linux/drivers/mtd/nand/raw/fsl_ifc_nand.c
<<
>>
Prefs
   1/*
   2 * Freescale Integrated Flash Controller NAND driver
   3 *
   4 * Copyright 2011-2012 Freescale Semiconductor, Inc
   5 *
   6 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/of_address.h>
  27#include <linux/slab.h>
  28#include <linux/mtd/mtd.h>
  29#include <linux/mtd/rawnand.h>
  30#include <linux/mtd/partitions.h>
  31#include <linux/mtd/nand_ecc.h>
  32#include <linux/fsl_ifc.h>
  33
  34#define ERR_BYTE                0xFF /* Value returned for read
  35                                        bytes when read failed  */
  36#define IFC_TIMEOUT_MSECS       500  /* Maximum number of mSecs to wait
  37                                        for IFC NAND Machine    */
  38
  39struct fsl_ifc_ctrl;
  40
  41/* mtd information per set */
  42struct fsl_ifc_mtd {
  43        struct nand_chip chip;
  44        struct fsl_ifc_ctrl *ctrl;
  45
  46        struct device *dev;
  47        int bank;               /* Chip select bank number              */
  48        unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
  49        u8 __iomem *vbase;      /* Chip select base virtual address     */
  50};
  51
  52/* overview of the fsl ifc controller */
  53struct fsl_ifc_nand_ctrl {
  54        struct nand_hw_control controller;
  55        struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
  56
  57        void __iomem *addr;     /* Address of assigned IFC buffer       */
  58        unsigned int page;      /* Last page written to / read from     */
  59        unsigned int read_bytes;/* Number of bytes read during command  */
  60        unsigned int column;    /* Saved column from SEQIN              */
  61        unsigned int index;     /* Pointer to next byte to 'read'       */
  62        unsigned int oob;       /* Non zero if operating on OOB data    */
  63        unsigned int eccread;   /* Non zero for a full-page ECC read    */
  64        unsigned int counter;   /* counter for the initializations      */
  65        unsigned int max_bitflips;  /* Saved during READ0 cmd           */
  66};
  67
  68static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
  69
  70/*
  71 * Generic flash bbt descriptors
  72 */
  73static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
  74static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
  75
  76static struct nand_bbt_descr bbt_main_descr = {
  77        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  78                   NAND_BBT_2BIT | NAND_BBT_VERSION,
  79        .offs = 2, /* 0 on 8-bit small page */
  80        .len = 4,
  81        .veroffs = 6,
  82        .maxblocks = 4,
  83        .pattern = bbt_pattern,
  84};
  85
  86static struct nand_bbt_descr bbt_mirror_descr = {
  87        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  88                   NAND_BBT_2BIT | NAND_BBT_VERSION,
  89        .offs = 2, /* 0 on 8-bit small page */
  90        .len = 4,
  91        .veroffs = 6,
  92        .maxblocks = 4,
  93        .pattern = mirror_pattern,
  94};
  95
  96static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
  97                                 struct mtd_oob_region *oobregion)
  98{
  99        struct nand_chip *chip = mtd_to_nand(mtd);
 100
 101        if (section)
 102                return -ERANGE;
 103
 104        oobregion->offset = 8;
 105        oobregion->length = chip->ecc.total;
 106
 107        return 0;
 108}
 109
 110static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
 111                                  struct mtd_oob_region *oobregion)
 112{
 113        struct nand_chip *chip = mtd_to_nand(mtd);
 114
 115        if (section > 1)
 116                return -ERANGE;
 117
 118        if (mtd->writesize == 512 &&
 119            !(chip->options & NAND_BUSWIDTH_16)) {
 120                if (!section) {
 121                        oobregion->offset = 0;
 122                        oobregion->length = 5;
 123                } else {
 124                        oobregion->offset = 6;
 125                        oobregion->length = 2;
 126                }
 127
 128                return 0;
 129        }
 130
 131        if (!section) {
 132                oobregion->offset = 2;
 133                oobregion->length = 6;
 134        } else {
 135                oobregion->offset = chip->ecc.total + 8;
 136                oobregion->length = mtd->oobsize - oobregion->offset;
 137        }
 138
 139        return 0;
 140}
 141
