
2210                return;
2211
2212        if (cc->write_thread)
2213                kthread_stop(cc->write_thread);
2214
2215        if (cc->io_queue)
2216                destroy_workqueue(cc->io_queue);
2217        if (cc->crypt_queue)
2218                destroy_workqueue(cc->crypt_queue);
2219
2220        crypt_free_tfms(cc);
2221
2222        if (cc->bs)
2223                bioset_free(cc->bs);
2224
2225        mempool_destroy(cc->page_pool);
2226        mempool_destroy(cc->req_pool);
2227        mempool_destroy(cc->tag_pool);
2228
2229        if (cc->page_pool)
2230                WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2231        percpu_counter_destroy(&cc->n_allocated_pages);
2232
2233        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2234                cc->iv_gen_ops->dtr(cc);
2235
2236        if (cc->dev)
2237                dm_put_device(ti, cc->dev);
2238
2239        kzfree(cc->cipher);
2240        kzfree(cc->cipher_string);
2241        kzfree(cc->key_string);
2242        kzfree(cc->cipher_auth);
2243        kzfree(cc->authenc_key);
2244
2245        mutex_destroy(&cc->bio_alloc_lock);
2246
2247        /* Must zero key material before freeing */
2248        kzfree(cc);
2249
2250        spin_lock(&dm_crypt_clients_lock);
2251        WARN_ON(!dm_crypt_clients_n);
2252        dm_crypt_clients_n--;
2253        crypt_calculate_pages_per_client();
2254        spin_unlock(&dm_crypt_clients_lock);
2255}
2256
2257static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2258{
2259        struct crypt_config *cc = ti->private;
2260
2261        if (crypt_integrity_aead(cc))
2262                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2263        else
2264                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2265
2266        if (cc->iv_size)
2267                /* at least a 64 bit sector number should fit in our buffer */
2268                cc->iv_size = max(cc->iv_size,
2269                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
2270        else if (ivmode) {
2271                DMWARN("Selected cipher does not support IVs");
2272                ivmode = NULL;
2273        }
2274
2275        /* Choose ivmode, see comments at iv code. */
2276        if (ivmode == NULL)
2277                cc->iv_gen_ops = NULL;
2278        else if (strcmp(ivmode, "plain") == 0)
2279                cc->iv_gen_ops = &crypt_iv_plain_ops;
2280        else if (strcmp(ivmode, "plain64") == 0)
2281                cc->iv_gen_ops = &crypt_iv_plain64_ops;
2282        else if (strcmp(ivmode, "plain64be") == 0)
2283                cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2284        else if (strcmp(ivmode, "essiv") == 0)
2285                cc->iv_gen_ops = &crypt_iv_essiv_ops;
2286        else if (strcmp(ivmode, "benbi") == 0)
2287                cc->iv_gen_ops = &crypt_iv_benbi_ops;
2288        else if (strcmp(ivmode, "null") == 0)
2289                cc->iv_gen_ops = &crypt_iv_null_ops;
2290        else if (strcmp(ivmode, "lmk") == 0) {
2291                cc->iv_gen_ops = &crypt_iv_lmk_ops;
2292                /*
2293                 * Version 2 and 3 is recognised according
2294                 * to length of provided multi-key string.
2295                 * If present (version 3), last key is used as IV seed.
2296                 * All keys (including IV seed) are always the same size.
2297                 */
2298                if (cc->key_size % cc->key_parts) {
2299                        cc->key_parts++;
2300                        cc->key_extra_size = cc->key_size / cc->key_parts;
2301                }
2302        } else if (strcmp(ivmode, "tcw") == 0) {
2303                cc->iv_gen_ops = &crypt_iv_tcw_ops;
2304                cc->key_parts += 2; /* IV + whitening */
2305                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2306        } else if (strcmp(ivmode, "random") == 0) {
2307                cc->iv_gen_ops = &crypt_iv_random_ops;
2308                /* Need storage space in integrity fields. */
2309                cc->integrity_iv_size = cc->iv_size;
2310        } else {
2311                ti->error = "Invalid IV mode";
2312                return -EINVAL;
2313        }
2314
2315        return 0;
2316}
2317
2318/*
2319 * Workaround to parse cipher algorithm from crypto API spec.
