linux/drivers/mtd/mtdconcat.c
<<
>>
Prefs
   1/*
   2 * MTD device concatenation layer
   3 *
   4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
   5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
   6 *
   7 * NAND support by Christian Gan <cgan@iders.ca>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/sched.h>
  29#include <linux/types.h>
  30#include <linux/backing-dev.h>
  31
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/concat.h>
  34
  35#include <asm/div64.h>
  36
  37/*
  38 * Our storage structure:
  39 * Subdev points to an array of pointers to struct mtd_info objects
  40 * which is allocated along with this structure
  41 *
  42 */
  43struct mtd_concat {
  44        struct mtd_info mtd;
  45        int num_subdev;
  46        struct mtd_info **subdev;
  47};
  48
  49/*
  50 * how to calculate the size required for the above structure,
  51 * including the pointer array subdev points to:
  52 */
  53#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)    \
  54        ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
  55
  56/*
  57 * Given a pointer to the MTD object in the mtd_concat structure,
  58 * we can retrieve the pointer to that structure with this macro.
  59 */
  60#define CONCAT(x)  ((struct mtd_concat *)(x))
  61
  62/*
  63 * MTD methods which look up the relevant subdevice, translate the
  64 * effective address and pass through to the subdevice.
  65 */
  66
  67static int
  68concat_read(struct mtd_info *mtd, loff_t from, size_t len,
  69            size_t * retlen, u_char * buf)
  70{
  71        struct mtd_concat *concat = CONCAT(mtd);
  72        int ret = 0, err;
  73        int i;
  74
  75        for (i = 0; i < concat->num_subdev; i++) {
  76                struct mtd_info *subdev = concat->subdev[i];
  77                size_t size, retsize;
  78
  79                if (from >= subdev->size) {
  80                        /* Not destined for this subdev */
  81                        size = 0;
  82                        from -= subdev->size;
  83                        continue;
  84                }
  85                if (from + len > subdev->size)
  86                        /* First part goes into this subdev */
  87                        size = subdev->size - from;
  88                else
  89                        /* Entire transaction goes into this subdev */
  90                        size = len;
  91
  92                err = mtd_read(subdev, from, size, &retsize, buf);
  93
  94                /* Save information about bitflips! */
  95                if (unlikely(err)) {
  96                        if (mtd_is_eccerr(err)) {
  97                                mtd->ecc_stats.failed++;
  98                                ret = err;
  99                        } else if (mtd_is_bitflip(err)) {
 100                                mtd->ecc_stats.corrected++;
 101                                /* Do not overwrite -EBADMSG !! */
 102                                if (!ret)
 103                                        ret = err;
 104                        } else
 105                                return err;
 106                }
 107
 108                *retlen += retsize;
 109                len -= size;
 110                if (len == 0)
 111                        return ret;
 112
 113                buf += size;
 114                from = 0;
 115        }
 116        return -EINVAL;
 117}
 118
 119static int
 120concat_write(struct mtd_info *mtd, loff_t to, size_t len,
 121             size_t * retlen, const u_char * buf)
 122{
 123        struct mtd_concat *concat = CONCAT(mtd);
 124        int err = -EINVAL;
 125        int i;
 126
 127        for (i = 0; i < concat->num_subdev; i++) {
 128                struct mtd_info *subdev = concat->subdev[i];
 129                size_t size, retsize;
 130
 131                if (to >= subdev->size) {
 132                        size = 0;
 133                        to -= subdev->size;
 134                        continue;
 135                }
 136                if (to + len > subdev->size)
 137                        size = subdev->size - to;
 138                else
 139                        size = len;
 140
 141                err = mtd_write(subdev, to, size, &retsize, buf);
 142                if (err)
 143                        break;
 144
 145                *retlen += retsize;
 146                len -= size;
 147                if (len == 0)
 148                        break;
 149
 150                err = -EINVAL;
 151                buf += size;
 152                to = 0;
 153        }
 154        return err;
 155}
 156
 157static int
 158concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
 159                unsigned long count, loff_t to, size_t * retlen)
 160{
 161        struct mtd_concat *concat = CONCAT(mtd);
 162        struct kvec *vecs_copy;
 163        unsigned long entry_low, entry_high;
 164        size_t total_len = 0;
 165        int i;
 166        int err = -EINVAL;
 167
 168        /* Calculate total length of data */
 169        for (i = 0; i < count; i++)
 170                total_len += vecs[i].iov_len;
 171
 172        /* Check alignment */
 173        if (mtd->writesize > 1) {
 174                uint64_t __to = to;