 142static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
 143        .ecc = fsl_ifc_ooblayout_ecc,
 144        .free = fsl_ifc_ooblayout_free,
 145};
 146
 147/*
 148 * Set up the IFC hardware block and page address fields, and the ifc nand
 149 * structure addr field to point to the correct IFC buffer in memory
 150 */
 151static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 152{
 153        struct nand_chip *chip = mtd_to_nand(mtd);
 154        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 155        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 156        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 157        int buf_num;
 158
 159        ifc_nand_ctrl->page = page_addr;
 160        /* Program ROW0/COL0 */
 161        ifc_out32(page_addr, &ifc->ifc_nand.row0);
 162        ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
 163
 164        buf_num = page_addr & priv->bufnum_mask;
 165
 166        ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
 167        ifc_nand_ctrl->index = column;
 168
 169        /* for OOB data point to the second half of the buffer */
 170        if (oob)
 171                ifc_nand_ctrl->index += mtd->writesize;
 172}
 173
 174/* returns nonzero if entire page is blank */
 175static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
 176                          u32 eccstat, unsigned int bufnum)
 177{
 178        return  (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
 179}
 180
 181/*
 182 * execute IFC NAND command and wait for it to complete
 183 */
 184static void fsl_ifc_run_command(struct mtd_info *mtd)
 185{
 186        struct nand_chip *chip = mtd_to_nand(mtd);
 187        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 188        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 189        struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
 190        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 191        u32 eccstat;
 192        int i;
 193
 194        /* set the chip select for NAND Transaction */
 195        ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
 196                  &ifc->ifc_nand.nand_csel);
 197
 198        dev_vdbg(priv->dev,
 199                        "%s: fir0=%08x fcr0=%08x\n",
 200                        __func__,
 201                        ifc_in32(&ifc->ifc_nand.nand_fir0),
 202                        ifc_in32(&ifc->ifc_nand.nand_fcr0));
 203
 204        ctrl->nand_stat = 0;
 205
 206        /* start read/write seq */
 207        ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
 208
 209        /* wait for command complete flag or timeout */
 210        wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
 211                           msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 212
 213        /* ctrl->nand_stat will be updated from IRQ context */
 214        if (!ctrl->nand_stat)
 215                dev_err(priv->dev, "Controller is not responding\n");
 216        if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
 217                dev_err(priv->dev, "NAND Flash Timeout Error\n");
 218        if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
 219                dev_err(priv->dev, "NAND Flash Write Protect Error\n");
 220
 221        nctrl->max_bitflips = 0;
 222
 223        if (nctrl->eccread) {
 224                int errors;
 225                int bufnum = nctrl->page & priv->bufnum_mask;
 226                int sector_start = bufnum * chip->ecc.steps;
 227                int sector_end = sector_start + chip->ecc.steps - 1;
 228                __be32 *eccstat_regs;
 229
 230                eccstat_regs = ifc->ifc_nand.nand_eccstat;
 231                eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
 232
 233                for (i = sector_start; i <= sector_end; i++) {
 234                        if (i != sector_start && !(i % 4))
 235                                eccstat = ifc_in32(&eccstat_regs[i / 4]);
 236
 237                        errors = check_read_ecc(mtd, ctrl, eccstat, i);
 238
 239                        if (errors == 15) {
 240                                /*
 241                                 * Uncorrectable error.
 242                                 * We'll check for blank pages later.
 243                                 *
 244                                 * We disable ECCER reporting due to...
 245                                 * erratum IFC-A002770 -- so report it now if we
 246                                 * see an uncorrectable error in ECCSTAT.
