linux/drivers/mtd/nand/onenand/onenand_base.c
<<
>>
Prefs
   1/*
   2 *  Copyright © 2005-2009 Samsung Electronics
   3 *  Copyright © 2007 Nokia Corporation
   4 *
   5 *  Kyungmin Park <kyungmin.park@samsung.com>
   6 *
   7 *  Credits:
   8 *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
   9 *      auto-placement support, read-while load support, various fixes
  10 *
  11 *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
  12 *      Flex-OneNAND support
  13 *      Amul Kumar Saha <amul.saha at samsung.com>
  14 *      OTP support
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License version 2 as
  18 * published by the Free Software Foundation.
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/slab.h>
  25#include <linux/sched.h>
  26#include <linux/delay.h>
  27#include <linux/interrupt.h>
  28#include <linux/jiffies.h>
  29#include <linux/mtd/mtd.h>
  30#include <linux/mtd/onenand.h>
  31#include <linux/mtd/partitions.h>
  32
  33#include <asm/io.h>
  34
  35/*
  36 * Multiblock erase if number of blocks to erase is 2 or more.
  37 * Maximum number of blocks for simultaneous erase is 64.
  38 */
  39#define MB_ERASE_MIN_BLK_COUNT 2
  40#define MB_ERASE_MAX_BLK_COUNT 64
  41
  42/* Default Flex-OneNAND boundary and lock respectively */
  43static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
  44
  45module_param_array(flex_bdry, int, NULL, 0400);
  46MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
  47                                "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
  48                                "DIE_BDRY: SLC boundary of the die"
  49                                "LOCK: Locking information for SLC boundary"
  50                                "    : 0->Set boundary in unlocked status"
  51                                "    : 1->Set boundary in locked status");
  52
  53/* Default OneNAND/Flex-OneNAND OTP options*/
  54static int otp;
  55
  56module_param(otp, int, 0400);
  57MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
  58                        "Syntax : otp=LOCK_TYPE"
  59                        "LOCK_TYPE : Keys issued, for specific OTP Lock type"
  60                        "          : 0 -> Default (No Blocks Locked)"
  61                        "          : 1 -> OTP Block lock"
  62                        "          : 2 -> 1st Block lock"
  63                        "          : 3 -> BOTH OTP Block and 1st Block lock");
  64
  65/*
  66 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
  67 * For now, we expose only 64 out of 80 ecc bytes
  68 */
  69static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
  70                                     struct mtd_oob_region *oobregion)
  71{
  72        if (section > 7)
  73                return -ERANGE;
  74
  75        oobregion->offset = (section * 16) + 6;
  76        oobregion->length = 10;
  77
  78        return 0;
  79}
  80
  81static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
  82                                      struct mtd_oob_region *oobregion)
  83{
  84        if (section > 7)
  85                return -ERANGE;
  86
  87        oobregion->offset = (section * 16) + 2;
  88        oobregion->length = 4;
  89
  90        return 0;
  91}
  92
  93static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
  94        .ecc = flexonenand_ooblayout_ecc,
  95        .free = flexonenand_ooblayout_free,
  96};
  97
  98/*
  99 * onenand_oob_128 - oob info for OneNAND with 4KB page
 100 *
 101 * Based on specification:
 102 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
 103 *
 104 */
 105static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
 106                                     struct mtd_oob_region *oobregion)
 107{
 108        if (section > 7)
 109                return -ERANGE;
 110
 111        oobregion->offset = (section * 16) + 7;
 112        oobregion->length = 9;
 113
 114        return 0;
 115}
 116
 117static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
 118                                      struct mtd_oob_region *oobregion)
 119{
 120        if (section >= 8)
 121                return -ERANGE;
 122
 123        /*
 124         * free bytes are using the spare area fields marked as
 125         * "Managed by internal ECC logic for Logical Sector Number area"
 126         */
 127        oobregion->offset = (section * 16) + 2;
 128        oobregion->length = 3;
 129
 130        return 0;
 131}
 132
 133static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
 134        .ecc = onenand_ooblayout_128_ecc,
 135        .free = onenand_ooblayout_128_free,
 136};
 137
 138/**
 139 * onenand_oob_32_64 - oob info for large (2KB) page
 140 */
 141static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
 142                                       struct mtd_oob_region *oobregion)
 143{
 144        if (section > 3)
 145                return -ERANGE;
 146
 147        oobregion->offset = (section * 16) + 8;
 148        oobregion->length = 5;
 149
 150        return 0;
 151}
 152
 153static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
 154                                        struct mtd_oob_region *oobregion)
 155{
 156        int sections = (mtd->oobsize / 32) * 2;
 157
 158        if (section >= sections)
 159                return -ERANGE;
 160
 161        if (section & 1) {
 162                oobregion->offset = ((section - 1) * 16) + 14;
 163                oobregion->length = 2;
 164        } else  {
 165                oobregion->offset = (section * 16) + 2;
 166                oobregion->length = 3;
 167        }
 168
 169        return 0;
 170}
 171
 172static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
 173        .ecc = onenand_ooblayout_32_64_ecc,
 174        .free = onenand_ooblayout_32_64_free,
 175};
 176
 177static const unsigned char ffchars[] = {
 178        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 179        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
 180        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 181        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
 182        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 183        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
 184        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 185        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
 186        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 187        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
 188        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 189        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
 190        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 191        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
 192        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 193        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
 194};
 195
 196/**
 197 * onenand_readw - [OneNAND Interface] Read OneNAND register
 198 * @param addr          address to read
 199 *
 200 * Read OneNAND register
 201 */
 202static unsigned short onenand_readw(void __iomem *addr)
 203{
 204        return readw(addr);
 205}
 206
 207/**
 208 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 209 * @param value         value to write
 210 * @param addr          address to write
 211 *
 212 * Write OneNAND register with value
 213 */
 214static void onenand_writew(unsigned short value, void __iomem *addr)
 215{
 216        writew(value, addr);
 217}
 218
 219/**
 220 * onenand_block_address - [DEFAULT] Get block address
 221 * @param this          onenand chip data structure
 222 * @param block         the block
 223 * @return              translated block address if DDP, otherwise same
 224 *
 225 * Setup Start Address 1 Register (F100h)
 226 */
 227static int onenand_block_address(struct onenand_chip *this, int block)
 228{
 229        /* Device Flash Core select, NAND Flash Block Address */
 230        if (block & this->density_mask)
 231                return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
 232
 233        return block;
 234}
 235
 236/**
 237 * onenand_bufferram_address - [DEFAULT] Get bufferram address
 238 * @param this          onenand chip data structure
 239 * @param block         the block
 240 * @return              set DBS value if DDP, otherwise 0
 241 *
 242 * Setup Start Address 2 Register (F101h) for DDP
 243 */
 244static int onenand_bufferram_address(struct onenand_chip *this, int block)
 245{
 246        /* Device BufferRAM Select */
 247        if (block & this->density_mask)
 248                return ONENAND_DDP_CHIP1;
 249
 250        return ONENAND_DDP_CHIP0;
 251}
 252
 253/**
 254 * onenand_page_address - [DEFAULT] Get page address
 255 * @param page          the page address
 256 * @param sector        the sector address
 257 * @return              combined page and sector address
 258 *
 259 * Setup Start Address 8 Register (F107h)
 260 */
 261static int onenand_page_address(int page, int sector)
 262{
 263        /* Flash Page Address, Flash Sector Address */
 264        int fpa, fsa;
 265
 266        fpa = page & ONENAND_FPA_MASK;
 267        fsa = sector & ONENAND_FSA_MASK;
 268
 269        return ((fpa << ONENAND_FPA_SHIFT) | fsa);
 270}
 271
 272/**
 273 * onenand_buffer_address - [DEFAULT] Get buffer address
 274 * @param dataram1      DataRAM index
 275 * @param sectors       the sector address
 276 * @param count         the number of sectors
 277 * @return              the start buffer value
 278 *
 279 * Setup Start Buffer Register (F200h)
 280 */
 281static int onenand_buffer_address(int dataram1, int sectors, int count)
 282{
 283        int bsa, bsc;
 284
 285        /* BufferRAM Sector Address */
 286        bsa = sectors & ONENAND_BSA_MASK;
 287
 288        if (dataram1)
 289                bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
 290        else
 291                bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
 292
 293        /* BufferRAM Sector Count */
 294        bsc = count & ONENAND_BSC_MASK;
 295
 296        return ((bsa << ONENAND_BSA_SHIFT) | bsc);
 297}
 298
 299/**
 300 * flexonenand_block- For given address return block number
 301 * @param this         - OneNAND device structure
 302 * @param addr          - Address for which block number is needed
 303 */
 304static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
 305{
 306        unsigned boundary, blk, die = 0;
 307
 308        if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
 309                die = 1;
 310                addr -= this->diesize[0];
 311        }
 312
 313        boundary = this->boundary[die];
 314
 315        blk = addr >> (this->erase_shift - 1);
 316        if (blk > boundary)
 317                blk = (blk + boundary + 1) >> 1;
 318
 319        blk += die ? this->density_mask : 0;
 320        return blk;
 321}
 322
 323inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
 324{
 325        if (!FLEXONENAND(this))
 326                return addr >> this->erase_shift;
 327        return flexonenand_block(this, addr);
 328}
 329
 330/**
 331 * flexonenand_addr - Return address of the block
 332 * @this:               OneNAND device structure
 333 * @block:              Block number on Flex-OneNAND
 334 *
 335 * Return address of the block
 336 */
 337static loff_t flexonenand_addr(struct onenand_chip *this, int block)
 338{
 339        loff_t ofs = 0;
 340        int die = 0, boundary;
 341
 342        if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
 343                block -= this->density_mask;
 344                die = 1;
 345                ofs = this->diesize[0];
 346        }
 347
 348        boundary = this->boundary[die];
 349        ofs += (loff_t)block << (this->erase_shift - 1);
 350        if (block > (boundary + 1))
 351                ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
 352        return ofs;
 353}
 354
 355loff_t onenand_addr(struct onenand_chip *this, int block)
 356{
 357        if (!FLEXONENAND(this))
 358                return (loff_t)block << this->erase_shift;
 359        return flexonenand_addr(this, block);
 360}
 361EXPORT_SYMBOL(onenand_addr);
 362
 363/**
 364 * onenand_get_density - [DEFAULT] Get OneNAND density
 365 * @param dev_id        OneNAND device ID
 366 *
 367 * Get OneNAND density from device ID
 368 */
 369static inline int onenand_get_density(int dev_id)
 370{
 371        int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
 372        return (density & ONENAND_DEVICE_DENSITY_MASK);
 373}
 374
 375/**
 376 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
 377 * @param mtd           MTD device structure
 378 * @param addr          address whose erase region needs to be identified
 379 */
 380int flexonenand_region(struct mtd_info *mtd, loff_t addr)
 381{
 382        int i;
 383
 384        for (i = 0; i < mtd->numeraseregions; i++)
 385                if (addr < mtd->eraseregions[i].offset)
 386                        break;
 387        return i - 1;
 388}
 389EXPORT_SYMBOL(flexonenand_region);
 390
 391/**
 392 * onenand_command - [DEFAULT] Send command to OneNAND device
 393 * @param mtd           MTD device structure
 394 * @param cmd           the command to be sent
 395 * @param addr          offset to read from or write to
 396 * @param len           number of bytes to read or write
 397 *
 398 * Send command to OneNAND device. This function is used for middle/large page
 399 * devices (1KB/2KB Bytes per page)
 400 */
 401static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
 402{
 403        struct onenand_chip *this = mtd->priv;
 404        int value, block, page;
 405
 406        /* Address translation */
 407        switch (cmd) {
 408        case ONENAND_CMD_UNLOCK:
 409        case ONENAND_CMD_LOCK:
 410        case ONENAND_CMD_LOCK_TIGHT:
 411        case ONENAND_CMD_UNLOCK_ALL:
 412                block = -1;
 413                page = -1;
 414                break;
 415
 416        case FLEXONENAND_CMD_PI_ACCESS:
 417                /* addr contains die index */
 418                block = addr * this->density_mask;
 419                page = -1;
 420                break;
 421
 422        case ONENAND_CMD_ERASE:
 423        case ONENAND_CMD_MULTIBLOCK_ERASE:
 424        case ONENAND_CMD_ERASE_VERIFY:
 425        case ONENAND_CMD_BUFFERRAM:
 426        case ONENAND_CMD_OTP_ACCESS:
 427                block = onenand_block(this, addr);
 428                page = -1;
 429                break;
 430
 431        case FLEXONENAND_CMD_READ_PI:
 432                cmd = ONENAND_CMD_READ;
 433                block = addr * this->density_mask;
 434                page = 0;
 435                break;
 436
 437        default:
 438                block = onenand_block(this, addr);
 439                if (FLEXONENAND(this))
 440                        page = (int) (addr - onenand_addr(this, block))>>\
 441                                this->page_shift;
 442                else
 443                        page = (int) (addr >> this->page_shift);
 444                if (ONENAND_IS_2PLANE(this)) {
 445                        /* Make the even block number */
 446                        block &= ~1;
 447                        /* Is it the odd plane? */
 448                        if (addr & this->writesize)
 449                                block++;
 450                        page >>= 1;
 451                }
 452                page &= this->page_mask;
 453                break;
 454        }
 455
 456        /* NOTE: The setting order of the registers is very important! */
 457        if (cmd == ONENAND_CMD_BUFFERRAM) {
 458                /* Select DataRAM for DDP */
 459                value = onenand_bufferram_address(this, block);
 460                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 461
 462                if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
 463                        /* It is always BufferRAM0 */
 464                        ONENAND_SET_BUFFERRAM0(this);
 465                else
 466                        /* Switch to the next data buffer */
 467                        ONENAND_SET_NEXT_BUFFERRAM(this);
 468
 469                return 0;
 470        }
 471
 472        if (block != -1) {
 473                /* Write 'DFS, FBA' of Flash */
 474                value = onenand_block_address(this, block);
 475                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
 476
 477                /* Select DataRAM for DDP */
 478                value = onenand_bufferram_address(this, block);
 479                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 480        }
 481
 482        if (page != -1) {
 483                /* Now we use page size operation */
 484                int sectors = 0, count = 0;
 485                int dataram;
 486
 487                switch (cmd) {
 488                case FLEXONENAND_CMD_RECOVER_LSB:
 489                case ONENAND_CMD_READ:
 490                case ONENAND_CMD_READOOB:
 491                        if (ONENAND_IS_4KB_PAGE(this))
 492                                /* It is always BufferRAM0 */
 493                                dataram = ONENAND_SET_BUFFERRAM0(this);
 494                        else
 495                                dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
 496                        break;
 497
 498                default:
 499                        if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
 500                                cmd = ONENAND_CMD_2X_PROG;
 501                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
 502                        break;
 503                }
 504
 505                /* Write 'FPA, FSA' of Flash */
 506                value = onenand_page_address(page, sectors);
 507                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
 508
 509                /* Write 'BSA, BSC' of DataRAM */
 510                value = onenand_buffer_address(dataram, sectors, count);
 511                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
 512        }
 513
 514        /* Interrupt clear */
 515        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
 516
 517        /* Write command */
 518        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
 519
 520        return 0;
 521}
 522
 523/**
 524 * onenand_read_ecc - return ecc status
 525 * @param this          onenand chip structure
 526 */
 527static inline int onenand_read_ecc(struct onenand_chip *this)
 528{
 529        int ecc, i, result = 0;
 530
 531        if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
 532                return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
 533
 534        for (i = 0; i < 4; i++) {
 535                ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
 536                if (likely(!ecc))
 537                        continue;
 538                if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
 539                        return ONENAND_ECC_2BIT_ALL;
 540                else
 541                        result = ONENAND_ECC_1BIT_ALL;
 542        }
 543
 544        return result;
 545}
 546
 547/**
 548 * onenand_wait - [DEFAULT] wait until the command is done
 549 * @param mtd           MTD device structure
 550 * @param state         state to select the max. timeout value
 551 *
 552 * Wait for command done. This applies to all OneNAND command
 553 * Read can take up to 30us, erase up to 2ms and program up to 350us
 554 * according to general OneNAND specs
 555 */
 556static int onenand_wait(struct mtd_info *mtd, int state)
 557{
 558        struct onenand_chip * this = mtd->priv;
 559        unsigned long timeout;
 560        unsigned int flags = ONENAND_INT_MASTER;
 561        unsigned int interrupt = 0;
 562        unsigned int ctrl;
 563
 564        /* The 20 msec is enough */
 565        timeout = jiffies + msecs_to_jiffies(20);
 566        while (time_before(jiffies, timeout)) {
 567                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 568
 569                if (interrupt & flags)
 570                        break;
 571
 572                if (state != FL_READING && state != FL_PREPARING_ERASE)
 573                        cond_resched();
 574        }
 575        /* To get correct interrupt status in timeout case */
 576        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 577
 578        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
 579
 580        /*
 581         * In the Spec. it checks the controller status first
 582         * However if you get the correct information in case of
 583         * power off recovery (POR) test, it should read ECC status first
 584         */
 585        if (interrupt & ONENAND_INT_READ) {
 586                int ecc = onenand_read_ecc(this);
 587                if (ecc) {
 588                        if (ecc & ONENAND_ECC_2BIT_ALL) {
 589                                printk(KERN_ERR "%s: ECC error = 0x%04x\n",
 590                                        __func__, ecc);
 591                                mtd->ecc_stats.failed++;
 592                                return -EBADMSG;
 593                        } else if (ecc & ONENAND_ECC_1BIT_ALL) {
 594                                printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
 595                                        __func__, ecc);
 596                                mtd->ecc_stats.corrected++;
 597                        }
 598                }
 599        } else if (state == FL_READING) {
 600                printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
 601                        __func__, ctrl, interrupt);
 602                return -EIO;
 603        }
 604
 605        if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
 606                printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
 607                       __func__, ctrl, interrupt);
 608                return -EIO;
 609        }
 610
 611        if (!(interrupt & ONENAND_INT_MASTER)) {
 612                printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
 613                       __func__, ctrl, interrupt);
 614                return -EIO;
 615        }
 616
 617        /* If there's controller error, it's a real error */
 618        if (ctrl & ONENAND_CTRL_ERROR) {
 619                printk(KERN_ERR "%s: controller error = 0x%04x\n",
 620                        __func__, ctrl);
 621                if (ctrl & ONENAND_CTRL_LOCK)
 622                        printk(KERN_ERR "%s: it's locked error.\n", __func__);
 623                return -EIO;
 624        }
 625
 626        return 0;
 627}
 628
 629/*
 630 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 631 * @param irq           onenand interrupt number
 632 * @param dev_id        interrupt data
 633 *
 634 * complete the work
 635 */
 636static irqreturn_t onenand_interrupt(int irq, void *data)
 637{
 638        struct onenand_chip *this = data;
 639
 640        /* To handle shared interrupt */
 641        if (!this->complete.done)
 642                complete(&this->complete);
 643
 644        return IRQ_HANDLED;
 645}
 646
 647/*
 648 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 649 * @param mtd           MTD device structure
 650 * @param state         state to select the max. timeout value
 651 *
 652 * Wait for command done.
