linux/drivers/mtd/nand/raw/nand_base.c
<<
>>
Prefs
   1/*
   2 *  Overview:
   3 *   This is the generic MTD driver for NAND flash devices. It should be
   4 *   capable of working with almost all NAND chips currently available.
   5 *
   6 *      Additional technical information is available on
   7 *      http://www.linux-mtd.infradead.org/doc/nand.html
   8 *
   9 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  10 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  11 *
  12 *  Credits:
  13 *      David Woodhouse for adding multichip support
  14 *
  15 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  16 *      rework for 2K page size chips
  17 *
  18 *  TODO:
  19 *      Enable cached programming for 2k page size chips
  20 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  21 *      if we have HW ECC support.
  22 *      BBT table is not serialized, has to be fixed
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License version 2 as
  26 * published by the Free Software Foundation.
  27 *
  28 */
  29
  30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  31
  32#include <linux/module.h>
  33#include <linux/delay.h>
  34#include <linux/errno.h>
  35#include <linux/err.h>
  36#include <linux/sched.h>
  37#include <linux/slab.h>
  38#include <linux/mm.h>
  39#include <linux/nmi.h>
  40#include <linux/types.h>
  41#include <linux/mtd/mtd.h>
  42#include <linux/mtd/rawnand.h>
  43#include <linux/mtd/nand_ecc.h>
  44#include <linux/mtd/nand_bch.h>
  45#include <linux/interrupt.h>
  46#include <linux/bitops.h>
  47#include <linux/io.h>
  48#include <linux/mtd/partitions.h>
  49#include <linux/of.h>
  50
  51static int nand_get_device(struct mtd_info *mtd, int new_state);
  52
  53static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
  54                             struct mtd_oob_ops *ops);
  55
  56/* Define default oob placement schemes for large and small page devices */
  57static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
  58                                 struct mtd_oob_region *oobregion)
  59{
  60        struct nand_chip *chip = mtd_to_nand(mtd);
  61        struct nand_ecc_ctrl *ecc = &chip->ecc;
  62
  63        if (section > 1)
  64                return -ERANGE;
  65
  66        if (!section) {
  67                oobregion->offset = 0;
  68                if (mtd->oobsize == 16)
  69                        oobregion->length = 4;
  70                else
  71                        oobregion->length = 3;
  72        } else {
  73                if (mtd->oobsize == 8)
  74                        return -ERANGE;
  75
  76                oobregion->offset = 6;
  77                oobregion->length = ecc->total - 4;
  78        }
  79
  80        return 0;
  81}
  82
  83static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
  84                                  struct mtd_oob_region *oobregion)
  85{
  86        if (section > 1)
  87                return -ERANGE;
  88
  89        if (mtd->oobsize == 16) {
  90                if (section)
  91                        return -ERANGE;
  92
  93                oobregion->length = 8;
  94                oobregion->offset = 8;
  95        } else {
  96                oobregion->length = 2;
  97                if (!section)
  98                        oobregion->offset = 3;
  99                else
 100                        oobregion->offset = 6;
 101        }
 102
 103        return 0;
 104}
 105
 106const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
 107        .ecc = nand_ooblayout_ecc_sp,
 108        .free = nand_ooblayout_free_sp,
 109};
 110EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
 111
 112static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
 113                                 struct mtd_oob_region *oobregion)
 114{
 115        struct nand_chip *chip = mtd_to_nand(mtd);
 116        struct nand_ecc_ctrl *ecc = &chip->ecc;
 117
 118        if (section || !ecc->total)
 119                return -ERANGE;
 120
 121        oobregion->length = ecc->total;
 122        oobregion->offset = mtd->oobsize - oobregion->length;
 123
 124        return 0;
 125}
 126
 127static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
 128                                  struct mtd_oob_region *oobregion)
 129{
 130        struct nand_chip *chip = mtd_to_nand(mtd);
 131        struct nand_ecc_ctrl *ecc = &chip->ecc;
 132
 133        if (section)
 134                return -ERANGE;
 135
 136        oobregion->length = mtd->oobsize - ecc->total - 2;
 137        oobregion->offset = 2;
 138
 139        return 0;
 140}
 141
 142const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
 143        .ecc = nand_ooblayout_ecc_lp,
 144        .free = nand_ooblayout_free_lp,
 145};
 146EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
 147
 148/*
 149 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
 150 * are placed at a fixed offset.
 151 */
 152static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
 153                                         struct mtd_oob_region *oobregion)
 154{
 155        struct nand_chip *chip = mtd_to_nand(mtd);
 156        struct nand_ecc_ctrl *ecc = &chip->ecc;
 157
 158        if (section)
 159                return -ERANGE;
 160
 161        switch (mtd->oobsize) {
 162        case 64:
 163                oobregion->offset = 40;
 164                break;
 165        case 128:
 166                oobregion->offset = 80;
 167                break;
 168        default:
 169                return -EINVAL;
 170        }
 171
 172        oobregion->length = ecc->total;
 173        if (oobregion->offset + oobregion->length > mtd->oobsize)
 174                return -ERANGE;
 175
 176        return 0;
 177}
 178
 179static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
 180                                          struct mtd_oob_region *oobregion)
 181{
 182        struct nand_chip *chip = mtd_to_nand(mtd);
 183        struct nand_ecc_ctrl *ecc = &chip->ecc;
 184        int ecc_offset = 0;
 185
 186        if (section < 0 || section > 1)
 187                return -ERANGE;
 188
 189        switch (mtd->oobsize) {
 190        case 64:
 191                ecc_offset = 40;
 192                break;
 193        case 128:
 194                ecc_offset = 80;
 195                break;
 196        default:
 197                return -EINVAL;
 198        }
 199
 200        if (section == 0) {
 201                oobregion->offset = 2;
 202                oobregion->length = ecc_offset - 2;
 203        } else {
 204                oobregion->offset = ecc_offset + ecc->total;
 205                oobregion->length = mtd->oobsize - oobregion->offset;
 206        }
 207
 208        return 0;
 209}
 210
 211static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
 212        .ecc = nand_ooblayout_ecc_lp_hamming,
 213        .free = nand_ooblayout_free_lp_hamming,
 214};
 215
 216static int check_offs_len(struct mtd_info *mtd,
 217                                        loff_t ofs, uint64_t len)
 218{
 219        struct nand_chip *chip = mtd_to_nand(mtd);
 220        int ret = 0;
 221
 222        /* Start address must align on block boundary */
 223        if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
 224                pr_debug("%s: unaligned address\n", __func__);
 225                ret = -EINVAL;
 226        }
 227
 228        /* Length must align on block boundary */
 229        if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
 230                pr_debug("%s: length not block aligned\n", __func__);
 231                ret = -EINVAL;
 232        }
 233
 234        return ret;
 235}
 236
 237/**
 238 * nand_release_device - [GENERIC] release chip
 239 * @mtd: MTD device structure
 240 *
 241 * Release chip lock and wake up anyone waiting on the device.
 242 */
 243static void nand_release_device(struct mtd_info *mtd)
 244{
 245        struct nand_chip *chip = mtd_to_nand(mtd);
 246
 247        /* Release the controller and the chip */
 248        spin_lock(&chip->controller->lock);
 249        chip->controller->active = NULL;
 250        chip->state = FL_READY;
 251        wake_up(&chip->controller->wq);
 252        spin_unlock(&chip->controller->lock);
 253}
 254
 255/**
 256 * nand_read_byte - [DEFAULT] read one byte from the chip
 257 * @mtd: MTD device structure
 258 *
 259 * Default read function for 8bit buswidth
 260 */
 261static uint8_t nand_read_byte(struct mtd_info *mtd)
 262{
 263        struct nand_chip *chip = mtd_to_nand(mtd);
 264        return readb(chip->IO_ADDR_R);
 265}
 266
 267/**
 268 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
 269 * @mtd: MTD device structure
 270 *
 271 * Default read function for 16bit buswidth with endianness conversion.
 272 *
 273 */
 274static uint8_t nand_read_byte16(struct mtd_info *mtd)
 275{
 276        struct nand_chip *chip = mtd_to_nand(mtd);
 277        return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 278}
 279
 280/**
 281 * nand_read_word - [DEFAULT] read one word from the chip
 282 * @mtd: MTD device structure
 283 *
 284 * Default read function for 16bit buswidth without endianness conversion.
 285 */
 286static u16 nand_read_word(struct mtd_info *mtd)
 287{
 288        struct nand_chip *chip = mtd_to_nand(mtd);
 289        return readw(chip->IO_ADDR_R);
 290}
 291
 292/**
 293 * nand_select_chip - [DEFAULT] control CE line
 294 * @mtd: MTD device structure
 295 * @chipnr: chipnumber to select, -1 for deselect
 296 *
 297 * Default select function for 1 chip devices.
 298 */
 299static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 300{
 301        struct nand_chip *chip = mtd_to_nand(mtd);
 302
 303        switch (chipnr) {
 304        case -1:
 305                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 306                break;
 307        case 0:
 308                break;
 309
 310        default:
 311                BUG();
 312        }
 313}
 314
 315/**
 316 * nand_write_byte - [DEFAULT] write single byte to chip
 317 * @mtd: MTD device structure
 318 * @byte: value to write
 319 *
 320 * Default function to write a byte to I/O[7:0]
 321 */
 322static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
 323{
 324        struct nand_chip *chip = mtd_to_nand(mtd);
 325
 326        chip->write_buf(mtd, &byte, 1);
 327}
 328
 329/**
 330 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 331 * @mtd: MTD device structure
 332 * @byte: value to write
 333 *
 334 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 335 */
 336static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
 337{
 338        struct nand_chip *chip = mtd_to_nand(mtd);
 339        uint16_t word = byte;
 340
 341        /*
 342         * It's not entirely clear what should happen to I/O[15:8] when writing
 343         * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
 344         *
 345         *    When the host supports a 16-bit bus width, only data is
 346         *    transferred at the 16-bit width. All address and command line
 347         *    transfers shall use only the lower 8-bits of the data bus. During
 348         *    command transfers, the host may place any value on the upper
 349         *    8-bits of the data bus. During address transfers, the host shall
 350         *    set the upper 8-bits of the data bus to 00h.
 351         *
 352         * One user of the write_byte callback is nand_set_features. The
 353         * four parameters are specified to be written to I/O[7:0], but this is
 354         * neither an address nor a command transfer. Let's assume a 0 on the
 355         * upper I/O lines is OK.
 356         */
 357        chip->write_buf(mtd, (uint8_t *)&word, 2);
 358}
 359
 360/**
 361 * nand_write_buf - [DEFAULT] write buffer to chip
 362 * @mtd: MTD device structure
 363 * @buf: data buffer
 364 * @len: number of bytes to write
 365 *
 366 * Default write function for 8bit buswidth.
 367 */
 368static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 369{
 370        struct nand_chip *chip = mtd_to_nand(mtd);
 371
 372        iowrite8_rep(chip->IO_ADDR_W, buf, len);
 373}
 374
 375/**
 376 * nand_read_buf - [DEFAULT] read chip data into buffer
 377 * @mtd: MTD device structure
 378 * @buf: buffer to store date
 379 * @len: number of bytes to read
 380 *
 381 * Default read function for 8bit buswidth.