 247                                 */
 248                                ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
 249                                continue;
 250                        }
 251
 252                        mtd->ecc_stats.corrected += errors;
 253                        nctrl->max_bitflips = max_t(unsigned int,
 254                                                    nctrl->max_bitflips,
 255                                                    errors);
 256                }
 257
 258                nctrl->eccread = 0;
 259        }
 260}
 261
 262static void fsl_ifc_do_read(struct nand_chip *chip,
 263                            int oob,
 264                            struct mtd_info *mtd)
 265{
 266        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 267        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 268        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 269
 270        /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
 271        if (mtd->writesize > 512) {
 272                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 273                          (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 274                          (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 275                          (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
 276                          (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
 277                          &ifc->ifc_nand.nand_fir0);
 278                ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
 279
 280                ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
 281                          (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
 282                          &ifc->ifc_nand.nand_fcr0);
 283        } else {
 284                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 285                          (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 286                          (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
 287                          (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
 288                          &ifc->ifc_nand.nand_fir0);
 289                ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
 290
 291                if (oob)
 292                        ifc_out32(NAND_CMD_READOOB <<
 293                                  IFC_NAND_FCR0_CMD0_SHIFT,
 294                                  &ifc->ifc_nand.nand_fcr0);
 295                else
 296                        ifc_out32(NAND_CMD_READ0 <<
 297                                  IFC_NAND_FCR0_CMD0_SHIFT,
 298                                  &ifc->ifc_nand.nand_fcr0);
 299        }
 300}
 301
 302/* cmdfunc send commands to the IFC NAND Machine */
 303static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 304                             int column, int page_addr) {
 305        struct nand_chip *chip = mtd_to_nand(mtd);
 306        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 307        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 308        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 309
 310        /* clear the read buffer */
 311        ifc_nand_ctrl->read_bytes = 0;
 312        if (command != NAND_CMD_PAGEPROG)
 313                ifc_nand_ctrl->index = 0;
 314
 315        switch (command) {
 316        /* READ0 read the entire buffer to use hardware ECC. */
 317        case NAND_CMD_READ0:
 318                ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 319                set_addr(mtd, 0, page_addr, 0);
 320
 321                ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 322                ifc_nand_ctrl->index += column;
 323
 324                if (chip->ecc.mode == NAND_ECC_HW)
 325                        ifc_nand_ctrl->eccread = 1;
 326
 327                fsl_ifc_do_read(chip, 0, mtd);
 328                fsl_ifc_run_command(mtd);
 329                return;
 330
 331        /* READOOB reads only the OOB because no ECC is performed. */
 332        case NAND_CMD_READOOB:
 333                ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
 334                set_addr(mtd, column, page_addr, 1);
 335
 336                ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 337
 338                fsl_ifc_do_read(chip, 1, mtd);
 339                fsl_ifc_run_command(mtd);
 340
 341                return;
 342
 343        case NAND_CMD_READID:
 344        case NAND_CMD_PARAM: {
 345                int timing = IFC_FIR_OP_RB;
 346                if (command == NAND_CMD_PARAM)
 347                        timing = IFC_FIR_OP_RBCD;
 348
 349                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 350                          (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
 351                          (timing << IFC_NAND_FIR0_OP2_SHIFT),
 352                          &ifc->ifc_nand.nand_fir0);
 353                ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
 354                          &ifc->ifc_nand.nand_fcr0);
 355                ifc_out32(column, &ifc->ifc_nand.row3);
 356
 357                /*
 358                 * although currently it's 8 bytes for READID, we always read
 359                 * the maximum 256 bytes(for PARAM)
 360                 */
 361                ifc_out32(256, &ifc->ifc_nand.nand_fbcr);
 362                ifc_nand_ctrl->read_bytes = 256;
 363
 364                set_addr(mtd, 0, 0, 0);
 365                fsl_ifc_run_command(mtd);
 366                return;
 367        }
 368
 369        /* ERASE1 stores the block and page address */
 370        case NAND_CMD_ERASE1:
 371                set_addr(mtd, 0, page_addr, 0);
 372                return;
 373
 374        /* ERASE2 uses the block and page address from ERASE1 */
 375        case NAND_CMD_ERASE2:
 376                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 377                          (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 378                          (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
 379                          &ifc->ifc_nand.nand_fir0);
 380
 381                ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
 382                          (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
 383                          &ifc->ifc_nand.nand_fcr0);
 384
 385                ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 386                ifc_nand_ctrl->read_bytes = 0;
 387                fsl_ifc_run_command(mtd);
 388                return;
 389
 390        /* SEQIN sets up the addr buffer and all registers except the length */
 391        case NAND_CMD_SEQIN: {
 392                u32 nand_fcr0;
 393                ifc_nand_ctrl->column = column;
 394                ifc_nand_ctrl->oob = 0;
 395
 396                if (mtd->writesize > 512) {
 397                        nand_fcr0 =
 398                                (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
 399                                (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
