linux/drivers/misc/vmw_vmci/vmci_queue_pair.c
<<
>>
Prefs
   1/*
   2 * VMware VMCI Driver
   3 *
   4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  12 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 * for more details.
  14 */
  15
  16#include <linux/vmw_vmci_defs.h>
  17#include <linux/vmw_vmci_api.h>
  18#include <linux/highmem.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/module.h>
  22#include <linux/mutex.h>
  23#include <linux/pagemap.h>
  24#include <linux/pci.h>
  25#include <linux/sched.h>
  26#include <linux/slab.h>
  27#include <linux/uio.h>
  28#include <linux/wait.h>
  29#include <linux/vmalloc.h>
  30#include <linux/skbuff.h>
  31
  32#include "vmci_handle_array.h"
  33#include "vmci_queue_pair.h"
  34#include "vmci_datagram.h"
  35#include "vmci_resource.h"
  36#include "vmci_context.h"
  37#include "vmci_driver.h"
  38#include "vmci_event.h"
  39#include "vmci_route.h"
  40
  41/*
  42 * In the following, we will distinguish between two kinds of VMX processes -
  43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
  44 * VMCI page files in the VMX and supporting VM to VM communication and the
  45 * newer ones that use the guest memory directly. We will in the following
  46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
  47 * new-style VMX'en.
  48 *
  49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
  50 * removed for readability) - see below for more details on the transtions:
  51 *
  52 *            --------------  NEW  -------------
  53 *            |                                |
  54 *           \_/                              \_/
  55 *     CREATED_NO_MEM <-----------------> CREATED_MEM
  56 *            |    |                           |
  57 *            |    o-----------------------o   |
  58 *            |                            |   |
  59 *           \_/                          \_/ \_/
  60 *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
  61 *            |                            |   |
  62 *            |     o----------------------o   |
  63 *            |     |                          |
  64 *           \_/   \_/                        \_/
  65 *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
  66 *            |                                |
  67 *            |                                |
  68 *            -------------> gone <-------------
  69 *
  70 * In more detail. When a VMCI queue pair is first created, it will be in the
  71 * VMCIQPB_NEW state. It will then move into one of the following states:
  72 *
  73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
  74 *
  75 *     - the created was performed by a host endpoint, in which case there is
  76 *       no backing memory yet.
  77 *
  78 *     - the create was initiated by an old-style VMX, that uses
  79 *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
  80 *       a later point in time. This state can be distinguished from the one
  81 *       above by the context ID of the creator. A host side is not allowed to
  82 *       attach until the page store has been set.
  83 *
  84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
  85 *     is created by a VMX using the queue pair device backend that
  86 *     sets the UVAs of the queue pair immediately and stores the
  87 *     information for later attachers. At this point, it is ready for
  88 *     the host side to attach to it.
  89 *
  90 * Once the queue pair is in one of the created states (with the exception of
  91 * the case mentioned for older VMX'en above), it is possible to attach to the
  92 * queue pair. Again we have two new states possible:
  93 *
  94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
  95 *   paths:
  96 *
  97 *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
  98 *       pair, and attaches to a queue pair previously created by the host side.
  99 *
 100 *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
 101 *       already created by a guest.
 102 *
 103 *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
 104 *       vmci_qp_broker_set_page_store (see below).
 105 *
 106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
 107 *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
 108 *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
 109 *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
 110 *     will be entered.
 111 *
 112 * From the attached queue pair, the queue pair can enter the shutdown states
 113 * when either side of the queue pair detaches. If the guest side detaches
 114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
 115 * the content of the queue pair will no longer be available. If the host
 116 * side detaches first, the queue pair will either enter the
 117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
 118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
 119 * (e.g., the host detaches while a guest is stunned).
 120 *
 121 * New-style VMX'en will also unmap guest memory, if the guest is
 122 * quiesced, e.g., during a snapshot operation. In that case, the guest
 123 * memory will no longer be available, and the queue pair will transition from
 124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
 125 * in which case the queue pair will transition from the *_NO_MEM state at that
 126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
 127 * since the peer may have either attached or detached in the meantime. The
 128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
 129 * *_MEM state, and vice versa.
 130 */
 131
 132/* The Kernel specific component of the struct vmci_queue structure. */
 133struct vmci_queue_kern_if {
 134        struct mutex __mutex;   /* Protects the queue. */
 135        struct mutex *mutex;    /* Shared by producer and consumer queues. */
 136        size_t num_pages;       /* Number of pages incl. header. */
 137        bool host;              /* Host or guest? */
 138        union {
 139                struct {
 140                        dma_addr_t *pas;
 141                        void **vas;
 142                } g;            /* Used by the guest. */
 143                struct {
 144                        struct page **page;
 145                        struct page **header_page;
 146                } h;            /* Used by the host. */
 147        } u;
 148};
 149
 150/*
 151 * This structure is opaque to the clients.
 152 */
 153struct vmci_qp {
 154        struct vmci_handle handle;
 155        struct vmci_queue *produce_q;
 156        struct vmci_queue *consume_q;
 157        u64 produce_q_size;
 158        u64 consume_q_size;
 159        u32 peer;
 160        u32 flags;
 161        u32 priv_flags;
 162        bool guest_endpoint;
 163        unsigned int blocked;
 164        unsigned int generation;
 165        wait_queue_head_t event;
 166};
 167
 168enum qp_broker_state {
 169        VMCIQPB_NEW,
 170        VMCIQPB_CREATED_NO_MEM,
 171        VMCIQPB_CREATED_MEM,
 172        VMCIQPB_ATTACHED_NO_MEM,
 173        VMCIQPB_ATTACHED_MEM,
 174        VMCIQPB_SHUTDOWN_NO_MEM,
 175        VMCIQPB_SHUTDOWN_MEM,
 176        VMCIQPB_GONE
 177};
 178
 179#define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
 180                                     _qpb->state == VMCIQPB_ATTACHED_MEM || \
 181                                     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
 182
 183/*
 184 * In the queue pair broker, we always use the guest point of view for
 185 * the produce and consume queue values and references, e.g., the
 186 * produce queue size stored is the guests produce queue size. The
 187 * host endpoint will need to swap these around. The only exception is
 188 * the local queue pairs on the host, in which case the host endpoint
 189 * that creates the queue pair will have the right orientation, and
 190 * the attaching host endpoint will need to swap.
 191 */
 192struct qp_entry {
 193        struct list_head list_item;
 194        struct vmci_handle handle;
 195        u32 peer;
 196        u32 flags;
 197        u64 produce_size;
 198        u64 consume_size;
 199        u32 ref_count;
 200};
 201
 202struct qp_broker_entry {
 203        struct vmci_resource resource;
 204        struct qp_entry qp;
 205        u32 create_id;
 206        u32 attach_id;
 207        enum qp_broker_state state;
 208        bool require_trusted_attach;
 209        bool created_by_trusted;
 210        bool vmci_page_files;   /* Created by VMX using VMCI page files */
 211        struct vmci_queue *produce_q;
 212        struct vmci_queue *consume_q;
 213        struct vmci_queue_header saved_produce_q;
 214        struct vmci_queue_header saved_consume_q;
 215        vmci_event_release_cb wakeup_cb;
 216        void *client_data;
 217        void *local_mem;        /* Kernel memory for local queue pair */
 218};
 219
 220struct qp_guest_endpoint {
 221        struct vmci_resource resource;
 222        struct qp_entry qp;
 223        u64 num_ppns;
 224        void *produce_q;
 225        void *consume_q;
 226        struct ppn_set ppn_set;
 227};
 228
 229struct qp_list {
 230        struct list_head head;
 231        struct mutex mutex;     /* Protect queue list. */
 232};
 233
 234static struct qp_list qp_broker_list = {
 235        .head = LIST_HEAD_INIT(qp_broker_list.head),
 236        .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
 237};
 238
 239static struct qp_list qp_guest_endpoints = {
 240        .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
 241        .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
 242};
 243
 244#define INVALID_VMCI_GUEST_MEM_ID  0
 245#define QPE_NUM_PAGES(_QPE) ((u32) \
 246                             (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
 247                              DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
 248
 249
 250/*
 251 * Frees kernel VA space for a given queue and its queue header, and
 252 * frees physical data pages.
 253 */
 254static void qp_free_queue(void *q, u64 size)
 255{
 256        struct vmci_queue *queue = q;
 257
 258        if (queue) {
 259                u64 i;
 260
 261                /* Given size does not include header, so add in a page here. */
 262                for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
 263                        dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
 264                                          queue->kernel_if->u.g.vas[i],
 265                                          queue->kernel_if->u.g.pas[i]);
 266                }
 267
 268                vfree(queue);
 269        }
 270}
 271
 272/*
 273 * Allocates kernel queue pages of specified size with IOMMU mappings,
 274 * plus space for the queue structure/kernel interface and the queue
 275 * header.
 276 */
 277static void *qp_alloc_queue(u64 size, u32 flags)
 278{
 279        u64 i;
 280        struct vmci_queue *queue;
 281        size_t pas_size;
 282        size_t vas_size;
 283        size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
 284        u64 num_pages;
 285
 286        if (size > SIZE_MAX - PAGE_SIZE)
 287                return NULL;
 288        num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 289        if (num_pages >
 290                 (SIZE_MAX - queue_size) /
 291                 (sizeof(*queue->kernel_if->u.g.pas) +
 292                  sizeof(*queue->kernel_if->u.g.vas)))
 293                return NULL;
 294
 295        pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
 296        vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
 297        queue_size += pas_size + vas_size;
 298
 299        queue = vmalloc(queue_size);
 300        if (!queue)
 301                return NULL;
 302
 303        queue->q_header = NULL;
 304        queue->saved_header = NULL;
 305        queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 306        queue->kernel_if->mutex = NULL;
 307        queue->kernel_if->num_pages = num_pages;
 308        queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
 309        queue->kernel_if->u.g.vas =
 310                (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
 311        queue->kernel_if->host = false;
 312
 313        for (i = 0; i < num_pages; i++) {
 314                queue->kernel_if->u.g.vas[i] =
 315                        dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
 316                                           &queue->kernel_if->u.g.pas[i],
 317                                           GFP_KERNEL);
 318                if (!queue->kernel_if->u.g.vas[i]) {
 319                        /* Size excl. the header. */
 320                        qp_free_queue(queue, i * PAGE_SIZE);
 321                        return NULL;
 322                }
 323        }
 324
 325        /* Queue header is the first page. */
 326        queue->q_header = queue->kernel_if->u.g.vas[0];
 327
 328        return queue;
 329}
 330
 331/*
 332 * Copies from a given buffer or iovector to a VMCI Queue.  Uses
 333 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 334 * by traversing the offset -> page translation structure for the queue.
 335 * Assumes that offset + size does not wrap around in the queue.
 336 */
 337static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
 338                                  u64 queue_offset,
 339                                  struct iov_iter *from,
 340                                  size_t size)
 341{
 342        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 343        size_t bytes_copied = 0;
 344
 345        while (bytes_copied < size) {
 346                const u64 page_index =
 347                        (queue_offset + bytes_copied) / PAGE_SIZE;
 348                const size_t page_offset =
 349                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 350                void *va;
 351                size_t to_copy;
 352
 353                if (kernel_if->host)
 354                        va = kmap(kernel_if->u.h.page[page_index]);
 355                else
 356                        va = kernel_if->u.g.vas[page_index + 1];
 357                        /* Skip header. */
 358
 359                if (size - bytes_copied > PAGE_SIZE - page_offset)
 360                        /* Enough payload to fill up from this page. */
 361                        to_copy = PAGE_SIZE - page_offset;
 362                else
 363                        to_copy = size - bytes_copied;
 364
 365                if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
 366                                         from)) {
 367                        if (kernel_if->host)
 368                                kunmap(kernel_if->u.h.page[page_index]);
 369                        return VMCI_ERROR_INVALID_ARGS;
 370                }
 371                bytes_copied += to_copy;
 372                if (kernel_if->host)
 373                        kunmap(kernel_if->u.h.page[page_index]);
 374        }
 375
 376        return VMCI_SUCCESS;
 377}
 378
 379/*
 380 * Copies to a given buffer or iovector from a VMCI Queue.  Uses
 381 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 382 * by traversing the offset -> page translation structure for the queue.
 383 * Assumes that offset + size does not wrap around in the queue.
 384 */
 385static int qp_memcpy_from_queue_iter(struct iov_iter *to,
 386                                    const struct vmci_queue *queue,
 387                                    u64 queue_offset, size_t size)
 388{
 389        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 390        size_t bytes_copied = 0;
 391
 392        while (bytes_copied < size) {
 393                const u64 page_index =
 394                        (queue_offset + bytes_copied) / PAGE_SIZE;
 395                const size_t page_offset =
 396                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 397                void *va;
 398                size_t to_copy;
 399                int err;
 400
 401                if (kernel_if->host)
 402                        va = kmap(kernel_if->u.h.page[page_index]);
 403                else
 404                        va = kernel_if->u.g.vas[page_index + 1];
 405                        /* Skip header. */
 406
 407                if (size - bytes_copied > PAGE_SIZE - page_offset)
 408                        /* Enough payload to fill up this page. */
 409                        to_copy = PAGE_SIZE - page_offset;
 410                else
 411                        to_copy = size - bytes_copied;
 412
 413                err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
 414                if (err != to_copy) {
 415                        if (kernel_if->host)
 416                                kunmap(kernel_if->u.h.page[page_index]);
 417                        return VMCI_ERROR_INVALID_ARGS;
 418                }
 419                bytes_copied += to_copy;
 420                if (kernel_if->host)
 421                        kunmap(kernel_if->u.h.page[page_index]);
 422        }
 423
 424        return VMCI_SUCCESS;
 425}
 426
 427/*
 428 * Allocates two list of PPNs --- one for the pages in the produce queue,
 429 * and the other for the pages in the consume queue. Intializes the list
 430 * of PPNs with the page frame numbers of the KVA for the two queues (and
 431 * the queue headers).