 382 */
 383static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 384{
 385        struct nand_chip *chip = mtd_to_nand(mtd);
 386
 387        ioread8_rep(chip->IO_ADDR_R, buf, len);
 388}
 389
 390/**
 391 * nand_write_buf16 - [DEFAULT] write buffer to chip
 392 * @mtd: MTD device structure
 393 * @buf: data buffer
 394 * @len: number of bytes to write
 395 *
 396 * Default write function for 16bit buswidth.
 397 */
 398static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 399{
 400        struct nand_chip *chip = mtd_to_nand(mtd);
 401        u16 *p = (u16 *) buf;
 402
 403        iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
 404}
 405
 406/**
 407 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 408 * @mtd: MTD device structure
 409 * @buf: buffer to store date
 410 * @len: number of bytes to read
 411 *
 412 * Default read function for 16bit buswidth.
 413 */
 414static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 415{
 416        struct nand_chip *chip = mtd_to_nand(mtd);
 417        u16 *p = (u16 *) buf;
 418
 419        ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
 420}
 421
 422/**
 423 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 424 * @mtd: MTD device structure
 425 * @ofs: offset from device start
 426 *
 427 * Check, if the block is bad.
 428 */
 429static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 430{
 431        int page, page_end, res;
 432        struct nand_chip *chip = mtd_to_nand(mtd);
 433        u8 bad;
 434
 435        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 436                ofs += mtd->erasesize - mtd->writesize;
 437
 438        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 439        page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
 440
 441        for (; page < page_end; page++) {
 442                res = chip->ecc.read_oob(mtd, chip, page);
 443                if (res)
 444                        return res;
 445
 446                bad = chip->oob_poi[chip->badblockpos];
 447
 448                if (likely(chip->badblockbits == 8))
 449                        res = bad != 0xFF;
 450                else
 451                        res = hweight8(bad) < chip->badblockbits;
 452                if (res)
 453                        return res;
 454        }
 455
 456        return 0;
 457}
 458
 459/**
 460 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
 461 * @mtd: MTD device structure
 462 * @ofs: offset from device start
 463 *
 464 * This is the default implementation, which can be overridden by a hardware
 465 * specific driver. It provides the details for writing a bad block marker to a
 466 * block.
 467 */
 468static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 469{
 470        struct nand_chip *chip = mtd_to_nand(mtd);
 471        struct mtd_oob_ops ops;
 472        uint8_t buf[2] = { 0, 0 };
 473        int ret = 0, res, i = 0;
 474
 475        memset(&ops, 0, sizeof(ops));
 476        ops.oobbuf = buf;
 477        ops.ooboffs = chip->badblockpos;
 478        if (chip->options & NAND_BUSWIDTH_16) {
 479                ops.ooboffs &= ~0x01;
 480                ops.len = ops.ooblen = 2;
 481        } else {
 482                ops.len = ops.ooblen = 1;
 483        }
 484        ops.mode = MTD_OPS_PLACE_OOB;
 485
 486        /* Write to first/last page(s) if necessary */
 487        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 488                ofs += mtd->erasesize - mtd->writesize;
 489        do {
 490                res = nand_do_write_oob(mtd, ofs, &ops);
 491                if (!ret)
 492                        ret = res;
 493
 494                i++;
 495                ofs += mtd->writesize;
 496        } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
 497
 498        return ret;
 499}
 500
 501/**
 502 * nand_block_markbad_lowlevel - mark a block bad
 503 * @mtd: MTD device structure
 504 * @ofs: offset from device start
 505 *
 506 * This function performs the generic NAND bad block marking steps (i.e., bad
 507 * block table(s) and/or marker(s)). We only allow the hardware driver to
 508 * specify how to write bad block markers to OOB (chip->block_markbad).
 509 *
 510 * We try operations in the following order:
 511 *
 512 *  (1) erase the affected block, to allow OOB marker to be written cleanly
 513 *  (2) write bad block marker to OOB area of affected block (unless flag
 514 *      NAND_BBT_NO_OOB_BBM is present)
 515 *  (3) update the BBT
 516 *
 517 * Note that we retain the first error encountered in (2) or (3), finish the
 518 * procedures, and dump the error in the end.
 519*/
 520static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
 521{
 522        struct nand_chip *chip = mtd_to_nand(mtd);
 523        int res, ret = 0;
 524
 525        if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
 526                struct erase_info einfo;
 527
 528                /* Attempt erase before marking OOB */
 529                memset(&einfo, 0, sizeof(einfo));
 530                einfo.addr = ofs;
 531                einfo.len = 1ULL << chip->phys_erase_shift;
 532                nand_erase_nand(mtd, &einfo, 0);
 533
 534                /* Write bad block marker to OOB */
 535                nand_get_device(mtd, FL_WRITING);
 536                ret = chip->block_markbad(mtd, ofs);
 537                nand_release_device(mtd);
 538        }
 539
 540        /* Mark block bad in BBT */
 541        if (chip->bbt) {
 542                res = nand_markbad_bbt(mtd, ofs);
 543                if (!ret)
 544                        ret = res;
 545        }
 546
 547        if (!ret)
 548                mtd->ecc_stats.badblocks++;
 549
 550        return ret;
 551}
 552
 553/**
 554 * nand_check_wp - [GENERIC] check if the chip is write protected
 555 * @mtd: MTD device structure
 556 *
 557 * Check, if the device is write protected. The function expects, that the
 558 * device is already selected.
 559 */
 560static int nand_check_wp(struct mtd_info *mtd)
 561{
 562        struct nand_chip *chip = mtd_to_nand(mtd);
 563        u8 status;
 564        int ret;
 565
 566        /* Broken xD cards report WP despite being writable */
 567        if (chip->options & NAND_BROKEN_XD)
 568                return 0;
 569
 570        /* Check the WP bit */
 571        ret = nand_status_op(chip, &status);
 572        if (ret)
 573                return ret;
 574
 575        return status & NAND_STATUS_WP ? 0 : 1;
 576}
 577
 578/**
 579 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
 580 * @mtd: MTD device structure
 581 * @ofs: offset from device start
 582 *
 583 * Check if the block is marked as reserved.
 584 */
 585static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 586{
 587        struct nand_chip *chip = mtd_to_nand(mtd);
 588
 589        if (!chip->bbt)
 590                return 0;
 591        /* Return info from the table */
 592        return nand_isreserved_bbt(mtd, ofs);
 593}
 594
 595/**
 596 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 597 * @mtd: MTD device structure
 598 * @ofs: offset from device start
 599 * @allowbbt: 1, if its allowed to access the bbt area
 600 *
 601 * Check, if the block is bad. Either by reading the bad block table or
 602 * calling of the scan function.
 603 */
 604static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
 605{
 606        struct nand_chip *chip = mtd_to_nand(mtd);
 607
 608        if (!chip->bbt)
 609                return chip->block_bad(mtd, ofs);
 610
 611        /* Return info from the table */
 612        return nand_isbad_bbt(mtd, ofs, allowbbt);
 613}
 614
 615/**
 616 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 617 * @mtd: MTD device structure
 618 * @timeo: Timeout
 619 *
 620 * Helper function for nand_wait_ready used when needing to wait in interrupt
 621 * context.
 622 */
 623static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
 624{
 625        struct nand_chip *chip = mtd_to_nand(mtd);
 626        int i;
 627
 628        /* Wait for the device to get ready */
 629        for (i = 0; i < timeo; i++) {
 630                if (chip->dev_ready(mtd))
 631                        break;
 632                touch_softlockup_watchdog();
 633                mdelay(1);
 634        }
 635}
 636
 637/**
 638 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 639 * @mtd: MTD device structure
 640 *
 641 * Wait for the ready pin after a command, and warn if a timeout occurs.
 642 */
 643void nand_wait_ready(struct mtd_info *mtd)
 644{
 645        struct nand_chip *chip = mtd_to_nand(mtd);
 646        unsigned long timeo = 400;
 647
 648        if (in_interrupt() || oops_in_progress)
 649                return panic_nand_wait_ready(mtd, timeo);
 650
 651        /* Wait until command is processed or timeout occurs */
 652        timeo = jiffies + msecs_to_jiffies(timeo);
 653        do {
 654                if (chip->dev_ready(mtd))
 655                        return;
 656                cond_resched();
 657        } while (time_before(jiffies, timeo));
 658
 659        if (!chip->dev_ready(mtd))
 660                pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
 661}
 662EXPORT_SYMBOL_GPL(nand_wait_ready);
 663
 664/**
 665 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 666 * @mtd: MTD device structure
 667 * @timeo: Timeout in ms
 668 *
 669 * Wait for status ready (i.e. command done) or timeout.
 670 */
 671static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
 672{
 673        register struct nand_chip *chip = mtd_to_nand(mtd);
 674        int ret;
 675
 676        timeo = jiffies + msecs_to_jiffies(timeo);
 677        do {
 678                u8 status;
 679
 680                ret = nand_read_data_op(chip, &status, sizeof(status), true);
 681                if (ret)
 682                        return;
 683
 684                if (status & NAND_STATUS_READY)
 685                        break;
 686                touch_softlockup_watchdog();
 687        } while (time_before(jiffies, timeo));
 688};
 689
 690/**
 691 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
 692 * @chip: NAND chip structure
 693 * @timeout_ms: Timeout in ms
 694 *
 695 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
 696 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
 697 * returned.
 698 *
 699 * This helper is intended to be used when the controller does not have access
 700 * to the NAND R/B pin.
 701 *
 702 * Be aware that calling this helper from an ->exec_op() implementation means
 703 * ->exec_op() must be re-entrant.
 704 *
 705 * Return 0 if the NAND chip is ready, a negative error otherwise.
 706 */
 707int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
 708{
 709        const struct nand_sdr_timings *timings;
 710        u8 status = 0;
 711        int ret;
 712
 713        if (!chip->exec_op)
 714                return -ENOTSUPP;
 715
 716        /* Wait tWB before polling the STATUS reg. */
 717        timings = nand_get_sdr_timings(&chip->data_interface);
 718        ndelay(PSEC_TO_NSEC(timings->tWB_max));
 719
 720        ret = nand_status_op(chip, NULL);
 721        if (ret)
 722                return ret;
 723
 724        timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
 725        do {
 726                ret = nand_read_data_op(chip, &status, sizeof(status), true);
 727                if (ret)
 728                        break;
 729
 730                if (status & NAND_STATUS_READY)
 731                        break;
 732
 733                /*
 734                 * Typical lowest execution time for a tR on most NANDs is 10us,
 735                 * use this as polling delay before doing something smarter (ie.
 736                 * deriving a delay from the timeout value, timeout_ms/ratio).
 737                 */
 738                udelay(10);
 739        } while (time_before(jiffies, timeout_ms));
 740
 741        /*
 742         * We have to exit READ_STATUS mode in order to read real data on the
 743         * bus in case the WAITRDY instruction is preceding a DATA_IN
 744         * instruction.
 745         */
 746        nand_exit_status_op(chip);
 747
 748        if (ret)
 749                return ret;
 750
 751        return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
 752};
 753EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
 754
 755/**
 756 * nand_command - [DEFAULT] Send command to NAND device
 757 * @mtd: MTD device structure
 758 * @command: the command to be sent
 759 * @column: the column address for this command, -1 if none
 760 * @page_addr: the page address for this command, -1 if none
 761 *
 762 * Send command to NAND device. This function is used for small page devices
 763 * (512 Bytes per page).