 400                                (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
 401
 402                        ifc_out32(
 403                                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 404                                (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 405                                (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 406                                (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
 407                                (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
 408                                &ifc->ifc_nand.nand_fir0);
 409                        ifc_out32(
 410                                (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
 411                                (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
 412                                (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
 413                                &ifc->ifc_nand.nand_fir1);
 414                } else {
 415                        nand_fcr0 = ((NAND_CMD_PAGEPROG <<
 416                                        IFC_NAND_FCR0_CMD1_SHIFT) |
 417                                    (NAND_CMD_SEQIN <<
 418                                        IFC_NAND_FCR0_CMD2_SHIFT) |
 419                                    (NAND_CMD_STATUS <<
 420                                        IFC_NAND_FCR0_CMD3_SHIFT));
 421
 422                        ifc_out32(
 423                                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 424                                (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
 425                                (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 426                                (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
 427                                (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
 428                                &ifc->ifc_nand.nand_fir0);
 429                        ifc_out32(
 430                                (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
 431                                (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
 432                                (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
 433                                (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
 434                                &ifc->ifc_nand.nand_fir1);
 435
 436                        if (column >= mtd->writesize)
 437                                nand_fcr0 |=
 438                                NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
 439                        else
 440                                nand_fcr0 |=
 441                                NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
 442                }
 443
 444                if (column >= mtd->writesize) {
 445                        /* OOB area --> READOOB */
 446                        column -= mtd->writesize;
 447                        ifc_nand_ctrl->oob = 1;
 448                }
 449                ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
 450                set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
 451                return;
 452        }
 453
 454        /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 455        case NAND_CMD_PAGEPROG: {
 456                if (ifc_nand_ctrl->oob) {
 457                        ifc_out32(ifc_nand_ctrl->index -
 458                                  ifc_nand_ctrl->column,
 459                                  &ifc->ifc_nand.nand_fbcr);
 460                } else {
 461                        ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 462                }
 463
 464                fsl_ifc_run_command(mtd);
 465                return;
 466        }
 467
 468        case NAND_CMD_STATUS: {
 469                void __iomem *addr;
 470
 471                ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 472                          (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
 473                          &ifc->ifc_nand.nand_fir0);
 474                ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
 475                          &ifc->ifc_nand.nand_fcr0);
 476                ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
 477                set_addr(mtd, 0, 0, 0);
 478                ifc_nand_ctrl->read_bytes = 1;
 479
 480                fsl_ifc_run_command(mtd);
 481
 482                /*
 483                 * The chip always seems to report that it is
 484                 * write-protected, even when it is not.
 485                 */
 486                addr = ifc_nand_ctrl->addr;
 487                if (chip->options & NAND_BUSWIDTH_16)
 488                        ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
 489                else
 490                        ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
 491                return;
 492        }
 493
 494        case NAND_CMD_RESET:
 495                ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
 496                          &ifc->ifc_nand.nand_fir0);
 497                ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
 498                          &ifc->ifc_nand.nand_fcr0);
 499                fsl_ifc_run_command(mtd);
 500                return;
 501
 502        default:
 503                dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
 504                                        __func__, command);
 505        }
 506}
 507
 508static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
 509{
 510        /* The hardware does not seem to support multiple
 511         * chips per bank.
 512         */
 513}
 514
 515/*
 516 * Write buf to the IFC NAND Controller Data Buffer
 517 */
 518static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 519{
 520        struct nand_chip *chip = mtd_to_nand(mtd);
 521        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 522        unsigned int bufsize = mtd->writesize + mtd->oobsize;
 523
 524        if (len <= 0) {
 525                dev_err(priv->dev, "%s: len %d bytes", __func__, len);
 526                return;
 527        }
 528
 529        if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
 530                dev_err(priv->dev,
 531                        "%s: beyond end of buffer (%d requested, %u available)\n",
 532                        __func__, len, bufsize - ifc_nand_ctrl->index);
 533                len = bufsize - ifc_nand_ctrl->index;
 534        }
 535
 536        memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
 537        ifc_nand_ctrl->index += len;
 538}
 539
 540/*
 541 * Read a byte from either the IFC hardware buffer
 542 * read function for 8-bit buswidth
 543 */
 544static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
 545{
 546        struct nand_chip *chip = mtd_to_nand(mtd);
 547        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 548        unsigned int offset;
 549
 550        /*
 551         * If there are still bytes in the IFC buffer, then use the
 552         * next byte.