 653 */
 654static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
 655{
 656        struct onenand_chip *this = mtd->priv;
 657
 658        wait_for_completion(&this->complete);
 659
 660        return onenand_wait(mtd, state);
 661}
 662
 663/*
 664 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 665 * @param mtd           MTD device structure
 666 * @param state         state to select the max. timeout value
 667 *
 668 * Try interrupt based wait (It is used one-time)
 669 */
 670static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
 671{
 672        struct onenand_chip *this = mtd->priv;
 673        unsigned long remain, timeout;
 674
 675        /* We use interrupt wait first */
 676        this->wait = onenand_interrupt_wait;
 677
 678        timeout = msecs_to_jiffies(100);
 679        remain = wait_for_completion_timeout(&this->complete, timeout);
 680        if (!remain) {
 681                printk(KERN_INFO "OneNAND: There's no interrupt. "
 682                                "We use the normal wait\n");
 683
 684                /* Release the irq */
 685                free_irq(this->irq, this);
 686
 687                this->wait = onenand_wait;
 688        }
 689
 690        return onenand_wait(mtd, state);
 691}
 692
 693/*
 694 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 695 * @param mtd           MTD device structure
 696 *
 697 * There's two method to wait onenand work
 698 * 1. polling - read interrupt status register
 699 * 2. interrupt - use the kernel interrupt method
 700 */
 701static void onenand_setup_wait(struct mtd_info *mtd)
 702{
 703        struct onenand_chip *this = mtd->priv;
 704        int syscfg;
 705
 706        init_completion(&this->complete);
 707
 708        if (this->irq <= 0) {
 709                this->wait = onenand_wait;
 710                return;
 711        }
 712
 713        if (request_irq(this->irq, &onenand_interrupt,
 714                                IRQF_SHARED, "onenand", this)) {
 715                /* If we can't get irq, use the normal wait */
 716                this->wait = onenand_wait;
 717                return;
 718        }
 719
 720        /* Enable interrupt */
 721        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
 722        syscfg |= ONENAND_SYS_CFG1_IOBE;
 723        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
 724
 725        this->wait = onenand_try_interrupt_wait;
 726}
 727
 728/**
 729 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 730 * @param mtd           MTD data structure
 731 * @param area          BufferRAM area
 732 * @return              offset given area
 733 *
 734 * Return BufferRAM offset given area
 735 */
 736static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
 737{
 738        struct onenand_chip *this = mtd->priv;
 739
 740        if (ONENAND_CURRENT_BUFFERRAM(this)) {
 741                /* Note: the 'this->writesize' is a real page size */
 742                if (area == ONENAND_DATARAM)
 743                        return this->writesize;
 744                if (area == ONENAND_SPARERAM)
 745                        return mtd->oobsize;
 746        }
 747
 748        return 0;
 749}
 750
 751/**
 752 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 753 * @param mtd           MTD data structure
 754 * @param area          BufferRAM area
 755 * @param buffer        the databuffer to put/get data
 756 * @param offset        offset to read from or write to
 757 * @param count         number of bytes to read/write
 758 *
 759 * Read the BufferRAM area
 760 */
 761static int onenand_read_bufferram(struct mtd_info *mtd, int area,
 762                unsigned char *buffer, int offset, size_t count)
 763{
 764        struct onenand_chip *this = mtd->priv;
 765        void __iomem *bufferram;
 766
 767        bufferram = this->base + area;
 768
 769        bufferram += onenand_bufferram_offset(mtd, area);
 770
 771        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 772                unsigned short word;
 773
 774                /* Align with word(16-bit) size */
 775                count--;
 776
 777                /* Read word and save byte */
 778                word = this->read_word(bufferram + offset + count);
 779                buffer[count] = (word & 0xff);
 780        }
 781
 782        memcpy(buffer, bufferram + offset, count);
 783
 784        return 0;
 785}
 786
 787/**
 788 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 789 * @param mtd           MTD data structure
 790 * @param area          BufferRAM area
 791 * @param buffer        the databuffer to put/get data
 792 * @param offset        offset to read from or write to
 793 * @param count         number of bytes to read/write
 794 *
 795 * Read the BufferRAM area with Sync. Burst Mode
 796 */
 797static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
 798                unsigned char *buffer, int offset, size_t count)
 799{
 800        struct onenand_chip *this = mtd->priv;
 801        void __iomem *bufferram;
 802
 803        bufferram = this->base + area;
 804
 805        bufferram += onenand_bufferram_offset(mtd, area);
 806
 807        this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
 808
 809        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 810                unsigned short word;
 811
 812                /* Align with word(16-bit) size */
 813                count--;
 814
 815                /* Read word and save byte */
 816                word = this->read_word(bufferram + offset + count);
 817                buffer[count] = (word & 0xff);
 818        }
 819
 820        memcpy(buffer, bufferram + offset, count);
 821
 822        this->mmcontrol(mtd, 0);
 823
 824        return 0;
 825}
 826
 827/**
 828 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 829 * @param mtd           MTD data structure
 830 * @param area          BufferRAM area
 831 * @param buffer        the databuffer to put/get data
 832 * @param offset        offset to read from or write to
 833 * @param count         number of bytes to read/write
 834 *
 835 * Write the BufferRAM area
 836 */
 837static int onenand_write_bufferram(struct mtd_info *mtd, int area,
 838                const unsigned char *buffer, int offset, size_t count)
 839{
 840        struct onenand_chip *this = mtd->priv;
 841        void __iomem *bufferram;
 842
 843        bufferram = this->base + area;
 844
 845        bufferram += onenand_bufferram_offset(mtd, area);
 846
 847        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 848                unsigned short word;
 849                int byte_offset;
 850
 851                /* Align with word(16-bit) size */
 852                count--;
 853
 854                /* Calculate byte access offset */
 855                byte_offset = offset + count;
 856
 857                /* Read word and save byte */
 858                word = this->read_word(bufferram + byte_offset);
 859                word = (word & ~0xff) | buffer[count];
 860                this->write_word(word, bufferram + byte_offset);
 861        }
 862
 863        memcpy(bufferram + offset, buffer, count);
 864
 865        return 0;
 866}
 867
 868/**
 869 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 870 * @param mtd           MTD data structure
 871 * @param addr          address to check
 872 * @return              blockpage address
 873 *
 874 * Get blockpage address at 2x program mode
 875 */
 876static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
 877{
 878        struct onenand_chip *this = mtd->priv;
 879        int blockpage, block, page;
 880
 881        /* Calculate the even block number */
 882        block = (int) (addr >> this->erase_shift) & ~1;
 883        /* Is it the odd plane? */
 884        if (addr & this->writesize)
 885                block++;
 886        page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
 887        blockpage = (block << 7) | page;
 888
 889        return blockpage;
 890}
 891
 892/**
 893 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 894 * @param mtd           MTD data structure
 895 * @param addr          address to check
 896 * @return              1 if there are valid data, otherwise 0
 897 *
 898 * Check bufferram if there is data we required
 899 */
 900static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
 901{
 902        struct onenand_chip *this = mtd->priv;
 903        int blockpage, found = 0;
 904        unsigned int i;
 905
 906        if (ONENAND_IS_2PLANE(this))
 907                blockpage = onenand_get_2x_blockpage(mtd, addr);
 908        else
 909                blockpage = (int) (addr >> this->page_shift);
 910
 911        /* Is there valid data? */
 912        i = ONENAND_CURRENT_BUFFERRAM(this);
 913        if (this->bufferram[i].blockpage == blockpage)
 914                found = 1;
 915        else {
 916                /* Check another BufferRAM */
 917                i = ONENAND_NEXT_BUFFERRAM(this);
 918                if (this->bufferram[i].blockpage == blockpage) {
 919                        ONENAND_SET_NEXT_BUFFERRAM(this);
 920                        found = 1;
 921                }
 922        }
 923
 924        if (found && ONENAND_IS_DDP(this)) {
 925                /* Select DataRAM for DDP */
 926                int block = onenand_block(this, addr);
 927                int value = onenand_bufferram_address(this, block);
 928                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 929        }
 930
 931        return found;
 932}
 933
 934/**
 935 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 936 * @param mtd           MTD data structure
 937 * @param addr          address to update
 938 * @param valid         valid flag
 939 *
 940 * Update BufferRAM information
 941 */
 942static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
 943                int valid)
 944{
 945        struct onenand_chip *this = mtd->priv;
 946        int blockpage;
 947        unsigned int i;
 948
 949        if (ONENAND_IS_2PLANE(this))
 950                blockpage = onenand_get_2x_blockpage(mtd, addr);
 951        else
 952                blockpage = (int) (addr >> this->page_shift);
 953
 954        /* Invalidate another BufferRAM */
 955        i = ONENAND_NEXT_BUFFERRAM(this);
 956        if (this->bufferram[i].blockpage == blockpage)
 957                this->bufferram[i].blockpage = -1;
 958
 959        /* Update BufferRAM */
 960        i = ONENAND_CURRENT_BUFFERRAM(this);
 961        if (valid)
 962                this->bufferram[i].blockpage = blockpage;
 963        else
 964                this->bufferram[i].blockpage = -1;
 965}
 966
 967/**
 968 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 969 * @param mtd           MTD data structure
 970 * @param addr          start address to invalidate
 971 * @param len           length to invalidate
 972 *
 973 * Invalidate BufferRAM information
 974 */
 975static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
 976                unsigned int len)
 977{
 978        struct onenand_chip *this = mtd->priv;
 979        int i;
 980        loff_t end_addr = addr + len;
 981
 982        /* Invalidate BufferRAM */
 983        for (i = 0; i < MAX_BUFFERRAM; i++) {
 984                loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
 985                if (buf_addr >= addr && buf_addr < end_addr)
 986                        this->bufferram[i].blockpage = -1;
 987        }
 988}
 989
 990/**
 991 * onenand_get_device - [GENERIC] Get chip for selected access
 992 * @param mtd           MTD device structure
 993 * @param new_state     the state which is requested
 994 *
 995 * Get the device and lock it for exclusive access
 996 */
 997static int onenand_get_device(struct mtd_info *mtd, int new_state)
 998{
 999        struct onenand_chip *this = mtd->priv;
1000        DECLARE_WAITQUEUE(wait, current);
1001
1002        /*
1003         * Grab the lock and see if the device is available
1004         */
1005        while (1) {
1006                spin_lock(&this->chip_lock);
1007                if (this->state == FL_READY) {
1008                        this->state = new_state;
1009                        spin_unlock(&this->chip_lock);
1010                        if (new_state != FL_PM_SUSPENDED && this->enable)
1011                                this->enable(mtd);
1012                        break;
1013                }
1014                if (new_state == FL_PM_SUSPENDED) {
1015                        spin_unlock(&this->chip_lock);
1016                        return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1017                }
1018                set_current_state(TASK_UNINTERRUPTIBLE);
1019                add_wait_queue(&this->wq, &wait);
1020                spin_unlock(&this->chip_lock);
1021                schedule();
1022                remove_wait_queue(&this->wq, &wait);
1023        }
1024
1025        return 0;
1026}
1027
1028/**
1029 * onenand_release_device - [GENERIC] release chip
1030 * @param mtd           MTD device structure
1031 *
1032 * Deselect, release chip lock and wake up anyone waiting on the device
1033 */
1034static void onenand_release_device(struct mtd_info *mtd)
1035{
1036        struct onenand_chip *this = mtd->priv;
1037
1038        if (this->state != FL_PM_SUSPENDED && this->disable)
1039                this->disable(mtd);
1040        /* Release the chip */
1041        spin_lock(&this->chip_lock);
1042        this->state = FL_READY;
1043        wake_up(&this->wq);
1044        spin_unlock(&this->chip_lock);
1045}
1046
1047/**
1048 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1049 * @param mtd           MTD device structure
1050 * @param buf           destination address
1051 * @param column        oob offset to read from
1052 * @param thislen       oob length to read
1053 */
1054static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1055                                int thislen)
1056{
1057        struct onenand_chip *this = mtd->priv;
1058        int ret;
1059
1060        this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1061                             mtd->oobsize);
1062        ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1063                                          column, thislen);
1064        if (ret)
1065                return ret;
1066
1067        return 0;
1068}
1069
1070/**
1071 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1072 * @param mtd           MTD device structure
1073 * @param addr          address to recover
1074 * @param status        return value from onenand_wait / onenand_bbt_wait
1075 *
1076 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1077 * lower page address and MSB page has higher page address in paired pages.