2320 * The cc->cipher is currently used only in ESSIV.
2321 * This should be probably done by crypto-api calls (once available...)
2322 */
2323static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2324{
2325        const char *alg_name = NULL;
2326        char *start, *end;
2327
2328        if (crypt_integrity_aead(cc)) {
2329                alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2330                if (!alg_name)
2331                        return -EINVAL;
2332                if (crypt_integrity_hmac(cc)) {
2333                        alg_name = strchr(alg_name, ',');
2334                        if (!alg_name)
2335                                return -EINVAL;
2336                }
2337                alg_name++;
2338        } else {
2339                alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2340                if (!alg_name)
2341                        return -EINVAL;
2342        }
2343
2344        start = strchr(alg_name, '(');
2345        end = strchr(alg_name, ')');
2346
2347        if (!start && !end) {
2348                cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2349                return cc->cipher ? 0 : -ENOMEM;
2350        }
2351
2352        if (!start || !end || ++start >= end)
2353                return -EINVAL;
2354
2355        cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2356        if (!cc->cipher)
2357                return -ENOMEM;
2358
2359        strncpy(cc->cipher, start, end - start);
2360
2361        return 0;
2362}
2363
2364/*
2365 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2366 * The HMAC is needed to calculate tag size (HMAC digest size).
2367 * This should be probably done by crypto-api calls (once available...)
2368 */
2369static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2370{
2371        char *start, *end, *mac_alg = NULL;
2372        struct crypto_ahash *mac;
2373
2374        if (!strstarts(cipher_api, "authenc("))
2375                return 0;
2376
2377        start = strchr(cipher_api, '(');
2378        end = strchr(cipher_api, ',');
2379        if (!start || !end || ++start > end)
2380                return -EINVAL;
2381
2382        mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2383        if (!mac_alg)
2384                return -ENOMEM;
2385        strncpy(mac_alg, start, end - start);
2386
2387        mac = crypto_alloc_ahash(mac_alg, 0, 0);
2388        kfree(mac_alg);
2389
2390        if (IS_ERR(mac))
2391                return PTR_ERR(mac);
2392
2393        cc->key_mac_size = crypto_ahash_digestsize(mac);
2394        crypto_free_ahash(mac);
2395
2396        cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2397        if (!cc->authenc_key)
2398                return -ENOMEM;
2399
2400        return 0;
2401}
2402
2403static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2404                                char **ivmode, char **ivopts)
2405{
2406        struct crypt_config *cc = ti->private;
2407        char *tmp, *cipher_api;
2408        int ret = -EINVAL;
2409
2410        cc->tfms_count = 1;
2411
2412        /*
2413         * New format (capi: prefix)
2414         * capi:cipher_api_spec-iv:ivopts
2415         */
2416        tmp = &cipher_in[strlen("capi:")];
2417        cipher_api = strsep(&tmp, "-");
2418        *ivmode = strsep(&tmp, ":");
2419        *ivopts = tmp;
2420
2421        if (*ivmode && !strcmp(*ivmode, "lmk"))
2422                cc->tfms_count = 64;
2423
2424        cc->key_parts = cc->tfms_count;
2425
2426        /* Allocate cipher */
2427        ret = crypt_alloc_tfms(cc, cipher_api);
2428        if (ret < 0) {
2429                ti->error = "Error allocating crypto tfm";
2430                return ret;
2431        }
2432
2433        /* Alloc AEAD, can be used only in new format. */
2434        if (crypt_integrity_aead(cc)) {
2435                ret = crypt_ctr_auth_cipher(cc, cipher_api);
2436                if (ret < 0) {
2437                        ti->error = "Invalid AEAD cipher spec";
2438                        return -ENOMEM;
2439                }
2440                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2441        } else
2442                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2443
2444        ret = crypt_ctr_blkdev_cipher(cc);
2445        if (ret < 0) {
2446                ti->error = "Cannot allocate cipher string";
2447                return -ENOMEM;
2448        }
2449
2450        return 0;
2451}
2452
2453static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2454                                char **ivmode, char **ivopts)
2455{
2456        struct crypt_config *cc = ti->private;
2457        char *tmp, *cipher, *chainmode, *keycount;
2458        char *cipher_api = NULL;
2459        int ret = -EINVAL;
2460        char dummy;
2461
2462        if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2463                ti->error = "Bad cipher specification";
2464                return -EINVAL;
2465        }
2466
2467        /*
2468         * Legacy dm-crypt cipher specification
2469         * cipher[:keycount]-mode-iv:ivopts
2470         */
2471        tmp = cipher_in;
2472        keycount = strsep(&tmp, "-");
2473        cipher = strsep(&keycount, ":");