 553         */
 554        if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
 555                offset = ifc_nand_ctrl->index++;
 556                return ifc_in8(ifc_nand_ctrl->addr + offset);
 557        }
 558
 559        dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
 560        return ERR_BYTE;
 561}
 562
 563/*
 564 * Read two bytes from the IFC hardware buffer
 565 * read function for 16-bit buswith
 566 */
 567static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
 568{
 569        struct nand_chip *chip = mtd_to_nand(mtd);
 570        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 571        uint16_t data;
 572
 573        /*
 574         * If there are still bytes in the IFC buffer, then use the
 575         * next byte.
 576         */
 577        if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
 578                data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
 579                ifc_nand_ctrl->index += 2;
 580                return (uint8_t) data;
 581        }
 582
 583        dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
 584        return ERR_BYTE;
 585}
 586
 587/*
 588 * Read from the IFC Controller Data Buffer
 589 */
 590static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 591{
 592        struct nand_chip *chip = mtd_to_nand(mtd);
 593        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 594        int avail;
 595
 596        if (len < 0) {
 597                dev_err(priv->dev, "%s: len %d bytes", __func__, len);
 598                return;
 599        }
 600
 601        avail = min((unsigned int)len,
 602                        ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
 603        memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
 604        ifc_nand_ctrl->index += avail;
 605
 606        if (len > avail)
 607                dev_err(priv->dev,
 608                        "%s: beyond end of buffer (%d requested, %d available)\n",
 609                        __func__, len, avail);
 610}
 611
 612/*
 613 * This function is called after Program and Erase Operations to
 614 * check for success or failure.
 615 */
 616static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 617{
 618        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 619        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 620        struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 621        u32 nand_fsr;
 622        int status;
 623
 624        /* Use READ_STATUS command, but wait for the device to be ready */
 625        ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 626                  (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
 627                  &ifc->ifc_nand.nand_fir0);
 628        ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
 629                  &ifc->ifc_nand.nand_fcr0);
 630        ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
 631        set_addr(mtd, 0, 0, 0);
 632        ifc_nand_ctrl->read_bytes = 1;
 633
 634        fsl_ifc_run_command(mtd);
 635
 636        nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
 637        status = nand_fsr >> 24;
 638        /*
 639         * The chip always seems to report that it is
 640         * write-protected, even when it is not.
 641         */
 642        return status | NAND_STATUS_WP;
 643}
 644
 645/*
 646 * The controller does not check for bitflips in erased pages,
 647 * therefore software must check instead.
 648 */
 649static int check_erased_page(struct nand_chip *chip, u8 *buf)
 650{
 651        struct mtd_info *mtd = nand_to_mtd(chip);
 652        u8 *ecc = chip->oob_poi;
 653        const int ecc_size = chip->ecc.bytes;
 654        const int pkt_size = chip->ecc.size;
 655        int i, res, bitflips = 0;
 656        struct mtd_oob_region oobregion = { };
 657
 658        mtd_ooblayout_ecc(mtd, 0, &oobregion);
 659        ecc += oobregion.offset;
 660
 661        for (i = 0; i < chip->ecc.steps; ++i) {
 662                res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
 663                                                  NULL, 0,
 664                                                  chip->ecc.strength);
 665                if (res < 0)
 666                        mtd->ecc_stats.failed++;
 667                else
 668                        mtd->ecc_stats.corrected += res;
 669
 670                bitflips = max(res, bitflips);
 671                buf += pkt_size;
 672                ecc += ecc_size;
 673        }
 674
 675        return bitflips;
 676}
 677
 678static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 679                             uint8_t *buf, int oob_required, int page)
 680{
 681        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 682        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 683        struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
 684
 685        nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 686        if (oob_required)
 687                fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 688
 689        if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
 690                if (!oob_required)
 691                        fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 692
 693                return check_erased_page(chip, buf);
 694        }
 695
 696        if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
 697                mtd->ecc_stats.failed++;
 698
 699        return nctrl->max_bitflips;
 700}
 701
 702/* ECC will be calculated automatically, and errors will be detected in
 703 * waitfunc.