 432 */
 433static int qp_alloc_ppn_set(void *prod_q,
 434                            u64 num_produce_pages,
 435                            void *cons_q,
 436                            u64 num_consume_pages, struct ppn_set *ppn_set)
 437{
 438        u32 *produce_ppns;
 439        u32 *consume_ppns;
 440        struct vmci_queue *produce_q = prod_q;
 441        struct vmci_queue *consume_q = cons_q;
 442        u64 i;
 443
 444        if (!produce_q || !num_produce_pages || !consume_q ||
 445            !num_consume_pages || !ppn_set)
 446                return VMCI_ERROR_INVALID_ARGS;
 447
 448        if (ppn_set->initialized)
 449                return VMCI_ERROR_ALREADY_EXISTS;
 450
 451        produce_ppns =
 452            kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
 453        if (!produce_ppns)
 454                return VMCI_ERROR_NO_MEM;
 455
 456        consume_ppns =
 457            kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
 458        if (!consume_ppns) {
 459                kfree(produce_ppns);
 460                return VMCI_ERROR_NO_MEM;
 461        }
 462
 463        for (i = 0; i < num_produce_pages; i++) {
 464                unsigned long pfn;
 465
 466                produce_ppns[i] =
 467                        produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 468                pfn = produce_ppns[i];
 469
 470                /* Fail allocation if PFN isn't supported by hypervisor. */
 471                if (sizeof(pfn) > sizeof(*produce_ppns)
 472                    && pfn != produce_ppns[i])
 473                        goto ppn_error;
 474        }
 475
 476        for (i = 0; i < num_consume_pages; i++) {
 477                unsigned long pfn;
 478
 479                consume_ppns[i] =
 480                        consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 481                pfn = consume_ppns[i];
 482
 483                /* Fail allocation if PFN isn't supported by hypervisor. */
 484                if (sizeof(pfn) > sizeof(*consume_ppns)
 485                    && pfn != consume_ppns[i])
 486                        goto ppn_error;
 487        }
 488
 489        ppn_set->num_produce_pages = num_produce_pages;
 490        ppn_set->num_consume_pages = num_consume_pages;
 491        ppn_set->produce_ppns = produce_ppns;
 492        ppn_set->consume_ppns = consume_ppns;
 493        ppn_set->initialized = true;
 494        return VMCI_SUCCESS;
 495
 496 ppn_error:
 497        kfree(produce_ppns);
 498        kfree(consume_ppns);
 499        return VMCI_ERROR_INVALID_ARGS;
 500}
 501
 502/*
 503 * Frees the two list of PPNs for a queue pair.
 504 */
 505static void qp_free_ppn_set(struct ppn_set *ppn_set)
 506{
 507        if (ppn_set->initialized) {
 508                /* Do not call these functions on NULL inputs. */
 509                kfree(ppn_set->produce_ppns);
 510                kfree(ppn_set->consume_ppns);
 511        }
 512        memset(ppn_set, 0, sizeof(*ppn_set));
 513}
 514
 515/*
 516 * Populates the list of PPNs in the hypercall structure with the PPNS
 517 * of the produce queue and the consume queue.
 518 */
 519static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
 520{
 521        memcpy(call_buf, ppn_set->produce_ppns,
 522               ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
 523        memcpy(call_buf +
 524               ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
 525               ppn_set->consume_ppns,
 526               ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
 527
 528        return VMCI_SUCCESS;
 529}
 530
 531/*
 532 * Allocates kernel VA space of specified size plus space for the queue
 533 * and kernel interface.  This is different from the guest queue allocator,
 534 * because we do not allocate our own queue header/data pages here but
 535 * share those of the guest.
 536 */
 537static struct vmci_queue *qp_host_alloc_queue(u64 size)
 538{
 539        struct vmci_queue *queue;
 540        size_t queue_page_size;
 541        u64 num_pages;
 542        const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
 543
 544        if (size > SIZE_MAX - PAGE_SIZE)
 545                return NULL;
 546        num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 547        if (num_pages > (SIZE_MAX - queue_size) /
 548                 sizeof(*queue->kernel_if->u.h.page))
 549                return NULL;
 550
 551        queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
 552
 553        queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
 554        if (queue) {
 555                queue->q_header = NULL;
 556                queue->saved_header = NULL;
 557                queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 558                queue->kernel_if->host = true;
 559                queue->kernel_if->mutex = NULL;
 560                queue->kernel_if->num_pages = num_pages;
 561                queue->kernel_if->u.h.header_page =
 562                    (struct page **)((u8 *)queue + queue_size);
 563                queue->kernel_if->u.h.page =
 564                        &queue->kernel_if->u.h.header_page[1];
 565        }
 566
 567        return queue;
 568}
 569
 570/*
 571 * Frees kernel memory for a given queue (header plus translation
 572 * structure).
 573 */
 574static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
 575{
 576        kfree(queue);
 577}
 578
 579/*
 580 * Initialize the mutex for the pair of queues.  This mutex is used to
 581 * protect the q_header and the buffer from changing out from under any
 582 * users of either queue.  Of course, it's only any good if the mutexes
 583 * are actually acquired.  Queue structure must lie on non-paged memory
 584 * or we cannot guarantee access to the mutex.
 585 */
 586static void qp_init_queue_mutex(struct vmci_queue *produce_q,
 587                                struct vmci_queue *consume_q)
 588{
 589        /*
 590         * Only the host queue has shared state - the guest queues do not
 591         * need to synchronize access using a queue mutex.
 592         */
 593
 594        if (produce_q->kernel_if->host) {
 595                produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 596                consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 597                mutex_init(produce_q->kernel_if->mutex);
 598        }
 599}
 600
 601/*
 602 * Cleans up the mutex for the pair of queues.
 603 */
 604static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
 605                                   struct vmci_queue *consume_q)
 606{
 607        if (produce_q->kernel_if->host) {
 608                produce_q->kernel_if->mutex = NULL;
 609                consume_q->kernel_if->mutex = NULL;
 610        }
 611}
 612
 613/*
 614 * Acquire the mutex for the queue.  Note that the produce_q and
 615 * the consume_q share a mutex.  So, only one of the two need to
 616 * be passed in to this routine.  Either will work just fine.
 617 */
 618static void qp_acquire_queue_mutex(struct vmci_queue *queue)
 619{
 620        if (queue->kernel_if->host)
 621                mutex_lock(queue->kernel_if->mutex);
 622}
 623
 624/*
 625 * Release the mutex for the queue.  Note that the produce_q and
 626 * the consume_q share a mutex.  So, only one of the two need to
 627 * be passed in to this routine.  Either will work just fine.
 628 */
 629static void qp_release_queue_mutex(struct vmci_queue *queue)
 630{
 631        if (queue->kernel_if->host)
 632                mutex_unlock(queue->kernel_if->mutex);
 633}
 634
 635/*
 636 * Helper function to release pages in the PageStoreAttachInfo
 637 * previously obtained using get_user_pages.
 638 */
 639static void qp_release_pages(struct page **pages,
 640                             u64 num_pages, bool dirty)
 641{
 642        int i;
 643
 644        for (i = 0; i < num_pages; i++) {
 645                if (dirty)
 646                        set_page_dirty(pages[i]);
 647
 648                put_page(pages[i]);
 649                pages[i] = NULL;
 650        }
 651}
 652
 653/*
 654 * Lock the user pages referenced by the {produce,consume}Buffer
 655 * struct into memory and populate the {produce,consume}Pages
 656 * arrays in the attach structure with them.
 657 */
 658static int qp_host_get_user_memory(u64 produce_uva,
 659                                   u64 consume_uva,
 660                                   struct vmci_queue *produce_q,
 661                                   struct vmci_queue *consume_q)
 662{
 663        int retval;
 664        int err = VMCI_SUCCESS;
 665
 666        retval = get_user_pages_fast((uintptr_t) produce_uva,
 667                                     produce_q->kernel_if->num_pages, 1,
 668                                     produce_q->kernel_if->u.h.header_page);
 669        if (retval < produce_q->kernel_if->num_pages) {
 670                pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
 671                        retval);
 672                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 673                                 retval, false);
 674                err = VMCI_ERROR_NO_MEM;
 675                goto out;
 676        }
 677
 678        retval = get_user_pages_fast((uintptr_t) consume_uva,
 679                                     consume_q->kernel_if->num_pages, 1,
 680                                     consume_q->kernel_if->u.h.header_page);
 681        if (retval < consume_q->kernel_if->num_pages) {
 682                pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
 683                        retval);
 684                qp_release_pages(consume_q->kernel_if->u.h.header_page,
 685                                 retval, false);
 686                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 687                                 produce_q->kernel_if->num_pages, false);
 688                err = VMCI_ERROR_NO_MEM;
 689        }
 690
 691 out:
 692        return err;
 693}
 694
 695/*
 696 * Registers the specification of the user pages used for backing a queue
 697 * pair. Enough information to map in pages is stored in the OS specific
 698 * part of the struct vmci_queue structure.
 699 */
 700static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
 701                                        struct vmci_queue *produce_q,
 702                                        struct vmci_queue *consume_q)
 703{
 704        u64 produce_uva;
 705        u64 consume_uva;
 706
 707        /*
 708         * The new style and the old style mapping only differs in
 709         * that we either get a single or two UVAs, so we split the
 710         * single UVA range at the appropriate spot.
 711         */
 712        produce_uva = page_store->pages;
 713        consume_uva = page_store->pages +
 714            produce_q->kernel_if->num_pages * PAGE_SIZE;
 715        return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
 716                                       consume_q);
 717}
 718
 719/*
 720 * Releases and removes the references to user pages stored in the attach
 721 * struct.  Pages are released from the page cache and may become
 722 * swappable again.
 723 */
 724static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
 725                                           struct vmci_queue *consume_q)
 726{
 727        qp_release_pages(produce_q->kernel_if->u.h.header_page,
 728                         produce_q->kernel_if->num_pages, true);
 729        memset(produce_q->kernel_if->u.h.header_page, 0,
 730               sizeof(*produce_q->kernel_if->u.h.header_page) *
 731               produce_q->kernel_if->num_pages);
 732        qp_release_pages(consume_q->kernel_if->u.h.header_page,
 733                         consume_q->kernel_if->num_pages, true);
 734        memset(consume_q->kernel_if->u.h.header_page, 0,
 735               sizeof(*consume_q->kernel_if->u.h.header_page) *
 736               consume_q->kernel_if->num_pages);
 737}
 738
 739/*
 740 * Once qp_host_register_user_memory has been performed on a
 741 * queue, the queue pair headers can be mapped into the
 742 * kernel. Once mapped, they must be unmapped with
 743 * qp_host_unmap_queues prior to calling
 744 * qp_host_unregister_user_memory.
 745 * Pages are pinned.
 746 */
 747static int qp_host_map_queues(struct vmci_queue *produce_q,
 748                              struct vmci_queue *consume_q)
 749{
 750        int result;
 751
 752        if (!produce_q->q_header || !consume_q->q_header) {
 753                struct page *headers[2];
 754
 755                if (produce_q->q_header != consume_q->q_header)
 756                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
 757
 758                if (produce_q->kernel_if->u.h.header_page == NULL ||
 759                    *produce_q->kernel_if->u.h.header_page == NULL)
 760                        return VMCI_ERROR_UNAVAILABLE;
 761
 762                headers[0] = *produce_q->kernel_if->u.h.header_page;
 763                headers[1] = *consume_q->kernel_if->u.h.header_page;
 764
 765                produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
 766                if (produce_q->q_header != NULL) {
 767                        consume_q->q_header =
 768                            (struct vmci_queue_header *)((u8 *)
 769                                                         produce_q->q_header +
 770                                                         PAGE_SIZE);
 771                        result = VMCI_SUCCESS;
 772                } else {
 773                        pr_warn("vmap failed\n");
 774                        result = VMCI_ERROR_NO_MEM;
 775                }
 776        } else {
 777                result = VMCI_SUCCESS;
 778        }
 779
 780        return result;
 781}
 782
 783/*
 784 * Unmaps previously mapped queue pair headers from the kernel.
 785 * Pages are unpinned.
 786 */
 787static int qp_host_unmap_queues(u32 gid,
 788                                struct vmci_queue *produce_q,
 789                                struct vmci_queue *consume_q)
 790{
 791        if (produce_q->q_header) {
 792                if (produce_q->q_header < consume_q->q_header)
 793                        vunmap(produce_q->q_header);
 794                else
 795                        vunmap(consume_q->q_header);
 796
 797                produce_q->q_header = NULL;
 798                consume_q->q_header = NULL;
 799        }
 800
 801        return VMCI_SUCCESS;
 802}
 803
 804/*
 805 * Finds the entry in the list corresponding to a given handle. Assumes
 806 * that the list is locked.