 175                if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
 176                        return -EINVAL;
 177        }
 178
 179        /* make a copy of vecs */
 180        vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
 181        if (!vecs_copy)
 182                return -ENOMEM;
 183
 184        entry_low = 0;
 185        for (i = 0; i < concat->num_subdev; i++) {
 186                struct mtd_info *subdev = concat->subdev[i];
 187                size_t size, wsize, retsize, old_iov_len;
 188
 189                if (to >= subdev->size) {
 190                        to -= subdev->size;
 191                        continue;
 192                }
 193
 194                size = min_t(uint64_t, total_len, subdev->size - to);
 195                wsize = size; /* store for future use */
 196
 197                entry_high = entry_low;
 198                while (entry_high < count) {
 199                        if (size <= vecs_copy[entry_high].iov_len)
 200                                break;
 201                        size -= vecs_copy[entry_high++].iov_len;
 202                }
 203
 204                old_iov_len = vecs_copy[entry_high].iov_len;
 205                vecs_copy[entry_high].iov_len = size;
 206
 207                err = mtd_writev(subdev, &vecs_copy[entry_low],
 208                                 entry_high - entry_low + 1, to, &retsize);
 209
 210                vecs_copy[entry_high].iov_len = old_iov_len - size;
 211                vecs_copy[entry_high].iov_base += size;
 212
 213                entry_low = entry_high;
 214
 215                if (err)
 216                        break;
 217
 218                *retlen += retsize;
 219                total_len -= wsize;
 220
 221                if (total_len == 0)
 222                        break;
 223
 224                err = -EINVAL;
 225                to = 0;
 226        }
 227
 228        kfree(vecs_copy);
 229        return err;
 230}
 231
 232static int
 233concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
 234{
 235        struct mtd_concat *concat = CONCAT(mtd);
 236        struct mtd_oob_ops devops = *ops;
 237        int i, err, ret = 0;
 238
 239        ops->retlen = ops->oobretlen = 0;
 240
 241        for (i = 0; i < concat->num_subdev; i++) {
 242                struct mtd_info *subdev = concat->subdev[i];
 243
 244                if (from >= subdev->size) {
 245                        from -= subdev->size;
 246                        continue;
 247                }
 248
 249                /* partial read ? */
 250                if (from + devops.len > subdev->size)
 251                        devops.len = subdev->size - from;
 252
 253                err = mtd_read_oob(subdev, from, &devops);
 254                ops->retlen += devops.retlen;
 255                ops->oobretlen += devops.oobretlen;
 256
 257                /* Save information about bitflips! */
 258                if (unlikely(err)) {
 259                        if (mtd_is_eccerr(err)) {
 260                                mtd->ecc_stats.failed++;
 261                                ret = err;
 262                        } else if (mtd_is_bitflip(err)) {
 263                                mtd->ecc_stats.corrected++;
 264                                /* Do not overwrite -EBADMSG !! */
 265                                if (!ret)
 266                                        ret = err;
 267                        } else
 268                                return err;
 269                }
 270
 271                if (devops.datbuf) {
 272                        devops.len = ops->len - ops->retlen;
 273                        if (!devops.len)
 274                                return ret;
 275                        devops.datbuf += devops.retlen;
 276                }
 277                if (devops.oobbuf) {
 278                        devops.ooblen = ops->ooblen - ops->oobretlen;
 279                        if (!devops.ooblen)
 280                                return ret;
 281                        devops.oobbuf += ops->oobretlen;
 282                }
 283
 284                from = 0;
 285        }
 286        return -EINVAL;
 287}
 288
 289static int
 290concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
 291{
 292        struct mtd_concat *concat = CONCAT(mtd);
 293        struct mtd_oob_ops devops = *ops;
 294        int i, err;
 295
 296        if (!(mtd->flags & MTD_WRITEABLE))
 297                return -EROFS;
 298
 299        ops->retlen = ops->oobretlen = 0;
 300
 301        for (i = 0; i < concat->num_subdev; i++) {
 302                struct mtd_info *subdev = concat->subdev[i];
 303
 304                if (to >= subdev->size) {
 305                        to -= subdev->size;
 306                        continue;
 307                }
 308
 309                /* partial write ? */
 310                if (to + devops.len > subdev->size)
 311                        devops.len = subdev->size - to;
 312
 313                err = mtd_write_oob(subdev, to, &devops);
 314                ops->retlen += devops.retlen;
 315                ops->oobretlen += devops.oobretlen;
 316                if (err)
 317                        return err;
 318
 319                if (devops.datbuf) {