 704 */
 705static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 706                               const uint8_t *buf, int oob_required, int page)
 707{
 708        nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 709        fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 710
 711        return nand_prog_page_end_op(chip);
 712}
 713
 714static int fsl_ifc_chip_init_tail(struct mtd_info *mtd)
 715{
 716        struct nand_chip *chip = mtd_to_nand(mtd);
 717        struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 718
 719        dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
 720                                                        chip->numchips);
 721        dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
 722                                                        chip->chipsize);
 723        dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
 724                                                        chip->pagemask);
 725        dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
 726                                                        chip->chip_delay);
 727        dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
 728                                                        chip->badblockpos);
 729        dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
 730                                                        chip->chip_shift);
 731        dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
 732                                                        chip->page_shift);
 733        dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
 734                                                        chip->phys_erase_shift);
 735        dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
 736                                                        chip->ecc.mode);
 737        dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
 738                                                        chip->ecc.steps);
 739        dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
 740                                                        chip->ecc.bytes);
 741        dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
 742                                                        chip->ecc.total);
 743        dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
 744                                                        mtd->ooblayout);
 745        dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
 746        dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
 747        dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
 748                                                        mtd->erasesize);
 749        dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
 750                                                        mtd->writesize);
 751        dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
 752                                                        mtd->oobsize);
 753
 754        return 0;
 755}
 756
 757static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
 758{
 759        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 760        struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
 761        struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
 762        uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
 763        uint32_t cs = priv->bank;
 764
 765        /* Save CSOR and CSOR_ext */
 766        csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
 767        csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
 768
 769        /* chage PageSize 8K and SpareSize 1K*/
 770        csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
 771        ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
 772        ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
 773
 774        /* READID */
 775        ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 776                    (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
 777                    (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
 778                    &ifc_runtime->ifc_nand.nand_fir0);
 779        ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
 780                    &ifc_runtime->ifc_nand.nand_fcr0);
 781        ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
 782
 783        ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
 784
 785        /* Program ROW0/COL0 */
 786        ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
 787        ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
 788
 789        /* set the chip select for NAND Transaction */
 790        ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
 791                &ifc_runtime->ifc_nand.nand_csel);
 792
 793        /* start read seq */
 794        ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
 795                &ifc_runtime->ifc_nand.nandseq_strt);
 796
 797        /* wait for command complete flag or timeout */
 798        wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
 799                           msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 800
 801        if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
 802                pr_err("fsl-ifc: Failed to Initialise SRAM\n");
 803
 804        /* Restore CSOR and CSOR_ext */
 805        ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