 807 */
 808static struct qp_entry *qp_list_find(struct qp_list *qp_list,
 809                                     struct vmci_handle handle)
 810{
 811        struct qp_entry *entry;
 812
 813        if (vmci_handle_is_invalid(handle))
 814                return NULL;
 815
 816        list_for_each_entry(entry, &qp_list->head, list_item) {
 817                if (vmci_handle_is_equal(entry->handle, handle))
 818                        return entry;
 819        }
 820
 821        return NULL;
 822}
 823
 824/*
 825 * Finds the entry in the list corresponding to a given handle.
 826 */
 827static struct qp_guest_endpoint *
 828qp_guest_handle_to_entry(struct vmci_handle handle)
 829{
 830        struct qp_guest_endpoint *entry;
 831        struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
 832
 833        entry = qp ? container_of(
 834                qp, struct qp_guest_endpoint, qp) : NULL;
 835        return entry;
 836}
 837
 838/*
 839 * Finds the entry in the list corresponding to a given handle.
 840 */
 841static struct qp_broker_entry *
 842qp_broker_handle_to_entry(struct vmci_handle handle)
 843{
 844        struct qp_broker_entry *entry;
 845        struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
 846
 847        entry = qp ? container_of(
 848                qp, struct qp_broker_entry, qp) : NULL;
 849        return entry;
 850}
 851
 852/*
 853 * Dispatches a queue pair event message directly into the local event
 854 * queue.
 855 */
 856static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
 857{
 858        u32 context_id = vmci_get_context_id();
 859        struct vmci_event_qp ev;
 860
 861        ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
 862        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 863                                          VMCI_CONTEXT_RESOURCE_ID);
 864        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
 865        ev.msg.event_data.event =
 866            attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
 867        ev.payload.peer_id = context_id;
 868        ev.payload.handle = handle;
 869
 870        return vmci_event_dispatch(&ev.msg.hdr);
 871}
 872
 873/*
 874 * Allocates and initializes a qp_guest_endpoint structure.
 875 * Allocates a queue_pair rid (and handle) iff the given entry has
 876 * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
 877 * are reserved handles.  Assumes that the QP list mutex is held
 878 * by the caller.
 879 */
 880static struct qp_guest_endpoint *
 881qp_guest_endpoint_create(struct vmci_handle handle,
 882                         u32 peer,
 883                         u32 flags,
 884                         u64 produce_size,
 885                         u64 consume_size,
 886                         void *produce_q,
 887                         void *consume_q)
 888{
 889        int result;
 890        struct qp_guest_endpoint *entry;
 891        /* One page each for the queue headers. */
 892        const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
 893            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
 894
 895        if (vmci_handle_is_invalid(handle)) {
 896                u32 context_id = vmci_get_context_id();
 897
 898                handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
 899        }
 900
 901        entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 902        if (entry) {
 903                entry->qp.peer = peer;
 904                entry->qp.flags = flags;
 905                entry->qp.produce_size = produce_size;
 906                entry->qp.consume_size = consume_size;
 907                entry->qp.ref_count = 0;
 908                entry->num_ppns = num_ppns;
 909                entry->produce_q = produce_q;
 910                entry->consume_q = consume_q;
 911                INIT_LIST_HEAD(&entry->qp.list_item);
 912
 913                /* Add resource obj */
 914                result = vmci_resource_add(&entry->resource,
 915                                           VMCI_RESOURCE_TYPE_QPAIR_GUEST,
 916                                           handle);
 917                entry->qp.handle = vmci_resource_handle(&entry->resource);
 918                if ((result != VMCI_SUCCESS) ||
 919                    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
 920                        pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
 921                                handle.context, handle.resource, result);
 922                        kfree(entry);
 923                        entry = NULL;
 924                }
 925        }
 926        return entry;
 927}
 928
 929/*
 930 * Frees a qp_guest_endpoint structure.
 931 */
 932static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
 933{
 934        qp_free_ppn_set(&entry->ppn_set);
 935        qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
 936        qp_free_queue(entry->produce_q, entry->qp.produce_size);
 937        qp_free_queue(entry->consume_q, entry->qp.consume_size);
 938        /* Unlink from resource hash table and free callback */
 939        vmci_resource_remove(&entry->resource);
 940
 941        kfree(entry);
 942}
 943
 944/*
 945 * Helper to make a queue_pairAlloc hypercall when the driver is
 946 * supporting a guest device.
 947 */
 948static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
 949{
 950        struct vmci_qp_alloc_msg *alloc_msg;
 951        size_t msg_size;
 952        int result;
 953
 954        if (!entry || entry->num_ppns <= 2)
 955                return VMCI_ERROR_INVALID_ARGS;
 956
 957        msg_size = sizeof(*alloc_msg) +
 958            (size_t) entry->num_ppns * sizeof(u32);
 959        alloc_msg = kmalloc(msg_size, GFP_KERNEL);
 960        if (!alloc_msg)
 961                return VMCI_ERROR_NO_MEM;
 962
 963        alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 964                                              VMCI_QUEUEPAIR_ALLOC);
 965        alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
 966        alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
 967        alloc_msg->handle = entry->qp.handle;
 968        alloc_msg->peer = entry->qp.peer;
 969        alloc_msg->flags = entry->qp.flags;
 970        alloc_msg->produce_size = entry->qp.produce_size;
 971        alloc_msg->consume_size = entry->qp.consume_size;
 972        alloc_msg->num_ppns = entry->num_ppns;
 973
 974        result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
 975                                     &entry->ppn_set);
 976        if (result == VMCI_SUCCESS)
 977                result = vmci_send_datagram(&alloc_msg->hdr);
 978
 979        kfree(alloc_msg);
 980
 981        return result;
 982}
 983
 984/*
 985 * Helper to make a queue_pairDetach hypercall when the driver is
 986 * supporting a guest device.
 987 */
 988static int qp_detatch_hypercall(struct vmci_handle handle)
 989{
 990        struct vmci_qp_detach_msg detach_msg;
 991
 992        detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 993                                              VMCI_QUEUEPAIR_DETACH);
 994        detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
 995        detach_msg.hdr.payload_size = sizeof(handle);
 996        detach_msg.handle = handle;
 997
 998        return vmci_send_datagram(&detach_msg.hdr);
 999}
1000
1001/*
1002 * Adds the given entry to the list. Assumes that the list is locked.
1003 */
1004static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1005{
1006        if (entry)
1007                list_add(&entry->list_item, &qp_list->head);
1008}
1009
1010/*
1011 * Removes the given entry from the list. Assumes that the list is locked.
1012 */
1013static void qp_list_remove_entry(struct qp_list *qp_list,
1014                                 struct qp_entry *entry)
1015{
1016        if (entry)
1017                list_del(&entry->list_item);
1018}
1019
1020/*
1021 * Helper for VMCI queue_pair detach interface. Frees the physical
1022 * pages for the queue pair.
1023 */
1024static int qp_detatch_guest_work(struct vmci_handle handle)
1025{
1026        int result;
1027        struct qp_guest_endpoint *entry;
1028        u32 ref_count = ~0;     /* To avoid compiler warning below */
1029
1030        mutex_lock(&qp_guest_endpoints.mutex);
1031
1032        entry = qp_guest_handle_to_entry(handle);
1033        if (!entry) {
1034                mutex_unlock(&qp_guest_endpoints.mutex);
1035                return VMCI_ERROR_NOT_FOUND;
1036        }
1037
1038        if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1039                result = VMCI_SUCCESS;
1040
1041                if (entry->qp.ref_count > 1) {
1042                        result = qp_notify_peer_local(false, handle);
1043                        /*
1044                         * We can fail to notify a local queuepair
1045                         * because we can't allocate.  We still want
1046                         * to release the entry if that happens, so
1047                         * don't bail out yet.
1048                         */
1049                }
1050        } else {
1051                result = qp_detatch_hypercall(handle);
1052                if (result < VMCI_SUCCESS) {
1053                        /*
1054                         * We failed to notify a non-local queuepair.
1055                         * That other queuepair might still be
1056                         * accessing the shared memory, so don't
1057                         * release the entry yet.  It will get cleaned
1058                         * up by VMCIqueue_pair_Exit() if necessary
1059                         * (assuming we are going away, otherwise why
1060                         * did this fail?).
1061                         */
1062
1063                        mutex_unlock(&qp_guest_endpoints.mutex);
1064                        return result;
1065                }
1066        }
1067
1068        /*
1069         * If we get here then we either failed to notify a local queuepair, or
1070         * we succeeded in all cases.  Release the entry if required.
1071         */
1072
1073        entry->qp.ref_count--;
1074        if (entry->qp.ref_count == 0)
1075                qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1076
1077        /* If we didn't remove the entry, this could change once we unlock. */
1078        if (entry)
1079                ref_count = entry->qp.ref_count;
1080
1081        mutex_unlock(&qp_guest_endpoints.mutex);
1082
1083        if (ref_count == 0)
1084                qp_guest_endpoint_destroy(entry);
1085
1086        return result;
1087}
1088
1089/*
1090 * This functions handles the actual allocation of a VMCI queue
1091 * pair guest endpoint. Allocates physical pages for the queue
1092 * pair. It makes OS dependent calls through generic wrappers.
1093 */
1094static int qp_alloc_guest_work(struct vmci_handle *handle,
1095                               struct vmci_queue **produce_q,
1096                               u64 produce_size,
1097                               struct vmci_queue **consume_q,
1098                               u64 consume_size,
1099                               u32 peer,
1100                               u32 flags,
1101                               u32 priv_flags)
1102{
1103        const u64 num_produce_pages =
1104            DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1105        const u64 num_consume_pages =
1106            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1107        void *my_produce_q = NULL;
1108        void *my_consume_q = NULL;
1109        int result;
1110        struct qp_guest_endpoint *queue_pair_entry = NULL;
1111
1112        if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1113                return VMCI_ERROR_NO_ACCESS;
1114
1115        mutex_lock(&qp_guest_endpoints.mutex);
1116
1117        queue_pair_entry = qp_guest_handle_to_entry(*handle);
1118        if (queue_pair_entry) {
1119                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1120                        /* Local attach case. */
1121                        if (queue_pair_entry->qp.ref_count > 1) {
1122                                pr_devel("Error attempting to attach more than once\n");
1123                                result = VMCI_ERROR_UNAVAILABLE;
1124                                goto error_keep_entry;
1125                        }
1126
1127                        if (queue_pair_entry->qp.produce_size != consume_size ||
1128                            queue_pair_entry->qp.consume_size !=
1129                            produce_size ||
1130                            queue_pair_entry->qp.flags !=
1131                            (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1132                                pr_devel("Error mismatched queue pair in local attach\n");
1133                                result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1134                                goto error_keep_entry;
1135                        }
1136
1137                        /*
1138                         * Do a local attach.  We swap the consume and
1139                         * produce queues for the attacher and deliver
1140                         * an attach event.
1141                         */
1142                        result = qp_notify_peer_local(true, *handle);
1143                        if (result < VMCI_SUCCESS)
1144                                goto error_keep_entry;
1145
1146                        my_produce_q = queue_pair_entry->consume_q;
1147                        my_consume_q = queue_pair_entry->produce_q;
1148                        goto out;
1149                }
1150
1151                result = VMCI_ERROR_ALREADY_EXISTS;
1152                goto error_keep_entry;
1153        }
1154
1155        my_produce_q = qp_alloc_queue(produce_size, flags);
1156        if (!my_produce_q) {
1157                pr_warn("Error allocating pages for produce queue\n");
1158                result = VMCI_ERROR_NO_MEM;
1159                goto error;
1160        }
1161
1162        my_consume_q = qp_alloc_queue(consume_size, flags);
1163        if (!my_consume_q) {
1164                pr_warn("Error allocating pages for consume queue\n");
1165                result = VMCI_ERROR_NO_MEM;
1166                goto error;
1167        }
1168
1169        queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1170                                                    produce_size, consume_size,
1171                                                    my_produce_q, my_consume_q);
1172        if (!queue_pair_entry) {
1173                pr_warn("Error allocating memory in %s\n", __func__);
1174                result = VMCI_ERROR_NO_MEM;
1175                goto error;
1176        }
1177
1178        result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1179                                  num_consume_pages,
1180                                  &queue_pair_entry->ppn_set);
1181        if (result < VMCI_SUCCESS) {
1182                pr_warn("qp_alloc_ppn_set failed\n");
1183                goto error;
1184        }
1185
1186        /*
1187         * It's only necessary to notify the host if this queue pair will be
1188         * attached to from another context.
1189         */
1190        if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1191                /* Local create case. */
1192                u32 context_id = vmci_get_context_id();
1193
1194                /*
1195                 * Enforce similar checks on local queue pairs as we
1196                 * do for regular ones.  The handle's context must
1197                 * match the creator or attacher context id (here they
1198                 * are both the current context id) and the
1199                 * attach-only flag cannot exist during create.  We
1200                 * also ensure specified peer is this context or an
1201                 * invalid one.