 764 */
 765static void nand_command(struct mtd_info *mtd, unsigned int command,
 766                         int column, int page_addr)
 767{
 768        register struct nand_chip *chip = mtd_to_nand(mtd);
 769        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 770
 771        /* Write out the command to the device */
 772        if (command == NAND_CMD_SEQIN) {
 773                int readcmd;
 774
 775                if (column >= mtd->writesize) {
 776                        /* OOB area */
 777                        column -= mtd->writesize;
 778                        readcmd = NAND_CMD_READOOB;
 779                } else if (column < 256) {
 780                        /* First 256 bytes --> READ0 */
 781                        readcmd = NAND_CMD_READ0;
 782                } else {
 783                        column -= 256;
 784                        readcmd = NAND_CMD_READ1;
 785                }
 786                chip->cmd_ctrl(mtd, readcmd, ctrl);
 787                ctrl &= ~NAND_CTRL_CHANGE;
 788        }
 789        if (command != NAND_CMD_NONE)
 790                chip->cmd_ctrl(mtd, command, ctrl);
 791
 792        /* Address cycle, when necessary */
 793        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 794        /* Serially input address */
 795        if (column != -1) {
 796                /* Adjust columns for 16 bit buswidth */
 797                if (chip->options & NAND_BUSWIDTH_16 &&
 798                                !nand_opcode_8bits(command))
 799                        column >>= 1;
 800                chip->cmd_ctrl(mtd, column, ctrl);
 801                ctrl &= ~NAND_CTRL_CHANGE;
 802        }
 803        if (page_addr != -1) {
 804                chip->cmd_ctrl(mtd, page_addr, ctrl);
 805                ctrl &= ~NAND_CTRL_CHANGE;
 806                chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 807                if (chip->options & NAND_ROW_ADDR_3)
 808                        chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 809        }
 810        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 811
 812        /*
 813         * Program and erase have their own busy handlers status and sequential
 814         * in needs no delay
 815         */
 816        switch (command) {
 817
 818        case NAND_CMD_NONE:
 819        case NAND_CMD_PAGEPROG:
 820        case NAND_CMD_ERASE1:
 821        case NAND_CMD_ERASE2:
 822        case NAND_CMD_SEQIN:
 823        case NAND_CMD_STATUS:
 824        case NAND_CMD_READID:
 825        case NAND_CMD_SET_FEATURES:
 826                return;
 827
 828        case NAND_CMD_RESET:
 829                if (chip->dev_ready)
 830                        break;
 831                udelay(chip->chip_delay);
 832                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 833                               NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 834                chip->cmd_ctrl(mtd,
 835                               NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 836                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 837                nand_wait_status_ready(mtd, 250);
 838                return;
 839
 840                /* This applies to read commands */
 841        case NAND_CMD_READ0:
 842                /*
 843                 * READ0 is sometimes used to exit GET STATUS mode. When this
 844                 * is the case no address cycles are requested, and we can use
 845                 * this information to detect that we should not wait for the
 846                 * device to be ready.
 847                 */
 848                if (column == -1 && page_addr == -1)
 849                        return;
 850
 851        default:
 852                /*
 853                 * If we don't have access to the busy pin, we apply the given
 854                 * command delay
 855                 */
 856                if (!chip->dev_ready) {
 857                        udelay(chip->chip_delay);
 858                        return;
 859                }
 860        }
 861        /*
 862         * Apply this short delay always to ensure that we do wait tWB in
 863         * any case on any machine.
 864         */
 865        ndelay(100);
 866
 867        nand_wait_ready(mtd);
 868}
 869
 870static void nand_ccs_delay(struct nand_chip *chip)
 871{
 872        /*
 873         * The controller already takes care of waiting for tCCS when the RNDIN
 874         * or RNDOUT command is sent, return directly.
 875         */
 876        if (!(chip->options & NAND_WAIT_TCCS))
 877                return;
 878
 879        /*
 880         * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
 881         * (which should be safe for all NANDs).
 882         */
 883        if (chip->setup_data_interface)
 884                ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
 885        else
 886                ndelay(500);
 887}
 888
 889/**
 890 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 891 * @mtd: MTD device structure
 892 * @command: the command to be sent
 893 * @column: the column address for this command, -1 if none
 894 * @page_addr: the page address for this command, -1 if none
 895 *
 896 * Send command to NAND device. This is the version for the new large page
 897 * devices. We don't have the separate regions as we have in the small page
 898 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
 899 */
 900static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 901                            int column, int page_addr)
 902{
 903        register struct nand_chip *chip = mtd_to_nand(mtd);
 904
 905        /* Emulate NAND_CMD_READOOB */
 906        if (command == NAND_CMD_READOOB) {
 907                column += mtd->writesize;
 908                command = NAND_CMD_READ0;
 909        }
 910
 911        /* Command latch cycle */
 912        if (command != NAND_CMD_NONE)
 913                chip->cmd_ctrl(mtd, command,
 914                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 915
 916        if (column != -1 || page_addr != -1) {
 917                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 918
 919                /* Serially input address */
 920                if (column != -1) {
 921                        /* Adjust columns for 16 bit buswidth */
 922                        if (chip->options & NAND_BUSWIDTH_16 &&
 923                                        !nand_opcode_8bits(command))
 924                                column >>= 1;
 925                        chip->cmd_ctrl(mtd, column, ctrl);
 926                        ctrl &= ~NAND_CTRL_CHANGE;
 927
 928                        /* Only output a single addr cycle for 8bits opcodes. */
 929                        if (!nand_opcode_8bits(command))
 930                                chip->cmd_ctrl(mtd, column >> 8, ctrl);
 931                }
 932                if (page_addr != -1) {
 933                        chip->cmd_ctrl(mtd, page_addr, ctrl);
 934                        chip->cmd_ctrl(mtd, page_addr >> 8,
 935                                       NAND_NCE | NAND_ALE);
 936                        if (chip->options & NAND_ROW_ADDR_3)
 937                                chip->cmd_ctrl(mtd, page_addr >> 16,
 938                                               NAND_NCE | NAND_ALE);
 939                }
 940        }
 941        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 942
 943        /*
 944         * Program and erase have their own busy handlers status, sequential
 945         * in and status need no delay.
 946         */
 947        switch (command) {
 948
 949        case NAND_CMD_NONE:
 950        case NAND_CMD_CACHEDPROG:
 951        case NAND_CMD_PAGEPROG:
 952        case NAND_CMD_ERASE1:
 953        case NAND_CMD_ERASE2:
 954        case NAND_CMD_SEQIN:
 955        case NAND_CMD_STATUS:
 956        case NAND_CMD_READID:
 957        case NAND_CMD_SET_FEATURES:
 958                return;
 959
 960        case NAND_CMD_RNDIN:
 961                nand_ccs_delay(chip);
 962                return;
 963
 964        case NAND_CMD_RESET:
 965                if (chip->dev_ready)
 966                        break;
 967                udelay(chip->chip_delay);
 968                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 969                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 970                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 971                               NAND_NCE | NAND_CTRL_CHANGE);
 972                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 973                nand_wait_status_ready(mtd, 250);
 974                return;
 975
 976        case NAND_CMD_RNDOUT:
 977                /* No ready / busy check necessary */
 978                chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 979                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 980                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 981                               NAND_NCE | NAND_CTRL_CHANGE);
 982
 983                nand_ccs_delay(chip);
 984                return;
 985
 986        case NAND_CMD_READ0:
 987                /*
 988                 * READ0 is sometimes used to exit GET STATUS mode. When this
 989                 * is the case no address cycles are requested, and we can use
 990                 * this information to detect that READSTART should not be
 991                 * issued.
 992                 */
 993                if (column == -1 && page_addr == -1)
 994                        return;
 995
 996                chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 997                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 998                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 999                               NAND_NCE | NAND_CTRL_CHANGE);
1000
1001                /* This applies to read commands */
1002        default:
1003                /*
1004                 * If we don't have access to the busy pin, we apply the given
1005                 * command delay.
1006                 */
1007                if (!chip->dev_ready) {
1008                        udelay(chip->chip_delay);
1009                        return;
1010                }
1011        }
1012
1013        /*
1014         * Apply this short delay always to ensure that we do wait tWB in
1015         * any case on any machine.
1016         */
1017        ndelay(100);
1018
1019        nand_wait_ready(mtd);
1020}
1021
1022/**
1023 * panic_nand_get_device - [GENERIC] Get chip for selected access
1024 * @chip: the nand chip descriptor
1025 * @mtd: MTD device structure
1026 * @new_state: the state which is requested
1027 *
1028 * Used when in panic, no locks are taken.
1029 */
1030static void panic_nand_get_device(struct nand_chip *chip,
1031                      struct mtd_info *mtd, int new_state)
1032{
1033        /* Hardware controller shared among independent devices */
1034        chip->controller->active = chip;
1035        chip->state = new_state;
1036}
1037
1038/**
1039 * nand_get_device - [GENERIC] Get chip for selected access
1040 * @mtd: MTD device structure
1041 * @new_state: the state which is requested
1042 *
1043 * Get the device and lock it for exclusive access
1044 */
1045static int
1046nand_get_device(struct mtd_info *mtd, int new_state)
1047{
1048        struct nand_chip *chip = mtd_to_nand(mtd);
1049        spinlock_t *lock = &chip->controller->lock;
1050        wait_queue_head_t *wq = &chip->controller->wq;
1051        DECLARE_WAITQUEUE(wait, current);
1052retry:
1053        spin_lock(lock);
1054
1055        /* Hardware controller shared among independent devices */
1056        if (!chip->controller->active)
1057                chip->controller->active = chip;
1058
1059        if (chip->controller->active == chip && chip->state == FL_READY) {
1060                chip->state = new_state;
1061                spin_unlock(lock);
1062                return 0;
1063        }
1064        if (new_state == FL_PM_SUSPENDED) {
1065                if (chip->controller->active->state == FL_PM_SUSPENDED) {
1066                        chip->state = FL_PM_SUSPENDED;
1067                        spin_unlock(lock);
1068                        return 0;
1069                }
1070        }
1071        set_current_state(TASK_UNINTERRUPTIBLE);
1072        add_wait_queue(wq, &wait);
1073        spin_unlock(lock);
1074        schedule();
1075        remove_wait_queue(wq, &wait);
1076        goto retry;
1077}
1078
1079/**
1080 * panic_nand_wait - [GENERIC] wait until the command is done
1081 * @mtd: MTD device structure
1082 * @chip: NAND chip structure
1083 * @timeo: timeout
1084 *
1085 * Wait for command done. This is a helper function for nand_wait used when
1086 * we are in interrupt context. May happen when in panic and trying to write
1087 * an oops through mtdoops.
1088 */
1089static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
1090                            unsigned long timeo)
1091{
1092        int i;
1093        for (i = 0; i < timeo; i++) {
1094                if (chip->dev_ready) {
1095                        if (chip->dev_ready(mtd))
1096                                break;
1097                } else {
1098                        int ret;
1099                        u8 status;
1100
1101                        ret = nand_read_data_op(chip, &status, sizeof(status),
1102                                                true);
1103                        if (ret)
1104                                return;
1105
1106                        if (status & NAND_STATUS_READY)
1107                                break;
1108                }
1109                mdelay(1);
1110        }
1111}
1112
1113/**
1114 * nand_wait - [DEFAULT] wait until the command is done
1115 * @mtd: MTD device structure
1116 * @chip: NAND chip structure
1117 *
1118 * Wait for command done. This applies to erase and program only.
1119 */
1120static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1121{
1122
1123        unsigned long timeo = 400;
1124        u8 status;
1125        int ret;
1126
1127        /*
1128         * Apply this short delay always to ensure that we do wait tWB in any
1129         * case on any machine.