 320                        devops.len = ops->len - ops->retlen;
 321                        if (!devops.len)
 322                                return 0;
 323                        devops.datbuf += devops.retlen;
 324                }
 325                if (devops.oobbuf) {
 326                        devops.ooblen = ops->ooblen - ops->oobretlen;
 327                        if (!devops.ooblen)
 328                                return 0;
 329                        devops.oobbuf += devops.oobretlen;
 330                }
 331                to = 0;
 332        }
 333        return -EINVAL;
 334}
 335
 336static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
 337{
 338        struct mtd_concat *concat = CONCAT(mtd);
 339        struct mtd_info *subdev;
 340        int i, err;
 341        uint64_t length, offset = 0;
 342        struct erase_info *erase;
 343
 344        /*
 345         * Check for proper erase block alignment of the to-be-erased area.
 346         * It is easier to do this based on the super device's erase
 347         * region info rather than looking at each particular sub-device
 348         * in turn.
 349         */
 350        if (!concat->mtd.numeraseregions) {
 351                /* the easy case: device has uniform erase block size */
 352                if (instr->addr & (concat->mtd.erasesize - 1))
 353                        return -EINVAL;
 354                if (instr->len & (concat->mtd.erasesize - 1))
 355                        return -EINVAL;
 356        } else {
 357                /* device has variable erase size */
 358                struct mtd_erase_region_info *erase_regions =
 359                    concat->mtd.eraseregions;
 360
 361                /*
 362                 * Find the erase region where the to-be-erased area begins:
 363                 */
 364                for (i = 0; i < concat->mtd.numeraseregions &&
 365                     instr->addr >= erase_regions[i].offset; i++) ;
 366                --i;
 367
 368                /*
 369                 * Now erase_regions[i] is the region in which the
 370                 * to-be-erased area begins. Verify that the starting
 371                 * offset is aligned to this region's erase size:
 372                 */
 373                if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
 374                        return -EINVAL;
 375
 376                /*
 377                 * now find the erase region where the to-be-erased area ends:
 378                 */
 379                for (; i < concat->mtd.numeraseregions &&
 380                     (instr->addr + instr->len) >= erase_regions[i].offset;
 381                     ++i) ;
 382                --i;
 383                /*
 384                 * check if the ending offset is aligned to this region's erase size
 385                 */
 386                if (i < 0 || ((instr->addr + instr->len) &
 387                                        (erase_regions[i].erasesize - 1)))
 388                        return -EINVAL;
 389        }
 390
 391        /* make a local copy of instr to avoid modifying the caller's struct */
 392        erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
 393
 394        if (!erase)
 395                return -ENOMEM;
 396
 397        *erase = *instr;
 398        length = instr->len;
 399
 400        /*
 401         * find the subdevice where the to-be-erased area begins, adjust
 402         * starting offset to be relative to the subdevice start
 403         */
 404        for (i = 0; i < concat->num_subdev; i++) {
 405                subdev = concat->subdev[i];
 406                if (subdev->size <= erase->addr) {
 407                        erase->addr -= subdev->size;
 408                        offset += subdev->size;
 409                } else {
 410                        break;
 411                }
 412        }
 413
 414        /* must never happen since size limit has been verified above */
 415        BUG_ON(i >= concat->num_subdev);
 416
 417        /* now do the erase: */
 418        err = 0;
 419        for (; length > 0; i++) {
 420                /* loop for all subdevices affected by this request */
 421                subdev = concat->subdev[i];     /* get current subdevice */
 422
 423                /* limit length to subdevice's size: */
 424                if (erase->addr + length > subdev->size)
 425                        erase->len = subdev->size - erase->addr;
 426                else
 427                        erase->len = length;
 428
 429                length -= erase->len;
 430                if ((err = mtd_erase(subdev, erase))) {
 431                        /* sanity check: should never happen since
 432                         * block alignment has been checked above */
 433                        BUG_ON(err == -EINVAL);
 434                        if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 435                                instr->fail_addr = erase->fail_addr + offset;
 436                        break;
 437                }
 438                /*
 439                 * erase->addr specifies the offset of the area to be
 440                 * erased *within the current subdevice*. It can be
 441                 * non-zero only the first time through this loop, i.e.