1202                 */
1203                if (queue_pair_entry->qp.handle.context != context_id ||
1204                    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1205                     queue_pair_entry->qp.peer != context_id)) {
1206                        result = VMCI_ERROR_NO_ACCESS;
1207                        goto error;
1208                }
1209
1210                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1211                        result = VMCI_ERROR_NOT_FOUND;
1212                        goto error;
1213                }
1214        } else {
1215                result = qp_alloc_hypercall(queue_pair_entry);
1216                if (result < VMCI_SUCCESS) {
1217                        pr_warn("qp_alloc_hypercall result = %d\n", result);
1218                        goto error;
1219                }
1220        }
1221
1222        qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1223                            (struct vmci_queue *)my_consume_q);
1224
1225        qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1226
1227 out:
1228        queue_pair_entry->qp.ref_count++;
1229        *handle = queue_pair_entry->qp.handle;
1230        *produce_q = (struct vmci_queue *)my_produce_q;
1231        *consume_q = (struct vmci_queue *)my_consume_q;
1232
1233        /*
1234         * We should initialize the queue pair header pages on a local
1235         * queue pair create.  For non-local queue pairs, the
1236         * hypervisor initializes the header pages in the create step.
1237         */
1238        if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1239            queue_pair_entry->qp.ref_count == 1) {
1240                vmci_q_header_init((*produce_q)->q_header, *handle);
1241                vmci_q_header_init((*consume_q)->q_header, *handle);
1242        }
1243
1244        mutex_unlock(&qp_guest_endpoints.mutex);
1245
1246        return VMCI_SUCCESS;
1247
1248 error:
1249        mutex_unlock(&qp_guest_endpoints.mutex);
1250        if (queue_pair_entry) {
1251                /* The queues will be freed inside the destroy routine. */
1252                qp_guest_endpoint_destroy(queue_pair_entry);
1253        } else {
1254                qp_free_queue(my_produce_q, produce_size);
1255                qp_free_queue(my_consume_q, consume_size);
1256        }
1257        return result;
1258
1259 error_keep_entry:
1260        /* This path should only be used when an existing entry was found. */
1261        mutex_unlock(&qp_guest_endpoints.mutex);
1262        return result;
1263}
1264
1265/*
1266 * The first endpoint issuing a queue pair allocation will create the state
1267 * of the queue pair in the queue pair broker.
1268 *
1269 * If the creator is a guest, it will associate a VMX virtual address range
1270 * with the queue pair as specified by the page_store. For compatibility with
1271 * older VMX'en, that would use a separate step to set the VMX virtual
1272 * address range, the virtual address range can be registered later using
1273 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1274 * used.
1275 *
1276 * If the creator is the host, a page_store of NULL should be used as well,
1277 * since the host is not able to supply a page store for the queue pair.
1278 *
1279 * For older VMX and host callers, the queue pair will be created in the
1280 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1281 * created in VMCOQPB_CREATED_MEM state.
1282 */
1283static int qp_broker_create(struct vmci_handle handle,
1284                            u32 peer,
1285                            u32 flags,
1286                            u32 priv_flags,
1287                            u64 produce_size,
1288                            u64 consume_size,
1289                            struct vmci_qp_page_store *page_store,
1290                            struct vmci_ctx *context,
1291                            vmci_event_release_cb wakeup_cb,
1292                            void *client_data, struct qp_broker_entry **ent)
1293{
1294        struct qp_broker_entry *entry = NULL;
1295        const u32 context_id = vmci_ctx_get_id(context);
1296        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1297        int result;
1298        u64 guest_produce_size;
1299        u64 guest_consume_size;
1300
1301        /* Do not create if the caller asked not to. */
1302        if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1303                return VMCI_ERROR_NOT_FOUND;
1304
1305        /*
1306         * Creator's context ID should match handle's context ID or the creator
1307         * must allow the context in handle's context ID as the "peer".
1308         */
1309        if (handle.context != context_id && handle.context != peer)
1310                return VMCI_ERROR_NO_ACCESS;
1311
1312        if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1313                return VMCI_ERROR_DST_UNREACHABLE;
1314
1315        /*
1316         * Creator's context ID for local queue pairs should match the
1317         * peer, if a peer is specified.
1318         */
1319        if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1320                return VMCI_ERROR_NO_ACCESS;
1321
1322        entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1323        if (!entry)
1324                return VMCI_ERROR_NO_MEM;
1325
1326        if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1327                /*
1328                 * The queue pair broker entry stores values from the guest
1329                 * point of view, so a creating host side endpoint should swap
1330                 * produce and consume values -- unless it is a local queue
1331                 * pair, in which case no swapping is necessary, since the local
1332                 * attacher will swap queues.
1333                 */
1334
1335                guest_produce_size = consume_size;
1336                guest_consume_size = produce_size;
1337        } else {
1338                guest_produce_size = produce_size;
1339                guest_consume_size = consume_size;
1340        }
1341
1342        entry->qp.handle = handle;
1343        entry->qp.peer = peer;
1344        entry->qp.flags = flags;
1345        entry->qp.produce_size = guest_produce_size;
1346        entry->qp.consume_size = guest_consume_size;
1347        entry->qp.ref_count = 1;
1348        entry->create_id = context_id;
1349        entry->attach_id = VMCI_INVALID_ID;
1350        entry->state = VMCIQPB_NEW;
1351        entry->require_trusted_attach =
1352            !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1353        entry->created_by_trusted =
1354            !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1355        entry->vmci_page_files = false;
1356        entry->wakeup_cb = wakeup_cb;
1357        entry->client_data = client_data;
1358        entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1359        if (entry->produce_q == NULL) {
1360                result = VMCI_ERROR_NO_MEM;
1361                goto error;
1362        }
1363        entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1364        if (entry->consume_q == NULL) {
1365                result = VMCI_ERROR_NO_MEM;
1366                goto error;
1367        }
1368
1369        qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1370
1371        INIT_LIST_HEAD(&entry->qp.list_item);
1372
1373        if (is_local) {
1374                u8 *tmp;
1375
1376                entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1377                                           PAGE_SIZE, GFP_KERNEL);
1378                if (entry->local_mem == NULL) {
1379                        result = VMCI_ERROR_NO_MEM;
1380                        goto error;
1381                }
1382                entry->state = VMCIQPB_CREATED_MEM;
1383                entry->produce_q->q_header = entry->local_mem;
1384                tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1385                    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1386                entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1387        } else if (page_store) {
1388                /*
1389                 * The VMX already initialized the queue pair headers, so no
1390                 * need for the kernel side to do that.
1391                 */
1392                result = qp_host_register_user_memory(page_store,
1393                                                      entry->produce_q,
1394                                                      entry->consume_q);
1395                if (result < VMCI_SUCCESS)
1396                        goto error;
1397
1398                entry->state = VMCIQPB_CREATED_MEM;
1399        } else {
1400                /*
1401                 * A create without a page_store may be either a host
1402                 * side create (in which case we are waiting for the
1403                 * guest side to supply the memory) or an old style
1404                 * queue pair create (in which case we will expect a
1405                 * set page store call as the next step).
1406                 */
1407                entry->state = VMCIQPB_CREATED_NO_MEM;
1408        }
1409
1410        qp_list_add_entry(&qp_broker_list, &entry->qp);
1411        if (ent != NULL)
1412                *ent = entry;
1413
1414        /* Add to resource obj */
1415        result = vmci_resource_add(&entry->resource,
1416                                   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1417                                   handle);
1418        if (result != VMCI_SUCCESS) {
1419                pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1420                        handle.context, handle.resource, result);
1421                goto error;
1422        }
1423
1424        entry->qp.handle = vmci_resource_handle(&entry->resource);
1425        if (is_local) {
1426                vmci_q_header_init(entry->produce_q->q_header,
1427                                   entry->qp.handle);
1428                vmci_q_header_init(entry->consume_q->q_header,
1429                                   entry->qp.handle);
1430        }
1431
1432        vmci_ctx_qp_create(context, entry->qp.handle);
1433
1434        return VMCI_SUCCESS;
1435
1436 error:
1437        if (entry != NULL) {
1438                qp_host_free_queue(entry->produce_q, guest_produce_size);
1439                qp_host_free_queue(entry->consume_q, guest_consume_size);
1440                kfree(entry);
1441        }
1442
1443        return result;
1444}
1445
1446/*
1447 * Enqueues an event datagram to notify the peer VM attached to
1448 * the given queue pair handle about attach/detach event by the
1449 * given VM.  Returns Payload size of datagram enqueued on
1450 * success, error code otherwise.
1451 */
1452static int qp_notify_peer(bool attach,
1453                          struct vmci_handle handle,
1454                          u32 my_id,
1455                          u32 peer_id)
1456{
1457        int rv;
1458        struct vmci_event_qp ev;
1459
1460        if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1461            peer_id == VMCI_INVALID_ID)
1462                return VMCI_ERROR_INVALID_ARGS;
1463
1464        /*
1465         * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1466         * number of pending events from the hypervisor to a given VM
1467         * otherwise a rogue VM could do an arbitrary number of attach
1468         * and detach operations causing memory pressure in the host
1469         * kernel.
1470         */
1471
1472        ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1473        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1474                                          VMCI_CONTEXT_RESOURCE_ID);
1475        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1476        ev.msg.event_data.event = attach ?
1477            VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1478        ev.payload.handle = handle;
1479        ev.payload.peer_id = my_id;
1480
1481        rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1482                                    &ev.msg.hdr, false);
1483        if (rv < VMCI_SUCCESS)
1484                pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1485                        attach ? "ATTACH" : "DETACH", peer_id);
1486
1487        return rv;
1488}
1489
1490/*
1491 * The second endpoint issuing a queue pair allocation will attach to
1492 * the queue pair registered with the queue pair broker.
1493 *
1494 * If the attacher is a guest, it will associate a VMX virtual address
1495 * range with the queue pair as specified by the page_store. At this
1496 * point, the already attach host endpoint may start using the queue
1497 * pair, and an attach event is sent to it. For compatibility with
1498 * older VMX'en, that used a separate step to set the VMX virtual
1499 * address range, the virtual address range can be registered later
1500 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1501 * NULL should be used, and the attach event will be generated once
1502 * the actual page store has been set.
1503 *
1504 * If the attacher is the host, a page_store of NULL should be used as
1505 * well, since the page store information is already set by the guest.
1506 *
1507 * For new VMX and host callers, the queue pair will be moved to the
1508 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1509 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1510 */
1511static int qp_broker_attach(struct qp_broker_entry *entry,
1512                            u32 peer,
1513                            u32 flags,
1514                            u32 priv_flags,
1515                            u64 produce_size,
1516                            u64 consume_size,
1517                            struct vmci_qp_page_store *page_store,
1518                            struct vmci_ctx *context,
1519                            vmci_event_release_cb wakeup_cb,
1520                            void *client_data,
1521                            struct qp_broker_entry **ent)
1522{
1523        const u32 context_id = vmci_ctx_get_id(context);
1524        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1525        int result;
1526
1527        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1528            entry->state != VMCIQPB_CREATED_MEM)
1529                return VMCI_ERROR_UNAVAILABLE;
1530
1531        if (is_local) {
1532                if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1533                    context_id != entry->create_id) {
1534                        return VMCI_ERROR_INVALID_ARGS;
1535                }
1536        } else if (context_id == entry->create_id ||
1537                   context_id == entry->attach_id) {
1538                return VMCI_ERROR_ALREADY_EXISTS;
1539        }
1540
1541        if (VMCI_CONTEXT_IS_VM(context_id) &&
1542            VMCI_CONTEXT_IS_VM(entry->create_id))
1543                return VMCI_ERROR_DST_UNREACHABLE;
1544
1545        /*
1546         * If we are attaching from a restricted context then the queuepair
1547         * must have been created by a trusted endpoint.
1548         */
1549        if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1550            !entry->created_by_trusted)
1551                return VMCI_ERROR_NO_ACCESS;
1552
1553        /*
1554         * If we are attaching to a queuepair that was created by a restricted
1555         * context then we must be trusted.
1556         */
1557        if (entry->require_trusted_attach &&
1558            (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1559                return VMCI_ERROR_NO_ACCESS;
1560
1561        /*
1562         * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1563         * control check is not performed.
1564         */
1565        if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1566                return VMCI_ERROR_NO_ACCESS;
1567
1568        if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1569                /*
1570                 * Do not attach if the caller doesn't support Host Queue Pairs
1571                 * and a host created this queue pair.
1572                 */
1573
1574                if (!vmci_ctx_supports_host_qp(context))
1575                        return VMCI_ERROR_INVALID_RESOURCE;
1576
1577        } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1578                struct vmci_ctx *create_context;
1579                bool supports_host_qp;
1580
1581                /*
1582                 * Do not attach a host to a user created queue pair if that
1583                 * user doesn't support host queue pair end points.
1584                 */
1585
1586                create_context = vmci_ctx_get(entry->create_id);
1587                supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1588                vmci_ctx_put(create_context);
1589
1590                if (!supports_host_qp)
1591                        return VMCI_ERROR_INVALID_RESOURCE;
1592        }
1593
1594        if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1595                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1596
1597        if (context_id != VMCI_HOST_CONTEXT_ID) {
1598                /*
1599                 * The queue pair broker entry stores values from the guest
1600                 * point of view, so an attaching guest should match the values
1601                 * stored in the entry.