2474
2475        if (!keycount)
2476                cc->tfms_count = 1;
2477        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2478                 !is_power_of_2(cc->tfms_count)) {
2479                ti->error = "Bad cipher key count specification";
2480                return -EINVAL;
2481        }
2482        cc->key_parts = cc->tfms_count;
2483
2484        cc->cipher = kstrdup(cipher, GFP_KERNEL);
2485        if (!cc->cipher)
2486                goto bad_mem;
2487
2488        chainmode = strsep(&tmp, "-");
2489        *ivopts = strsep(&tmp, "-");
2490        *ivmode = strsep(&*ivopts, ":");
2491
2492        if (tmp)
2493                DMWARN("Ignoring unexpected additional cipher options");
2494
2495        /*
2496         * For compatibility with the original dm-crypt mapping format, if
2497         * only the cipher name is supplied, use cbc-plain.
2498         */
2499        if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2500                chainmode = "cbc";
2501                *ivmode = "plain";
2502        }
2503
2504        if (strcmp(chainmode, "ecb") && !*ivmode) {
2505                ti->error = "IV mechanism required";
2506                return -EINVAL;
2507        }
2508
2509        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2510        if (!cipher_api)
2511                goto bad_mem;
2512
2513        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2514                       "%s(%s)", chainmode, cipher);
2515        if (ret < 0) {
2516                kfree(cipher_api);
2517                goto bad_mem;
2518        }
2519
2520        /* Allocate cipher */
2521        ret = crypt_alloc_tfms(cc, cipher_api);
2522        if (ret < 0) {
2523                ti->error = "Error allocating crypto tfm";
2524                kfree(cipher_api);
2525                return ret;
2526        }
2527        kfree(cipher_api);
2528
2529        return 0;
2530bad_mem:
2531        ti->error = "Cannot allocate cipher strings";
2532        return -ENOMEM;
2533}
2534
2535static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2536{
2537        struct crypt_config *cc = ti->private;
2538        char *ivmode = NULL, *ivopts = NULL;
2539        int ret;
2540
2541        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2542        if (!cc->cipher_string) {
2543                ti->error = "Cannot allocate cipher strings";
2544                return -ENOMEM;
2545        }
2546
2547        if (strstarts(cipher_in, "capi:"))
2548                ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2549        else
2550                ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2551        if (ret)
2552                return ret;
2553
2554        /* Initialize IV */
2555        ret = crypt_ctr_ivmode(ti, ivmode);
2556        if (ret < 0)
2557                return ret;
2558
2559        /* Initialize and set key */
2560        ret = crypt_set_key(cc, key);
2561        if (ret < 0) {
2562                ti->error = "Error decoding and setting key";
2563                return ret;
2564        }
2565
2566        /* Allocate IV */
2567        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2568                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2569                if (ret < 0) {
2570                        ti->error = "Error creating IV";
2571                        return ret;
2572                }
2573        }
2574
2575        /* Initialize IV (set keys for ESSIV etc) */
2576        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2577                ret = cc->iv_gen_ops->init(cc);
2578                if (ret < 0) {
2579                        ti->error = "Error initialising IV";
2580                        return ret;
2581                }
2582        }
2583
2584        /* wipe the kernel key payload copy */
2585        if (cc->key_string)
2586                memset(cc->key, 0, cc->key_size * sizeof(u8));
2587
2588        return ret;
2589}
2590
2591static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2592{
2593        struct crypt_config *cc = ti->private;
2594        struct dm_arg_set as;
2595        static const struct dm_arg _args[] = {
2596                {0, 6, "Invalid number of feature args"},
2597        };
2598        unsigned int opt_params, val;
2599        const char *opt_string, *sval;
2600        char dummy;
2601        int ret;
2602
2603        /* Optional parameters */
2604        as.argc = argc;
2605        as.argv = argv;
2606
2607        ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2608        if (ret)
2609                return ret;
2610
2611        while (opt_params--) {
2612                opt_string = dm_shift_arg(&as);
2613                if (!opt_string) {
2614                        ti->error = "Not enough feature arguments";
2615                        return -EINVAL;
2616                }
2617
2618                if (!strcasecmp(opt_string, "allow_discards"))
2619                        ti->num_discard_bios = 1;
2620
2621                else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2622                        set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2623