1130         */
1131        ndelay(100);
1132
1133        ret = nand_status_op(chip, NULL);
1134        if (ret)
1135                return ret;
1136
1137        if (in_interrupt() || oops_in_progress)
1138                panic_nand_wait(mtd, chip, timeo);
1139        else {
1140                timeo = jiffies + msecs_to_jiffies(timeo);
1141                do {
1142                        if (chip->dev_ready) {
1143                                if (chip->dev_ready(mtd))
1144                                        break;
1145                        } else {
1146                                ret = nand_read_data_op(chip, &status,
1147                                                        sizeof(status), true);
1148                                if (ret)
1149                                        return ret;
1150
1151                                if (status & NAND_STATUS_READY)
1152                                        break;
1153                        }
1154                        cond_resched();
1155                } while (time_before(jiffies, timeo));
1156        }
1157
1158        ret = nand_read_data_op(chip, &status, sizeof(status), true);
1159        if (ret)
1160                return ret;
1161
1162        /* This can happen if in case of timeout or buggy dev_ready */
1163        WARN_ON(!(status & NAND_STATUS_READY));
1164        return status;
1165}
1166
1167static bool nand_supports_get_features(struct nand_chip *chip, int addr)
1168{
1169        return (chip->parameters.supports_set_get_features &&
1170                test_bit(addr, chip->parameters.get_feature_list));
1171}
1172
1173static bool nand_supports_set_features(struct nand_chip *chip, int addr)
1174{
1175        return (chip->parameters.supports_set_get_features &&
1176                test_bit(addr, chip->parameters.set_feature_list));
1177}
1178
1179/**
1180 * nand_get_features - wrapper to perform a GET_FEATURE
1181 * @chip: NAND chip info structure
1182 * @addr: feature address
1183 * @subfeature_param: the subfeature parameters, a four bytes array
1184 *
1185 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
1186 * operation cannot be handled.
1187 */
1188int nand_get_features(struct nand_chip *chip, int addr,
1189                      u8 *subfeature_param)
1190{
1191        struct mtd_info *mtd = nand_to_mtd(chip);
1192
1193        if (!nand_supports_get_features(chip, addr))
1194                return -ENOTSUPP;
1195
1196        return chip->get_features(mtd, chip, addr, subfeature_param);
1197}
1198EXPORT_SYMBOL_GPL(nand_get_features);
1199
1200/**
1201 * nand_set_features - wrapper to perform a SET_FEATURE
1202 * @chip: NAND chip info structure
1203 * @addr: feature address
1204 * @subfeature_param: the subfeature parameters, a four bytes array
1205 *
1206 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
1207 * operation cannot be handled.
1208 */
1209int nand_set_features(struct nand_chip *chip, int addr,
1210                      u8 *subfeature_param)
1211{
1212        struct mtd_info *mtd = nand_to_mtd(chip);
1213
1214        if (!nand_supports_set_features(chip, addr))
1215                return -ENOTSUPP;
1216
1217        return chip->set_features(mtd, chip, addr, subfeature_param);
1218}
1219EXPORT_SYMBOL_GPL(nand_set_features);
1220
1221/**
1222 * nand_reset_data_interface - Reset data interface and timings
1223 * @chip: The NAND chip
1224 * @chipnr: Internal die id
1225 *
1226 * Reset the Data interface and timings to ONFI mode 0.
1227 *
1228 * Returns 0 for success or negative error code otherwise.
1229 */
1230static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
1231{
1232        struct mtd_info *mtd = nand_to_mtd(chip);
1233        int ret;
1234
1235        if (!chip->setup_data_interface)
1236                return 0;
1237
1238        /*
1239         * The ONFI specification says:
1240         * "
1241         * To transition from NV-DDR or NV-DDR2 to the SDR data
1242         * interface, the host shall use the Reset (FFh) command
1243         * using SDR timing mode 0. A device in any timing mode is
1244         * required to recognize Reset (FFh) command issued in SDR
1245         * timing mode 0.
1246         * "
1247         *
1248         * Configure the data interface in SDR mode and set the
1249         * timings to timing mode 0.
1250         */
1251
1252        onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
1253        ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
1254        if (ret)
1255                pr_err("Failed to configure data interface to SDR timing mode 0\n");
1256
1257        return ret;
1258}
1259
1260/**
1261 * nand_setup_data_interface - Setup the best data interface and timings
1262 * @chip: The NAND chip
1263 * @chipnr: Internal die id
1264 *
1265 * Find and configure the best data interface and NAND timings supported by
1266 * the chip and the driver.
1267 * First tries to retrieve supported timing modes from ONFI information,
1268 * and if the NAND chip does not support ONFI, relies on the
1269 * ->onfi_timing_mode_default specified in the nand_ids table.
1270 *
1271 * Returns 0 for success or negative error code otherwise.
1272 */
1273static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
1274{
1275        struct mtd_info *mtd = nand_to_mtd(chip);
1276        u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1277                chip->onfi_timing_mode_default,
1278        };
1279        int ret;
1280
1281        if (!chip->setup_data_interface)
1282                return 0;
1283
1284        /* Change the mode on the chip side (if supported by the NAND chip) */
1285        if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
1286                chip->select_chip(mtd, chipnr);
1287                ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
1288                                        tmode_param);
1289                chip->select_chip(mtd, -1);
1290                if (ret)
1291                        return ret;
1292        }
1293
1294        /* Change the mode on the controller side */
1295        ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
1296        if (ret)
1297                return ret;
1298
1299        /* Check the mode has been accepted by the chip, if supported */
1300        if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
1301                return 0;
1302
1303        memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
1304        chip->select_chip(mtd, chipnr);
1305        ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
1306                                tmode_param);
1307        chip->select_chip(mtd, -1);
1308        if (ret)
1309                goto err_reset_chip;
1310
1311        if (tmode_param[0] != chip->onfi_timing_mode_default) {
1312                pr_warn("timing mode %d not acknowledged by the NAND chip\n",
1313                        chip->onfi_timing_mode_default);
1314                goto err_reset_chip;
1315        }
1316
1317        return 0;
1318
1319err_reset_chip:
1320        /*
1321         * Fallback to mode 0 if the chip explicitly did not ack the chosen
1322         * timing mode.
1323         */
1324        nand_reset_data_interface(chip, chipnr);
1325        chip->select_chip(mtd, chipnr);
1326        nand_reset_op(chip);
1327        chip->select_chip(mtd, -1);
1328
1329        return ret;
1330}
1331
1332/**
1333 * nand_init_data_interface - find the best data interface and timings
1334 * @chip: The NAND chip
1335 *
1336 * Find the best data interface and NAND timings supported by the chip
1337 * and the driver.
1338 * First tries to retrieve supported timing modes from ONFI information,
1339 * and if the NAND chip does not support ONFI, relies on the
1340 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1341 * function nand_chip->data_interface is initialized with the best timing mode
1342 * available.
1343 *
1344 * Returns 0 for success or negative error code otherwise.
1345 */
1346static int nand_init_data_interface(struct nand_chip *chip)
1347{
1348        struct mtd_info *mtd = nand_to_mtd(chip);
1349        int modes, mode, ret;
1350
1351        if (!chip->setup_data_interface)
1352                return 0;
1353
1354        /*
1355         * First try to identify the best timings from ONFI parameters and
1356         * if the NAND does not support ONFI, fallback to the default ONFI
1357         * timing mode.
1358         */
1359        modes = onfi_get_async_timing_mode(chip);
1360        if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1361                if (!chip->onfi_timing_mode_default)
1362                        return 0;
1363
1364                modes = GENMASK(chip->onfi_timing_mode_default, 0);
1365        }
1366
1367
1368        for (mode = fls(modes) - 1; mode >= 0; mode--) {
1369                ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
1370                if (ret)
1371                        continue;
1372
1373                /*
1374                 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
1375                 * controller supports the requested timings.
1376                 */
1377                ret = chip->setup_data_interface(mtd,
1378                                                 NAND_DATA_IFACE_CHECK_ONLY,
1379                                                 &chip->data_interface);
1380                if (!ret) {
1381                        chip->onfi_timing_mode_default = mode;
1382                        break;
1383                }
1384        }
1385
1386        return 0;
1387}
1388
1389/**
1390 * nand_fill_column_cycles - fill the column cycles of an address
1391 * @chip: The NAND chip
1392 * @addrs: Array of address cycles to fill
1393 * @offset_in_page: The offset in the page
1394 *
1395 * Fills the first or the first two bytes of the @addrs field depending
1396 * on the NAND bus width and the page size.
1397 *
1398 * Returns the number of cycles needed to encode the column, or a negative
1399 * error code in case one of the arguments is invalid.
1400 */
1401static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1402                                   unsigned int offset_in_page)
1403{
1404        struct mtd_info *mtd = nand_to_mtd(chip);
1405
1406        /* Make sure the offset is less than the actual page size. */
1407        if (offset_in_page > mtd->writesize + mtd->oobsize)
1408                return -EINVAL;
1409
1410        /*
1411         * On small page NANDs, there's a dedicated command to access the OOB
1412         * area, and the column address is relative to the start of the OOB
1413         * area, not the start of the page. Asjust the address accordingly.
1414         */
1415        if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1416                offset_in_page -= mtd->writesize;
1417
1418        /*
1419         * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1420         * wide, then it must be divided by 2.
1421         */
1422        if (chip->options & NAND_BUSWIDTH_16) {
1423                if (WARN_ON(offset_in_page % 2))
1424                        return -EINVAL;
1425
1426                offset_in_page /= 2;
1427        }
1428
1429        addrs[0] = offset_in_page;
1430
1431        /*
1432         * Small page NANDs use 1 cycle for the columns, while large page NANDs
1433         * need 2
1434         */
1435        if (mtd->writesize <= 512)
1436                return 1;
1437
1438        addrs[1] = offset_in_page >> 8;
1439
1440        return 2;
1441}
1442
1443static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1444                                     unsigned int offset_in_page, void *buf,
1445                                     unsigned int len)
1446{
1447        struct mtd_info *mtd = nand_to_mtd(chip);
1448        const struct nand_sdr_timings *sdr =
1449                nand_get_sdr_timings(&chip->data_interface);
1450        u8 addrs[4];
1451        struct nand_op_instr instrs[] = {
1452                NAND_OP_CMD(NAND_CMD_READ0, 0),
1453                NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1454                NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1455                                 PSEC_TO_NSEC(sdr->tRR_min)),
1456                NAND_OP_DATA_IN(len, buf, 0),
1457        };
1458        struct nand_operation op = NAND_OPERATION(instrs);
1459        int ret;
1460
1461        /* Drop the DATA_IN instruction if len is set to 0. */
1462        if (!len)
1463                op.ninstrs--;
1464
1465        if (offset_in_page >= mtd->writesize)
1466                instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1467        else if (offset_in_page >= 256 &&
1468                 !(chip->options & NAND_BUSWIDTH_16))
1469                instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1470
1471        ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1472        if (ret < 0)
1473                return ret;
1474
1475        addrs[1] = page;
1476        addrs[2] = page >> 8;
1477
1478        if (chip->options & NAND_ROW_ADDR_3) {
1479                addrs[3] = page >> 16;
1480                instrs[1].ctx.addr.naddrs++;
1481        }
1482
1483        return nand_exec_op(chip, &op);
1484}
1485
1486static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1487                                     unsigned int offset_in_page, void *buf,
1488                                     unsigned int len)
1489{
1490        const struct nand_sdr_timings *sdr =
1491                nand_get_sdr_timings(&chip->data_interface);
1492        u8 addrs[5];
1493        struct nand_op_instr instrs[] = {
1494                NAND_OP_CMD(NAND_CMD_READ0, 0),
1495                NAND_OP_ADDR(4, addrs, 0),
1496                NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1497                NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1498                                 PSEC_TO_NSEC(sdr->tRR_min)),
1499                NAND_OP_DATA_IN(len, buf, 0),
1500        };
1501        struct nand_operation op = NAND_OPERATION(instrs);
1502        int ret;
1503
1504        /* Drop the DATA_IN instruction if len is set to 0. */
1505        if (!len)
1506                op.ninstrs--;
1507
1508        ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1509        if (ret < 0)
1510                return ret;
1511
1512        addrs[2] = page;
1513        addrs[3] = page >> 8;
1514
1515        if (chip->options & NAND_ROW_ADDR_3) {
1516                addrs[4] = page >> 16;
1517                instrs[1].ctx.addr.naddrs++;
1518        }
1519
1520        return nand_exec_op(chip, &op);
1521}
1522
1523/**
1524 * nand_read_page_op - Do a READ PAGE operation
1525 * @chip: The NAND chip
1526 * @page: page to read
1527 * @offset_in_page: offset within the page
1528 * @buf: buffer used to store the data
1529 * @len: length of the buffer
1530 *
1531 * This function issues a READ PAGE operation.