 442                 * for the first subdevice where blocks need to be erased.
 443                 * All the following erases must begin at the start of the
 444                 * current subdevice, i.e. at offset zero.
 445                 */
 446                erase->addr = 0;
 447                offset += subdev->size;
 448        }
 449        kfree(erase);
 450
 451        return err;
 452}
 453
 454static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 455{
 456        struct mtd_concat *concat = CONCAT(mtd);
 457        int i, err = -EINVAL;
 458
 459        for (i = 0; i < concat->num_subdev; i++) {
 460                struct mtd_info *subdev = concat->subdev[i];
 461                uint64_t size;
 462
 463                if (ofs >= subdev->size) {
 464                        size = 0;
 465                        ofs -= subdev->size;
 466                        continue;
 467                }
 468                if (ofs + len > subdev->size)
 469                        size = subdev->size - ofs;
 470                else
 471                        size = len;
 472
 473                err = mtd_lock(subdev, ofs, size);
 474                if (err)
 475                        break;
 476
 477                len -= size;
 478                if (len == 0)
 479                        break;
 480
 481                err = -EINVAL;
 482                ofs = 0;
 483        }
 484
 485        return err;
 486}
 487
 488static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 489{
 490        struct mtd_concat *concat = CONCAT(mtd);
 491        int i, err = 0;
 492
 493        for (i = 0; i < concat->num_subdev; i++) {
 494                struct mtd_info *subdev = concat->subdev[i];
 495                uint64_t size;
 496
 497                if (ofs >= subdev->size) {
 498                        size = 0;
 499                        ofs -= subdev->size;
 500                        continue;
 501                }
 502                if (ofs + len > subdev->size)
 503                        size = subdev->size - ofs;
 504                else
 505                        size = len;
 506
 507                err = mtd_unlock(subdev, ofs, size);
 508                if (err)
 509                        break;
 510
 511                len -= size;
 512                if (len == 0)
 513                        break;
 514
 515                err = -EINVAL;
 516                ofs = 0;
 517        }
 518
 519        return err;
 520}
 521
 522static void concat_sync(struct mtd_info *mtd)
 523{
 524        struct mtd_concat *concat = CONCAT(mtd);
 525        int i;
 526
 527        for (i = 0; i < concat->num_subdev; i++) {
 528                struct mtd_info *subdev = concat->subdev[i];
 529                mtd_sync(subdev);
 530        }
 531}
 532
 533static int concat_suspend(struct mtd_info *mtd)
 534{
 535        struct mtd_concat *concat = CONCAT(mtd);
 536        int i, rc = 0;
 537
 538        for (i = 0; i < concat->num_subdev; i++) {
 539                struct mtd_info *subdev = concat->subdev[i];
 540                if ((rc = mtd_suspend(subdev)) < 0)
 541                        return rc;
 542        }
 543        return rc;
 544}
 545
 546static void concat_resume(struct mtd_info *mtd)
 547{
 548        struct mtd_concat *concat = CONCAT(mtd);
 549        int i;
 550
 551        for (i = 0; i < concat->num_subdev; i++) {
 552                struct mtd_info *subdev = concat->subdev[i];
 553                mtd_resume(subdev);
 554        }
 555}
 556
 557static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
 558{
 559        struct mtd_concat *concat = CONCAT(mtd);
 560        int i, res = 0;
 561
 562        if (!mtd_can_have_bb(concat->subdev[0]))
 563                return res;
 564
 565        for (i = 0; i < concat->num_subdev; i++) {
 566                struct mtd_info *subdev = concat->subdev[i];
 567
 568                if (ofs >= subdev->size) {
 569                        ofs -= subdev->size;
 570                        continue;
 571                }
 572
 573                res = mtd_block_isbad(subdev, ofs);
 574                break;
 575        }
 576
 577        return res;
 578}
 579
 580static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