 806        ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
 807}
 808
 809static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
 810{
 811        struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 812        struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
 813        struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
 814        struct nand_chip *chip = &priv->chip;
 815        struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 816        u32 csor;
 817
 818        /* Fill in fsl_ifc_mtd structure */
 819        mtd->dev.parent = priv->dev;
 820        nand_set_flash_node(chip, priv->dev->of_node);
 821
 822        /* fill in nand_chip structure */
 823        /* set up function call table */
 824        if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
 825                & CSPR_PORT_SIZE_16)
 826                chip->read_byte = fsl_ifc_read_byte16;
 827        else
 828                chip->read_byte = fsl_ifc_read_byte;
 829
 830        chip->write_buf = fsl_ifc_write_buf;
 831        chip->read_buf = fsl_ifc_read_buf;
 832        chip->select_chip = fsl_ifc_select_chip;
 833        chip->cmdfunc = fsl_ifc_cmdfunc;
 834        chip->waitfunc = fsl_ifc_wait;
 835        chip->set_features = nand_get_set_features_notsupp;
 836        chip->get_features = nand_get_set_features_notsupp;
 837
 838        chip->bbt_td = &bbt_main_descr;
 839        chip->bbt_md = &bbt_mirror_descr;
 840
 841        ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
 842
 843        /* set up nand options */
 844        chip->bbt_options = NAND_BBT_USE_FLASH;
 845        chip->options = NAND_NO_SUBPAGE_WRITE;
 846
 847        if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
 848                & CSPR_PORT_SIZE_16) {
 849                chip->read_byte = fsl_ifc_read_byte16;
 850                chip->options |= NAND_BUSWIDTH_16;
 851        } else {
 852                chip->read_byte = fsl_ifc_read_byte;
 853        }
 854
 855        chip->controller = &ifc_nand_ctrl->controller;
 856        nand_set_controller_data(chip, priv);
 857
 858        chip->ecc.read_page = fsl_ifc_read_page;
 859        chip->ecc.write_page = fsl_ifc_write_page;
 860
 861        csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
 862
 863        switch (csor & CSOR_NAND_PGS_MASK) {
 864        case CSOR_NAND_PGS_512:
 865                if (!(chip->options & NAND_BUSWIDTH_16)) {
 866                        /* Avoid conflict with bad block marker */
 867                        bbt_main_descr.offs = 0;
 868                        bbt_mirror_descr.offs = 0;
 869                }
 870
 871                priv->bufnum_mask = 15;
 872                break;
 873
 874        case CSOR_NAND_PGS_2K:
 875                priv->bufnum_mask = 3;
 876                break;
 877
 878        case CSOR_NAND_PGS_4K:
 879                priv->bufnum_mask = 1;
 880                break;
 881
 882        case CSOR_NAND_PGS_8K:
 883                priv->bufnum_mask = 0;
 884                break;
 885
 886        default:
 887                dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
 888                return -ENODEV;
 889        }
 890
 891        /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
 892        if (csor & CSOR_NAND_ECC_DEC_EN) {
 893                chip->ecc.mode = NAND_ECC_HW;
 894                mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
 895
 896                /* Hardware generates ECC per 512 Bytes */
 897                chip->ecc.size = 512;
 898                if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
 899                        chip->ecc.bytes = 8;
 900                        chip->ecc.strength = 4;
 901                } else {
 902                        chip->ecc.bytes = 16;
 903                        chip->ecc.strength = 8;
 904                }
 905        } else {
 906                chip->ecc.mode = NAND_ECC_SOFT;
 907                chip->ecc.algo = NAND_ECC_HAMMING;
 908        }
 909
 910        if (ctrl->version >= FSL_IFC_VERSION_1_1_0)
 911                fsl_ifc_sram_init(priv);
 912
 913        /*
 914         * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
 915         * versions which had 8KB. Hence bufnum mask needs to be updated.
 916         */
 917        if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
 918                priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
 919
 920        return 0;
 921}
 922
 923static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
 924{
 925        struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 926
 927        nand_release(mtd);
 928
 929        kfree(mtd->name);
 930
 931        if (priv->vbase)
 932                iounmap(priv->vbase);
 933
 934        ifc_nand_ctrl->chips[priv->bank] = NULL;
 935
 936        return 0;
 937}
 938
 939static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
 940                      phys_addr_t addr)
 941{
 942        u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
 943
 944        if (!(cspr & CSPR_V))
 945                return 0;
 946        if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
 947                return 0;
 948
 949        return (cspr & CSPR_BA) == convert_ifc_address(addr);
 950}
 951
 952static DEFINE_MUTEX(fsl_ifc_nand_mutex);
 953
 954static int fsl_ifc_nand_probe(struct platform_device *dev)
 955{
 956        struct fsl_ifc_runtime __iomem *ifc;