1602                 */
1603
1604                if (entry->qp.produce_size != produce_size ||
1605                    entry->qp.consume_size != consume_size) {
1606                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1607                }
1608        } else if (entry->qp.produce_size != consume_size ||
1609                   entry->qp.consume_size != produce_size) {
1610                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1611        }
1612
1613        if (context_id != VMCI_HOST_CONTEXT_ID) {
1614                /*
1615                 * If a guest attached to a queue pair, it will supply
1616                 * the backing memory.  If this is a pre NOVMVM vmx,
1617                 * the backing memory will be supplied by calling
1618                 * vmci_qp_broker_set_page_store() following the
1619                 * return of the vmci_qp_broker_alloc() call. If it is
1620                 * a vmx of version NOVMVM or later, the page store
1621                 * must be supplied as part of the
1622                 * vmci_qp_broker_alloc call.  Under all circumstances
1623                 * must the initially created queue pair not have any
1624                 * memory associated with it already.
1625                 */
1626
1627                if (entry->state != VMCIQPB_CREATED_NO_MEM)
1628                        return VMCI_ERROR_INVALID_ARGS;
1629
1630                if (page_store != NULL) {
1631                        /*
1632                         * Patch up host state to point to guest
1633                         * supplied memory. The VMX already
1634                         * initialized the queue pair headers, so no
1635                         * need for the kernel side to do that.
1636                         */
1637
1638                        result = qp_host_register_user_memory(page_store,
1639                                                              entry->produce_q,
1640                                                              entry->consume_q);
1641                        if (result < VMCI_SUCCESS)
1642                                return result;
1643
1644                        entry->state = VMCIQPB_ATTACHED_MEM;
1645                } else {
1646                        entry->state = VMCIQPB_ATTACHED_NO_MEM;
1647                }
1648        } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1649                /*
1650                 * The host side is attempting to attach to a queue
1651                 * pair that doesn't have any memory associated with
1652                 * it. This must be a pre NOVMVM vmx that hasn't set
1653                 * the page store information yet, or a quiesced VM.
1654                 */
1655
1656                return VMCI_ERROR_UNAVAILABLE;
1657        } else {
1658                /* The host side has successfully attached to a queue pair. */
1659                entry->state = VMCIQPB_ATTACHED_MEM;
1660        }
1661
1662        if (entry->state == VMCIQPB_ATTACHED_MEM) {
1663                result =
1664                    qp_notify_peer(true, entry->qp.handle, context_id,
1665                                   entry->create_id);
1666                if (result < VMCI_SUCCESS)
1667                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1668                                entry->create_id, entry->qp.handle.context,
1669                                entry->qp.handle.resource);
1670        }
1671
1672        entry->attach_id = context_id;
1673        entry->qp.ref_count++;
1674        if (wakeup_cb) {
1675                entry->wakeup_cb = wakeup_cb;
1676                entry->client_data = client_data;
1677        }
1678
1679        /*
1680         * When attaching to local queue pairs, the context already has
1681         * an entry tracking the queue pair, so don't add another one.
1682         */
1683        if (!is_local)
1684                vmci_ctx_qp_create(context, entry->qp.handle);
1685
1686        if (ent != NULL)
1687                *ent = entry;
1688
1689        return VMCI_SUCCESS;
1690}
1691
1692/*
1693 * queue_pair_Alloc for use when setting up queue pair endpoints
1694 * on the host.
1695 */
1696static int qp_broker_alloc(struct vmci_handle handle,
1697                           u32 peer,
1698                           u32 flags,
1699                           u32 priv_flags,
1700                           u64 produce_size,
1701                           u64 consume_size,
1702                           struct vmci_qp_page_store *page_store,
1703                           struct vmci_ctx *context,
1704                           vmci_event_release_cb wakeup_cb,
1705                           void *client_data,
1706                           struct qp_broker_entry **ent,
1707                           bool *swap)
1708{
1709        const u32 context_id = vmci_ctx_get_id(context);
1710        bool create;
1711        struct qp_broker_entry *entry = NULL;
1712        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1713        int result;
1714
1715        if (vmci_handle_is_invalid(handle) ||
1716            (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1717            !(produce_size || consume_size) ||
1718            !context || context_id == VMCI_INVALID_ID ||
1719            handle.context == VMCI_INVALID_ID) {
1720                return VMCI_ERROR_INVALID_ARGS;
1721        }
1722
1723        if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1724                return VMCI_ERROR_INVALID_ARGS;
1725
1726        /*
1727         * In the initial argument check, we ensure that non-vmkernel hosts
1728         * are not allowed to create local queue pairs.
1729         */
1730
1731        mutex_lock(&qp_broker_list.mutex);
1732
1733        if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1734                pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1735                         context_id, handle.context, handle.resource);
1736                mutex_unlock(&qp_broker_list.mutex);
1737                return VMCI_ERROR_ALREADY_EXISTS;
1738        }
1739
1740        if (handle.resource != VMCI_INVALID_ID)
1741                entry = qp_broker_handle_to_entry(handle);
1742
1743        if (!entry) {
1744                create = true;
1745                result =
1746                    qp_broker_create(handle, peer, flags, priv_flags,
1747                                     produce_size, consume_size, page_store,
1748                                     context, wakeup_cb, client_data, ent);
1749        } else {
1750                create = false;
1751                result =
1752                    qp_broker_attach(entry, peer, flags, priv_flags,
1753                                     produce_size, consume_size, page_store,
1754                                     context, wakeup_cb, client_data, ent);
1755        }
1756
1757        mutex_unlock(&qp_broker_list.mutex);
1758
1759        if (swap)
1760                *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1761                    !(create && is_local);
1762
1763        return result;
1764}
1765
1766/*
1767 * This function implements the kernel API for allocating a queue
1768 * pair.
1769 */
1770static int qp_alloc_host_work(struct vmci_handle *handle,
1771                              struct vmci_queue **produce_q,
1772                              u64 produce_size,
1773                              struct vmci_queue **consume_q,
1774                              u64 consume_size,
1775                              u32 peer,
1776                              u32 flags,
1777                              u32 priv_flags,
1778                              vmci_event_release_cb wakeup_cb,
1779                              void *client_data)
1780{
1781        struct vmci_handle new_handle;
1782        struct vmci_ctx *context;
1783        struct qp_broker_entry *entry;
1784        int result;
1785        bool swap;
1786
1787        if (vmci_handle_is_invalid(*handle)) {
1788                new_handle = vmci_make_handle(
1789                        VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1790        } else
1791                new_handle = *handle;
1792
1793        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1794        entry = NULL;
1795        result =
1796            qp_broker_alloc(new_handle, peer, flags, priv_flags,
1797                            produce_size, consume_size, NULL, context,
1798                            wakeup_cb, client_data, &entry, &swap);
1799        if (result == VMCI_SUCCESS) {
1800                if (swap) {
1801                        /*
1802                         * If this is a local queue pair, the attacher
1803                         * will swap around produce and consume
1804                         * queues.
1805                         */
1806
1807                        *produce_q = entry->consume_q;
1808                        *consume_q = entry->produce_q;
1809                } else {
1810                        *produce_q = entry->produce_q;
1811                        *consume_q = entry->consume_q;
1812                }
1813
1814                *handle = vmci_resource_handle(&entry->resource);
1815        } else {
1816                *handle = VMCI_INVALID_HANDLE;
1817                pr_devel("queue pair broker failed to alloc (result=%d)\n",
1818                         result);
1819        }
1820        vmci_ctx_put(context);
1821        return result;
1822}
1823
1824/*
1825 * Allocates a VMCI queue_pair. Only checks validity of input
1826 * arguments. The real work is done in the host or guest
1827 * specific function.
1828 */
1829int vmci_qp_alloc(struct vmci_handle *handle,
1830                  struct vmci_queue **produce_q,
1831                  u64 produce_size,
1832                  struct vmci_queue **consume_q,
1833                  u64 consume_size,
1834                  u32 peer,
1835                  u32 flags,
1836                  u32 priv_flags,
1837                  bool guest_endpoint,
1838                  vmci_event_release_cb wakeup_cb,
1839                  void *client_data)
1840{
1841        if (!handle || !produce_q || !consume_q ||
1842            (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1843                return VMCI_ERROR_INVALID_ARGS;
1844
1845        if (guest_endpoint) {
1846                return qp_alloc_guest_work(handle, produce_q,
1847                                           produce_size, consume_q,
1848                                           consume_size, peer,
1849                                           flags, priv_flags);
1850        } else {
1851                return qp_alloc_host_work(handle, produce_q,
1852                                          produce_size, consume_q,
1853                                          consume_size, peer, flags,
1854                                          priv_flags, wakeup_cb, client_data);
1855        }
1856}
1857
1858/*
1859 * This function implements the host kernel API for detaching from
1860 * a queue pair.
1861 */
1862static int qp_detatch_host_work(struct vmci_handle handle)
1863{
1864        int result;
1865        struct vmci_ctx *context;
1866
1867        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1868
1869        result = vmci_qp_broker_detach(handle, context);
1870
1871        vmci_ctx_put(context);
1872        return result;
1873}
1874
1875/*
1876 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1877 * Real work is done in the host or guest specific function.
1878 */
1879static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1880{
1881        if (vmci_handle_is_invalid(handle))
1882                return VMCI_ERROR_INVALID_ARGS;
1883
1884        if (guest_endpoint)
1885                return qp_detatch_guest_work(handle);
1886        else
1887                return qp_detatch_host_work(handle);
1888}
1889
1890/*
1891 * Returns the entry from the head of the list. Assumes that the list is
1892 * locked.
1893 */
1894static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1895{
1896        if (!list_empty(&qp_list->head)) {
1897                struct qp_entry *entry =
1898                    list_first_entry(&qp_list->head, struct qp_entry,
1899                                     list_item);
1900                return entry;
1901        }
1902
1903        return NULL;
1904}
1905
1906void vmci_qp_broker_exit(void)
1907{
1908        struct qp_entry *entry;
1909        struct qp_broker_entry *be;
1910
1911        mutex_lock(&qp_broker_list.mutex);
1912
1913        while ((entry = qp_list_get_head(&qp_broker_list))) {
1914                be = (struct qp_broker_entry *)entry;
1915
1916                qp_list_remove_entry(&qp_broker_list, entry);
1917                kfree(be);
1918        }
1919
1920        mutex_unlock(&qp_broker_list.mutex);
1921}
1922
1923/*
1924 * Requests that a queue pair be allocated with the VMCI queue
1925 * pair broker. Allocates a queue pair entry if one does not
1926 * exist. Attaches to one if it exists, and retrieves the page
1927 * files backing that queue_pair.  Assumes that the queue pair
1928 * broker lock is held.
1929 */
1930int vmci_qp_broker_alloc(struct vmci_handle handle,
1931                         u32 peer,
1932                         u32 flags,
1933                         u32 priv_flags,
1934                         u64 produce_size,
1935                         u64 consume_size,
1936                         struct vmci_qp_page_store *page_store,
1937                         struct vmci_ctx *context)
1938{
1939        return qp_broker_alloc(handle, peer, flags, priv_flags,
1940                               produce_size, consume_size,
1941                               page_store, context, NULL, NULL, NULL, NULL);
1942}
1943
1944/*
1945 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1946 * step to add the UVAs of the VMX mapping of the queue pair. This function
1947 * provides backwards compatibility with such VMX'en, and takes care of
1948 * registering the page store for a queue pair previously allocated by the
1949 * VMX during create or attach. This function will move the queue pair state
1950 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1951 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1952 * attached state with memory, the queue pair is ready to be used by the
1953 * host peer, and an attached event will be generated.
1954 *
1955 * Assumes that the queue pair broker lock is held.
1956 *
1957 * This function is only used by the hosted platform, since there is no
1958 * issue with backwards compatibility for vmkernel.
1959 */
1960int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1961                                  u64 produce_uva,
1962                                  u64 consume_uva,
1963                                  struct vmci_ctx *context)
1964{
1965        struct qp_broker_entry *entry;
1966        int result;
1967        const u32 context_id = vmci_ctx_get_id(context);
1968
1969        if (vmci_handle_is_invalid(handle) || !context ||
1970            context_id == VMCI_INVALID_ID)
1971                return VMCI_ERROR_INVALID_ARGS;
1972
1973        /*
1974         * We only support guest to host queue pairs, so the VMX must
1975         * supply UVAs for the mapped page files.
1976         */
1977
1978        if (produce_uva == 0 || consume_uva == 0)
1979                return VMCI_ERROR_INVALID_ARGS;
1980
1981        mutex_lock(&qp_broker_list.mutex);
1982
1983        if (!vmci_ctx_qp_exists(context, handle)) {
1984                pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1985                        context_id, handle.context, handle.resource);
1986                result = VMCI_ERROR_NOT_FOUND;
1987                goto out;
1988        }
1989
1990        entry = qp_broker_handle_to_entry(handle);
1991        if (!entry) {
1992                result = VMCI_ERROR_NOT_FOUND;
1993                goto out;
1994        }
1995
1996        /*
1997         * If I'm the owner then I can set the page store.
1998         *
1999         * Or, if a host created the queue_pair and I'm the attached peer
2000         * then I can set the page store.