1532 * This function does not select/unselect the CS line.
1533 *
1534 * Returns 0 on success, a negative error code otherwise.
1535 */
1536int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1537                      unsigned int offset_in_page, void *buf, unsigned int len)
1538{
1539        struct mtd_info *mtd = nand_to_mtd(chip);
1540
1541        if (len && !buf)
1542                return -EINVAL;
1543
1544        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1545                return -EINVAL;
1546
1547        if (chip->exec_op) {
1548                if (mtd->writesize > 512)
1549                        return nand_lp_exec_read_page_op(chip, page,
1550                                                         offset_in_page, buf,
1551                                                         len);
1552
1553                return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1554                                                 buf, len);
1555        }
1556
1557        chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
1558        if (len)
1559                chip->read_buf(mtd, buf, len);
1560
1561        return 0;
1562}
1563EXPORT_SYMBOL_GPL(nand_read_page_op);
1564
1565/**
1566 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1567 * @chip: The NAND chip
1568 * @page: parameter page to read
1569 * @buf: buffer used to store the data
1570 * @len: length of the buffer
1571 *
1572 * This function issues a READ PARAMETER PAGE operation.
1573 * This function does not select/unselect the CS line.
1574 *
1575 * Returns 0 on success, a negative error code otherwise.
1576 */
1577static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1578                                   unsigned int len)
1579{
1580        struct mtd_info *mtd = nand_to_mtd(chip);
1581        unsigned int i;
1582        u8 *p = buf;
1583
1584        if (len && !buf)
1585                return -EINVAL;
1586
1587        if (chip->exec_op) {
1588                const struct nand_sdr_timings *sdr =
1589                        nand_get_sdr_timings(&chip->data_interface);
1590                struct nand_op_instr instrs[] = {
1591                        NAND_OP_CMD(NAND_CMD_PARAM, 0),
1592                        NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1593                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1594                                         PSEC_TO_NSEC(sdr->tRR_min)),
1595                        NAND_OP_8BIT_DATA_IN(len, buf, 0),
1596                };
1597                struct nand_operation op = NAND_OPERATION(instrs);
1598
1599                /* Drop the DATA_IN instruction if len is set to 0. */
1600                if (!len)
1601                        op.ninstrs--;
1602
1603                return nand_exec_op(chip, &op);
1604        }
1605
1606        chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
1607        for (i = 0; i < len; i++)
1608                p[i] = chip->read_byte(mtd);
1609
1610        return 0;
1611}
1612
1613/**
1614 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1615 * @chip: The NAND chip
1616 * @offset_in_page: offset within the page
1617 * @buf: buffer used to store the data
1618 * @len: length of the buffer
1619 * @force_8bit: force 8-bit bus access
1620 *
1621 * This function issues a CHANGE READ COLUMN operation.
1622 * This function does not select/unselect the CS line.
1623 *
1624 * Returns 0 on success, a negative error code otherwise.
1625 */
1626int nand_change_read_column_op(struct nand_chip *chip,
1627                               unsigned int offset_in_page, void *buf,
1628                               unsigned int len, bool force_8bit)
1629{
1630        struct mtd_info *mtd = nand_to_mtd(chip);
1631
1632        if (len && !buf)
1633                return -EINVAL;
1634
1635        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1636                return -EINVAL;
1637
1638        /* Small page NANDs do not support column change. */
1639        if (mtd->writesize <= 512)
1640                return -ENOTSUPP;
1641
1642        if (chip->exec_op) {
1643                const struct nand_sdr_timings *sdr =
1644                        nand_get_sdr_timings(&chip->data_interface);
1645                u8 addrs[2] = {};
1646                struct nand_op_instr instrs[] = {
1647                        NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1648                        NAND_OP_ADDR(2, addrs, 0),
1649                        NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1650                                    PSEC_TO_NSEC(sdr->tCCS_min)),
1651                        NAND_OP_DATA_IN(len, buf, 0),
1652                };
1653                struct nand_operation op = NAND_OPERATION(instrs);
1654                int ret;
1655
1656                ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1657                if (ret < 0)
1658                        return ret;
1659
1660                /* Drop the DATA_IN instruction if len is set to 0. */
1661                if (!len)
1662                        op.ninstrs--;
1663
1664                instrs[3].ctx.data.force_8bit = force_8bit;
1665
1666                return nand_exec_op(chip, &op);
1667        }
1668
1669        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
1670        if (len)
1671                chip->read_buf(mtd, buf, len);
1672
1673        return 0;
1674}
1675EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1676
1677/**
1678 * nand_read_oob_op - Do a READ OOB operation
1679 * @chip: The NAND chip
1680 * @page: page to read
1681 * @offset_in_oob: offset within the OOB area
1682 * @buf: buffer used to store the data
1683 * @len: length of the buffer
1684 *
1685 * This function issues a READ OOB operation.
1686 * This function does not select/unselect the CS line.
1687 *
1688 * Returns 0 on success, a negative error code otherwise.
1689 */
1690int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1691                     unsigned int offset_in_oob, void *buf, unsigned int len)
1692{
1693        struct mtd_info *mtd = nand_to_mtd(chip);
1694
1695        if (len && !buf)
1696                return -EINVAL;
1697
1698        if (offset_in_oob + len > mtd->oobsize)
1699                return -EINVAL;
1700
1701        if (chip->exec_op)
1702                return nand_read_page_op(chip, page,
1703                                         mtd->writesize + offset_in_oob,
1704                                         buf, len);
1705
1706        chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
1707        if (len)
1708                chip->read_buf(mtd, buf, len);
1709
1710        return 0;
1711}
1712EXPORT_SYMBOL_GPL(nand_read_oob_op);
1713
1714static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1715                                  unsigned int offset_in_page, const void *buf,
1716                                  unsigned int len, bool prog)
1717{
1718        struct mtd_info *mtd = nand_to_mtd(chip);
1719        const struct nand_sdr_timings *sdr =
1720                nand_get_sdr_timings(&chip->data_interface);
1721        u8 addrs[5] = {};
1722        struct nand_op_instr instrs[] = {
1723                /*
1724                 * The first instruction will be dropped if we're dealing
1725                 * with a large page NAND and adjusted if we're dealing
1726                 * with a small page NAND and the page offset is > 255.
1727                 */
1728                NAND_OP_CMD(NAND_CMD_READ0, 0),
1729                NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1730                NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1731                NAND_OP_DATA_OUT(len, buf, 0),
1732                NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1733                NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1734        };
1735        struct nand_operation op = NAND_OPERATION(instrs);
1736        int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1737        int ret;
1738        u8 status;
1739
1740        if (naddrs < 0)
1741                return naddrs;
1742
1743        addrs[naddrs++] = page;
1744        addrs[naddrs++] = page >> 8;
1745        if (chip->options & NAND_ROW_ADDR_3)
1746                addrs[naddrs++] = page >> 16;
1747
1748        instrs[2].ctx.addr.naddrs = naddrs;
1749
1750        /* Drop the last two instructions if we're not programming the page. */
1751        if (!prog) {
1752                op.ninstrs -= 2;
1753                /* Also drop the DATA_OUT instruction if empty. */
1754                if (!len)
1755                        op.ninstrs--;
1756        }
1757
1758        if (mtd->writesize <= 512) {
1759                /*
1760                 * Small pages need some more tweaking: we have to adjust the
1761                 * first instruction depending on the page offset we're trying
1762                 * to access.
1763                 */
1764                if (offset_in_page >= mtd->writesize)
1765                        instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1766                else if (offset_in_page >= 256 &&
1767                         !(chip->options & NAND_BUSWIDTH_16))
1768                        instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1769        } else {
1770                /*
1771                 * Drop the first command if we're dealing with a large page
1772                 * NAND.
1773                 */
1774                op.instrs++;
1775                op.ninstrs--;
1776        }
1777
1778        ret = nand_exec_op(chip, &op);
1779        if (!prog || ret)
1780                return ret;
1781
1782        ret = nand_status_op(chip, &status);
1783        if (ret)
1784                return ret;
1785
1786        return status;
1787}
1788
1789/**
1790 * nand_prog_page_begin_op - starts a PROG PAGE operation
1791 * @chip: The NAND chip
1792 * @page: page to write
1793 * @offset_in_page: offset within the page
1794 * @buf: buffer containing the data to write to the page
1795 * @len: length of the buffer
1796 *
1797 * This function issues the first half of a PROG PAGE operation.
1798 * This function does not select/unselect the CS line.
1799 *
1800 * Returns 0 on success, a negative error code otherwise.
1801 */
1802int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1803                            unsigned int offset_in_page, const void *buf,
1804                            unsigned int len)
1805{
1806        struct mtd_info *mtd = nand_to_mtd(chip);
1807
1808        if (len && !buf)
1809                return -EINVAL;
1810
1811        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1812                return -EINVAL;
1813
1814        if (chip->exec_op)
1815                return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1816                                              len, false);
1817
1818        chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1819
1820        if (buf)
1821                chip->write_buf(mtd, buf, len);
1822
1823        return 0;
1824}
1825EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1826
1827/**
1828 * nand_prog_page_end_op - ends a PROG PAGE operation
1829 * @chip: The NAND chip
1830 *
1831 * This function issues the second half of a PROG PAGE operation.
1832 * This function does not select/unselect the CS line.
1833 *
1834 * Returns 0 on success, a negative error code otherwise.