2624                else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2625                        set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2626                else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2627                        if (val == 0 || val > MAX_TAG_SIZE) {
2628                                ti->error = "Invalid integrity arguments";
2629                                return -EINVAL;
2630                        }
2631                        cc->on_disk_tag_size = val;
2632                        sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2633                        if (!strcasecmp(sval, "aead")) {
2634                                set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2635                        } else  if (strcasecmp(sval, "none")) {
2636                                ti->error = "Unknown integrity profile";
2637                                return -EINVAL;
2638                        }
2639
2640                        cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2641                        if (!cc->cipher_auth)
2642                                return -ENOMEM;
2643                } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2644                        if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2645                            cc->sector_size > 4096 ||
2646                            (cc->sector_size & (cc->sector_size - 1))) {
2647                                ti->error = "Invalid feature value for sector_size";
2648                                return -EINVAL;
2649                        }
2650                        if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2651                                ti->error = "Device size is not multiple of sector_size feature";
2652                                return -EINVAL;
2653                        }
2654                        cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2655                } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2656                        set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2657                else {
2658                        ti->error = "Invalid feature arguments";
2659                        return -EINVAL;
2660                }
2661        }
2662
2663        return 0;
2664}
2665
2666/*
2667 * Construct an encryption mapping:
2668 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2669 */
2670static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2671{
2672        struct crypt_config *cc;
2673        int key_size;
2674        unsigned int align_mask;
2675        unsigned long long tmpll;
2676        int ret;
2677        size_t iv_size_padding, additional_req_size;
2678        char dummy;
2679
2680        if (argc < 5) {
2681                ti->error = "Not enough arguments";
2682                return -EINVAL;
2683        }
2684
2685        key_size = get_key_size(&argv[1]);
2686        if (key_size < 0) {
2687                ti->error = "Cannot parse key size";
2688                return -EINVAL;
2689        }
2690
2691        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2692        if (!cc) {
2693                ti->error = "Cannot allocate encryption context";
2694                return -ENOMEM;
2695        }
2696        cc->key_size = key_size;
2697        cc->sector_size = (1 << SECTOR_SHIFT);
2698        cc->sector_shift = 0;
2699
2700        ti->private = cc;
2701
2702        spin_lock(&dm_crypt_clients_lock);
2703        dm_crypt_clients_n++;
2704        crypt_calculate_pages_per_client();
2705        spin_unlock(&dm_crypt_clients_lock);
2706
2707        ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2708        if (ret < 0)
2709                goto bad;
2710
2711        /* Optional parameters need to be read before cipher constructor */
2712        if (argc > 5) {
2713                ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2714                if (ret)
2715                        goto bad;
2716        }
2717
2718        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2719        if (ret < 0)
2720                goto bad;
2721
2722        if (crypt_integrity_aead(cc)) {
2723                cc->dmreq_start = sizeof(struct aead_request);
2724                cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2725                align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2726        } else {
2727                cc->dmreq_start = sizeof(struct skcipher_request);
2728                cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2729                align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2730        }
2731        cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2732
2733        if (align_mask < CRYPTO_MINALIGN) {
2734                /* Allocate the padding exactly */
2735                iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2736                                & align_mask;
2737        } else {
2738                /*
2739                 * If the cipher requires greater alignment than kmalloc
2740                 * alignment, we don't know the exact position of the
2741                 * initialization vector. We must assume worst case.