2001         */
2002        if (entry->create_id != context_id &&
2003            (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2004             entry->attach_id != context_id)) {
2005                result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2006                goto out;
2007        }
2008
2009        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2010            entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2011                result = VMCI_ERROR_UNAVAILABLE;
2012                goto out;
2013        }
2014
2015        result = qp_host_get_user_memory(produce_uva, consume_uva,
2016                                         entry->produce_q, entry->consume_q);
2017        if (result < VMCI_SUCCESS)
2018                goto out;
2019
2020        result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2021        if (result < VMCI_SUCCESS) {
2022                qp_host_unregister_user_memory(entry->produce_q,
2023                                               entry->consume_q);
2024                goto out;
2025        }
2026
2027        if (entry->state == VMCIQPB_CREATED_NO_MEM)
2028                entry->state = VMCIQPB_CREATED_MEM;
2029        else
2030                entry->state = VMCIQPB_ATTACHED_MEM;
2031
2032        entry->vmci_page_files = true;
2033
2034        if (entry->state == VMCIQPB_ATTACHED_MEM) {
2035                result =
2036                    qp_notify_peer(true, handle, context_id, entry->create_id);
2037                if (result < VMCI_SUCCESS) {
2038                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2039                                entry->create_id, entry->qp.handle.context,
2040                                entry->qp.handle.resource);
2041                }
2042        }
2043
2044        result = VMCI_SUCCESS;
2045 out:
2046        mutex_unlock(&qp_broker_list.mutex);
2047        return result;
2048}
2049
2050/*
2051 * Resets saved queue headers for the given QP broker
2052 * entry. Should be used when guest memory becomes available
2053 * again, or the guest detaches.
2054 */
2055static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2056{
2057        entry->produce_q->saved_header = NULL;
2058        entry->consume_q->saved_header = NULL;
2059}
2060
2061/*
2062 * The main entry point for detaching from a queue pair registered with the
2063 * queue pair broker. If more than one endpoint is attached to the queue
2064 * pair, the first endpoint will mainly decrement a reference count and
2065 * generate a notification to its peer. The last endpoint will clean up
2066 * the queue pair state registered with the broker.
2067 *
2068 * When a guest endpoint detaches, it will unmap and unregister the guest
2069 * memory backing the queue pair. If the host is still attached, it will
2070 * no longer be able to access the queue pair content.
2071 *
2072 * If the queue pair is already in a state where there is no memory
2073 * registered for the queue pair (any *_NO_MEM state), it will transition to
2074 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2075 * endpoint is the first of two endpoints to detach. If the host endpoint is
2076 * the first out of two to detach, the queue pair will move to the
2077 * VMCIQPB_SHUTDOWN_MEM state.
2078 */
2079int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2080{
2081        struct qp_broker_entry *entry;
2082        const u32 context_id = vmci_ctx_get_id(context);
2083        u32 peer_id;
2084        bool is_local = false;
2085        int result;
2086
2087        if (vmci_handle_is_invalid(handle) || !context ||
2088            context_id == VMCI_INVALID_ID) {
2089                return VMCI_ERROR_INVALID_ARGS;
2090        }
2091
2092        mutex_lock(&qp_broker_list.mutex);
2093
2094        if (!vmci_ctx_qp_exists(context, handle)) {
2095                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2096                         context_id, handle.context, handle.resource);
2097                result = VMCI_ERROR_NOT_FOUND;
2098                goto out;
2099        }
2100
2101        entry = qp_broker_handle_to_entry(handle);
2102        if (!entry) {
2103                pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2104                         context_id, handle.context, handle.resource);
2105                result = VMCI_ERROR_NOT_FOUND;
2106                goto out;
2107        }
2108
2109        if (context_id != entry->create_id && context_id != entry->attach_id) {
2110                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2111                goto out;
2112        }
2113
2114        if (context_id == entry->create_id) {
2115                peer_id = entry->attach_id;
2116                entry->create_id = VMCI_INVALID_ID;
2117        } else {
2118                peer_id = entry->create_id;
2119                entry->attach_id = VMCI_INVALID_ID;
2120        }
2121        entry->qp.ref_count--;
2122
2123        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2124
2125        if (context_id != VMCI_HOST_CONTEXT_ID) {
2126                bool headers_mapped;
2127
2128                /*
2129                 * Pre NOVMVM vmx'en may detach from a queue pair
2130                 * before setting the page store, and in that case
2131                 * there is no user memory to detach from. Also, more
2132                 * recent VMX'en may detach from a queue pair in the
2133                 * quiesced state.
2134                 */
2135
2136                qp_acquire_queue_mutex(entry->produce_q);
2137                headers_mapped = entry->produce_q->q_header ||
2138                    entry->consume_q->q_header;
2139                if (QPBROKERSTATE_HAS_MEM(entry)) {
2140                        result =
2141                            qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2142                                                 entry->produce_q,
2143                                                 entry->consume_q);
2144                        if (result < VMCI_SUCCESS)
2145                                pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2146                                        handle.context, handle.resource,
2147                                        result);
2148
2149                        qp_host_unregister_user_memory(entry->produce_q,
2150                                                       entry->consume_q);
2151
2152                }
2153
2154                if (!headers_mapped)
2155                        qp_reset_saved_headers(entry);
2156
2157                qp_release_queue_mutex(entry->produce_q);
2158
2159                if (!headers_mapped && entry->wakeup_cb)
2160                        entry->wakeup_cb(entry->client_data);
2161
2162        } else {
2163                if (entry->wakeup_cb) {
2164                        entry->wakeup_cb = NULL;
2165                        entry->client_data = NULL;
2166                }
2167        }
2168
2169        if (entry->qp.ref_count == 0) {
2170                qp_list_remove_entry(&qp_broker_list, &entry->qp);
2171
2172                if (is_local)
2173                        kfree(entry->local_mem);
2174
2175                qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2176                qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2177                qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2178                /* Unlink from resource hash table and free callback */
2179                vmci_resource_remove(&entry->resource);
2180
2181                kfree(entry);
2182
2183                vmci_ctx_qp_destroy(context, handle);
2184        } else {
2185                qp_notify_peer(false, handle, context_id, peer_id);
2186                if (context_id == VMCI_HOST_CONTEXT_ID &&
2187                    QPBROKERSTATE_HAS_MEM(entry)) {
2188                        entry->state = VMCIQPB_SHUTDOWN_MEM;
2189                } else {
2190                        entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2191                }
2192
2193                if (!is_local)
2194                        vmci_ctx_qp_destroy(context, handle);
2195
2196        }
2197        result = VMCI_SUCCESS;
2198 out:
2199        mutex_unlock(&qp_broker_list.mutex);
2200        return result;
2201}
2202
2203/*
2204 * Establishes the necessary mappings for a queue pair given a
2205 * reference to the queue pair guest memory. This is usually
2206 * called when a guest is unquiesced and the VMX is allowed to
2207 * map guest memory once again.
2208 */
2209int vmci_qp_broker_map(struct vmci_handle handle,
2210                       struct vmci_ctx *context,
2211                       u64 guest_mem)
2212{
2213        struct qp_broker_entry *entry;
2214        const u32 context_id = vmci_ctx_get_id(context);
2215        bool is_local = false;
2216        int result;
2217
2218        if (vmci_handle_is_invalid(handle) || !context ||
2219            context_id == VMCI_INVALID_ID)
2220                return VMCI_ERROR_INVALID_ARGS;
2221
2222        mutex_lock(&qp_broker_list.mutex);
2223
2224        if (!vmci_ctx_qp_exists(context, handle)) {
2225                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2226                         context_id, handle.context, handle.resource);
2227                result = VMCI_ERROR_NOT_FOUND;
2228                goto out;
2229        }
2230
2231        entry = qp_broker_handle_to_entry(handle);
2232        if (!entry) {
2233                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2234                         context_id, handle.context, handle.resource);
2235                result = VMCI_ERROR_NOT_FOUND;
2236                goto out;
2237        }
2238
2239        if (context_id != entry->create_id && context_id != entry->attach_id) {
2240                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2241                goto out;
2242        }
2243
2244        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2245        result = VMCI_SUCCESS;
2246
2247        if (context_id != VMCI_HOST_CONTEXT_ID) {
2248                struct vmci_qp_page_store page_store;
2249
2250                page_store.pages = guest_mem;
2251                page_store.len = QPE_NUM_PAGES(entry->qp);
2252
2253                qp_acquire_queue_mutex(entry->produce_q);
2254                qp_reset_saved_headers(entry);
2255                result =
2256                    qp_host_register_user_memory(&page_store,
2257                                                 entry->produce_q,
2258                                                 entry->consume_q);
2259                qp_release_queue_mutex(entry->produce_q);
2260                if (result == VMCI_SUCCESS) {
2261                        /* Move state from *_NO_MEM to *_MEM */
2262
2263                        entry->state++;
2264
2265                        if (entry->wakeup_cb)
2266                                entry->wakeup_cb(entry->client_data);
2267                }
2268        }
2269
2270 out:
2271        mutex_unlock(&qp_broker_list.mutex);
2272        return result;
2273}
2274
2275/*
2276 * Saves a snapshot of the queue headers for the given QP broker
2277 * entry. Should be used when guest memory is unmapped.
2278 * Results:
2279 * VMCI_SUCCESS on success, appropriate error code if guest memory
2280 * can't be accessed..
2281 */
2282static int qp_save_headers(struct qp_broker_entry *entry)
2283{
2284        int result;
2285
2286        if (entry->produce_q->saved_header != NULL &&
2287            entry->consume_q->saved_header != NULL) {
2288                /*
2289                 *  If the headers have already been saved, we don't need to do
2290                 *  it again, and we don't want to map in the headers
2291                 *  unnecessarily.
2292                 */
2293
2294                return VMCI_SUCCESS;
2295        }
2296
2297        if (NULL == entry->produce_q->q_header ||
2298            NULL == entry->consume_q->q_header) {
2299                result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2300                if (result < VMCI_SUCCESS)
2301                        return result;
2302        }
2303
2304        memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2305               sizeof(entry->saved_produce_q));
2306        entry->produce_q->saved_header = &entry->saved_produce_q;
2307        memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2308               sizeof(entry->saved_consume_q));
2309        entry->consume_q->saved_header = &entry->saved_consume_q;
2310
2311        return VMCI_SUCCESS;
2312}
2313
2314/*
2315 * Removes all references to the guest memory of a given queue pair, and
2316 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2317 * called when a VM is being quiesced where access to guest memory should
2318 * avoided.
2319 */
2320int vmci_qp_broker_unmap(struct vmci_handle handle,
2321                         struct vmci_ctx *context,
2322                         u32 gid)
2323{
2324        struct qp_broker_entry *entry;
2325        const u32 context_id = vmci_ctx_get_id(context);
2326        bool is_local = false;
2327        int result;
2328
2329        if (vmci_handle_is_invalid(handle) || !context ||
2330            context_id == VMCI_INVALID_ID)
2331                return VMCI_ERROR_INVALID_ARGS;
2332
2333        mutex_lock(&qp_broker_list.mutex);
2334
2335        if (!vmci_ctx_qp_exists(context, handle)) {
2336                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2337                         context_id, handle.context, handle.resource);
2338                result = VMCI_ERROR_NOT_FOUND;
2339                goto out;
2340        }
2341
2342        entry = qp_broker_handle_to_entry(handle);
2343        if (!entry) {
2344                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2345                         context_id, handle.context, handle.resource);
2346                result = VMCI_ERROR_NOT_FOUND;
2347                goto out;
2348        }
2349
2350        if (context_id != entry->create_id && context_id != entry->attach_id) {
2351                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2352                goto out;
2353        }
2354
2355        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2356
2357        if (context_id != VMCI_HOST_CONTEXT_ID) {
2358                qp_acquire_queue_mutex(entry->produce_q);
2359                result = qp_save_headers(entry);
2360                if (result < VMCI_SUCCESS)
2361                        pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2362                                handle.context, handle.resource, result);
2363
2364                qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2365
2366                /*
2367                 * On hosted, when we unmap queue pairs, the VMX will also
2368                 * unmap the guest memory, so we invalidate the previously
2369                 * registered memory. If the queue pair is mapped again at a
2370                 * later point in time, we will need to reregister the user
2371                 * memory with a possibly new user VA.
2372                 */
2373                qp_host_unregister_user_memory(entry->produce_q,
2374                                               entry->consume_q);
2375
2376                /*
2377                 * Move state from *_MEM to *_NO_MEM.
2378                 */
2379                entry->state--;
2380
2381                qp_release_queue_mutex(entry->produce_q);
2382        }
2383
2384        result = VMCI_SUCCESS;
2385
2386 out:
2387        mutex_unlock(&qp_broker_list.mutex);
2388        return result;
2389}
2390
2391/*
2392 * Destroys all guest queue pair endpoints. If active guest queue
2393 * pairs still exist, hypercalls to attempt detach from these
2394 * queue pairs will be made. Any failure to detach is silently
2395 * ignored.
2396 */
2397void vmci_qp_guest_endpoints_exit(void)
2398{
2399        struct qp_entry *entry;
2400        struct qp_guest_endpoint *ep;
2401
2402        mutex_lock(&qp_guest_endpoints.mutex);
2403
2404        while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2405                ep = (struct qp_guest_endpoint *)entry;
2406
2407                /* Don't make a hypercall for local queue_pairs. */
2408                if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2409                        qp_detatch_hypercall(entry->handle);
2410
2411                /* We cannot fail the exit, so let's reset ref_count. */
2412                entry->ref_count = 0;
2413                qp_list_remove_entry(&qp_guest_endpoints, entry);
2414
2415                qp_guest_endpoint_destroy(ep);
2416        }
2417
2418        mutex_unlock(&qp_guest_endpoints.mutex);
2419}
2420
2421/*
2422 * Helper routine that will lock the queue pair before subsequent
2423 * operations.