1078 * If power off occurs during MSB page program, the paired LSB page data can
1079 * become corrupt. LSB page recovery read is a way to read LSB page though page
1080 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1081 * read after power up, issue LSB page recovery read.
1082 */
1083static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1084{
1085        struct onenand_chip *this = mtd->priv;
1086        int i;
1087
1088        /* Recovery is only for Flex-OneNAND */
1089        if (!FLEXONENAND(this))
1090                return status;
1091
1092        /* check if we failed due to uncorrectable error */
1093        if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1094                return status;
1095
1096        /* check if address lies in MLC region */
1097        i = flexonenand_region(mtd, addr);
1098        if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1099                return status;
1100
1101        /* We are attempting to reread, so decrement stats.failed
1102         * which was incremented by onenand_wait due to read failure
1103         */
1104        printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1105                __func__);
1106        mtd->ecc_stats.failed--;
1107
1108        /* Issue the LSB page recovery command */
1109        this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1110        return this->wait(mtd, FL_READING);
1111}
1112
1113/**
1114 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1115 * @param mtd           MTD device structure
1116 * @param from          offset to read from
1117 * @param ops:          oob operation description structure
1118 *
1119 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1120 * So, read-while-load is not present.
1121 */
1122static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1123                                struct mtd_oob_ops *ops)
1124{
1125        struct onenand_chip *this = mtd->priv;
1126        struct mtd_ecc_stats stats;
1127        size_t len = ops->len;
1128        size_t ooblen = ops->ooblen;
1129        u_char *buf = ops->datbuf;
1130        u_char *oobbuf = ops->oobbuf;
1131        int read = 0, column, thislen;
1132        int oobread = 0, oobcolumn, thisooblen, oobsize;
1133        int ret = 0;
1134        int writesize = this->writesize;
1135
1136        pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1137                        (int)len);
1138
1139        oobsize = mtd_oobavail(mtd, ops);
1140        oobcolumn = from & (mtd->oobsize - 1);
1141
1142        /* Do not allow reads past end of device */
1143        if (from + len > mtd->size) {
1144                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1145                        __func__);
1146                ops->retlen = 0;
1147                ops->oobretlen = 0;
1148                return -EINVAL;
1149        }
1150
1151        stats = mtd->ecc_stats;
1152
1153        while (read < len) {
1154                cond_resched();
1155
1156                thislen = min_t(int, writesize, len - read);
1157
1158                column = from & (writesize - 1);
1159                if (column + thislen > writesize)
1160                        thislen = writesize - column;
1161
1162                if (!onenand_check_bufferram(mtd, from)) {
1163                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1164
1165                        ret = this->wait(mtd, FL_READING);
1166                        if (unlikely(ret))
1167                                ret = onenand_recover_lsb(mtd, from, ret);
1168                        onenand_update_bufferram(mtd, from, !ret);
1169                        if (mtd_is_eccerr(ret))
1170                                ret = 0;
1171                        if (ret)
1172                                break;
1173                }
1174
1175                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1176                if (oobbuf) {
1177                        thisooblen = oobsize - oobcolumn;
1178                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1179
1180                        if (ops->mode == MTD_OPS_AUTO_OOB)
1181                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1182                        else
1183                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1184                        oobread += thisooblen;
1185                        oobbuf += thisooblen;
1186                        oobcolumn = 0;
1187                }
1188
1189                read += thislen;
1190                if (read == len)
1191                        break;
1192
1193                from += thislen;
1194                buf += thislen;
1195        }
1196
1197        /*
1198         * Return success, if no ECC failures, else -EBADMSG
1199         * fs driver will take care of that, because
1200         * retlen == desired len and result == -EBADMSG
1201         */
1202        ops->retlen = read;
1203        ops->oobretlen = oobread;
1204
1205        if (ret)
1206                return ret;
1207
1208        if (mtd->ecc_stats.failed - stats.failed)
1209                return -EBADMSG;
1210
1211        /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1212        return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1213}
1214
1215/**
1216 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1217 * @param mtd           MTD device structure
1218 * @param from          offset to read from
1219 * @param ops:          oob operation description structure
1220 *
1221 * OneNAND read main and/or out-of-band data
1222 */
1223static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1224                                struct mtd_oob_ops *ops)
1225{
1226        struct onenand_chip *this = mtd->priv;
1227        struct mtd_ecc_stats stats;
1228        size_t len = ops->len;
1229        size_t ooblen = ops->ooblen;
1230        u_char *buf = ops->datbuf;
1231        u_char *oobbuf = ops->oobbuf;
1232        int read = 0, column, thislen;
1233        int oobread = 0, oobcolumn, thisooblen, oobsize;
1234        int ret = 0, boundary = 0;
1235        int writesize = this->writesize;
1236
1237        pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1238                        (int)len);
1239
1240        oobsize = mtd_oobavail(mtd, ops);
1241        oobcolumn = from & (mtd->oobsize - 1);
1242
1243        /* Do not allow reads past end of device */
1244        if ((from + len) > mtd->size) {
1245                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1246                        __func__);
1247                ops->retlen = 0;
1248                ops->oobretlen = 0;
1249                return -EINVAL;
1250        }
1251
1252        stats = mtd->ecc_stats;
1253
1254        /* Read-while-load method */
1255
1256        /* Do first load to bufferRAM */
1257        if (read < len) {
1258                if (!onenand_check_bufferram(mtd, from)) {
1259                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1260                        ret = this->wait(mtd, FL_READING);
1261                        onenand_update_bufferram(mtd, from, !ret);
1262                        if (mtd_is_eccerr(ret))
1263                                ret = 0;
1264                }
1265        }
1266
1267        thislen = min_t(int, writesize, len - read);
1268        column = from & (writesize - 1);
1269        if (column + thislen > writesize)
1270                thislen = writesize - column;
1271
1272        while (!ret) {
1273                /* If there is more to load then start next load */
1274                from += thislen;
1275                if (read + thislen < len) {
1276                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1277                        /*
1278                         * Chip boundary handling in DDP
1279                         * Now we issued chip 1 read and pointed chip 1
1280                         * bufferram so we have to point chip 0 bufferram.
1281                         */
1282                        if (ONENAND_IS_DDP(this) &&
1283                            unlikely(from == (this->chipsize >> 1))) {
1284                                this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1285                                boundary = 1;
1286                        } else
1287                                boundary = 0;
1288                        ONENAND_SET_PREV_BUFFERRAM(this);
1289                }
1290                /* While load is going, read from last bufferRAM */
1291                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1292
1293                /* Read oob area if needed */
1294                if (oobbuf) {
1295                        thisooblen = oobsize - oobcolumn;
1296                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1297
1298                        if (ops->mode == MTD_OPS_AUTO_OOB)
1299                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1300                        else
1301                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1302                        oobread += thisooblen;
1303                        oobbuf += thisooblen;
1304                        oobcolumn = 0;
1305                }
1306
1307                /* See if we are done */
1308                read += thislen;
1309                if (read == len)
1310                        break;
1311                /* Set up for next read from bufferRAM */
1312                if (unlikely(boundary))
1313                        this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1314                ONENAND_SET_NEXT_BUFFERRAM(this);
1315                buf += thislen;
1316                thislen = min_t(int, writesize, len - read);
1317                column = 0;
1318                cond_resched();
1319                /* Now wait for load */
1320                ret = this->wait(mtd, FL_READING);
1321                onenand_update_bufferram(mtd, from, !ret);
1322                if (mtd_is_eccerr(ret))
1323                        ret = 0;
1324        }
1325
1326        /*
1327         * Return success, if no ECC failures, else -EBADMSG
1328         * fs driver will take care of that, because
1329         * retlen == desired len and result == -EBADMSG
1330         */
1331        ops->retlen = read;
1332        ops->oobretlen = oobread;
1333
1334        if (ret)
1335                return ret;
1336
1337        if (mtd->ecc_stats.failed - stats.failed)
1338                return -EBADMSG;
1339
1340        /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1341        return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1342}
1343
1344/**
1345 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1346 * @param mtd           MTD device structure
1347 * @param from          offset to read from
1348 * @param ops:          oob operation description structure
1349 *
1350 * OneNAND read out-of-band data from the spare area
1351 */
1352static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1353                        struct mtd_oob_ops *ops)
1354{
1355        struct onenand_chip *this = mtd->priv;
1356        struct mtd_ecc_stats stats;
1357        int read = 0, thislen, column, oobsize;
1358        size_t len = ops->ooblen;
1359        unsigned int mode = ops->mode;
1360        u_char *buf = ops->oobbuf;
1361        int ret = 0, readcmd;
1362
1363        from += ops->ooboffs;
1364
1365        pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1366                        (int)len);
1367
1368        /* Initialize return length value */
1369        ops->oobretlen = 0;
1370
1371        if (mode == MTD_OPS_AUTO_OOB)
1372                oobsize = mtd->oobavail;
1373        else
1374                oobsize = mtd->oobsize;
1375
1376        column = from & (mtd->oobsize - 1);
1377
1378        if (unlikely(column >= oobsize)) {
1379                printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1380                        __func__);
1381                return -EINVAL;
1382        }
1383
1384        stats = mtd->ecc_stats;
1385
1386        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1387
1388        while (read < len) {
1389                cond_resched();
1390
1391                thislen = oobsize - column;
1392                thislen = min_t(int, thislen, len);
1393
1394                this->command(mtd, readcmd, from, mtd->oobsize);
1395
1396                onenand_update_bufferram(mtd, from, 0);
1397
1398                ret = this->wait(mtd, FL_READING);
1399                if (unlikely(ret))
1400                        ret = onenand_recover_lsb(mtd, from, ret);
1401
1402                if (ret && !mtd_is_eccerr(ret)) {
1403                        printk(KERN_ERR "%s: read failed = 0x%x\n",
1404                                __func__, ret);
1405                        break;
1406                }
1407
1408                if (mode == MTD_OPS_AUTO_OOB)
1409                        onenand_transfer_auto_oob(mtd, buf, column, thislen);
1410                else
1411                        this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1412
1413                read += thislen;
1414
1415                if (read == len)
1416                        break;
1417
1418                buf += thislen;
1419
1420                /* Read more? */
1421                if (read < len) {
1422                        /* Page size */
1423                        from += mtd->writesize;
1424                        column = 0;
1425                }
1426        }
1427
1428        ops->oobretlen = read;
1429
1430        if (ret)
1431                return ret;
1432
1433        if (mtd->ecc_stats.failed - stats.failed)
1434                return -EBADMSG;
1435
1436        return 0;
1437}
1438
1439/**
1440 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1441 * @param mtd:          MTD device structure
1442 * @param from:         offset to read from
1443 * @param ops:          oob operation description structure
1444
1445 * Read main and/or out-of-band
1446 */
1447static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1448                            struct mtd_oob_ops *ops)
1449{
1450        struct onenand_chip *this = mtd->priv;
1451        int ret;
1452
1453        switch (ops->mode) {
1454        case MTD_OPS_PLACE_OOB:
1455        case MTD_OPS_AUTO_OOB:
1456                break;
1457        case MTD_OPS_RAW:
1458                /* Not implemented yet */
1459        default:
1460                return -EINVAL;
1461        }
1462
1463        onenand_get_device(mtd, FL_READING);
1464        if (ops->datbuf)
1465                ret = ONENAND_IS_4KB_PAGE(this) ?
1466                        onenand_mlc_read_ops_nolock(mtd, from, ops) :
1467                        onenand_read_ops_nolock(mtd, from, ops);
1468        else
1469                ret = onenand_read_oob_nolock(mtd, from, ops);
1470        onenand_release_device(mtd);
1471
1472        return ret;
1473}
1474
1475/**
1476 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1477 * @param mtd           MTD device structure
1478 * @param state         state to select the max. timeout value
1479 *
1480 * Wait for command done.