2742                 */
2743                iv_size_padding = align_mask;
2744        }
2745
2746        ret = -ENOMEM;
2747
2748        /*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2749        additional_req_size = sizeof(struct dm_crypt_request) +
2750                iv_size_padding + cc->iv_size +
2751                cc->iv_size +
2752                sizeof(uint64_t) +
2753                sizeof(unsigned int);
2754
2755        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2756        if (!cc->req_pool) {
2757                ti->error = "Cannot allocate crypt request mempool";
2758                goto bad;
2759        }
2760
2761        cc->per_bio_data_size = ti->per_io_data_size =
2762                ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2763                      ARCH_KMALLOC_MINALIGN);
2764
2765        cc->page_pool = mempool_create(BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2766        if (!cc->page_pool) {
2767                ti->error = "Cannot allocate page mempool";
2768                goto bad;
2769        }
2770
2771        cc->bs = bioset_create(MIN_IOS, 0, BIOSET_NEED_BVECS);
2772        if (!cc->bs) {
2773                ti->error = "Cannot allocate crypt bioset";
2774                goto bad;
2775        }
2776
2777        mutex_init(&cc->bio_alloc_lock);
2778
2779        ret = -EINVAL;
2780        if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2781            (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2782                ti->error = "Invalid iv_offset sector";
2783                goto bad;
2784        }
2785        cc->iv_offset = tmpll;
2786
2787        ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2788        if (ret) {
2789                ti->error = "Device lookup failed";
2790                goto bad;
2791        }
2792
2793        ret = -EINVAL;
2794        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2795                ti->error = "Invalid device sector";
2796                goto bad;
2797        }
2798        cc->start = tmpll;
2799
2800        if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2801                ret = crypt_integrity_ctr(cc, ti);
2802                if (ret)
2803                        goto bad;
2804
2805                cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2806                if (!cc->tag_pool_max_sectors)
2807                        cc->tag_pool_max_sectors = 1;
2808
2809                cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2810                        cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2811                if (!cc->tag_pool) {
2812                        ti->error = "Cannot allocate integrity tags mempool";
2813                        ret = -ENOMEM;
2814                        goto bad;
2815                }
2816
2817                cc->tag_pool_max_sectors <<= cc->sector_shift;
2818        }
2819
2820        ret = -ENOMEM;
2821        cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2822        if (!cc->io_queue) {
2823                ti->error = "Couldn't create kcryptd io queue";
2824                goto bad;
2825        }
2826
2827        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2828                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2829        else
2830                cc->crypt_queue = alloc_workqueue("kcryptd",
2831                                                  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2832                                                  num_online_cpus());
2833        if (!cc->crypt_queue) {
2834                ti->error = "Couldn't create kcryptd queue";
2835                goto bad;
2836        }
2837
2838        init_waitqueue_head(&cc->write_thread_wait);
2839        cc->write_tree = RB_ROOT;
2840
2841        cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2842        if (IS_ERR(cc->write_thread)) {
2843                ret = PTR_ERR(cc->write_thread);
2844                cc->write_thread = NULL;
2845                ti->error = "Couldn't spawn write thread";
2846                goto bad;
2847        }
2848        wake_up_process(cc->write_thread);
2849
2850        ti->num_flush_bios = 1;
2851
2852        return 0;
2853
2854bad:
2855        crypt_dtr(ti);
2856        return ret;
2857}
2858
2859static int crypt_map(struct dm_target *ti, struct bio *bio)
2860{
2861        struct dm_crypt_io *io;
2862        struct crypt_config *cc = ti->private;
2863
2864        /*
2865         * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2866         * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2867         * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2868         */
2869        if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2870            bio_op(bio) == REQ_OP_DISCARD)) {
2871                bio_set_dev(bio, cc->dev->bdev);
2872                if (bio_sectors(bio))
2873                        bio->bi_iter.bi_sector = cc->start +
2874                                dm_target_offset(ti, bio->bi_iter.bi_sector);
2875                return DM_MAPIO_REMAPPED;
2876        }
2877
2878        /*
2879         * Check if bio is too large, split as needed.