 581{
 582        struct mtd_concat *concat = CONCAT(mtd);
 583        int i, err = -EINVAL;
 584
 585        for (i = 0; i < concat->num_subdev; i++) {
 586                struct mtd_info *subdev = concat->subdev[i];
 587
 588                if (ofs >= subdev->size) {
 589                        ofs -= subdev->size;
 590                        continue;
 591                }
 592
 593                err = mtd_block_markbad(subdev, ofs);
 594                if (!err)
 595                        mtd->ecc_stats.badblocks++;
 596                break;
 597        }
 598
 599        return err;
 600}
 601
 602/*
 603 * This function constructs a virtual MTD device by concatenating
 604 * num_devs MTD devices. A pointer to the new device object is
 605 * stored to *new_dev upon success. This function does _not_
 606 * register any devices: this is the caller's responsibility.
 607 */
 608struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],   /* subdevices to concatenate */
 609                                   int num_devs,        /* number of subdevices      */
 610                                   const char *name)
 611{                               /* name for the new device   */
 612        int i;
 613        size_t size;
 614        struct mtd_concat *concat;
 615        uint32_t max_erasesize, curr_erasesize;
 616        int num_erase_region;
 617        int max_writebufsize = 0;
 618
 619        printk(KERN_NOTICE "Concatenating MTD devices:\n");
 620        for (i = 0; i < num_devs; i++)
 621                printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
 622        printk(KERN_NOTICE "into device \"%s\"\n", name);
 623
 624        /* allocate the device structure */
 625        size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
 626        concat = kzalloc(size, GFP_KERNEL);
 627        if (!concat) {
 628                printk
 629                    ("memory allocation error while creating concatenated device \"%s\"\n",
 630                     name);
 631                return NULL;
 632        }
 633        concat->subdev = (struct mtd_info **) (concat + 1);
 634
 635        /*
 636         * Set up the new "super" device's MTD object structure, check for
 637         * incompatibilities between the subdevices.
 638         */
 639        concat->mtd.type = subdev[0]->type;
 640        concat->mtd.flags = subdev[0]->flags;
 641        concat->mtd.size = subdev[0]->size;
 642        concat->mtd.erasesize = subdev[0]->erasesize;
 643        concat->mtd.writesize = subdev[0]->writesize;
 644
 645        for (i = 0; i < num_devs; i++)
 646                if (max_writebufsize < subdev[i]->writebufsize)
 647                        max_writebufsize = subdev[i]->writebufsize;
 648        concat->mtd.writebufsize = max_writebufsize;
 649
 650        concat->mtd.subpage_sft = subdev[0]->subpage_sft;
 651        concat->mtd.oobsize = subdev[0]->oobsize;
 652        concat->mtd.oobavail = subdev[0]->oobavail;
 653        if (subdev[0]->_writev)
 654                concat->mtd._writev = concat_writev;
 655        if (subdev[0]->_read_oob)
 656                concat->mtd._read_oob = concat_read_oob;
 657        if (subdev[0]->_write_oob)
 658                concat->mtd._write_oob = concat_write_oob;
 659        if (subdev[0]->_block_isbad)
 660                concat->mtd._block_isbad = concat_block_isbad;
 661        if (subdev[0]->_block_markbad)
 662                concat->mtd._block_markbad = concat_block_markbad;
 663
 664        concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
 665
 666        concat->subdev[0] = subdev[0];
 667
 668        for (i = 1; i < num_devs; i++) {
 669                if (concat->mtd.type != subdev[i]->type) {
 670                        kfree(concat);
 671                        printk("Incompatible device type on \"%s\"\n",
 672                               subdev[i]->name);
 673                        return NULL;
 674                }
 675                if (concat->mtd.flags != subdev[i]->flags) {
 676                        /*
 677                         * Expect all flags except MTD_WRITEABLE to be
 678                         * equal on all subdevices.