2424 * Note: Non-blocking on the host side is currently only implemented in ESX.
2425 * Since non-blocking isn't yet implemented on the host personality we
2426 * have no reason to acquire a spin lock.  So to avoid the use of an
2427 * unnecessary lock only acquire the mutex if we can block.
2428 */
2429static void qp_lock(const struct vmci_qp *qpair)
2430{
2431        qp_acquire_queue_mutex(qpair->produce_q);
2432}
2433
2434/*
2435 * Helper routine that unlocks the queue pair after calling
2436 * qp_lock.
2437 */
2438static void qp_unlock(const struct vmci_qp *qpair)
2439{
2440        qp_release_queue_mutex(qpair->produce_q);
2441}
2442
2443/*
2444 * The queue headers may not be mapped at all times. If a queue is
2445 * currently not mapped, it will be attempted to do so.
2446 */
2447static int qp_map_queue_headers(struct vmci_queue *produce_q,
2448                                struct vmci_queue *consume_q)
2449{
2450        int result;
2451
2452        if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2453                result = qp_host_map_queues(produce_q, consume_q);
2454                if (result < VMCI_SUCCESS)
2455                        return (produce_q->saved_header &&
2456                                consume_q->saved_header) ?
2457                            VMCI_ERROR_QUEUEPAIR_NOT_READY :
2458                            VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2459        }
2460
2461        return VMCI_SUCCESS;
2462}
2463
2464/*
2465 * Helper routine that will retrieve the produce and consume
2466 * headers of a given queue pair. If the guest memory of the
2467 * queue pair is currently not available, the saved queue headers
2468 * will be returned, if these are available.
2469 */
2470static int qp_get_queue_headers(const struct vmci_qp *qpair,
2471                                struct vmci_queue_header **produce_q_header,
2472                                struct vmci_queue_header **consume_q_header)
2473{
2474        int result;
2475
2476        result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2477        if (result == VMCI_SUCCESS) {
2478                *produce_q_header = qpair->produce_q->q_header;
2479                *consume_q_header = qpair->consume_q->q_header;
2480        } else if (qpair->produce_q->saved_header &&
2481                   qpair->consume_q->saved_header) {
2482                *produce_q_header = qpair->produce_q->saved_header;
2483                *consume_q_header = qpair->consume_q->saved_header;
2484                result = VMCI_SUCCESS;
2485        }
2486
2487        return result;
2488}
2489
2490/*
2491 * Callback from VMCI queue pair broker indicating that a queue
2492 * pair that was previously not ready, now either is ready or
2493 * gone forever.
2494 */
2495static int qp_wakeup_cb(void *client_data)
2496{
2497        struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2498
2499        qp_lock(qpair);
2500        while (qpair->blocked > 0) {
2501                qpair->blocked--;
2502                qpair->generation++;
2503                wake_up(&qpair->event);
2504        }
2505        qp_unlock(qpair);
2506
2507        return VMCI_SUCCESS;
2508}
2509
2510/*
2511 * Makes the calling thread wait for the queue pair to become
2512 * ready for host side access.  Returns true when thread is
2513 * woken up after queue pair state change, false otherwise.
2514 */
2515static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2516{
2517        unsigned int generation;
2518
2519        qpair->blocked++;
2520        generation = qpair->generation;
2521        qp_unlock(qpair);
2522        wait_event(qpair->event, generation != qpair->generation);
2523        qp_lock(qpair);
2524
2525        return true;
2526}
2527
2528/*
2529 * Enqueues a given buffer to the produce queue using the provided
2530 * function. As many bytes as possible (space available in the queue)
2531 * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2532 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2533 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2534 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2535 * an error occured when accessing the buffer,
2536 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2537 * available.  Otherwise, the number of bytes written to the queue is
2538 * returned.  Updates the tail pointer of the produce queue.
2539 */
2540static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2541                                 struct vmci_queue *consume_q,
2542                                 const u64 produce_q_size,
2543                                 struct iov_iter *from)
2544{
2545        s64 free_space;
2546        u64 tail;
2547        size_t buf_size = iov_iter_count(from);
2548        size_t written;
2549        ssize_t result;
2550
2551        result = qp_map_queue_headers(produce_q, consume_q);
2552        if (unlikely(result != VMCI_SUCCESS))
2553                return result;
2554
2555        free_space = vmci_q_header_free_space(produce_q->q_header,
2556                                              consume_q->q_header,
2557                                              produce_q_size);
2558        if (free_space == 0)
2559                return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2560
2561        if (free_space < VMCI_SUCCESS)
2562                return (ssize_t) free_space;
2563
2564        written = (size_t) (free_space > buf_size ? buf_size : free_space);
2565        tail = vmci_q_header_producer_tail(produce_q->q_header);
2566        if (likely(tail + written < produce_q_size)) {
2567                result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2568        } else {
2569                /* Tail pointer wraps around. */
2570
2571                const size_t tmp = (size_t) (produce_q_size - tail);
2572
2573                result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2574                if (result >= VMCI_SUCCESS)
2575                        result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2576                                                 written - tmp);
2577        }
2578
2579        if (result < VMCI_SUCCESS)
2580                return result;
2581
2582        vmci_q_header_add_producer_tail(produce_q->q_header, written,
2583                                        produce_q_size);
2584        return written;
2585}
2586
2587/*
2588 * Dequeues data (if available) from the given consume queue. Writes data
2589 * to the user provided buffer using the provided function.
2590 * Assumes the queue->mutex has been acquired.
2591 * Results:
2592 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2593 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2594 * (as defined by the queue size).
2595 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2596 * Otherwise the number of bytes dequeued is returned.
2597 * Side effects:
2598 * Updates the head pointer of the consume queue.
2599 */
2600static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2601                                 struct vmci_queue *consume_q,
2602                                 const u64 consume_q_size,
2603                                 struct iov_iter *to,
2604                                 bool update_consumer)
2605{
2606        size_t buf_size = iov_iter_count(to);
2607        s64 buf_ready;
2608        u64 head;
2609        size_t read;
2610        ssize_t result;
2611
2612        result = qp_map_queue_headers(produce_q, consume_q);
2613        if (unlikely(result != VMCI_SUCCESS))
2614                return result;
2615
2616        buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2617                                            produce_q->q_header,
2618                                            consume_q_size);
2619        if (buf_ready == 0)
2620                return VMCI_ERROR_QUEUEPAIR_NODATA;
2621
2622        if (buf_ready < VMCI_SUCCESS)
2623                return (ssize_t) buf_ready;
2624
2625        read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2626        head = vmci_q_header_consumer_head(produce_q->q_header);
2627        if (likely(head + read < consume_q_size)) {
2628                result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2629        } else {
2630                /* Head pointer wraps around. */
2631
2632                const size_t tmp = (size_t) (consume_q_size - head);
2633
2634                result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2635                if (result >= VMCI_SUCCESS)
2636                        result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2637                                                   read - tmp);
2638
2639        }
2640
2641        if (result < VMCI_SUCCESS)
2642                return result;
2643
2644        if (update_consumer)
2645                vmci_q_header_add_consumer_head(produce_q->q_header,
2646                                                read, consume_q_size);
2647
2648        return read;
2649}
2650
2651/*
2652 * vmci_qpair_alloc() - Allocates a queue pair.
2653 * @qpair:      Pointer for the new vmci_qp struct.
2654 * @handle:     Handle to track the resource.
2655 * @produce_qsize:      Desired size of the producer queue.
2656 * @consume_qsize:      Desired size of the consumer queue.
2657 * @peer:       ContextID of the peer.
2658 * @flags:      VMCI flags.
2659 * @priv_flags: VMCI priviledge flags.
2660 *
2661 * This is the client interface for allocating the memory for a
2662 * vmci_qp structure and then attaching to the underlying
2663 * queue.  If an error occurs allocating the memory for the
2664 * vmci_qp structure no attempt is made to attach.  If an
2665 * error occurs attaching, then the structure is freed.
2666 */
2667int vmci_qpair_alloc(struct vmci_qp **qpair,
2668                     struct vmci_handle *handle,
2669                     u64 produce_qsize,
2670                     u64 consume_qsize,
2671                     u32 peer,
2672                     u32 flags,
2673                     u32 priv_flags)
2674{
2675        struct vmci_qp *my_qpair;
2676        int retval;
2677        struct vmci_handle src = VMCI_INVALID_HANDLE;
2678        struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2679        enum vmci_route route;
2680        vmci_event_release_cb wakeup_cb;
2681        void *client_data;
2682
2683        /*
2684         * Restrict the size of a queuepair.  The device already
2685         * enforces a limit on the total amount of memory that can be
2686         * allocated to queuepairs for a guest.  However, we try to
2687         * allocate this memory before we make the queuepair
2688         * allocation hypercall.  On Linux, we allocate each page
2689         * separately, which means rather than fail, the guest will
2690         * thrash while it tries to allocate, and will become
2691         * increasingly unresponsive to the point where it appears to
2692         * be hung.  So we place a limit on the size of an individual
2693         * queuepair here, and leave the device to enforce the
2694         * restriction on total queuepair memory.  (Note that this
2695         * doesn't prevent all cases; a user with only this much
2696         * physical memory could still get into trouble.)  The error
2697         * used by the device is NO_RESOURCES, so use that here too.
2698         */
2699
2700        if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2701            produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2702                return VMCI_ERROR_NO_RESOURCES;
2703
2704        retval = vmci_route(&src, &dst, false, &route);
2705        if (retval < VMCI_SUCCESS)
2706                route = vmci_guest_code_active() ?
2707                    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2708
2709        if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2710                pr_devel("NONBLOCK OR PINNED set");
2711                return VMCI_ERROR_INVALID_ARGS;
2712        }
2713
2714        my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2715        if (!my_qpair)
2716                return VMCI_ERROR_NO_MEM;
2717
2718        my_qpair->produce_q_size = produce_qsize;
2719        my_qpair->consume_q_size = consume_qsize;
2720        my_qpair->peer = peer;
2721        my_qpair->flags = flags;
2722        my_qpair->priv_flags = priv_flags;
2723
2724        wakeup_cb = NULL;
2725        client_data = NULL;
2726
2727        if (VMCI_ROUTE_AS_HOST == route) {
2728                my_qpair->guest_endpoint = false;
2729                if (!(flags & VMCI_QPFLAG_LOCAL)) {
2730                        my_qpair->blocked = 0;
2731                        my_qpair->generation = 0;
2732                        init_waitqueue_head(&my_qpair->event);
2733                        wakeup_cb = qp_wakeup_cb;
2734                        client_data = (void *)my_qpair;
2735                }
2736        } else {
2737                my_qpair->guest_endpoint = true;
2738        }
2739
2740        retval = vmci_qp_alloc(handle,
2741                               &my_qpair->produce_q,
2742                               my_qpair->produce_q_size,
2743                               &my_qpair->consume_q,
2744                               my_qpair->consume_q_size,
2745                               my_qpair->peer,
2746                               my_qpair->flags,
2747                               my_qpair->priv_flags,
2748                               my_qpair->guest_endpoint,
2749                               wakeup_cb, client_data);
2750
2751        if (retval < VMCI_SUCCESS) {
2752                kfree(my_qpair);
2753                return retval;
2754        }
2755
2756        *qpair = my_qpair;
2757        my_qpair->handle = *handle;
2758
2759        return retval;
2760}
2761EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2762
2763/*
2764 * vmci_qpair_detach() - Detatches the client from a queue pair.
2765 * @qpair:      Reference of a pointer to the qpair struct.
2766 *
2767 * This is the client interface for detaching from a VMCIQPair.
2768 * Note that this routine will free the memory allocated for the
2769 * vmci_qp structure too.
2770 */
2771int vmci_qpair_detach(struct vmci_qp **qpair)
2772{
2773        int result;
2774        struct vmci_qp *old_qpair;
2775
2776        if (!qpair || !(*qpair))
2777                return VMCI_ERROR_INVALID_ARGS;
2778
2779        old_qpair = *qpair;
2780        result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2781
2782        /*
2783         * The guest can fail to detach for a number of reasons, and
2784         * if it does so, it will cleanup the entry (if there is one).
2785         * The host can fail too, but it won't cleanup the entry
2786         * immediately, it will do that later when the context is
2787         * freed.  Either way, we need to release the qpair struct
2788         * here; there isn't much the caller can do, and we don't want
2789         * to leak.
2790         */
2791
2792        memset(old_qpair, 0, sizeof(*old_qpair));
2793        old_qpair->handle = VMCI_INVALID_HANDLE;
2794        old_qpair->peer = VMCI_INVALID_ID;
2795        kfree(old_qpair);
2796        *qpair = NULL;
2797
2798        return result;
2799}
2800EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2801
2802/*
2803 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2804 * @qpair:      Pointer to the queue pair struct.
2805 * @producer_tail:      Reference used for storing producer tail index.
2806 * @consumer_head:      Reference used for storing the consumer head index.
2807 *
2808 * This is the client interface for getting the current indexes of the
2809 * QPair from the point of the view of the caller as the producer.