 957        struct fsl_ifc_mtd *priv;
 958        struct resource res;
 959        static const char *part_probe_types[]
 960                = { "cmdlinepart", "RedBoot", "ofpart", NULL };
 961        int ret;
 962        int bank;
 963        struct device_node *node = dev->dev.of_node;
 964        struct mtd_info *mtd;
 965
 966        if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
 967                return -ENODEV;
 968        ifc = fsl_ifc_ctrl_dev->rregs;
 969
 970        /* get, allocate and map the memory resource */
 971        ret = of_address_to_resource(node, 0, &res);
 972        if (ret) {
 973                dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
 974                return ret;
 975        }
 976
 977        /* find which chip select it is connected to */
 978        for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
 979                if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
 980                        break;
 981        }
 982
 983        if (bank >= fsl_ifc_ctrl_dev->banks) {
 984                dev_err(&dev->dev, "%s: address did not match any chip selects\n",
 985                        __func__);
 986                return -ENODEV;
 987        }
 988
 989        priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
 990        if (!priv)
 991                return -ENOMEM;
 992
 993        mutex_lock(&fsl_ifc_nand_mutex);
 994        if (!fsl_ifc_ctrl_dev->nand) {
 995                ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
 996                if (!ifc_nand_ctrl) {
 997                        mutex_unlock(&fsl_ifc_nand_mutex);
 998                        return -ENOMEM;
 999                }
1000
1001                ifc_nand_ctrl->read_bytes = 0;
1002                ifc_nand_ctrl->index = 0;
1003                ifc_nand_ctrl->addr = NULL;
1004                fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
1005
1006                nand_hw_control_init(&ifc_nand_ctrl->controller);
1007        } else {
1008                ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
1009        }
1010        mutex_unlock(&fsl_ifc_nand_mutex);
1011
1012        ifc_nand_ctrl->chips[bank] = priv;
1013        priv->bank = bank;
1014        priv->ctrl = fsl_ifc_ctrl_dev;
1015        priv->dev = &dev->dev;
1016
1017        priv->vbase = ioremap(res.start, resource_size(&res));
1018        if (!priv->vbase) {
1019                dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1020                ret = -ENOMEM;
1021                goto err;
1022        }
1023
1024        dev_set_drvdata(priv->dev, priv);
1025
1026        ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1027                  IFC_NAND_EVTER_EN_FTOER_EN |
1028                  IFC_NAND_EVTER_EN_WPER_EN,
1029                  &ifc->ifc_nand.nand_evter_en);
1030
1031        /* enable NAND Machine Interrupts */
1032        ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1033                  IFC_NAND_EVTER_INTR_FTOERIR_EN |
1034                  IFC_NAND_EVTER_INTR_WPERIR_EN,
1035                  &ifc->ifc_nand.nand_evter_intr_en);
1036
1037        mtd = nand_to_mtd(&priv->chip);
1038        mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1039        if (!mtd->name) {
1040                ret = -ENOMEM;
1041                goto err;
1042        }
1043
1044        ret = fsl_ifc_chip_init(priv);
1045        if (ret)
1046                goto err;
1047
1048        ret = nand_scan_ident(mtd, 1, NULL);
1049        if (ret)
1050                goto err;
1051
1052        ret = fsl_ifc_chip_init_tail(mtd);
1053        if (ret)
1054                goto err;
1055
1056        ret = nand_scan_tail(mtd);
1057        if (ret)
1058                goto err;
1059
1060        /* First look for RedBoot table or partitions on the command
1061         * line, these take precedence over device tree information */
1062        mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1063
1064        dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1065                 (unsigned long long)res.start, priv->bank);
1066        return 0;
1067
1068err:
1069        fsl_ifc_chip_remove(priv);
1070        return ret;
1071}
1072
1073static int fsl_ifc_nand_remove(struct platform_device *dev)
1074{
1075        struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1076
1077        fsl_ifc_chip_remove(priv);
1078
1079        mutex_lock(&fsl_ifc_nand_mutex);
1080        ifc_nand_ctrl->counter--;
1081        if (!ifc_nand_ctrl->counter) {
1082                fsl_ifc_ctrl_dev->nand = NULL;
1083                kfree(ifc_nand_ctrl);
1084        }
1085        mutex_unlock(&fsl_ifc_nand_mutex);
1086
1087        return 0;
1088}
1089
1090static const struct of_device_id fsl_ifc_nand_match[] = {
1091        {
1092                .compatible = "fsl,ifc-nand",
1093        },
1094        {}
1095};
1096MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1097
1098static struct platform_driver fsl_ifc_nand_driver = {
1099        .driver = {
1100                .name   = "fsl,ifc-nand",
1101                .of_match_table = fsl_ifc_nand_match,
1102        },
1103        .probe       = fsl_ifc_nand_probe,
1104        .remove      = fsl_ifc_nand_remove,
1105};
1106
1107module_platform_driver(fsl_ifc_nand_driver);
1108
1109MODULE_LICENSE("GPL");
1110MODULE_AUTHOR("Freescale");
1111MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");
1112