 679                         */
 680                        if ((concat->mtd.flags ^ subdev[i]->
 681                             flags) & ~MTD_WRITEABLE) {
 682                                kfree(concat);
 683                                printk("Incompatible device flags on \"%s\"\n",
 684                                       subdev[i]->name);
 685                                return NULL;
 686                        } else
 687                                /* if writeable attribute differs,
 688                                   make super device writeable */
 689                                concat->mtd.flags |=
 690                                    subdev[i]->flags & MTD_WRITEABLE;
 691                }
 692
 693                concat->mtd.size += subdev[i]->size;
 694                concat->mtd.ecc_stats.badblocks +=
 695                        subdev[i]->ecc_stats.badblocks;
 696                if (concat->mtd.writesize   !=  subdev[i]->writesize ||
 697                    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
 698                    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
 699                    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
 700                    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
 701                        kfree(concat);
 702                        printk("Incompatible OOB or ECC data on \"%s\"\n",
 703                               subdev[i]->name);
 704                        return NULL;
 705                }
 706                concat->subdev[i] = subdev[i];
 707
 708        }
 709
 710        mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
 711
 712        concat->num_subdev = num_devs;
 713        concat->mtd.name = name;
 714
 715        concat->mtd._erase = concat_erase;
 716        concat->mtd._read = concat_read;
 717        concat->mtd._write = concat_write;
 718        concat->mtd._sync = concat_sync;
 719        concat->mtd._lock = concat_lock;
 720        concat->mtd._unlock = concat_unlock;
 721        concat->mtd._suspend = concat_suspend;
 722        concat->mtd._resume = concat_resume;
 723
 724        /*
 725         * Combine the erase block size info of the subdevices:
 726         *
 727         * first, walk the map of the new device and see how
 728         * many changes in erase size we have
 729         */
 730        max_erasesize = curr_erasesize = subdev[0]->erasesize;
 731        num_erase_region = 1;
 732        for (i = 0; i < num_devs; i++) {
 733                if (subdev[i]->numeraseregions == 0) {
 734                        /* current subdevice has uniform erase size */
 735                        if (subdev[i]->erasesize != curr_erasesize) {
 736                                /* if it differs from the last subdevice's erase size, count it */
 737                                ++num_erase_region;
 738                                curr_erasesize = subdev[i]->erasesize;
 739                                if (curr_erasesize > max_erasesize)
 740                                        max_erasesize = curr_erasesize;
 741                        }
 742                } else {
 743                        /* current subdevice has variable erase size */
 744                        int j;
 745                        for (j = 0; j < subdev[i]->numeraseregions; j++) {
 746
 747                                /* walk the list of erase regions, count any changes */
 748                                if (subdev[i]->eraseregions[j].erasesize !=
 749                                    curr_erasesize) {
 750                                        ++num_erase_region;
 751                                        curr_erasesize =
 752                                            subdev[i]->eraseregions[j].
 753                                            erasesize;
 754                                        if (curr_erasesize > max_erasesize)
 755                                                max_erasesize = curr_erasesize;
 756                                }
 757                        }
 758                }
 759        }
 760
 761        if (num_erase_region == 1) {
 762                /*
 763                 * All subdevices have the same uniform erase size.