1481 */
1482static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1483{
1484        struct onenand_chip *this = mtd->priv;
1485        unsigned long timeout;
1486        unsigned int interrupt, ctrl, ecc, addr1, addr8;
1487
1488        /* The 20 msec is enough */
1489        timeout = jiffies + msecs_to_jiffies(20);
1490        while (time_before(jiffies, timeout)) {
1491                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1492                if (interrupt & ONENAND_INT_MASTER)
1493                        break;
1494        }
1495        /* To get correct interrupt status in timeout case */
1496        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1497        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1498        addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1499        addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1500
1501        if (interrupt & ONENAND_INT_READ) {
1502                ecc = onenand_read_ecc(this);
1503                if (ecc & ONENAND_ECC_2BIT_ALL) {
1504                        printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1505                               "intr 0x%04x addr1 %#x addr8 %#x\n",
1506                               __func__, ecc, ctrl, interrupt, addr1, addr8);
1507                        return ONENAND_BBT_READ_ECC_ERROR;
1508                }
1509        } else {
1510                printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1511                       "intr 0x%04x addr1 %#x addr8 %#x\n",
1512                       __func__, ctrl, interrupt, addr1, addr8);
1513                return ONENAND_BBT_READ_FATAL_ERROR;
1514        }
1515
1516        /* Initial bad block case: 0x2400 or 0x0400 */
1517        if (ctrl & ONENAND_CTRL_ERROR) {
1518                printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1519                       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1520                return ONENAND_BBT_READ_ERROR;
1521        }
1522
1523        return 0;
1524}
1525
1526/**
1527 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1528 * @param mtd           MTD device structure
1529 * @param from          offset to read from
1530 * @param ops           oob operation description structure
1531 *
1532 * OneNAND read out-of-band data from the spare area for bbt scan
1533 */
1534int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1535                            struct mtd_oob_ops *ops)
1536{
1537        struct onenand_chip *this = mtd->priv;
1538        int read = 0, thislen, column;
1539        int ret = 0, readcmd;
1540        size_t len = ops->ooblen;
1541        u_char *buf = ops->oobbuf;
1542
1543        pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1544                        len);
1545
1546        /* Initialize return value */
1547        ops->oobretlen = 0;
1548
1549        /* Do not allow reads past end of device */
1550        if (unlikely((from + len) > mtd->size)) {
1551                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1552                        __func__);
1553                return ONENAND_BBT_READ_FATAL_ERROR;
1554        }
1555
1556        /* Grab the lock and see if the device is available */
1557        onenand_get_device(mtd, FL_READING);
1558
1559        column = from & (mtd->oobsize - 1);
1560
1561        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1562
1563        while (read < len) {
1564                cond_resched();
1565
1566                thislen = mtd->oobsize - column;
1567                thislen = min_t(int, thislen, len);
1568
1569                this->command(mtd, readcmd, from, mtd->oobsize);
1570
1571                onenand_update_bufferram(mtd, from, 0);
1572
1573                ret = this->bbt_wait(mtd, FL_READING);
1574                if (unlikely(ret))
1575                        ret = onenand_recover_lsb(mtd, from, ret);
1576
1577                if (ret)
1578                        break;
1579
1580                this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1581                read += thislen;
1582                if (read == len)
1583                        break;
1584
1585                buf += thislen;
1586
1587                /* Read more? */
1588                if (read < len) {
1589                        /* Update Page size */
1590                        from += this->writesize;
1591                        column = 0;
1592                }
1593        }
1594
1595        /* Deselect and wake up anyone waiting on the device */
1596        onenand_release_device(mtd);
1597
1598        ops->oobretlen = read;
1599        return ret;
1600}
1601
1602#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1603/**
1604 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1605 * @param mtd           MTD device structure
1606 * @param buf           the databuffer to verify
1607 * @param to            offset to read from
1608 */
1609static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1610{
1611        struct onenand_chip *this = mtd->priv;
1612        u_char *oob_buf = this->oob_buf;
1613        int status, i, readcmd;
1614
1615        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1616
1617        this->command(mtd, readcmd, to, mtd->oobsize);
1618        onenand_update_bufferram(mtd, to, 0);
1619        status = this->wait(mtd, FL_READING);
1620        if (status)
1621                return status;
1622
1623        this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1624        for (i = 0; i < mtd->oobsize; i++)
1625                if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1626                        return -EBADMSG;
1627
1628        return 0;
1629}
1630
1631/**
1632 * onenand_verify - [GENERIC] verify the chip contents after a write
1633 * @param mtd          MTD device structure
1634 * @param buf          the databuffer to verify
1635 * @param addr         offset to read from
1636 * @param len          number of bytes to read and compare
1637 */
1638static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1639{
1640        struct onenand_chip *this = mtd->priv;
1641        int ret = 0;
1642        int thislen, column;
1643
1644        column = addr & (this->writesize - 1);
1645
1646        while (len != 0) {
1647                thislen = min_t(int, this->writesize - column, len);
1648
1649                this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1650
1651                onenand_update_bufferram(mtd, addr, 0);
1652
1653                ret = this->wait(mtd, FL_READING);
1654                if (ret)
1655                        return ret;
1656
1657                onenand_update_bufferram(mtd, addr, 1);
1658
1659                this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1660
1661                if (memcmp(buf, this->verify_buf + column, thislen))
1662                        return -EBADMSG;
1663
1664                len -= thislen;
1665                buf += thislen;
1666                addr += thislen;
1667                column = 0;
1668        }
1669
1670        return 0;
1671}
1672#else
1673#define onenand_verify(...)             (0)
1674#define onenand_verify_oob(...)         (0)
1675#endif
1676
1677#define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1678
1679static void onenand_panic_wait(struct mtd_info *mtd)
1680{
1681        struct onenand_chip *this = mtd->priv;
1682        unsigned int interrupt;
1683        int i;
1684        
1685        for (i = 0; i < 2000; i++) {
1686                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1687                if (interrupt & ONENAND_INT_MASTER)
1688                        break;
1689                udelay(10);
1690        }
1691}
1692
1693/**
1694 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1695 * @param mtd           MTD device structure
1696 * @param to            offset to write to
1697 * @param len           number of bytes to write
1698 * @param retlen        pointer to variable to store the number of written bytes
1699 * @param buf           the data to write
1700 *
1701 * Write with ECC
1702 */
1703static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1704                         size_t *retlen, const u_char *buf)
1705{
1706        struct onenand_chip *this = mtd->priv;
1707        int column, subpage;
1708        int written = 0;
1709
1710        if (this->state == FL_PM_SUSPENDED)
1711                return -EBUSY;
1712
1713        /* Wait for any existing operation to clear */
1714        onenand_panic_wait(mtd);
1715
1716        pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1717                        (int)len);
1718
1719        /* Reject writes, which are not page aligned */
1720        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1721                printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1722                        __func__);
1723                return -EINVAL;
1724        }
1725
1726        column = to & (mtd->writesize - 1);
1727
1728        /* Loop until all data write */
1729        while (written < len) {
1730                int thislen = min_t(int, mtd->writesize - column, len - written);
1731                u_char *wbuf = (u_char *) buf;
1732
1733                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1734
1735                /* Partial page write */
1736                subpage = thislen < mtd->writesize;
1737                if (subpage) {
1738                        memset(this->page_buf, 0xff, mtd->writesize);
1739                        memcpy(this->page_buf + column, buf, thislen);
1740                        wbuf = this->page_buf;
1741                }
1742
1743                this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1744                this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1745
1746                this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1747
1748                onenand_panic_wait(mtd);
1749
1750                /* In partial page write we don't update bufferram */
1751                onenand_update_bufferram(mtd, to, !subpage);
1752                if (ONENAND_IS_2PLANE(this)) {
1753                        ONENAND_SET_BUFFERRAM1(this);
1754                        onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1755                }
1756
1757                written += thislen;
1758
1759                if (written == len)
1760                        break;
1761
1762                column = 0;
1763                to += thislen;
1764                buf += thislen;
1765        }
1766
1767        *retlen = written;
1768        return 0;
1769}
1770
1771/**
1772 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1773 * @param mtd           MTD device structure
1774 * @param oob_buf       oob buffer
1775 * @param buf           source address
1776 * @param column        oob offset to write to
1777 * @param thislen       oob length to write
1778 */
1779static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1780                                  const u_char *buf, int column, int thislen)
1781{
1782        return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1783}
1784
1785/**
1786 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1787 * @param mtd           MTD device structure
1788 * @param to            offset to write to
1789 * @param ops           oob operation description structure
1790 *
1791 * Write main and/or oob with ECC
1792 */
1793static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1794                                struct mtd_oob_ops *ops)
1795{
1796        struct onenand_chip *this = mtd->priv;
1797        int written = 0, column, thislen = 0, subpage = 0;
1798        int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1799        int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1800        size_t len = ops->len;
1801        size_t ooblen = ops->ooblen;
1802        const u_char *buf = ops->datbuf;
1803        const u_char *oob = ops->oobbuf;
1804        u_char *oobbuf;
1805        int ret = 0, cmd;
1806
1807        pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1808                        (int)len);
1809
1810        /* Initialize retlen, in case of early exit */
1811        ops->retlen = 0;
1812        ops->oobretlen = 0;
1813
1814        /* Reject writes, which are not page aligned */
1815        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1816                printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1817                        __func__);
1818                return -EINVAL;
1819        }
1820
1821        /* Check zero length */
1822        if (!len)
1823                return 0;
1824        oobsize = mtd_oobavail(mtd, ops);
1825        oobcolumn = to & (mtd->oobsize - 1);
1826
1827        column = to & (mtd->writesize - 1);
1828
1829        /* Loop until all data write */
1830        while (1) {
1831                if (written < len) {
1832                        u_char *wbuf = (u_char *) buf;
1833
1834                        thislen = min_t(int, mtd->writesize - column, len - written);
1835                        thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1836
1837                        cond_resched();
1838
1839                        this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1840
1841                        /* Partial page write */
1842                        subpage = thislen < mtd->writesize;
1843                        if (subpage) {
1844                                memset(this->page_buf, 0xff, mtd->writesize);
1845                                memcpy(this->page_buf + column, buf, thislen);
1846                                wbuf = this->page_buf;
1847                        }
1848
1849                        this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1850
1851                        if (oob) {
1852                                oobbuf = this->oob_buf;
1853
1854                                /* We send data to spare ram with oobsize
1855                                 * to prevent byte access */
1856                                memset(oobbuf, 0xff, mtd->oobsize);
1857                                if (ops->mode == MTD_OPS_AUTO_OOB)
1858                                        onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1859                                else
1860                                        memcpy(oobbuf + oobcolumn, oob, thisooblen);
1861
1862                                oobwritten += thisooblen;
1863                                oob += thisooblen;
1864                                oobcolumn = 0;
1865                        } else
1866                                oobbuf = (u_char *) ffchars;
1867
1868                        this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1869                } else
1870                        ONENAND_SET_NEXT_BUFFERRAM(this);
1871
1872                /*
1873                 * 2 PLANE, MLC, and Flex-OneNAND do not support
1874                 * write-while-program feature.
1875                 */
1876                if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1877                        ONENAND_SET_PREV_BUFFERRAM(this);
1878
1879                        ret = this->wait(mtd, FL_WRITING);
1880
1881                        /* In partial page write we don't update bufferram */
1882                        onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1883                        if (ret) {
1884                                written -= prevlen;
1885                                printk(KERN_ERR "%s: write failed %d\n",
1886                                        __func__, ret);
1887                                break;
1888                        }
1889
1890                        if (written == len) {
1891                                /* Only check verify write turn on */
1892                                ret = onenand_verify(mtd, buf - len, to - len, len);
1893                                if (ret)
1894                                        printk(KERN_ERR "%s: verify failed %d\n",
1895                                                __func__, ret);
1896                                break;
1897                        }
1898
1899                        ONENAND_SET_NEXT_BUFFERRAM(this);
1900                }
1901
1902                this->ongoing = 0;
1903                cmd = ONENAND_CMD_PROG;
1904
1905                /* Exclude 1st OTP and OTP blocks for cache program feature */
1906                if (ONENAND_IS_CACHE_PROGRAM(this) &&
1907                    likely(onenand_block(this, to) != 0) &&
1908                    ONENAND_IS_4KB_PAGE(this) &&
1909                    ((written + thislen) < len)) {
1910                        cmd = ONENAND_CMD_2X_CACHE_PROG;
1911                        this->ongoing = 1;
1912                }
1913
1914                this->command(mtd, cmd, to, mtd->writesize);
1915
1916                /*
1917                 * 2 PLANE, MLC, and Flex-OneNAND wait here
1918                 */
1919                if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1920                        ret = this->wait(mtd, FL_WRITING);
1921
1922                        /* In partial page write we don't update bufferram */
1923                        onenand_update_bufferram(mtd, to, !ret && !subpage);
1924                        if (ret) {
1925                                printk(KERN_ERR "%s: write failed %d\n",
1926                                        __func__, ret);
1927                                break;
1928                        }
1929
1930                        /* Only check verify write turn on */
1931                        ret = onenand_verify(mtd, buf, to, thislen);
1932                        if (ret) {
1933                                printk(KERN_ERR "%s: verify failed %d\n",
1934                                        __func__, ret);
1935                                break;
1936                        }
1937
1938                        written += thislen;
1939
1940                        if (written == len)
1941                                break;
1942
1943                } else
1944                        written += thislen;
1945
1946                column = 0;
1947                prev_subpage = subpage;
1948                prev = to;
1949                prevlen = thislen;
1950                to += thislen;
1951                buf += thislen;
1952                first = 0;
1953        }
1954
1955        /* In error case, clear all bufferrams */
1956        if (written != len)
1957                onenand_invalidate_bufferram(mtd, 0, -1);
1958
1959        ops->retlen = written;
1960        ops->oobretlen = oobwritten;
1961
1962        return ret;
1963}
1964
1965
1966/**
1967 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1968 * @param mtd           MTD device structure
1969 * @param to            offset to write to
1970 * @param len           number of bytes to write
1971 * @param retlen        pointer to variable to store the number of written bytes
1972 * @param buf           the data to write
1973 * @param mode          operation mode
1974 *
1975 * OneNAND write out-of-band
1976 */
1977static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1978                                    struct mtd_oob_ops *ops)
1979{
1980        struct onenand_chip *this = mtd->priv;
1981        int column, ret = 0, oobsize;
1982        int written = 0, oobcmd;
1983        u_char *oobbuf;
1984        size_t len = ops->ooblen;
1985        const u_char *buf = ops->oobbuf;
1986        unsigned int mode = ops->mode;
1987
1988        to += ops->ooboffs;
1989
1990        pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1991                        (int)len);
1992
1993        /* Initialize retlen, in case of early exit */
1994        ops->oobretlen = 0;
1995
1996        if (mode == MTD_OPS_AUTO_OOB)
1997                oobsize = mtd->oobavail;
1998        else
1999                oobsize = mtd->oobsize;
2000
2001        column = to & (mtd->oobsize - 1);
2002
2003        if (unlikely(column >= oobsize)) {
2004                printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2005                        __func__);
2006                return -EINVAL;
2007        }
2008
2009        /* For compatibility with NAND: Do not allow write past end of page */
2010        if (unlikely(column + len > oobsize)) {
2011                printk(KERN_ERR "%s: Attempt to write past end of page\n",
2012                        __func__);
2013                return -EINVAL;
2014        }
2015
2016        oobbuf = this->oob_buf;
2017
2018        oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2019
2020        /* Loop until all data write */
2021        while (written < len) {
2022                int thislen = min_t(int, oobsize, len - written);
2023
2024                cond_resched();
2025
2026                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2027
2028                /* We send data to spare ram with oobsize
2029                 * to prevent byte access */
2030                memset(oobbuf, 0xff, mtd->oobsize);
2031                if (mode == MTD_OPS_AUTO_OOB)
2032                        onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2033                else
2034                        memcpy(oobbuf + column, buf, thislen);
2035                this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2036
2037                if (ONENAND_IS_4KB_PAGE(this)) {
2038                        /* Set main area of DataRAM to 0xff*/
2039                        memset(this->page_buf, 0xff, mtd->writesize);
2040                        this->write_bufferram(mtd, ONENAND_DATARAM,
2041                                         this->page_buf, 0, mtd->writesize);
2042                }
2043
2044                this->command(mtd, oobcmd, to, mtd->oobsize);
2045
2046                onenand_update_bufferram(mtd, to, 0);
2047                if (ONENAND_IS_2PLANE(this)) {
2048                        ONENAND_SET_BUFFERRAM1(this);
2049                        onenand_update_bufferram(mtd, to + this->writesize, 0);
2050                }
2051
2052                ret = this->wait(mtd, FL_WRITING);
2053                if (ret) {
2054                        printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2055                        break;
2056                }
2057
2058                ret = onenand_verify_oob(mtd, oobbuf, to);
2059                if (ret) {
2060                        printk(KERN_ERR "%s: verify failed %d\n",
2061                                __func__, ret);
2062                        break;
2063                }
2064
2065                written += thislen;
2066                if (written == len)
2067                        break;
2068
2069                to += mtd->writesize;
2070                buf += thislen;
2071                column = 0;
2072        }
2073
2074        ops->oobretlen = written;
2075
2076        return ret;
2077}
2078
2079/**
2080 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2081 * @param mtd:          MTD device structure
2082 * @param to:           offset to write
2083 * @param ops:          oob operation description structure
2084 */
2085static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2086                             struct mtd_oob_ops *ops)
2087{
2088        int ret;
2089
2090        switch (ops->mode) {
2091        case MTD_OPS_PLACE_OOB:
2092        case MTD_OPS_AUTO_OOB:
2093                break;
2094        case MTD_OPS_RAW:
2095                /* Not implemented yet */
2096        default:
2097                return -EINVAL;
2098        }
2099
2100        onenand_get_device(mtd, FL_WRITING);
2101        if (ops->datbuf)
2102                ret = onenand_write_ops_nolock(mtd, to, ops);
2103        else
2104                ret = onenand_write_oob_nolock(mtd, to, ops);
2105        onenand_release_device(mtd);
2106
2107        return ret;
2108}
2109
2110/**
2111 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2112 * @param mtd           MTD device structure
2113 * @param ofs           offset from device start
2114 * @param allowbbt      1, if its allowed to access the bbt area
2115 *
2116 * Check, if the block is bad. Either by reading the bad block table or
2117 * calling of the scan function.