1835 */
1836int nand_prog_page_end_op(struct nand_chip *chip)
1837{
1838        struct mtd_info *mtd = nand_to_mtd(chip);
1839        int ret;
1840        u8 status;
1841
1842        if (chip->exec_op) {
1843                const struct nand_sdr_timings *sdr =
1844                        nand_get_sdr_timings(&chip->data_interface);
1845                struct nand_op_instr instrs[] = {
1846                        NAND_OP_CMD(NAND_CMD_PAGEPROG,
1847                                    PSEC_TO_NSEC(sdr->tWB_max)),
1848                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1849                };
1850                struct nand_operation op = NAND_OPERATION(instrs);
1851
1852                ret = nand_exec_op(chip, &op);
1853                if (ret)
1854                        return ret;
1855
1856                ret = nand_status_op(chip, &status);
1857                if (ret)
1858                        return ret;
1859        } else {
1860                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1861                ret = chip->waitfunc(mtd, chip);
1862                if (ret < 0)
1863                        return ret;
1864
1865                status = ret;
1866        }
1867
1868        if (status & NAND_STATUS_FAIL)
1869                return -EIO;
1870
1871        return 0;
1872}
1873EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1874
1875/**
1876 * nand_prog_page_op - Do a full PROG PAGE operation
1877 * @chip: The NAND chip
1878 * @page: page to write
1879 * @offset_in_page: offset within the page
1880 * @buf: buffer containing the data to write to the page
1881 * @len: length of the buffer
1882 *
1883 * This function issues a full PROG PAGE operation.
1884 * This function does not select/unselect the CS line.
1885 *
1886 * Returns 0 on success, a negative error code otherwise.
1887 */
1888int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1889                      unsigned int offset_in_page, const void *buf,
1890                      unsigned int len)
1891{
1892        struct mtd_info *mtd = nand_to_mtd(chip);
1893        int status;
1894
1895        if (!len || !buf)
1896                return -EINVAL;
1897
1898        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1899                return -EINVAL;
1900
1901        if (chip->exec_op) {
1902                status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1903                                                len, true);
1904        } else {
1905                chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1906                chip->write_buf(mtd, buf, len);
1907                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1908                status = chip->waitfunc(mtd, chip);
1909        }
1910
1911        if (status & NAND_STATUS_FAIL)
1912                return -EIO;
1913
1914        return 0;
1915}
1916EXPORT_SYMBOL_GPL(nand_prog_page_op);
1917
1918/**
1919 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1920 * @chip: The NAND chip
1921 * @offset_in_page: offset within the page
1922 * @buf: buffer containing the data to send to the NAND
1923 * @len: length of the buffer
1924 * @force_8bit: force 8-bit bus access
1925 *
1926 * This function issues a CHANGE WRITE COLUMN operation.
1927 * This function does not select/unselect the CS line.
1928 *
1929 * Returns 0 on success, a negative error code otherwise.
1930 */
1931int nand_change_write_column_op(struct nand_chip *chip,
1932                                unsigned int offset_in_page,
1933                                const void *buf, unsigned int len,
1934                                bool force_8bit)
1935{
1936        struct mtd_info *mtd = nand_to_mtd(chip);
1937
1938        if (len && !buf)
1939                return -EINVAL;
1940
1941        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1942                return -EINVAL;
1943
1944        /* Small page NANDs do not support column change. */
1945        if (mtd->writesize <= 512)
1946                return -ENOTSUPP;
1947
1948        if (chip->exec_op) {
1949                const struct nand_sdr_timings *sdr =
1950                        nand_get_sdr_timings(&chip->data_interface);
1951                u8 addrs[2];
1952                struct nand_op_instr instrs[] = {
1953                        NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1954                        NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1955                        NAND_OP_DATA_OUT(len, buf, 0),
1956                };
1957                struct nand_operation op = NAND_OPERATION(instrs);
1958                int ret;
1959
1960                ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1961                if (ret < 0)
1962                        return ret;
1963
1964                instrs[2].ctx.data.force_8bit = force_8bit;
1965
1966                /* Drop the DATA_OUT instruction if len is set to 0. */
1967                if (!len)
1968                        op.ninstrs--;
1969
1970                return nand_exec_op(chip, &op);
1971        }
1972
1973        chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
1974        if (len)
1975                chip->write_buf(mtd, buf, len);
1976
1977        return 0;
1978}
1979EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1980
1981/**
1982 * nand_readid_op - Do a READID operation
1983 * @chip: The NAND chip
1984 * @addr: address cycle to pass after the READID command
1985 * @buf: buffer used to store the ID
1986 * @len: length of the buffer
1987 *
1988 * This function sends a READID command and reads back the ID returned by the
1989 * NAND.
1990 * This function does not select/unselect the CS line.
1991 *
1992 * Returns 0 on success, a negative error code otherwise.
1993 */
1994int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1995                   unsigned int len)
1996{
1997        struct mtd_info *mtd = nand_to_mtd(chip);
1998        unsigned int i;
1999        u8 *id = buf;
2000
2001        if (len && !buf)
2002                return -EINVAL;
2003
2004        if (chip->exec_op) {
2005                const struct nand_sdr_timings *sdr =
2006                        nand_get_sdr_timings(&chip->data_interface);
2007                struct nand_op_instr instrs[] = {
2008                        NAND_OP_CMD(NAND_CMD_READID, 0),
2009                        NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
2010                        NAND_OP_8BIT_DATA_IN(len, buf, 0),
2011                };
2012                struct nand_operation op = NAND_OPERATION(instrs);
2013
2014                /* Drop the DATA_IN instruction if len is set to 0. */
2015                if (!len)
2016                        op.ninstrs--;
2017
2018                return nand_exec_op(chip, &op);
2019        }
2020
2021        chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
2022
2023        for (i = 0; i < len; i++)
2024                id[i] = chip->read_byte(mtd);
2025
2026        return 0;
2027}
2028EXPORT_SYMBOL_GPL(nand_readid_op);
2029
2030/**
2031 * nand_status_op - Do a STATUS operation
2032 * @chip: The NAND chip
2033 * @status: out variable to store the NAND status
2034 *
2035 * This function sends a STATUS command and reads back the status returned by
2036 * the NAND.
2037 * This function does not select/unselect the CS line.
2038 *
2039 * Returns 0 on success, a negative error code otherwise.
2040 */
2041int nand_status_op(struct nand_chip *chip, u8 *status)
2042{
2043        struct mtd_info *mtd = nand_to_mtd(chip);
2044
2045        if (chip->exec_op) {
2046                const struct nand_sdr_timings *sdr =
2047                        nand_get_sdr_timings(&chip->data_interface);
2048                struct nand_op_instr instrs[] = {
2049                        NAND_OP_CMD(NAND_CMD_STATUS,
2050                                    PSEC_TO_NSEC(sdr->tADL_min)),
2051                        NAND_OP_8BIT_DATA_IN(1, status, 0),
2052                };
2053                struct nand_operation op = NAND_OPERATION(instrs);
2054
2055                if (!status)
2056                        op.ninstrs--;
2057
2058                return nand_exec_op(chip, &op);
2059        }
2060
2061        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
2062        if (status)
2063                *status = chip->read_byte(mtd);
2064
2065        return 0;
2066}
2067EXPORT_SYMBOL_GPL(nand_status_op);
2068
2069/**
2070 * nand_exit_status_op - Exit a STATUS operation
2071 * @chip: The NAND chip
2072 *
2073 * This function sends a READ0 command to cancel the effect of the STATUS
2074 * command to avoid reading only the status until a new read command is sent.
2075 *
2076 * This function does not select/unselect the CS line.
2077 *
2078 * Returns 0 on success, a negative error code otherwise.
2079 */
2080int nand_exit_status_op(struct nand_chip *chip)
2081{
2082        struct mtd_info *mtd = nand_to_mtd(chip);
2083
2084        if (chip->exec_op) {
2085                struct nand_op_instr instrs[] = {
2086                        NAND_OP_CMD(NAND_CMD_READ0, 0),
2087                };
2088                struct nand_operation op = NAND_OPERATION(instrs);
2089
2090                return nand_exec_op(chip, &op);
2091        }
2092
2093        chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
2094
2095        return 0;
2096}
2097EXPORT_SYMBOL_GPL(nand_exit_status_op);
2098
2099/**
2100 * nand_erase_op - Do an erase operation
2101 * @chip: The NAND chip
2102 * @eraseblock: block to erase
2103 *
2104 * This function sends an ERASE command and waits for the NAND to be ready
2105 * before returning.
2106 * This function does not select/unselect the CS line.
2107 *
2108 * Returns 0 on success, a negative error code otherwise.
2109 */
2110int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
2111{
2112        struct mtd_info *mtd = nand_to_mtd(chip);
2113        unsigned int page = eraseblock <<
2114                            (chip->phys_erase_shift - chip->page_shift);
2115        int ret;
2116        u8 status;
2117
2118        if (chip->exec_op) {
2119                const struct nand_sdr_timings *sdr =
2120                        nand_get_sdr_timings(&chip->data_interface);
2121                u8 addrs[3] = { page, page >> 8, page >> 16 };
2122                struct nand_op_instr instrs[] = {
2123                        NAND_OP_CMD(NAND_CMD_ERASE1, 0),
2124                        NAND_OP_ADDR(2, addrs, 0),
2125                        NAND_OP_CMD(NAND_CMD_ERASE2,
2126                                    PSEC_TO_MSEC(sdr->tWB_max)),
2127                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
2128                };
2129                struct nand_operation op = NAND_OPERATION(instrs);
2130
2131                if (chip->options & NAND_ROW_ADDR_3)
2132                        instrs[1].ctx.addr.naddrs++;
2133
2134                ret = nand_exec_op(chip, &op);
2135                if (ret)
2136                        return ret;
2137
2138                ret = nand_status_op(chip, &status);
2139                if (ret)
2140                        return ret;
2141        } else {
2142                chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2143                chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2144
2145                ret = chip->waitfunc(mtd, chip);
2146                if (ret < 0)
2147                        return ret;
2148
2149                status = ret;
2150        }
2151
2152        if (status & NAND_STATUS_FAIL)
2153                return -EIO;
2154
2155        return 0;
2156}
2157EXPORT_SYMBOL_GPL(nand_erase_op);
2158
2159/**
2160 * nand_set_features_op - Do a SET FEATURES operation
2161 * @chip: The NAND chip
2162 * @feature: feature id
2163 * @data: 4 bytes of data
2164 *
2165 * This function sends a SET FEATURES command and waits for the NAND to be
2166 * ready before returning.
2167 * This function does not select/unselect the CS line.
2168 *
2169 * Returns 0 on success, a negative error code otherwise.
2170 */
2171static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2172                                const void *data)
2173{
2174        struct mtd_info *mtd = nand_to_mtd(chip);
2175        const u8 *params = data;
2176        int i, ret;
2177        u8 status;
2178
2179        if (chip->exec_op) {
2180                const struct nand_sdr_timings *sdr =
2181                        nand_get_sdr_timings(&chip->data_interface);
2182                struct nand_op_instr instrs[] = {
2183                        NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2184                        NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
2185                        NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2186                                              PSEC_TO_NSEC(sdr->tWB_max)),
2187                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
2188                };
2189                struct nand_operation op = NAND_OPERATION(instrs);
2190
2191                ret = nand_exec_op(chip, &op);
2192                if (ret)
2193                        return ret;
2194
2195                ret = nand_status_op(chip, &status);
2196                if (ret)
2197                        return ret;
2198        } else {
2199                chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
2200                for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2201                        chip->write_byte(mtd, params[i]);
2202
2203                ret = chip->waitfunc(mtd, chip);
2204                if (ret < 0)
2205                        return ret;
2206
2207                status = ret;
2208        }
2209
2210        if (status & NAND_STATUS_FAIL)
2211                return -EIO;
2212
2213        return 0;
2214}
2215
2216/**
2217 * nand_get_features_op - Do a GET FEATURES operation
2218 * @chip: The NAND chip
2219 * @feature: feature id
2220 * @data: 4 bytes of data
2221 *
2222 * This function sends a GET FEATURES command and waits for the NAND to be
2223 * ready before returning.