 764                 * This is easy:
 765                 */
 766                concat->mtd.erasesize = curr_erasesize;
 767                concat->mtd.numeraseregions = 0;
 768        } else {
 769                uint64_t tmp64;
 770
 771                /*
 772                 * erase block size varies across the subdevices: allocate
 773                 * space to store the data describing the variable erase regions
 774                 */
 775                struct mtd_erase_region_info *erase_region_p;
 776                uint64_t begin, position;
 777
 778                concat->mtd.erasesize = max_erasesize;
 779                concat->mtd.numeraseregions = num_erase_region;
 780                concat->mtd.eraseregions = erase_region_p =
 781                    kmalloc(num_erase_region *
 782                            sizeof (struct mtd_erase_region_info), GFP_KERNEL);
 783                if (!erase_region_p) {
 784                        kfree(concat);
 785                        printk
 786                            ("memory allocation error while creating erase region list"
 787                             " for device \"%s\"\n", name);
 788                        return NULL;
 789                }
 790
 791                /*
 792                 * walk the map of the new device once more and fill in
 793                 * in erase region info:
 794                 */
 795                curr_erasesize = subdev[0]->erasesize;
 796                begin = position = 0;
 797                for (i = 0; i < num_devs; i++) {
 798                        if (subdev[i]->numeraseregions == 0) {
 799                                /* current subdevice has uniform erase size */
 800                                if (subdev[i]->erasesize != curr_erasesize) {
 801                                        /*
 802                                         *  fill in an mtd_erase_region_info structure for the area
 803                                         *  we have walked so far:
 804                                         */
 805                                        erase_region_p->offset = begin;
 806                                        erase_region_p->erasesize =
 807                                            curr_erasesize;
 808                                        tmp64 = position - begin;
 809                                        do_div(tmp64, curr_erasesize);
 810                                        erase_region_p->numblocks = tmp64;
 811                                        begin = position;
 812
 813                                        curr_erasesize = subdev[i]->erasesize;
 814                                        ++erase_region_p;
 815                                }
 816                                position += subdev[i]->size;
 817                        } else {
 818                                /* current subdevice has variable erase size */
 819                                int j;
 820                                for (j = 0; j < subdev[i]->numeraseregions; j++) {
 821                                        /* walk the list of erase regions, count any changes */
 822                                        if (subdev[i]->eraseregions[j].
 823                                            erasesize != curr_erasesize) {
 824                                                erase_region_p->offset = begin;
 825                                                erase_region_p->erasesize =
 826                                                    curr_erasesize;
 827                                                tmp64 = position - begin;
 828                                                do_div(tmp64, curr_erasesize);
 829                                                erase_region_p->numblocks = tmp64;
 830                                                begin = position;
 831
 832                                                curr_erasesize =
 833                                                    subdev[i]->eraseregions[j].
 834                                                    erasesize;
 835                                                ++erase_region_p;
 836                                        }
 837                                        position +=
 838                                            subdev[i]->eraseregions[j].
 839                                            numblocks * (uint64_t)curr_erasesize;
 840                                }
 841                        }
 842                }
 843                /* Now write the final entry */
 844                erase_region_p->offset = begin;
 845                erase_region_p->erasesize = curr_erasesize;
 846                tmp64 = position - begin;
 847                do_div(tmp64, curr_erasesize);
 848                erase_region_p->numblocks = tmp64;
 849        }
 850
 851        return &concat->mtd;
 852}
 853
 854/*
 855 * This function destroys an MTD object obtained from concat_mtd_devs()
 856 */
 857
 858void mtd_concat_destroy(struct mtd_info *mtd)
 859{
 860        struct mtd_concat *concat = CONCAT(mtd);
 861        if (concat->mtd.numeraseregions)
 862                kfree(concat->mtd.eraseregions);
 863        kfree(concat);
 864}
 865
 866EXPORT_SYMBOL(mtd_concat_create);
 867EXPORT_SYMBOL(mtd_concat_destroy);
 868
 869MODULE_LICENSE("GPL");
 870MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
 871MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
 872