2118 */
2119static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2120{
2121        struct onenand_chip *this = mtd->priv;
2122        struct bbm_info *bbm = this->bbm;
2123
2124        /* Return info from the table */
2125        return bbm->isbad_bbt(mtd, ofs, allowbbt);
2126}
2127
2128
2129static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2130                                           struct erase_info *instr)
2131{
2132        struct onenand_chip *this = mtd->priv;
2133        loff_t addr = instr->addr;
2134        int len = instr->len;
2135        unsigned int block_size = (1 << this->erase_shift);
2136        int ret = 0;
2137
2138        while (len) {
2139                this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2140                ret = this->wait(mtd, FL_VERIFYING_ERASE);
2141                if (ret) {
2142                        printk(KERN_ERR "%s: Failed verify, block %d\n",
2143                               __func__, onenand_block(this, addr));
2144                        instr->fail_addr = addr;
2145                        return -1;
2146                }
2147                len -= block_size;
2148                addr += block_size;
2149        }
2150        return 0;
2151}
2152
2153/**
2154 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2155 * @param mtd           MTD device structure
2156 * @param instr         erase instruction
2157 * @param region        erase region
2158 *
2159 * Erase one or more blocks up to 64 block at a time
2160 */
2161static int onenand_multiblock_erase(struct mtd_info *mtd,
2162                                    struct erase_info *instr,
2163                                    unsigned int block_size)
2164{
2165        struct onenand_chip *this = mtd->priv;
2166        loff_t addr = instr->addr;
2167        int len = instr->len;
2168        int eb_count = 0;
2169        int ret = 0;
2170        int bdry_block = 0;
2171
2172        if (ONENAND_IS_DDP(this)) {
2173                loff_t bdry_addr = this->chipsize >> 1;
2174                if (addr < bdry_addr && (addr + len) > bdry_addr)
2175                        bdry_block = bdry_addr >> this->erase_shift;
2176        }
2177
2178        /* Pre-check bbs */
2179        while (len) {
2180                /* Check if we have a bad block, we do not erase bad blocks */
2181                if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2182                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2183                               "at addr 0x%012llx\n",
2184                               __func__, (unsigned long long) addr);
2185                        return -EIO;
2186                }
2187                len -= block_size;
2188                addr += block_size;
2189        }
2190
2191        len = instr->len;
2192        addr = instr->addr;
2193
2194        /* loop over 64 eb batches */
2195        while (len) {
2196                struct erase_info verify_instr = *instr;
2197                int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2198
2199                verify_instr.addr = addr;
2200                verify_instr.len = 0;
2201
2202                /* do not cross chip boundary */
2203                if (bdry_block) {
2204                        int this_block = (addr >> this->erase_shift);
2205
2206                        if (this_block < bdry_block) {
2207                                max_eb_count = min(max_eb_count,
2208                                                   (bdry_block - this_block));
2209                        }
2210                }
2211
2212                eb_count = 0;
2213
2214                while (len > block_size && eb_count < (max_eb_count - 1)) {
2215                        this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2216                                      addr, block_size);
2217                        onenand_invalidate_bufferram(mtd, addr, block_size);
2218
2219                        ret = this->wait(mtd, FL_PREPARING_ERASE);
2220                        if (ret) {
2221                                printk(KERN_ERR "%s: Failed multiblock erase, "
2222                                       "block %d\n", __func__,
2223                                       onenand_block(this, addr));
2224                                instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2225                                return -EIO;
2226                        }
2227
2228                        len -= block_size;
2229                        addr += block_size;
2230                        eb_count++;
2231                }
2232
2233                /* last block of 64-eb series */
2234                cond_resched();
2235                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2236                onenand_invalidate_bufferram(mtd, addr, block_size);
2237
2238                ret = this->wait(mtd, FL_ERASING);
2239                /* Check if it is write protected */
2240                if (ret) {
2241                        printk(KERN_ERR "%s: Failed erase, block %d\n",
2242                               __func__, onenand_block(this, addr));
2243                        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2244                        return -EIO;
2245                }
2246
2247                len -= block_size;
2248                addr += block_size;
2249                eb_count++;
2250
2251                /* verify */
2252                verify_instr.len = eb_count * block_size;
2253                if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2254                        instr->fail_addr = verify_instr.fail_addr;
2255                        return -EIO;
2256                }
2257
2258        }
2259        return 0;
2260}
2261
2262
2263/**
2264 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2265 * @param mtd           MTD device structure
2266 * @param instr         erase instruction
2267 * @param region        erase region
2268 * @param block_size    erase block size
2269 *
2270 * Erase one or more blocks one block at a time
2271 */
2272static int onenand_block_by_block_erase(struct mtd_info *mtd,
2273                                        struct erase_info *instr,
2274                                        struct mtd_erase_region_info *region,
2275                                        unsigned int block_size)
2276{
2277        struct onenand_chip *this = mtd->priv;
2278        loff_t addr = instr->addr;
2279        int len = instr->len;
2280        loff_t region_end = 0;
2281        int ret = 0;
2282
2283        if (region) {
2284                /* region is set for Flex-OneNAND */
2285                region_end = region->offset + region->erasesize * region->numblocks;
2286        }
2287
2288        /* Loop through the blocks */
2289        while (len) {
2290                cond_resched();
2291
2292                /* Check if we have a bad block, we do not erase bad blocks */
2293                if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2294                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2295                                        "at addr 0x%012llx\n",
2296                                        __func__, (unsigned long long) addr);
2297                        return -EIO;
2298                }
2299
2300                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2301
2302                onenand_invalidate_bufferram(mtd, addr, block_size);
2303
2304                ret = this->wait(mtd, FL_ERASING);
2305                /* Check, if it is write protected */
2306                if (ret) {
2307                        printk(KERN_ERR "%s: Failed erase, block %d\n",
2308                                __func__, onenand_block(this, addr));
2309                        instr->fail_addr = addr;
2310                        return -EIO;
2311                }
2312
2313                len -= block_size;
2314                addr += block_size;
2315
2316                if (region && addr == region_end) {
2317                        if (!len)
2318                                break;
2319                        region++;
2320
2321                        block_size = region->erasesize;
2322                        region_end = region->offset + region->erasesize * region->numblocks;
2323
2324                        if (len & (block_size - 1)) {
2325                                /* FIXME: This should be handled at MTD partitioning level. */
2326                                printk(KERN_ERR "%s: Unaligned address\n",
2327                                        __func__);
2328                                return -EIO;
2329                        }
2330                }
2331        }
2332        return 0;
2333}
2334
2335/**
2336 * onenand_erase - [MTD Interface] erase block(s)
2337 * @param mtd           MTD device structure
2338 * @param instr         erase instruction
2339 *
2340 * Erase one or more blocks
2341 */
2342static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2343{
2344        struct onenand_chip *this = mtd->priv;
2345        unsigned int block_size;
2346        loff_t addr = instr->addr;
2347        loff_t len = instr->len;
2348        int ret = 0;
2349        struct mtd_erase_region_info *region = NULL;
2350        loff_t region_offset = 0;
2351
2352        pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2353                        (unsigned long long)instr->addr,
2354                        (unsigned long long)instr->len);
2355
2356        if (FLEXONENAND(this)) {
2357                /* Find the eraseregion of this address */
2358                int i = flexonenand_region(mtd, addr);
2359
2360                region = &mtd->eraseregions[i];
2361                block_size = region->erasesize;
2362
2363                /* Start address within region must align on block boundary.
2364                 * Erase region's start offset is always block start address.
2365                 */
2366                region_offset = region->offset;
2367        } else
2368                block_size = 1 << this->erase_shift;
2369
2370        /* Start address must align on block boundary */
2371        if (unlikely((addr - region_offset) & (block_size - 1))) {
2372                printk(KERN_ERR "%s: Unaligned address\n", __func__);
2373                return -EINVAL;
2374        }
2375
2376        /* Length must align on block boundary */
2377        if (unlikely(len & (block_size - 1))) {
2378                printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2379                return -EINVAL;
2380        }
2381
2382        /* Grab the lock and see if the device is available */
2383        onenand_get_device(mtd, FL_ERASING);
2384
2385        if (ONENAND_IS_4KB_PAGE(this) || region ||
2386            instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2387                /* region is set for Flex-OneNAND (no mb erase) */
2388                ret = onenand_block_by_block_erase(mtd, instr,
2389                                                   region, block_size);
2390        } else {
2391                ret = onenand_multiblock_erase(mtd, instr, block_size);
2392        }
2393
2394        /* Deselect and wake up anyone waiting on the device */
2395        onenand_release_device(mtd);
2396
2397        return ret;
2398}
2399
2400/**
2401 * onenand_sync - [MTD Interface] sync
2402 * @param mtd           MTD device structure
2403 *
2404 * Sync is actually a wait for chip ready function
2405 */
2406static void onenand_sync(struct mtd_info *mtd)
2407{
2408        pr_debug("%s: called\n", __func__);
2409
2410        /* Grab the lock and see if the device is available */
2411        onenand_get_device(mtd, FL_SYNCING);
2412
2413        /* Release it and go back */
2414        onenand_release_device(mtd);
2415}
2416
2417/**
2418 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2419 * @param mtd           MTD device structure
2420 * @param ofs           offset relative to mtd start
2421 *
2422 * Check whether the block is bad
2423 */
2424static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2425{
2426        int ret;
2427
2428        onenand_get_device(mtd, FL_READING);
2429        ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2430        onenand_release_device(mtd);
2431        return ret;
2432}
2433
2434/**
2435 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2436 * @param mtd           MTD device structure
2437 * @param ofs           offset from device start
2438 *
2439 * This is the default implementation, which can be overridden by
2440 * a hardware specific driver.
2441 */
2442static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2443{
2444        struct onenand_chip *this = mtd->priv;
2445        struct bbm_info *bbm = this->bbm;
2446        u_char buf[2] = {0, 0};
2447        struct mtd_oob_ops ops = {
2448                .mode = MTD_OPS_PLACE_OOB,
2449                .ooblen = 2,
2450                .oobbuf = buf,
2451                .ooboffs = 0,
2452        };
2453        int block;
2454
2455        /* Get block number */
2456        block = onenand_block(this, ofs);
2457        if (bbm->bbt)
2458                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2459
2460        /* We write two bytes, so we don't have to mess with 16-bit access */
2461        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2462        /* FIXME : What to do when marking SLC block in partition
2463         *         with MLC erasesize? For now, it is not advisable to
2464         *         create partitions containing both SLC and MLC regions.