2880         */
2881        if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2882            (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2883                dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2884
2885        /*
2886         * Ensure that bio is a multiple of internal sector encryption size
2887         * and is aligned to this size as defined in IO hints.
2888         */
2889        if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2890                return DM_MAPIO_KILL;
2891
2892        if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2893                return DM_MAPIO_KILL;
2894
2895        io = dm_per_bio_data(bio, cc->per_bio_data_size);
2896        crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2897
2898        if (cc->on_disk_tag_size) {
2899                unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2900
2901                if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2902                    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2903                                GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2904                        if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2905                                dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2906                        io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2907                        io->integrity_metadata_from_pool = true;
2908                }
2909        }
2910
2911        if (crypt_integrity_aead(cc))
2912                io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2913        else
2914                io->ctx.r.req = (struct skcipher_request *)(io + 1);
2915
2916        if (bio_data_dir(io->base_bio) == READ) {
2917                if (kcryptd_io_read(io, GFP_NOWAIT))
2918                        kcryptd_queue_read(io);
2919        } else
2920                kcryptd_queue_crypt(io);
2921
2922        return DM_MAPIO_SUBMITTED;
2923}
2924
2925static void crypt_status(struct dm_target *ti, status_type_t type,
2926                         unsigned status_flags, char *result, unsigned maxlen)
2927{
2928        struct crypt_config *cc = ti->private;
2929        unsigned i, sz = 0;
2930        int num_feature_args = 0;
2931
2932        switch (type) {
2933        case STATUSTYPE_INFO:
2934                result[0] = '\0';
2935                break;
2936
2937        case STATUSTYPE_TABLE:
2938                DMEMIT("%s ", cc->cipher_string);
2939
2940                if (cc->key_size > 0) {
2941                        if (cc->key_string)
2942                                DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2943                        else
2944                                for (i = 0; i < cc->key_size; i++)
2945                                        DMEMIT("%02x", cc->key[i]);
2946                } else
2947                        DMEMIT("-");
2948
2949                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2950                                cc->dev->name, (unsigned long long)cc->start);
2951
2952                num_feature_args += !!ti->num_discard_bios;
2953                num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2954                num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2955                num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2956                num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2957                if (cc->on_disk_tag_size)
2958                        num_feature_args++;
2959                if (num_feature_args) {
2960                        DMEMIT(" %d", num_feature_args);
2961                        if (ti->num_discard_bios)
2962                                DMEMIT(" allow_discards");
2963                        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2964                                DMEMIT(" same_cpu_crypt");
2965                        if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2966                                DMEMIT(" submit_from_crypt_cpus");
2967                        if (cc->on_disk_tag_size)
2968                                DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2969                        if (cc->sector_size != (1 << SECTOR_SHIFT))
2970                                DMEMIT(" sector_size:%d", cc->sector_size);
2971                        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2972                                DMEMIT(" iv_large_sectors");
2973                }
2974
2975                break;
2976        }
2977}
2978
2979static void crypt_postsuspend(struct dm_target *ti)
2980{
2981        struct crypt_config *cc = ti->private;
2982
2983        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2984}
2985
2986static int crypt_preresume(struct dm_target *ti)