2810 */
2811int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2812                                   u64 *producer_tail,
2813                                   u64 *consumer_head)
2814{
2815        struct vmci_queue_header *produce_q_header;
2816        struct vmci_queue_header *consume_q_header;
2817        int result;
2818
2819        if (!qpair)
2820                return VMCI_ERROR_INVALID_ARGS;
2821
2822        qp_lock(qpair);
2823        result =
2824            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2825        if (result == VMCI_SUCCESS)
2826                vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2827                                           producer_tail, consumer_head);
2828        qp_unlock(qpair);
2829
2830        if (result == VMCI_SUCCESS &&
2831            ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2832             (consumer_head && *consumer_head >= qpair->produce_q_size)))
2833                return VMCI_ERROR_INVALID_SIZE;
2834
2835        return result;
2836}
2837EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2838
2839/*
2840 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2841 * @qpair:      Pointer to the queue pair struct.
2842 * @consumer_tail:      Reference used for storing consumer tail index.
2843 * @producer_head:      Reference used for storing the producer head index.
2844 *
2845 * This is the client interface for getting the current indexes of the
2846 * QPair from the point of the view of the caller as the consumer.
2847 */
2848int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2849                                   u64 *consumer_tail,
2850                                   u64 *producer_head)
2851{
2852        struct vmci_queue_header *produce_q_header;
2853        struct vmci_queue_header *consume_q_header;
2854        int result;
2855
2856        if (!qpair)
2857                return VMCI_ERROR_INVALID_ARGS;
2858
2859        qp_lock(qpair);
2860        result =
2861            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2862        if (result == VMCI_SUCCESS)
2863                vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2864                                           consumer_tail, producer_head);
2865        qp_unlock(qpair);
2866
2867        if (result == VMCI_SUCCESS &&
2868            ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2869             (producer_head && *producer_head >= qpair->consume_q_size)))
2870                return VMCI_ERROR_INVALID_SIZE;
2871
2872        return result;
2873}
2874EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2875
2876/*
2877 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2878 * @qpair:      Pointer to the queue pair struct.
2879 *
2880 * This is the client interface for getting the amount of free
2881 * space in the QPair from the point of the view of the caller as
2882 * the producer which is the common case.  Returns < 0 if err, else
2883 * available bytes into which data can be enqueued if > 0.
2884 */
2885s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2886{
2887        struct vmci_queue_header *produce_q_header;
2888        struct vmci_queue_header *consume_q_header;
2889        s64 result;
2890
2891        if (!qpair)
2892                return VMCI_ERROR_INVALID_ARGS;
2893
2894        qp_lock(qpair);
2895        result =
2896            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2897        if (result == VMCI_SUCCESS)
2898                result = vmci_q_header_free_space(produce_q_header,
2899                                                  consume_q_header,
2900                                                  qpair->produce_q_size);
2901        else
2902                result = 0;
2903
2904        qp_unlock(qpair);
2905
2906        return result;
2907}
2908EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2909
2910/*
2911 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2912 * @qpair:      Pointer to the queue pair struct.
2913 *
2914 * This is the client interface for getting the amount of free
2915 * space in the QPair from the point of the view of the caller as
2916 * the consumer which is not the common case.  Returns < 0 if err, else
2917 * available bytes into which data can be enqueued if > 0.
2918 */
2919s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2920{
2921        struct vmci_queue_header *produce_q_header;
2922        struct vmci_queue_header *consume_q_header;
2923        s64 result;
2924
2925        if (!qpair)
2926                return VMCI_ERROR_INVALID_ARGS;
2927
2928        qp_lock(qpair);
2929        result =
2930            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2931        if (result == VMCI_SUCCESS)
2932                result = vmci_q_header_free_space(consume_q_header,
2933                                                  produce_q_header,
2934                                                  qpair->consume_q_size);
2935        else
2936                result = 0;
2937
2938        qp_unlock(qpair);
2939
2940        return result;
2941}
2942EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2943
2944/*
2945 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2946 * producer queue.
2947 * @qpair:      Pointer to the queue pair struct.
2948 *
2949 * This is the client interface for getting the amount of
2950 * enqueued data in the QPair from the point of the view of the
2951 * caller as the producer which is not the common case.  Returns < 0 if err,
2952 * else available bytes that may be read.
2953 */
2954s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2955{
2956        struct vmci_queue_header *produce_q_header;
2957        struct vmci_queue_header *consume_q_header;
2958        s64 result;
2959
2960        if (!qpair)
2961                return VMCI_ERROR_INVALID_ARGS;
2962
2963        qp_lock(qpair);
2964        result =
2965            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2966        if (result == VMCI_SUCCESS)
2967                result = vmci_q_header_buf_ready(produce_q_header,
2968                                                 consume_q_header,
2969                                                 qpair->produce_q_size);
2970        else
2971                result = 0;
2972
2973        qp_unlock(qpair);
2974
2975        return result;
2976}
2977EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2978
2979/*
2980 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2981 * consumer queue.
2982 * @qpair:      Pointer to the queue pair struct.
2983 *
2984 * This is the client interface for getting the amount of
2985 * enqueued data in the QPair from the point of the view of the
2986 * caller as the consumer which is the normal case.  Returns < 0 if err,
2987 * else available bytes that may be read.
2988 */
2989s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2990{
2991        struct vmci_queue_header *produce_q_header;
2992        struct vmci_queue_header *consume_q_header;
2993        s64 result;
2994
2995        if (!qpair)
2996                return VMCI_ERROR_INVALID_ARGS;
2997
2998        qp_lock(qpair);
2999        result =
3000            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3001        if (result == VMCI_SUCCESS)
3002                result = vmci_q_header_buf_ready(consume_q_header,
3003                                                 produce_q_header,
3004                                                 qpair->consume_q_size);
3005        else
3006                result = 0;
3007
3008        qp_unlock(qpair);
3009
3010        return result;
3011}
3012EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3013
3014/*
3015 * vmci_qpair_enqueue() - Throw data on the queue.
3016 * @qpair:      Pointer to the queue pair struct.
3017 * @buf:        Pointer to buffer containing data
3018 * @buf_size:   Length of buffer.
3019 * @buf_type:   Buffer type (Unused).
3020 *
3021 * This is the client interface for enqueueing data into the queue.
3022 * Returns number of bytes enqueued or < 0 on error.
3023 */
3024ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3025                           const void *buf,
3026                           size_t buf_size,
3027                           int buf_type)
3028{
3029        ssize_t result;
3030        struct iov_iter from;
3031        struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3032
3033        if (!qpair || !buf)
3034                return VMCI_ERROR_INVALID_ARGS;
3035
3036        iov_iter_kvec(&from, WRITE | ITER_KVEC, &v, 1, buf_size);
3037
3038        qp_lock(qpair);
3039
3040        do {
3041                result = qp_enqueue_locked(qpair->produce_q,
3042                                           qpair->consume_q,
3043                                           qpair->produce_q_size,
3044                                           &from);
3045
3046                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3047                    !qp_wait_for_ready_queue(qpair))
3048                        result = VMCI_ERROR_WOULD_BLOCK;
3049
3050        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3051
3052        qp_unlock(qpair);
3053
3054        return result;
3055}
3056EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3057
3058/*
3059 * vmci_qpair_dequeue() - Get data from the queue.
3060 * @qpair:      Pointer to the queue pair struct.
3061 * @buf:        Pointer to buffer for the data
3062 * @buf_size:   Length of buffer.
3063 * @buf_type:   Buffer type (Unused).
3064 *
3065 * This is the client interface for dequeueing data from the queue.
3066 * Returns number of bytes dequeued or < 0 on error.
3067 */
3068ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3069                           void *buf,
3070                           size_t buf_size,
3071                           int buf_type)
3072{
3073        ssize_t result;
3074        struct iov_iter to;
3075        struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3076
3077        if (!qpair || !buf)
3078                return VMCI_ERROR_INVALID_ARGS;
3079
3080        iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3081
3082        qp_lock(qpair);
3083
3084        do {
3085                result = qp_dequeue_locked(qpair->produce_q,
3086                                           qpair->consume_q,
3087                                           qpair->consume_q_size,
3088                                           &to, true);
3089
3090                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3091                    !qp_wait_for_ready_queue(qpair))
3092                        result = VMCI_ERROR_WOULD_BLOCK;
3093
3094        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3095
3096        qp_unlock(qpair);
3097
3098        return result;
3099}
3100EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3101
3102/*
3103 * vmci_qpair_peek() - Peek at the data in the queue.
3104 * @qpair:      Pointer to the queue pair struct.
3105 * @buf:        Pointer to buffer for the data
3106 * @buf_size:   Length of buffer.
3107 * @buf_type:   Buffer type (Unused on Linux).
3108 *
3109 * This is the client interface for peeking into a queue.  (I.e.,
3110 * copy data from the queue without updating the head pointer.)
3111 * Returns number of bytes dequeued or < 0 on error.
3112 */
3113ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3114                        void *buf,
3115                        size_t buf_size,
3116                        int buf_type)
3117{
3118        struct iov_iter to;
3119        struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3120        ssize_t result;
3121
3122        if (!qpair || !buf)
3123                return VMCI_ERROR_INVALID_ARGS;
3124
3125        iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3126
3127        qp_lock(qpair);
3128
3129        do {
3130                result = qp_dequeue_locked(qpair->produce_q,
3131                                           qpair->consume_q,
3132                                           qpair->consume_q_size,
3133                                           &to, false);
3134
3135                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3136                    !qp_wait_for_ready_queue(qpair))
3137                        result = VMCI_ERROR_WOULD_BLOCK;
3138
3139        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3140
3141        qp_unlock(qpair);
3142
3143        return result;
3144}
3145EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3146
3147/*
3148 * vmci_qpair_enquev() - Throw data on the queue using iov.
3149 * @qpair:      Pointer to the queue pair struct.
3150 * @iov:        Pointer to buffer containing data
3151 * @iov_size:   Length of buffer.
3152 * @buf_type:   Buffer type (Unused).
3153 *
3154 * This is the client interface for enqueueing data into the queue.
3155 * This function uses IO vectors to handle the work. Returns number
3156 * of bytes enqueued or < 0 on error.
3157 */
3158ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3159                          struct msghdr *msg,
3160                          size_t iov_size,
3161                          int buf_type)
3162{
3163        ssize_t result;
3164
3165        if (!qpair)
3166                return VMCI_ERROR_INVALID_ARGS;
3167
3168        qp_lock(qpair);
3169
3170        do {
3171                result = qp_enqueue_locked(qpair->produce_q,
3172                                           qpair->consume_q,
3173                                           qpair->produce_q_size,
3174                                           &msg->msg_iter);
3175
3176                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3177                    !qp_wait_for_ready_queue(qpair))
3178                        result = VMCI_ERROR_WOULD_BLOCK;
3179
3180        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3181
3182        qp_unlock(qpair);
3183
3184        return result;
3185}
3186EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3187
3188/*
3189 * vmci_qpair_dequev() - Get data from the queue using iov.
3190 * @qpair:      Pointer to the queue pair struct.
3191 * @iov:        Pointer to buffer for the data
3192 * @iov_size:   Length of buffer.
3193 * @buf_type:   Buffer type (Unused).
3194 *
3195 * This is the client interface for dequeueing data from the queue.
3196 * This function uses IO vectors to handle the work. Returns number
3197 * of bytes dequeued or < 0 on error.
3198 */
3199ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3200                          struct msghdr *msg,
3201                          size_t iov_size,
3202                          int buf_type)
3203{
3204        ssize_t result;
3205
3206        if (!qpair)
3207                return VMCI_ERROR_INVALID_ARGS;
3208
3209        qp_lock(qpair);
3210
3211        do {
3212                result = qp_dequeue_locked(qpair->produce_q,
3213                                           qpair->consume_q,
3214                                           qpair->consume_q_size,
3215                                           &msg->msg_iter, true);
3216
3217                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3218                    !qp_wait_for_ready_queue(qpair))
3219                        result = VMCI_ERROR_WOULD_BLOCK;
3220
3221        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3222
3223        qp_unlock(qpair);
3224
3225        return result;
3226}
3227EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3228
3229/*
3230 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3231 * @qpair:      Pointer to the queue pair struct.
3232 * @iov:        Pointer to buffer for the data
3233 * @iov_size:   Length of buffer.
3234 * @buf_type:   Buffer type (Unused on Linux).
3235 *
3236 * This is the client interface for peeking into a queue.  (I.e.,
3237 * copy data from the queue without updating the head pointer.)
3238 * This function uses IO vectors to handle the work. Returns number
3239 * of bytes peeked or < 0 on error.
3240 */
3241ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3242                         struct msghdr *msg,
3243                         size_t iov_size,
3244                         int buf_type)
3245{
3246        ssize_t result;
3247
3248        if (!qpair)
3249                return VMCI_ERROR_INVALID_ARGS;
3250
3251        qp_lock(qpair);
3252
3253        do {
3254                result = qp_dequeue_locked(qpair->produce_q,
3255                                           qpair->consume_q,
3256                                           qpair->consume_q_size,
3257                                           &msg->msg_iter, false);
3258
3259                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3260                    !qp_wait_for_ready_queue(qpair))
3261                        result = VMCI_ERROR_WOULD_BLOCK;
3262
3263        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3264
3265        qp_unlock(qpair);
3266        return result;
3267}
3268EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3269