2465         */
2466        return onenand_write_oob_nolock(mtd, ofs, &ops);
2467}
2468
2469/**
2470 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2471 * @param mtd           MTD device structure
2472 * @param ofs           offset relative to mtd start
2473 *
2474 * Mark the block as bad
2475 */
2476static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2477{
2478        struct onenand_chip *this = mtd->priv;
2479        int ret;
2480
2481        ret = onenand_block_isbad(mtd, ofs);
2482        if (ret) {
2483                /* If it was bad already, return success and do nothing */
2484                if (ret > 0)
2485                        return 0;
2486                return ret;
2487        }
2488
2489        onenand_get_device(mtd, FL_WRITING);
2490        ret = this->block_markbad(mtd, ofs);
2491        onenand_release_device(mtd);
2492        return ret;
2493}
2494
2495/**
2496 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2497 * @param mtd           MTD device structure
2498 * @param ofs           offset relative to mtd start
2499 * @param len           number of bytes to lock or unlock
2500 * @param cmd           lock or unlock command
2501 *
2502 * Lock or unlock one or more blocks
2503 */
2504static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2505{
2506        struct onenand_chip *this = mtd->priv;
2507        int start, end, block, value, status;
2508        int wp_status_mask;
2509
2510        start = onenand_block(this, ofs);
2511        end = onenand_block(this, ofs + len) - 1;
2512
2513        if (cmd == ONENAND_CMD_LOCK)
2514                wp_status_mask = ONENAND_WP_LS;
2515        else
2516                wp_status_mask = ONENAND_WP_US;
2517
2518        /* Continuous lock scheme */
2519        if (this->options & ONENAND_HAS_CONT_LOCK) {
2520                /* Set start block address */
2521                this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2522                /* Set end block address */
2523                this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2524                /* Write lock command */
2525                this->command(mtd, cmd, 0, 0);
2526
2527                /* There's no return value */
2528                this->wait(mtd, FL_LOCKING);
2529
2530                /* Sanity check */
2531                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2532                    & ONENAND_CTRL_ONGO)
2533                        continue;
2534
2535                /* Check lock status */
2536                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2537                if (!(status & wp_status_mask))
2538                        printk(KERN_ERR "%s: wp status = 0x%x\n",
2539                                __func__, status);
2540
2541                return 0;
2542        }
2543
2544        /* Block lock scheme */
2545        for (block = start; block < end + 1; block++) {
2546                /* Set block address */
2547                value = onenand_block_address(this, block);
2548                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2549                /* Select DataRAM for DDP */
2550                value = onenand_bufferram_address(this, block);
2551                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2552                /* Set start block address */
2553                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2554                /* Write lock command */
2555                this->command(mtd, cmd, 0, 0);
2556
2557                /* There's no return value */
2558                this->wait(mtd, FL_LOCKING);
2559
2560                /* Sanity check */
2561                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2562                    & ONENAND_CTRL_ONGO)
2563                        continue;
2564
2565                /* Check lock status */
2566                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2567                if (!(status & wp_status_mask))
2568                        printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2569                                __func__, block, status);
2570        }
2571
2572        return 0;
2573}
2574
2575/**
2576 * onenand_lock - [MTD Interface] Lock block(s)
2577 * @param mtd           MTD device structure
2578 * @param ofs           offset relative to mtd start
2579 * @param len           number of bytes to unlock
2580 *
2581 * Lock one or more blocks
2582 */
2583static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2584{
2585        int ret;
2586
2587        onenand_get_device(mtd, FL_LOCKING);
2588        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2589        onenand_release_device(mtd);
2590        return ret;
2591}
2592
2593/**
2594 * onenand_unlock - [MTD Interface] Unlock block(s)
2595 * @param mtd           MTD device structure
2596 * @param ofs           offset relative to mtd start
2597 * @param len           number of bytes to unlock
2598 *
2599 * Unlock one or more blocks
2600 */
2601static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2602{
2603        int ret;
2604
2605        onenand_get_device(mtd, FL_LOCKING);
2606        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2607        onenand_release_device(mtd);
2608        return ret;
2609}
2610
2611/**
2612 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2613 * @param this          onenand chip data structure
2614 *
2615 * Check lock status
2616 */
2617static int onenand_check_lock_status(struct onenand_chip *this)
2618{
2619        unsigned int value, block, status;
2620        unsigned int end;
2621
2622        end = this->chipsize >> this->erase_shift;
2623        for (block = 0; block < end; block++) {
2624                /* Set block address */
2625                value = onenand_block_address(this, block);
2626                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2627                /* Select DataRAM for DDP */
2628                value = onenand_bufferram_address(this, block);
2629                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2630                /* Set start block address */
2631                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2632
2633                /* Check lock status */
2634                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2635                if (!(status & ONENAND_WP_US)) {
2636                        printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2637                                __func__, block, status);
2638                        return 0;
2639                }
2640        }
2641
2642        return 1;
2643}
2644
2645/**
2646 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2647 * @param mtd           MTD device structure
2648 *
2649 * Unlock all blocks
2650 */
2651static void onenand_unlock_all(struct mtd_info *mtd)
2652{
2653        struct onenand_chip *this = mtd->priv;
2654        loff_t ofs = 0;
2655        loff_t len = mtd->size;
2656
2657        if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2658                /* Set start block address */
2659                this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2660                /* Write unlock command */
2661                this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2662
2663                /* There's no return value */
2664                this->wait(mtd, FL_LOCKING);
2665
2666                /* Sanity check */
2667                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2668                    & ONENAND_CTRL_ONGO)
2669                        continue;
2670
2671                /* Don't check lock status */
2672                if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2673                        return;
2674
2675                /* Check lock status */
2676                if (onenand_check_lock_status(this))
2677                        return;
2678
2679                /* Workaround for all block unlock in DDP */
2680                if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2681                        /* All blocks on another chip */
2682                        ofs = this->chipsize >> 1;
2683                        len = this->chipsize >> 1;
2684                }
2685        }
2686
2687        onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2688}
2689
2690#ifdef CONFIG_MTD_ONENAND_OTP
2691
2692/**
2693 * onenand_otp_command - Send OTP specific command to OneNAND device
2694 * @param mtd    MTD device structure
2695 * @param cmd    the command to be sent
2696 * @param addr   offset to read from or write to
2697 * @param len    number of bytes to read or write
2698 */
2699static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2700                                size_t len)
2701{
2702        struct onenand_chip *this = mtd->priv;
2703        int value, block, page;
2704
2705        /* Address translation */
2706        switch (cmd) {
2707        case ONENAND_CMD_OTP_ACCESS:
2708                block = (int) (addr >> this->erase_shift);
2709                page = -1;
2710                break;
2711
2712        default:
2713                block = (int) (addr >> this->erase_shift);
2714                page = (int) (addr >> this->page_shift);
2715
2716                if (ONENAND_IS_2PLANE(this)) {
2717                        /* Make the even block number */
2718                        block &= ~1;
2719                        /* Is it the odd plane? */
2720                        if (addr & this->writesize)
2721                                block++;
2722                        page >>= 1;
2723                }
2724                page &= this->page_mask;
2725                break;
2726        }
2727
2728        if (block != -1) {
2729                /* Write 'DFS, FBA' of Flash */
2730                value = onenand_block_address(this, block);
2731                this->write_word(value, this->base +
2732                                ONENAND_REG_START_ADDRESS1);
2733        }
2734
2735        if (page != -1) {
2736                /* Now we use page size operation */
2737                int sectors = 4, count = 4;
2738                int dataram;
2739
2740                switch (cmd) {
2741                default:
2742                        if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2743                                cmd = ONENAND_CMD_2X_PROG;
2744                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
2745                        break;
2746                }
2747
2748                /* Write 'FPA, FSA' of Flash */
2749                value = onenand_page_address(page, sectors);
2750                this->write_word(value, this->base +
2751                                ONENAND_REG_START_ADDRESS8);
2752
2753                /* Write 'BSA, BSC' of DataRAM */
2754                value = onenand_buffer_address(dataram, sectors, count);
2755                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2756        }
2757
2758        /* Interrupt clear */
2759        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2760
2761        /* Write command */
2762        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2763
2764        return 0;
2765}
2766
2767/**
2768 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2769 * @param mtd           MTD device structure
2770 * @param to            offset to write to
2771 * @param len           number of bytes to write
2772 * @param retlen        pointer to variable to store the number of written bytes
2773 * @param buf           the data to write
2774 *
2775 * OneNAND write out-of-band only for OTP
2776 */
2777static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2778                                    struct mtd_oob_ops *ops)
2779{
2780        struct onenand_chip *this = mtd->priv;
2781        int column, ret = 0, oobsize;
2782        int written = 0;
2783        u_char *oobbuf;
2784        size_t len = ops->ooblen;
2785        const u_char *buf = ops->oobbuf;
2786        int block, value, status;
2787
2788        to += ops->ooboffs;
2789
2790        /* Initialize retlen, in case of early exit */
2791        ops->oobretlen = 0;
2792
2793        oobsize = mtd->oobsize;
2794
2795        column = to & (mtd->oobsize - 1);
2796
2797        oobbuf = this->oob_buf;
2798
2799        /* Loop until all data write */
2800        while (written < len) {
2801                int thislen = min_t(int, oobsize, len - written);
2802
2803                cond_resched();
2804
2805                block = (int) (to >> this->erase_shift);
2806                /*
2807                 * Write 'DFS, FBA' of Flash
2808                 * Add: F100h DQ=DFS, FBA
2809                 */
2810
2811                value = onenand_block_address(this, block);
2812                this->write_word(value, this->base +
2813                                ONENAND_REG_START_ADDRESS1);
2814
2815                /*
2816                 * Select DataRAM for DDP
2817                 * Add: F101h DQ=DBS
2818                 */
2819
2820                value = onenand_bufferram_address(this, block);
2821                this->write_word(value, this->base +
2822                                ONENAND_REG_START_ADDRESS2);
2823                ONENAND_SET_NEXT_BUFFERRAM(this);
2824
2825                /*
2826                 * Enter OTP access mode
2827                 */
2828                this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2829                this->wait(mtd, FL_OTPING);
2830
2831                /* We send data to spare ram with oobsize
2832                 * to prevent byte access */
2833                memcpy(oobbuf + column, buf, thislen);
2834
2835                /*
2836                 * Write Data into DataRAM
2837                 * Add: 8th Word
2838                 * in sector0/spare/page0
2839                 * DQ=XXFCh
2840                 */
2841                this->write_bufferram(mtd, ONENAND_SPARERAM,
2842                                        oobbuf, 0, mtd->oobsize);
2843
2844                onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2845                onenand_update_bufferram(mtd, to, 0);
2846                if (ONENAND_IS_2PLANE(this)) {
2847                        ONENAND_SET_BUFFERRAM1(this);
2848                        onenand_update_bufferram(mtd, to + this->writesize, 0);
2849                }
2850
2851                ret = this->wait(mtd, FL_WRITING);
2852                if (ret) {
2853                        printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2854                        break;
2855                }
2856
2857                /* Exit OTP access mode */
2858                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2859                this->wait(mtd, FL_RESETING);
2860
2861                status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2862                status &= 0x60;
2863
2864                if (status == 0x60) {
2865                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2866                        printk(KERN_DEBUG "1st Block\tLOCKED\n");
2867                        printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2868                } else if (status == 0x20) {
2869                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2870                        printk(KERN_DEBUG "1st Block\tLOCKED\n");
2871                        printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2872                } else if (status == 0x40) {
2873                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2874                        printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2875                        printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2876                } else {
2877                        printk(KERN_DEBUG "Reboot to check\n");
2878                }
2879
2880                written += thislen;
2881                if (written == len)
2882                        break;
2883
2884                to += mtd->writesize;
2885                buf += thislen;
2886                column = 0;
2887        }
2888
2889        ops->oobretlen = written;
2890
2891        return ret;
2892}
2893
2894/* Internal OTP operation */
2895typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2896                size_t *retlen, u_char *buf);
2897
2898/**
2899 * do_otp_read - [DEFAULT] Read OTP block area
2900 * @param mtd           MTD device structure
2901 * @param from          The offset to read
2902 * @param len           number of bytes to read
2903 * @param retlen        pointer to variable to store the number of readbytes
2904 * @param buf           the databuffer to put/get data
2905 *
2906 * Read OTP block area.
2907 */
2908static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2909                size_t *retlen, u_char *buf)
2910{
2911        struct onenand_chip *this = mtd->priv;
2912        struct mtd_oob_ops ops = {
2913                .len    = len,
2914                .ooblen = 0,
2915                .datbuf = buf,
2916                .oobbuf = NULL,
2917        };
2918        int ret;
2919
2920        /* Enter OTP access mode */
2921        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2922        this->wait(mtd, FL_OTPING);
2923
2924        ret = ONENAND_IS_4KB_PAGE(this) ?
2925                onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2926                onenand_read_ops_nolock(mtd, from, &ops);
2927
2928        /* Exit OTP access mode */
2929        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2930        this->wait(mtd, FL_RESETING);
2931
2932        return ret;
2933}
2934
2935/**
2936 * do_otp_write - [DEFAULT] Write OTP block area
2937 * @param mtd           MTD device structure
2938 * @param to            The offset to write
2939 * @param len           number of bytes to write
2940 * @param retlen        pointer to variable to store the number of write bytes
2941 * @param buf           the databuffer to put/get data
2942 *
2943 * Write OTP block area.
2944 */
2945static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2946                size_t *retlen, u_char *buf)
2947{
2948        struct onenand_chip *this = mtd->priv;
2949        unsigned char *pbuf = buf;
2950        int ret;
2951        struct mtd_oob_ops ops;
2952
2953        /* Force buffer page aligned */
2954        if (len < mtd->writesize) {
2955                memcpy(this->page_buf, buf, len);
2956                memset(this->page_buf + len, 0xff, mtd->writesize - len);
2957                pbuf = this->page_buf;
2958                len = mtd->writesize;
2959        }
2960
2961        /* Enter OTP access mode */
2962        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2963        this->wait(mtd, FL_OTPING);
2964
2965        ops.len = len;
2966        ops.ooblen = 0;
2967        ops.datbuf = pbuf;
2968        ops.oobbuf = NULL;
2969        ret = onenand_write_ops_nolock(mtd, to, &ops);
2970        *retlen = ops.retlen;
2971
2972        /* Exit OTP access mode */
2973        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2974        this->wait(mtd, FL_RESETING);
2975
2976        return ret;
2977}
2978
2979/**
2980 * do_otp_lock - [DEFAULT] Lock OTP block area
2981 * @param mtd           MTD device structure
2982 * @param from          The offset to lock
2983 * @param len           number of bytes to lock
2984 * @param retlen        pointer to variable to store the number of lock bytes
2985 * @param buf           the databuffer to put/get data
2986 *
2987 * Lock OTP block area.
2988 */
2989static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2990                size_t *retlen, u_char *buf)
2991{
2992        struct onenand_chip *this = mtd->priv;
2993        struct mtd_oob_ops ops;
2994        int ret;
2995
2996        if (FLEXONENAND(this)) {
2997
2998                /* Enter OTP access mode */
2999                this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3000                this->wait(mtd, FL_OTPING);
3001                /*
3002                 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3003                 * main area of page 49.
3004                 */
3005                ops.len = mtd->writesize;
3006                ops.ooblen = 0;
3007                ops.datbuf = buf;
3008                ops.oobbuf = NULL;
3009                ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3010                *retlen = ops.retlen;
3011
3012                /* Exit OTP access mode */
3013                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3014                this->wait(mtd, FL_RESETING);
3015        } else {
3016                ops.mode = MTD_OPS_PLACE_OOB;
3017                ops.ooblen = len;
3018                ops.oobbuf = buf;
3019                ops.ooboffs = 0;
3020                ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3021                *retlen = ops.oobretlen;
3022        }
3023
3024        return ret;
3025}
3026
3027/**
3028 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3029 * @param mtd           MTD device structure
3030 * @param from          The offset to read/write
3031 * @param len           number of bytes to read/write
3032 * @param retlen        pointer to variable to store the number of read bytes
3033 * @param buf           the databuffer to put/get data
3034 * @param action        do given action
3035 * @param mode          specify user and factory
3036 *
3037 * Handle OTP operation.