2987{
2988        struct crypt_config *cc = ti->private;
2989
2990        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2991                DMERR("aborting resume - crypt key is not set.");
2992                return -EAGAIN;
2993        }
2994
2995        return 0;
2996}
2997
2998static void crypt_resume(struct dm_target *ti)
2999{
3000        struct crypt_config *cc = ti->private;
3001
3002        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3003}
3004
3005/* Message interface
3006 *      key set <key>
3007 *      key wipe
3008 */
3009static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3010                         char *result, unsigned maxlen)
3011{
3012        struct crypt_config *cc = ti->private;
3013        int key_size, ret = -EINVAL;
3014
3015        if (argc < 2)
3016                goto error;
3017
3018        if (!strcasecmp(argv[0], "key")) {
3019                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3020                        DMWARN("not suspended during key manipulation.");
3021                        return -EINVAL;
3022                }
3023                if (argc == 3 && !strcasecmp(argv[1], "set")) {
3024                        /* The key size may not be changed. */
3025                        key_size = get_key_size(&argv[2]);
3026                        if (key_size < 0 || cc->key_size != key_size) {
3027                                memset(argv[2], '0', strlen(argv[2]));
3028                                return -EINVAL;
3029                        }
3030
3031                        ret = crypt_set_key(cc, argv[2]);
3032                        if (ret)
3033                                return ret;
3034                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3035                                ret = cc->iv_gen_ops->init(cc);
3036                        /* wipe the kernel key payload copy */
3037                        if (cc->key_string)
3038                                memset(cc->key, 0, cc->key_size * sizeof(u8));
3039                        return ret;
3040                }
3041                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
3042                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
3043                                ret = cc->iv_gen_ops->wipe(cc);
3044                                if (ret)
3045                                        return ret;
3046                        }
3047                        return crypt_wipe_key(cc);
3048                }
3049        }
3050
3051error:
3052        DMWARN("unrecognised message received.");
3053        return -EINVAL;
3054}
3055
3056static int crypt_iterate_devices(struct dm_target *ti,
3057                                 iterate_devices_callout_fn fn, void *data)
3058{
3059        struct crypt_config *cc = ti->private;
3060
3061        return fn(ti, cc->dev, cc->start, ti->len, data);
3062}
3063
3064static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3065{
3066        struct crypt_config *cc = ti->private;
3067
3068        /*
3069         * Unfortunate constraint that is required to avoid the potential
3070         * for exceeding underlying device's max_segments limits -- due to
3071         * crypt_alloc_buffer() possibly allocating pages for the encryption
3072         * bio that are not as physically contiguous as the original bio.
3073         */
3074        limits->max_segment_size = PAGE_SIZE;
3075
3076        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
3077                limits->logical_block_size = cc->sector_size;
3078                limits->physical_block_size = cc->sector_size;
3079                blk_limits_io_min(limits, cc->sector_size);
3080        }
3081}
3082
3083static struct target_type crypt_target = {
3084        .name   = "crypt",
3085        .version = {1, 18, 1},
3086        .module = THIS_MODULE,
3087        .ctr    = crypt_ctr,
3088        .dtr    = crypt_dtr,
3089        .map    = crypt_map,
3090        .status = crypt_status,
3091        .postsuspend = crypt_postsuspend,
3092        .preresume = crypt_preresume,
3093        .resume = crypt_resume,
3094        .message = crypt_message,
3095        .iterate_devices = crypt_iterate_devices,
3096        .io_hints = crypt_io_hints,
3097};
3098
3099static int __init dm_crypt_init(void)
3100{
3101        int r;
3102
3103        r = dm_register_target(&crypt_target);
3104        if (r < 0)
3105                DMERR("register failed %d", r);
3106
3107        return r;
3108}
3109
3110static void __exit dm_crypt_exit(void)
3111{
3112        dm_unregister_target(&crypt_target);
3113}
3114
3115module_init(dm_crypt_init);
3116module_exit(dm_crypt_exit);
3117
3118MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3119MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3120MODULE_LICENSE("GPL");
3121