2224 * This function does not select/unselect the CS line.
2225 *
2226 * Returns 0 on success, a negative error code otherwise.
2227 */
2228static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2229                                void *data)
2230{
2231        struct mtd_info *mtd = nand_to_mtd(chip);
2232        u8 *params = data;
2233        int i;
2234
2235        if (chip->exec_op) {
2236                const struct nand_sdr_timings *sdr =
2237                        nand_get_sdr_timings(&chip->data_interface);
2238                struct nand_op_instr instrs[] = {
2239                        NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2240                        NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
2241                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
2242                                         PSEC_TO_NSEC(sdr->tRR_min)),
2243                        NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2244                                             data, 0),
2245                };
2246                struct nand_operation op = NAND_OPERATION(instrs);
2247
2248                return nand_exec_op(chip, &op);
2249        }
2250
2251        chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
2252        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2253                params[i] = chip->read_byte(mtd);
2254
2255        return 0;
2256}
2257
2258/**
2259 * nand_reset_op - Do a reset operation
2260 * @chip: The NAND chip
2261 *
2262 * This function sends a RESET command and waits for the NAND to be ready
2263 * before returning.
2264 * This function does not select/unselect the CS line.
2265 *
2266 * Returns 0 on success, a negative error code otherwise.
2267 */
2268int nand_reset_op(struct nand_chip *chip)
2269{
2270        struct mtd_info *mtd = nand_to_mtd(chip);
2271
2272        if (chip->exec_op) {
2273                const struct nand_sdr_timings *sdr =
2274                        nand_get_sdr_timings(&chip->data_interface);
2275                struct nand_op_instr instrs[] = {
2276                        NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
2277                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
2278                };
2279                struct nand_operation op = NAND_OPERATION(instrs);
2280
2281                return nand_exec_op(chip, &op);
2282        }
2283
2284        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2285
2286        return 0;
2287}
2288EXPORT_SYMBOL_GPL(nand_reset_op);
2289
2290/**
2291 * nand_read_data_op - Read data from the NAND
2292 * @chip: The NAND chip
2293 * @buf: buffer used to store the data
2294 * @len: length of the buffer
2295 * @force_8bit: force 8-bit bus access
2296 *
2297 * This function does a raw data read on the bus. Usually used after launching
2298 * another NAND operation like nand_read_page_op().
2299 * This function does not select/unselect the CS line.
2300 *
2301 * Returns 0 on success, a negative error code otherwise.
2302 */
2303int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2304                      bool force_8bit)
2305{
2306        struct mtd_info *mtd = nand_to_mtd(chip);
2307
2308        if (!len || !buf)
2309                return -EINVAL;
2310
2311        if (chip->exec_op) {
2312                struct nand_op_instr instrs[] = {
2313                        NAND_OP_DATA_IN(len, buf, 0),
2314                };
2315                struct nand_operation op = NAND_OPERATION(instrs);
2316
2317                instrs[0].ctx.data.force_8bit = force_8bit;
2318
2319                return nand_exec_op(chip, &op);
2320        }
2321
2322        if (force_8bit) {
2323                u8 *p = buf;
2324                unsigned int i;
2325
2326                for (i = 0; i < len; i++)
2327                        p[i] = chip->read_byte(mtd);
2328        } else {
2329                chip->read_buf(mtd, buf, len);
2330        }
2331
2332        return 0;
2333}
2334EXPORT_SYMBOL_GPL(nand_read_data_op);
2335
2336/**
2337 * nand_write_data_op - Write data from the NAND
2338 * @chip: The NAND chip
2339 * @buf: buffer containing the data to send on the bus
2340 * @len: length of the buffer
2341 * @force_8bit: force 8-bit bus access
2342 *
2343 * This function does a raw data write on the bus. Usually used after launching
2344 * another NAND operation like nand_write_page_begin_op().
2345 * This function does not select/unselect the CS line.
2346 *
2347 * Returns 0 on success, a negative error code otherwise.
2348 */
2349int nand_write_data_op(struct nand_chip *chip, const void *buf,
2350                       unsigned int len, bool force_8bit)
2351{
2352        struct mtd_info *mtd = nand_to_mtd(chip);
2353
2354        if (!len || !buf)
2355                return -EINVAL;
2356
2357        if (chip->exec_op) {
2358                struct nand_op_instr instrs[] = {
2359                        NAND_OP_DATA_OUT(len, buf, 0),
2360                };
2361                struct nand_operation op = NAND_OPERATION(instrs);
2362
2363                instrs[0].ctx.data.force_8bit = force_8bit;
2364
2365                return nand_exec_op(chip, &op);
2366        }
2367
2368        if (force_8bit) {
2369                const u8 *p = buf;
2370                unsigned int i;
2371
2372                for (i = 0; i < len; i++)
2373                        chip->write_byte(mtd, p[i]);
2374        } else {
2375                chip->write_buf(mtd, buf, len);
2376        }
2377
2378        return 0;
2379}
2380EXPORT_SYMBOL_GPL(nand_write_data_op);
2381
2382/**
2383 * struct nand_op_parser_ctx - Context used by the parser
2384 * @instrs: array of all the instructions that must be addressed
2385 * @ninstrs: length of the @instrs array
2386 * @subop: Sub-operation to be passed to the NAND controller
2387 *
2388 * This structure is used by the core to split NAND operations into
2389 * sub-operations that can be handled by the NAND controller.
2390 */
2391struct nand_op_parser_ctx {
2392        const struct nand_op_instr *instrs;
2393        unsigned int ninstrs;
2394        struct nand_subop subop;
2395};
2396
2397/**
2398 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2399 * @pat: the parser pattern element that matches @instr
2400 * @instr: pointer to the instruction to check
2401 * @start_offset: this is an in/out parameter. If @instr has already been
2402 *                split, then @start_offset is the offset from which to start
2403 *                (either an address cycle or an offset in the data buffer).
2404 *                Conversely, if the function returns true (ie. instr must be
2405 *                split), this parameter is updated to point to the first
2406 *                data/address cycle that has not been taken care of.
2407 *
2408 * Some NAND controllers are limited and cannot send X address cycles with a
2409 * unique operation, or cannot read/write more than Y bytes at the same time.
2410 * In this case, split the instruction that does not fit in a single
2411 * controller-operation into two or more chunks.
2412 *
2413 * Returns true if the instruction must be split, false otherwise.
2414 * The @start_offset parameter is also updated to the offset at which the next
2415 * bundle of instruction must start (if an address or a data instruction).
2416 */
2417static bool
2418nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2419                                const struct nand_op_instr *instr,
2420                                unsigned int *start_offset)
2421{
2422        switch (pat->type) {
2423        case NAND_OP_ADDR_INSTR:
2424                if (!pat->ctx.addr.maxcycles)
2425                        break;
2426
2427                if (instr->ctx.addr.naddrs - *start_offset >
2428                    pat->ctx.addr.maxcycles) {
2429                        *start_offset += pat->ctx.addr.maxcycles;
2430                        return true;
2431                }
2432                break;
2433
2434        case NAND_OP_DATA_IN_INSTR:
2435        case NAND_OP_DATA_OUT_INSTR:
2436                if (!pat->ctx.data.maxlen)
2437                        break;
2438
2439                if (instr->ctx.data.len - *start_offset >
2440                    pat->ctx.data.maxlen) {
2441                        *start_offset += pat->ctx.data.maxlen;
2442                        return true;
2443                }
2444                break;
2445
2446        default:
2447                break;
2448        }
2449
2450        return false;
2451}
2452
2453/**
2454 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2455 *                            remaining in the parser context
2456 * @pat: the pattern to test
2457 * @ctx: the parser context structure to match with the pattern @pat
2458 *
2459 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2460 * Returns true if this is the case, false ortherwise. When true is returned,
2461 * @ctx->subop is updated with the set of instructions to be passed to the
2462 * controller driver.
2463 */
2464static bool
2465nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2466                         struct nand_op_parser_ctx *ctx)
2467{
2468        unsigned int instr_offset = ctx->subop.first_instr_start_off;
2469        const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2470        const struct nand_op_instr *instr = ctx->subop.instrs;
2471        unsigned int i, ninstrs;
2472
2473        for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2474                /*
2475                 * The pattern instruction does not match the operation
2476                 * instruction. If the instruction is marked optional in the
2477                 * pattern definition, we skip the pattern element and continue
2478                 * to the next one. If the element is mandatory, there's no
2479                 * match and we can return false directly.
2480                 */
2481                if (instr->type != pat->elems[i].type) {
2482                        if (!pat->elems[i].optional)
2483                                return false;
2484
2485                        continue;
2486                }
2487
2488                /*
2489                 * Now check the pattern element constraints. If the pattern is
2490                 * not able to handle the whole instruction in a single step,
2491                 * we have to split it.
2492                 * The last_instr_end_off value comes back updated to point to
2493                 * the position where we have to split the instruction (the
2494                 * start of the next subop chunk).
2495                 */
2496                if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2497                                                    &instr_offset)) {
2498                        ninstrs++;
2499                        i++;
2500                        break;
2501                }
2502
2503                instr++;
2504                ninstrs++;
2505                instr_offset = 0;
2506        }
2507
2508        /*
2509         * This can happen if all instructions of a pattern are optional.
2510         * Still, if there's not at least one instruction handled by this
2511         * pattern, this is not a match, and we should try the next one (if
2512         * any).
2513         */
2514        if (!ninstrs)
2515                return false;
2516
2517        /*
2518         * We had a match on the pattern head, but the pattern may be longer
2519         * than the instructions we're asked to execute. We need to make sure
2520         * there's no mandatory elements in the pattern tail.
2521         */
2522        for (; i < pat->nelems; i++) {
2523                if (!pat->elems[i].optional)
2524                        return false;
2525        }
2526
2527        /*
2528         * We have a match: update the subop structure accordingly and return
2529         * true.
2530         */
2531        ctx->subop.ninstrs = ninstrs;
2532        ctx->subop.last_instr_end_off = instr_offset;
2533
2534        return true;
2535}
2536
2537#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2538static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2539{
2540        const struct nand_op_instr *instr;
2541        char *prefix = "      ";
2542        unsigned int i;
2543
2544        pr_debug("executing subop:\n");
2545
2546        for (i = 0; i < ctx->ninstrs; i++) {
2547                instr = &ctx->instrs[i];
2548
2549                if (instr == &ctx->subop.instrs[0])
2550                        prefix = "    ->";
2551
2552                switch (instr->type) {
2553                case NAND_OP_CMD_INSTR:
2554                        pr_debug("%sCMD      [0x%02x]\n", prefix,
2555                                 instr->ctx.cmd.opcode);
2556                        break;
2557                case NAND_OP_ADDR_INSTR:
2558                        pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
2559                                 instr->ctx.addr.naddrs,
2560                                 instr->ctx.addr.naddrs < 64 ?
2561                                 instr->ctx.addr.naddrs : 64,
2562                                 instr->ctx.addr.addrs);
2563                        break;
2564                case NAND_OP_DATA_IN_INSTR:
2565                        pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
2566                                 instr->ctx.data.len,
2567                                 instr->ctx.data.force_8bit ?