3038 */
3039static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3040                        size_t *retlen, u_char *buf,
3041                        otp_op_t action, int mode)
3042{
3043        struct onenand_chip *this = mtd->priv;
3044        int otp_pages;
3045        int density;
3046        int ret = 0;
3047
3048        *retlen = 0;
3049
3050        density = onenand_get_density(this->device_id);
3051        if (density < ONENAND_DEVICE_DENSITY_512Mb)
3052                otp_pages = 20;
3053        else
3054                otp_pages = 50;
3055
3056        if (mode == MTD_OTP_FACTORY) {
3057                from += mtd->writesize * otp_pages;
3058                otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3059        }
3060
3061        /* Check User/Factory boundary */
3062        if (mode == MTD_OTP_USER) {
3063                if (mtd->writesize * otp_pages < from + len)
3064                        return 0;
3065        } else {
3066                if (mtd->writesize * otp_pages <  len)
3067                        return 0;
3068        }
3069
3070        onenand_get_device(mtd, FL_OTPING);
3071        while (len > 0 && otp_pages > 0) {
3072                if (!action) {  /* OTP Info functions */
3073                        struct otp_info *otpinfo;
3074
3075                        len -= sizeof(struct otp_info);
3076                        if (len <= 0) {
3077                                ret = -ENOSPC;
3078                                break;
3079                        }
3080
3081                        otpinfo = (struct otp_info *) buf;
3082                        otpinfo->start = from;
3083                        otpinfo->length = mtd->writesize;
3084                        otpinfo->locked = 0;
3085
3086                        from += mtd->writesize;
3087                        buf += sizeof(struct otp_info);
3088                        *retlen += sizeof(struct otp_info);
3089                } else {
3090                        size_t tmp_retlen;
3091
3092                        ret = action(mtd, from, len, &tmp_retlen, buf);
3093                        if (ret)
3094                                break;
3095
3096                        buf += tmp_retlen;
3097                        len -= tmp_retlen;
3098                        *retlen += tmp_retlen;
3099
3100                }
3101                otp_pages--;
3102        }
3103        onenand_release_device(mtd);
3104
3105        return ret;
3106}
3107
3108/**
3109 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3110 * @param mtd           MTD device structure
3111 * @param len           number of bytes to read
3112 * @param retlen        pointer to variable to store the number of read bytes
3113 * @param buf           the databuffer to put/get data
3114 *
3115 * Read factory OTP info.
3116 */
3117static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3118                                      size_t *retlen, struct otp_info *buf)
3119{
3120        return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3121                                MTD_OTP_FACTORY);
3122}
3123
3124/**
3125 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3126 * @param mtd           MTD device structure
3127 * @param from          The offset to read
3128 * @param len           number of bytes to read
3129 * @param retlen        pointer to variable to store the number of read bytes
3130 * @param buf           the databuffer to put/get data
3131 *
3132 * Read factory OTP area.
3133 */
3134static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3135                        size_t len, size_t *retlen, u_char *buf)
3136{
3137        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3138}
3139
3140/**
3141 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3142 * @param mtd           MTD device structure
3143 * @param retlen        pointer to variable to store the number of read bytes
3144 * @param len           number of bytes to read
3145 * @param buf           the databuffer to put/get data
3146 *
3147 * Read user OTP info.
3148 */
3149static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3150                                      size_t *retlen, struct otp_info *buf)
3151{
3152        return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3153                                MTD_OTP_USER);
3154}
3155
3156/**
3157 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3158 * @param mtd           MTD device structure
3159 * @param from          The offset to read
3160 * @param len           number of bytes to read
3161 * @param retlen        pointer to variable to store the number of read bytes
3162 * @param buf           the databuffer to put/get data
3163 *
3164 * Read user OTP area.
3165 */
3166static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3167                        size_t len, size_t *retlen, u_char *buf)
3168{
3169        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3170}
3171
3172/**
3173 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3174 * @param mtd           MTD device structure
3175 * @param from          The offset to write
3176 * @param len           number of bytes to write
3177 * @param retlen        pointer to variable to store the number of write bytes
3178 * @param buf           the databuffer to put/get data
3179 *
3180 * Write user OTP area.
3181 */
3182static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3183                        size_t len, size_t *retlen, u_char *buf)
3184{
3185        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3186}
3187
3188/**
3189 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3190 * @param mtd           MTD device structure
3191 * @param from          The offset to lock
3192 * @param len           number of bytes to unlock
3193 *
3194 * Write lock mark on spare area in page 0 in OTP block
3195 */
3196static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3197                        size_t len)
3198{
3199        struct onenand_chip *this = mtd->priv;
3200        u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3201        size_t retlen;
3202        int ret;
3203        unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3204
3205        memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3206                                                 : mtd->oobsize);
3207        /*
3208         * Write lock mark to 8th word of sector0 of page0 of the spare0.
3209         * We write 16 bytes spare area instead of 2 bytes.
3210         * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3211         * main area of page 49.
3212         */
3213
3214        from = 0;
3215        len = FLEXONENAND(this) ? mtd->writesize : 16;
3216
3217        /*
3218         * Note: OTP lock operation
3219         *       OTP block : 0xXXFC                     XX 1111 1100
3220         *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3221         *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3222         */
3223        if (FLEXONENAND(this))
3224                otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3225
3226        /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3227        if (otp == 1)
3228                buf[otp_lock_offset] = 0xFC;
3229        else if (otp == 2)
3230                buf[otp_lock_offset] = 0xF3;
3231        else if (otp == 3)
3232                buf[otp_lock_offset] = 0xF0;
3233        else if (otp != 0)
3234                printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3235
3236        ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3237
3238        return ret ? : retlen;
3239}
3240
3241#endif  /* CONFIG_MTD_ONENAND_OTP */
3242
3243/**
3244 * onenand_check_features - Check and set OneNAND features
3245 * @param mtd           MTD data structure
3246 *
3247 * Check and set OneNAND features
3248 * - lock scheme
3249 * - two plane
3250 */
3251static void onenand_check_features(struct mtd_info *mtd)
3252{
3253        struct onenand_chip *this = mtd->priv;
3254        unsigned int density, process, numbufs;
3255
3256        /* Lock scheme depends on density and process */
3257        density = onenand_get_density(this->device_id);
3258        process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3259        numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3260
3261        /* Lock scheme */
3262        switch (density) {
3263        case ONENAND_DEVICE_DENSITY_4Gb:
3264                if (ONENAND_IS_DDP(this))
3265                        this->options |= ONENAND_HAS_2PLANE;
3266                else if (numbufs == 1) {
3267                        this->options |= ONENAND_HAS_4KB_PAGE;
3268                        this->options |= ONENAND_HAS_CACHE_PROGRAM;
3269                        /*
3270                         * There are two different 4KiB pagesize chips
3271                         * and no way to detect it by H/W config values.
3272                         *
3273                         * To detect the correct NOP for each chips,
3274                         * It should check the version ID as workaround.
3275                         *
3276                         * Now it has as following
3277                         * KFM4G16Q4M has NOP 4 with version ID 0x0131
3278                         * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3279                         */
3280                        if ((this->version_id & 0xf) == 0xe)
3281                                this->options |= ONENAND_HAS_NOP_1;
3282                }
3283
3284        case ONENAND_DEVICE_DENSITY_2Gb:
3285                /* 2Gb DDP does not have 2 plane */
3286                if (!ONENAND_IS_DDP(this))
3287                        this->options |= ONENAND_HAS_2PLANE;
3288                this->options |= ONENAND_HAS_UNLOCK_ALL;
3289
3290        case ONENAND_DEVICE_DENSITY_1Gb:
3291                /* A-Die has all block unlock */
3292                if (process)
3293                        this->options |= ONENAND_HAS_UNLOCK_ALL;
3294                break;
3295
3296        default:
3297                /* Some OneNAND has continuous lock scheme */
3298                if (!process)
3299                        this->options |= ONENAND_HAS_CONT_LOCK;
3300                break;
3301        }
3302
3303        /* The MLC has 4KiB pagesize. */
3304        if (ONENAND_IS_MLC(this))
3305                this->options |= ONENAND_HAS_4KB_PAGE;
3306
3307        if (ONENAND_IS_4KB_PAGE(this))
3308                this->options &= ~ONENAND_HAS_2PLANE;
3309
3310        if (FLEXONENAND(this)) {
3311                this->options &= ~ONENAND_HAS_CONT_LOCK;
3312                this->options |= ONENAND_HAS_UNLOCK_ALL;
3313        }
3314
3315        if (this->options & ONENAND_HAS_CONT_LOCK)
3316                printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3317        if (this->options & ONENAND_HAS_UNLOCK_ALL)
3318                printk(KERN_DEBUG "Chip support all block unlock\n");
3319        if (this->options & ONENAND_HAS_2PLANE)
3320                printk(KERN_DEBUG "Chip has 2 plane\n");
3321        if (this->options & ONENAND_HAS_4KB_PAGE)
3322                printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3323        if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3324                printk(KERN_DEBUG "Chip has cache program feature\n");
3325}
3326
3327/**
3328 * onenand_print_device_info - Print device & version ID
3329 * @param device        device ID
3330 * @param version       version ID
3331 *
3332 * Print device & version ID
3333 */
3334static void onenand_print_device_info(int device, int version)
3335{
3336        int vcc, demuxed, ddp, density, flexonenand;
3337
3338        vcc = device & ONENAND_DEVICE_VCC_MASK;
3339        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3340        ddp = device & ONENAND_DEVICE_IS_DDP;
3341        density = onenand_get_density(device);
3342        flexonenand = device & DEVICE_IS_FLEXONENAND;
3343        printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3344                demuxed ? "" : "Muxed ",
3345                flexonenand ? "Flex-" : "",
3346                ddp ? "(DDP)" : "",
3347                (16 << density),
3348                vcc ? "2.65/3.3" : "1.8",
3349                device);
3350        printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3351}
3352
3353static const struct onenand_manufacturers onenand_manuf_ids[] = {
3354        {ONENAND_MFR_SAMSUNG, "Samsung"},
3355        {ONENAND_MFR_NUMONYX, "Numonyx"},
3356};
3357
3358/**
3359 * onenand_check_maf - Check manufacturer ID
3360 * @param manuf         manufacturer ID
3361 *
3362 * Check manufacturer ID
3363 */
3364static int onenand_check_maf(int manuf)
3365{
3366        int size = ARRAY_SIZE(onenand_manuf_ids);
3367        char *name;
3368        int i;
3369
3370        for (i = 0; i < size; i++)
3371                if (manuf == onenand_manuf_ids[i].id)
3372                        break;
3373
3374        if (i < size)
3375                name = onenand_manuf_ids[i].name;
3376        else
3377                name = "Unknown";
3378
3379        printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3380
3381        return (i == size);
3382}
3383
3384/**
3385* flexonenand_get_boundary      - Reads the SLC boundary
3386* @param onenand_info           - onenand info structure
3387**/
3388static int flexonenand_get_boundary(struct mtd_info *mtd)
3389{
3390        struct onenand_chip *this = mtd->priv;
3391        unsigned die, bdry;
3392        int syscfg, locked;
3393
3394        /* Disable ECC */
3395        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3396        this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3397
3398        for (die = 0; die < this->dies; die++) {
3399                this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3400                this->wait(mtd, FL_SYNCING);
3401
3402                this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3403                this->wait(mtd, FL_READING);
3404
3405                bdry = this->read_word(this->base + ONENAND_DATARAM);
3406                if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3407                        locked = 0;
3408                else
3409                        locked = 1;
3410                this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3411
3412                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3413                this->wait(mtd, FL_RESETING);
3414
3415                printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3416                       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3417        }
3418
3419        /* Enable ECC */
3420        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3421        return 0;
3422}
3423
3424/**
3425 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3426 *                        boundary[], diesize[], mtd->size, mtd->erasesize
3427 * @param mtd           - MTD device structure
3428 */
3429static void flexonenand_get_size(struct mtd_info *mtd)
3430{
3431        struct onenand_chip *this = mtd->priv;
3432        int die, i, eraseshift, density;
3433        int blksperdie, maxbdry;
3434        loff_t ofs;
3435
3436        density = onenand_get_density(this->device_id);
3437        blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3438        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3439        maxbdry = blksperdie - 1;
3440        eraseshift = this->erase_shift - 1;
3441
3442        mtd->numeraseregions = this->dies << 1;
3443
3444        /* This fills up the device boundary */
3445        flexonenand_get_boundary(mtd);
3446        die = ofs = 0;
3447        i = -1;
3448        for (; die < this->dies; die++) {
3449                if (!die || this->boundary[die-1] != maxbdry) {
3450                        i++;
3451                        mtd->eraseregions[i].offset = ofs;
3452                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3453                        mtd->eraseregions[i].numblocks =
3454                                                        this->boundary[die] + 1;
3455                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3456                        eraseshift++;
3457                } else {
3458                        mtd->numeraseregions -= 1;
3459                        mtd->eraseregions[i].numblocks +=
3460                                                        this->boundary[die] + 1;
3461                        ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3462                }
3463                if (this->boundary[die] != maxbdry) {
3464                        i++;
3465                        mtd->eraseregions[i].offset = ofs;
3466                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3467                        mtd->eraseregions[i].numblocks = maxbdry ^
3468                                                         this->boundary[die];
3469                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3470                        eraseshift--;
3471                } else
3472                        mtd->numeraseregions -= 1;
3473        }
3474
3475        /* Expose MLC erase size except when all blocks are SLC */
3476        mtd->erasesize = 1 << this->erase_shift;
3477        if (mtd->numeraseregions == 1)
3478                mtd->erasesize >>= 1;
3479
3480        printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3481        for (i = 0; i < mtd->numeraseregions; i++)
3482                printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3483                        " numblocks: %04u]\n",
3484                        (unsigned int) mtd->eraseregions[i].offset,
3485                        mtd->eraseregions[i].erasesize,
3486                        mtd->eraseregions[i].numblocks);
3487
3488        for (die = 0, mtd->size = 0; die < this->dies; die++) {
3489                this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3490                this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3491                                                 << (this->erase_shift - 1);
3492                mtd->size += this->diesize[die];
3493        }
3494}
3495
3496/**
3497 * flexonenand_check_blocks_erased - Check if blocks are erased
3498 * @param mtd_info      - mtd info structure
3499 * @param start         - first erase block to check
3500 * @param end           - last erase block to check
3501 *
3502 * Converting an unerased block from MLC to SLC
3503 * causes byte values to change. Since both data and its ECC
3504 * have changed, reads on the block give uncorrectable error.
3505 * This might lead to the block being detected as bad.
3506 *
3507 * Avoid this by ensuring that the block to be converted is
3508 * erased.
3509 */
3510static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3511{
3512        struct onenand_chip *this = mtd->priv;
3513        int i, ret;
3514        int block;
3515        struct mtd_oob_ops ops = {
3516                .mode = MTD_OPS_PLACE_OOB,
3517                .ooboffs = 0,
3518                .ooblen = mtd->oobsize,
3519                .datbuf = NULL,
3520                .oobbuf = this->oob_buf,
3521        };
3522        loff_t addr;
3523
3524        printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3525
3526        for (block = start; block <= end; block++) {
3527                addr = flexonenand_addr(this, block);
3528                if (onenand_block_isbad_nolock(mtd, addr, 0))
3529                        continue;
3530
3531                /*
3532                 * Since main area write results in ECC write to spare,
3533                 * it is sufficient to check only ECC bytes for change.
3534                 */
3535                ret = onenand_read_oob_nolock(mtd, addr, &ops);
3536                if (ret)
3537                        return ret;
3538
3539                for (i = 0; i < mtd->oobsize; i++)
3540                        if (this->oob_buf[i] != 0xff)
3541                                break;
3542
3543                if (i != mtd->oobsize) {
3544                        printk(KERN_WARNING "%s: Block %d not erased.\n",
3545                                __func__, block);
3546                        return 1;
3547                }
3548        }
3549
3550        return 0;
3551}
3552
3553/**
3554 * flexonenand_set_boundary     - Writes the SLC boundary
3555 * @param mtd                   - mtd info structure
3556 */
3557static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3558                                    int boundary, int lock)
3559{
3560        struct onenand_chip *this = mtd->priv;
3561        int ret, density, blksperdie, old, new, thisboundary;
3562        loff_t addr;
3563
3564        /* Change only once for SDP Flex-OneNAND */
3565        if (die && (!ONENAND_IS_DDP(this)))
3566                return 0;
3567
3568        /* boundary value of -1 indicates no required change */
3569        if (boundary < 0 || boundary == this->boundary[die])
3570                return 0;
3571
3572        density = onenand_get_density(this->device_id);
3573        blksperdie = ((16 << density) << 20) >> this->erase_shift;
3574        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3575
3576        if (boundary >= blksperdie) {
3577                printk(KERN_ERR "%s: Invalid boundary value. "
3578                                "Boundary not changed.\n", __func__);
3579                return -EINVAL;
3580        }
3581
3582        /* Check if converting blocks are erased */
3583        old = this->boundary[die] + (die * this->density_mask);
3584        new = boundary + (die * this->density_mask);
3585        ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3586        if (ret) {
3587                printk(KERN_ERR "%s: Please erase blocks "
3588                                "before boundary change\n", __func__);
3589                return ret;
3590        }
3591
3592        this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3593        this->wait(mtd, FL_SYNCING);
3594
3595        /* Check is boundary is locked */
3596        this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3597        this->wait(mtd, FL_READING);
3598
3599        thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3600        if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3601                printk(KERN_ERR "%s: boundary locked\n", __func__);
3602                ret = 1;
3603                goto out;
3604        }
3605
3606        printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3607                        die, boundary, lock ? "(Locked)" : "(Unlocked)");
3608
3609        addr = die ? this->diesize[0] : 0;
3610
3611        boundary &= FLEXONENAND_PI_MASK;
3612        boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3613
3614        this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3615        ret = this->wait(mtd, FL_ERASING);
3616        if (ret) {
3617                printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3618                       __func__, die);
3619                goto out;
3620        }
3621
3622        this->write_word(boundary, this->base + ONENAND_DATARAM);
3623        this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3624        ret = this->wait(mtd, FL_WRITING);
3625        if (ret) {
3626                printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3627                        __func__, die);
3628                goto out;
3629        }
3630
3631        this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3632        ret = this->wait(mtd, FL_WRITING);
3633out:
3634        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3635        this->wait(mtd, FL_RESETING);
3636        if (!ret)
3637                /* Recalculate device size on boundary change*/
3638                flexonenand_get_size(mtd);
3639
3640        return ret;
3641}
3642
3643/**
3644 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3645 * @param mtd           MTD device structure
3646 *
3647 * OneNAND detection method:
3648 *   Compare the values from command with ones from register
3649 */
3650static int onenand_chip_probe(struct mtd_info *mtd)
3651{
3652        struct onenand_chip *this = mtd->priv;
3653        int bram_maf_id, bram_dev_id, maf_id, dev_id;
3654        int syscfg;
3655
3656        /* Save system configuration 1 */
3657        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3658        /* Clear Sync. Burst Read mode to read BootRAM */
3659        this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3660
3661        /* Send the command for reading device ID from BootRAM */
3662        this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3663
3664        /* Read manufacturer and device IDs from BootRAM */
3665        bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3666        bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3667
3668        /* Reset OneNAND to read default register values */
3669        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3670        /* Wait reset */
3671        this->wait(mtd, FL_RESETING);
3672
3673        /* Restore system configuration 1 */
3674        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3675
3676        /* Check manufacturer ID */
3677        if (onenand_check_maf(bram_maf_id))
3678                return -ENXIO;
3679
3680        /* Read manufacturer and device IDs from Register */
3681        maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3682        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3683
3684        /* Check OneNAND device */
3685        if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3686                return -ENXIO;
3687
3688        return 0;
3689}
3690
3691/**
3692 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3693 * @param mtd           MTD device structure
3694 */
3695static int onenand_probe(struct mtd_info *mtd)
3696{
3697        struct onenand_chip *this = mtd->priv;
3698        int dev_id, ver_id;
3699        int density;
3700        int ret;
3701
3702        ret = this->chip_probe(mtd);
3703        if (ret)
3704                return ret;
3705
3706        /* Device and version IDs from Register */
3707        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3708        ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3709        this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3710
3711        /* Flash device information */
3712        onenand_print_device_info(dev_id, ver_id);
3713        this->device_id = dev_id;
3714        this->version_id = ver_id;
3715
3716        /* Check OneNAND features */
3717        onenand_check_features(mtd);
3718
3719        density = onenand_get_density(dev_id);
3720        if (FLEXONENAND(this)) {
3721                this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3722                /* Maximum possible erase regions */
3723                mtd->numeraseregions = this->dies << 1;
3724                mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3725                                        * (this->dies << 1), GFP_KERNEL);
3726                if (!mtd->eraseregions)
3727                        return -ENOMEM;
3728        }
3729
3730        /*
3731         * For Flex-OneNAND, chipsize represents maximum possible device size.
3732         * mtd->size represents the actual device size.
3733         */
3734        this->chipsize = (16 << density) << 20;
3735
3736        /* OneNAND page size & block size */
3737        /* The data buffer size is equal to page size */
3738        mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3739        /* We use the full BufferRAM */
3740        if (ONENAND_IS_4KB_PAGE(this))
3741                mtd->writesize <<= 1;
3742
3743        mtd->oobsize = mtd->writesize >> 5;
3744        /* Pages per a block are always 64 in OneNAND */
3745        mtd->erasesize = mtd->writesize << 6;
3746        /*
3747         * Flex-OneNAND SLC area has 64 pages per block.
3748         * Flex-OneNAND MLC area has 128 pages per block.
3749         * Expose MLC erase size to find erase_shift and page_mask.
3750         */
3751        if (FLEXONENAND(this))
3752                mtd->erasesize <<= 1;
3753
3754        this->erase_shift = ffs(mtd->erasesize) - 1;
3755        this->page_shift = ffs(mtd->writesize) - 1;
3756        this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3757        /* Set density mask. it is used for DDP */
3758        if (ONENAND_IS_DDP(this))
3759                this->density_mask = this->chipsize >> (this->erase_shift + 1);
3760        /* It's real page size */
3761        this->writesize = mtd->writesize;
3762
3763        /* REVISIT: Multichip handling */
3764
3765        if (FLEXONENAND(this))
3766                flexonenand_get_size(mtd);
3767        else
3768                mtd->size = this->chipsize;
3769
3770        /*
3771         * We emulate the 4KiB page and 256KiB erase block size
3772         * But oobsize is still 64 bytes.
3773         * It is only valid if you turn on 2X program support,
3774         * Otherwise it will be ignored by compiler.
3775         */
3776        if (ONENAND_IS_2PLANE(this)) {
3777                mtd->writesize <<= 1;
3778                mtd->erasesize <<= 1;
3779        }
3780
3781        return 0;
3782}
3783
3784/**
3785 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3786 * @param mtd           MTD device structure
3787 */
3788static int onenand_suspend(struct mtd_info *mtd)
3789{
3790        return onenand_get_device(mtd, FL_PM_SUSPENDED);
3791}
3792
3793/**
3794 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3795 * @param mtd           MTD device structure
3796 */
3797static void onenand_resume(struct mtd_info *mtd)
3798{
3799        struct onenand_chip *this = mtd->priv;
3800
3801        if (this->state == FL_PM_SUSPENDED)
3802                onenand_release_device(mtd);
3803        else
3804                printk(KERN_ERR "%s: resume() called for the chip which is not "
3805                                "in suspended state\n", __func__);
3806}
3807
3808/**
3809 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3810 * @param mtd           MTD device structure
3811 * @param maxchips      Number of chips to scan for
3812 *
3813 * This fills out all the not initialized function pointers
3814 * with the defaults.
3815 * The flash ID is read and the mtd/chip structures are
3816 * filled with the appropriate values.
3817 */
3818int onenand_scan(struct mtd_info *mtd, int maxchips)
3819{
3820        int i, ret;
3821        struct onenand_chip *this = mtd->priv;
3822
3823        if (!this->read_word)
3824                this->read_word = onenand_readw;
3825        if (!this->write_word)
3826                this->write_word = onenand_writew;
3827
3828        if (!this->command)
3829                this->command = onenand_command;
3830        if (!this->wait)
3831                onenand_setup_wait(mtd);
3832        if (!this->bbt_wait)
3833                this->bbt_wait = onenand_bbt_wait;
3834        if (!this->unlock_all)
3835                this->unlock_all = onenand_unlock_all;
3836
3837        if (!this->chip_probe)
3838                this->chip_probe = onenand_chip_probe;
3839
3840        if (!this->read_bufferram)
3841                this->read_bufferram = onenand_read_bufferram;
3842        if (!this->write_bufferram)
3843                this->write_bufferram = onenand_write_bufferram;
3844
3845        if (!this->block_markbad)
3846                this->block_markbad = onenand_default_block_markbad;
3847        if (!this->scan_bbt)
3848                this->scan_bbt = onenand_default_bbt;
3849
3850        if (onenand_probe(mtd))
3851                return -ENXIO;
3852
3853        /* Set Sync. Burst Read after probing */
3854        if (this->mmcontrol) {
3855                printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3856                this->read_bufferram = onenand_sync_read_bufferram;
3857        }
3858
3859        /* Allocate buffers, if necessary */
3860        if (!this->page_buf) {
3861                this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3862                if (!this->page_buf)
3863                        return -ENOMEM;
3864#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3865                this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3866                if (!this->verify_buf) {
3867                        kfree(this->page_buf);
3868                        return -ENOMEM;
3869                }
3870#endif
3871                this->options |= ONENAND_PAGEBUF_ALLOC;
3872        }
3873        if (!this->oob_buf) {
3874                this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3875                if (!this->oob_buf) {
3876                        if (this->options & ONENAND_PAGEBUF_ALLOC) {
3877                                this->options &= ~ONENAND_PAGEBUF_ALLOC;
3878                                kfree(this->page_buf);
3879                        }
3880                        return -ENOMEM;
3881                }
3882                this->options |= ONENAND_OOBBUF_ALLOC;
3883        }
3884
3885        this->state = FL_READY;
3886        init_waitqueue_head(&this->wq);
3887        spin_lock_init(&this->chip_lock);
3888
3889        /*
3890         * Allow subpage writes up to oobsize.
3891         */
3892        switch (mtd->oobsize) {
3893        case 128:
3894                if (FLEXONENAND(this)) {
3895                        mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3896                        mtd->subpage_sft = 0;
3897                } else {
3898                        mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3899                        mtd->subpage_sft = 2;
3900                }
3901                if (ONENAND_IS_NOP_1(this))
3902                        mtd->subpage_sft = 0;
3903                break;
3904        case 64:
3905                mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3906                mtd->subpage_sft = 2;
3907                break;
3908
3909        case 32:
3910                mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3911                mtd->subpage_sft = 1;
3912                break;
3913
3914        default:
3915                printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3916                        __func__, mtd->oobsize);
3917                mtd->subpage_sft = 0;
3918                /* To prevent kernel oops */
3919                mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3920                break;
3921        }
3922
3923        this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3924
3925        /*
3926         * The number of bytes available for a client to place data into
3927         * the out of band area
3928         */
3929        ret = mtd_ooblayout_count_freebytes(mtd);
3930        if (ret < 0)
3931                ret = 0;
3932
3933        mtd->oobavail = ret;
3934
3935        mtd->ecc_strength = 1;
3936
3937        /* Fill in remaining MTD driver data */
3938        mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3939        mtd->flags = MTD_CAP_NANDFLASH;
3940        mtd->_erase = onenand_erase;
3941        mtd->_point = NULL;
3942        mtd->_unpoint = NULL;
3943        mtd->_read_oob = onenand_read_oob;
3944        mtd->_write_oob = onenand_write_oob;
3945        mtd->_panic_write = onenand_panic_write;
3946#ifdef CONFIG_MTD_ONENAND_OTP
3947        mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3948        mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3949        mtd->_get_user_prot_info = onenand_get_user_prot_info;
3950        mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3951        mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3952        mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3953#endif
3954        mtd->_sync = onenand_sync;
3955        mtd->_lock = onenand_lock;
3956        mtd->_unlock = onenand_unlock;
3957        mtd->_suspend = onenand_suspend;
3958        mtd->_resume = onenand_resume;
3959        mtd->_block_isbad = onenand_block_isbad;
3960        mtd->_block_markbad = onenand_block_markbad;
3961        mtd->owner = THIS_MODULE;
3962        mtd->writebufsize = mtd->writesize;
3963
3964        /* Unlock whole block */
3965        if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3966                this->unlock_all(mtd);
3967
3968        ret = this->scan_bbt(mtd);
3969        if ((!FLEXONENAND(this)) || ret)
3970                return ret;
3971
3972        /* Change Flex-OneNAND boundaries if required */
3973        for (i = 0; i < MAX_DIES; i++)
3974                flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3975                                                 flex_bdry[(2 * i) + 1]);
3976
3977        return 0;
3978}
3979
3980/**
3981 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3982 * @param mtd           MTD device structure
3983 */
3984void onenand_release(struct mtd_info *mtd)
3985{
3986        struct onenand_chip *this = mtd->priv;
3987
3988        /* Deregister partitions */
3989        mtd_device_unregister(mtd);
3990
3991        /* Free bad block table memory, if allocated */
3992        if (this->bbm) {
3993                struct bbm_info *bbm = this->bbm;
3994                kfree(bbm->bbt);
3995                kfree(this->bbm);
3996        }
3997        /* Buffers allocated by onenand_scan */
3998        if (this->options & ONENAND_PAGEBUF_ALLOC) {
3999                kfree(this->page_buf);
4000#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4001                kfree(this->verify_buf);
4002#endif
4003        }
4004        if (this->options & ONENAND_OOBBUF_ALLOC)
4005                kfree(this->oob_buf);
4006        kfree(mtd->eraseregions);
4007}
4008
4009EXPORT_SYMBOL_GPL(onenand_scan);
4010EXPORT_SYMBOL_GPL(onenand_release);
4011
4012MODULE_LICENSE("GPL");
4013MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4014MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4015