2568                                 ", force 8-bit" : "");
2569                        break;
2570                case NAND_OP_DATA_OUT_INSTR:
2571                        pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
2572                                 instr->ctx.data.len,
2573                                 instr->ctx.data.force_8bit ?
2574                                 ", force 8-bit" : "");
2575                        break;
2576                case NAND_OP_WAITRDY_INSTR:
2577                        pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
2578                                 instr->ctx.waitrdy.timeout_ms);
2579                        break;
2580                }
2581
2582                if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2583                        prefix = "      ";
2584        }
2585}
2586#else
2587static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2588{
2589        /* NOP */
2590}
2591#endif
2592
2593/**
2594 * nand_op_parser_exec_op - exec_op parser
2595 * @chip: the NAND chip
2596 * @parser: patterns description provided by the controller driver
2597 * @op: the NAND operation to address
2598 * @check_only: when true, the function only checks if @op can be handled but
2599 *              does not execute the operation
2600 *
2601 * Helper function designed to ease integration of NAND controller drivers that
2602 * only support a limited set of instruction sequences. The supported sequences
2603 * are described in @parser, and the framework takes care of splitting @op into
2604 * multiple sub-operations (if required) and pass them back to the ->exec()
2605 * callback of the matching pattern if @check_only is set to false.
2606 *
2607 * NAND controller drivers should call this function from their own ->exec_op()
2608 * implementation.
2609 *
2610 * Returns 0 on success, a negative error code otherwise. A failure can be
2611 * caused by an unsupported operation (none of the supported patterns is able
2612 * to handle the requested operation), or an error returned by one of the
2613 * matching pattern->exec() hook.
2614 */
2615int nand_op_parser_exec_op(struct nand_chip *chip,
2616                           const struct nand_op_parser *parser,
2617                           const struct nand_operation *op, bool check_only)
2618{
2619        struct nand_op_parser_ctx ctx = {
2620                .subop.instrs = op->instrs,
2621                .instrs = op->instrs,
2622                .ninstrs = op->ninstrs,
2623        };
2624        unsigned int i;
2625
2626        while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2627                int ret;
2628
2629                for (i = 0; i < parser->npatterns; i++) {
2630                        const struct nand_op_parser_pattern *pattern;
2631
2632                        pattern = &parser->patterns[i];
2633                        if (!nand_op_parser_match_pat(pattern, &ctx))
2634                                continue;
2635
2636                        nand_op_parser_trace(&ctx);
2637
2638                        if (check_only)
2639                                break;
2640
2641                        ret = pattern->exec(chip, &ctx.subop);
2642                        if (ret)
2643                                return ret;
2644
2645                        break;
2646                }
2647
2648                if (i == parser->npatterns) {
2649                        pr_debug("->exec_op() parser: pattern not found!\n");
2650                        return -ENOTSUPP;
2651                }
2652
2653                /*
2654                 * Update the context structure by pointing to the start of the
2655                 * next subop.
2656                 */
2657                ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2658                if (ctx.subop.last_instr_end_off)
2659                        ctx.subop.instrs -= 1;
2660
2661                ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2662        }
2663
2664        return 0;
2665}
2666EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2667
2668static bool nand_instr_is_data(const struct nand_op_instr *instr)
2669{
2670        return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2671                         instr->type == NAND_OP_DATA_OUT_INSTR);
2672}
2673
2674static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2675                                      unsigned int instr_idx)
2676{
2677        return subop && instr_idx < subop->ninstrs;
2678}
2679
2680static int nand_subop_get_start_off(const struct nand_subop *subop,
2681                                    unsigned int instr_idx)
2682{
2683        if (instr_idx)
2684                return 0;
2685
2686        return subop->first_instr_start_off;
2687}
2688
2689/**
2690 * nand_subop_get_addr_start_off - Get the start offset in an address array
2691 * @subop: The entire sub-operation
2692 * @instr_idx: Index of the instruction inside the sub-operation
2693 *
2694 * During driver development, one could be tempted to directly use the
2695 * ->addr.addrs field of address instructions. This is wrong as address
2696 * instructions might be split.
2697 *
2698 * Given an address instruction, returns the offset of the first cycle to issue.
2699 */
2700int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2701                                  unsigned int instr_idx)
2702{
2703        if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2704            subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
2705                return -EINVAL;
2706
2707        return nand_subop_get_start_off(subop, instr_idx);
2708}
2709EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2710
2711/**
2712 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2713 * @subop: The entire sub-operation
2714 * @instr_idx: Index of the instruction inside the sub-operation
2715 *
2716 * During driver development, one could be tempted to directly use the
2717 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2718 * might be split.
2719 *
2720 * Given an address instruction, returns the number of address cycle to issue.
2721 */
2722int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2723                                unsigned int instr_idx)
2724{
2725        int start_off, end_off;
2726
2727        if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2728            subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
2729                return -EINVAL;
2730
2731        start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2732
2733        if (instr_idx == subop->ninstrs - 1 &&
2734            subop->last_instr_end_off)
2735                end_off = subop->last_instr_end_off;
2736        else
2737                end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2738
2739        return end_off - start_off;
2740}
2741EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2742
2743/**
2744 * nand_subop_get_data_start_off - Get the start offset in a data array
2745 * @subop: The entire sub-operation
2746 * @instr_idx: Index of the instruction inside the sub-operation
2747 *
2748 * During driver development, one could be tempted to directly use the
2749 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2750 * instructions might be split.
2751 *
2752 * Given a data instruction, returns the offset to start from.
2753 */
2754int nand_subop_get_data_start_off(const struct nand_subop *subop,
2755                                  unsigned int instr_idx)
2756{
2757        if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2758            !nand_instr_is_data(&subop->instrs[instr_idx]))
2759                return -EINVAL;
2760
2761        return nand_subop_get_start_off(subop, instr_idx);
2762}
2763EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2764
2765/**
2766 * nand_subop_get_data_len - Get the number of bytes to retrieve
2767 * @subop: The entire sub-operation
2768 * @instr_idx: Index of the instruction inside the sub-operation
2769 *
2770 * During driver development, one could be tempted to directly use the
2771 * ->data->len field of a data instruction. This is wrong as data instructions
2772 * might be split.
2773 *
2774 * Returns the length of the chunk of data to send/receive.
2775 */
2776int nand_subop_get_data_len(const struct nand_subop *subop,
2777                            unsigned int instr_idx)
2778{
2779        int start_off = 0, end_off;
2780
2781        if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2782            !nand_instr_is_data(&subop->instrs[instr_idx]))
2783                return -EINVAL;
2784
2785        start_off = nand_subop_get_data_start_off(subop, instr_idx);
2786
2787        if (instr_idx == subop->ninstrs - 1 &&
2788            subop->last_instr_end_off)
2789                end_off = subop->last_instr_end_off;
2790        else
2791                end_off = subop->instrs[instr_idx].ctx.data.len;
2792
2793        return end_off - start_off;
2794}
2795EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2796
2797/**
2798 * nand_reset - Reset and initialize a NAND device
2799 * @chip: The NAND chip
2800 * @chipnr: Internal die id
2801 *
2802 * Save the timings data structure, then apply SDR timings mode 0 (see
2803 * nand_reset_data_interface for details), do the reset operation, and
2804 * apply back the previous timings.
2805 *
2806 * Returns 0 on success, a negative error code otherwise.
2807 */
2808int nand_reset(struct nand_chip *chip, int chipnr)
2809{
2810        struct mtd_info *mtd = nand_to_mtd(chip);
2811        struct nand_data_interface saved_data_intf = chip->data_interface;
2812        int ret;
2813
2814        ret = nand_reset_data_interface(chip, chipnr);
2815        if (ret)
2816                return ret;
2817
2818        /*
2819         * The CS line has to be released before we can apply the new NAND
2820         * interface settings, hence this weird ->select_chip() dance.
2821         */
2822        chip->select_chip(mtd, chipnr);
2823        ret = nand_reset_op(chip);
2824        chip->select_chip(mtd, -1);
2825        if (ret)
2826                return ret;
2827
2828        /*
2829         * A nand_reset_data_interface() put both the NAND chip and the NAND
2830         * controller in timings mode 0. If the default mode for this chip is
2831         * also 0, no need to proceed to the change again. Plus, at probe time,
2832         * nand_setup_data_interface() uses ->set/get_features() which would
2833         * fail anyway as the parameter page is not available yet.
2834         */
2835        if (!chip->onfi_timing_mode_default)
2836                return 0;
2837
2838        chip->data_interface = saved_data_intf;
2839        ret = nand_setup_data_interface(chip, chipnr);
2840        if (ret)
2841                return ret;
2842
2843        return 0;
2844}
2845EXPORT_SYMBOL_GPL(nand_reset);
2846
2847/**
2848 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2849 * @buf: buffer to test
2850 * @len: buffer length
2851 * @bitflips_threshold: maximum number of bitflips
2852 *
2853 * Check if a buffer contains only 0xff, which means the underlying region
2854 * has been erased and is ready to be programmed.
2855 * The bitflips_threshold specify the maximum number of bitflips before
2856 * considering the region is not erased.
2857 * Note: The logic of this function has been extracted from the memweight
2858 * implementation, except that nand_check_erased_buf function exit before
2859 * testing the whole buffer if the number of bitflips exceed the
2860 * bitflips_threshold value.
2861 *
2862 * Returns a positive number of bitflips less than or equal to
2863 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2864 * threshold.
2865 */
2866static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2867{
2868        const unsigned char *bitmap = buf;
2869        int bitflips = 0;
2870        int weight;
2871
2872        for (; len && ((uintptr_t)bitmap) % sizeof(long);
2873             len--, bitmap++) {
2874                weight = hweight8(*bitmap);
2875                bitflips += BITS_PER_BYTE - weight;
2876                if (unlikely(bitflips > bitflips_threshold))
2877                        return -EBADMSG;
2878        }
2879
2880        for (; len >= sizeof(long);
2881             len -= sizeof(long), bitmap += sizeof(long)) {
2882                unsigned long d = *((unsigned long *)bitmap);
2883                if (d == ~0UL)
2884                        continue;
2885                weight = hweight_long(d);
2886                bitflips += BITS_PER_LONG - weight;
2887                if (unlikely(bitflips > bitflips_threshold))
2888                        return -EBADMSG;
2889        }
2890
2891        for (; len > 0; len--, bitmap++) {
2892                weight = hweight8(*bitmap);
2893                bitflips += BITS_PER_BYTE - weight;
2894                if (unlikely(bitflips > bitflips_threshold))
2895                        return -EBADMSG;
2896        }
2897
2898        return bitflips;
2899}
2900
2901/**
2902 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2903 *                               0xff data
2904 * @data: data buffer to test
2905 * @datalen: data length
2906 * @ecc: ECC buffer
2907 * @ecclen: ECC length
2908 * @extraoob: extra OOB buffer
2909 * @extraooblen: extra OOB length
2910 * @bitflips_threshold: maximum number of bitflips
2911 *
2912 * Check if a data buffer and its associated ECC and OOB data contains only
2913 * 0xff pattern, which means the underlying region has been erased and is
2914 * ready to be programmed.
2915 * The bitflips_threshold specify the maximum number of bitflips before
2916 * considering the region as not erased.
2917 *
2918 * Note:
2919 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2920 *    different from the NAND page size. When fixing bitflips, ECC engines will
2921 *    report the number of errors per chunk, and the NAND core infrastructure
2922 *    expect you to return the maximum number of bitflips for the whole page.
2923 *    This is why you should always use this function on a single chunk and
2924 *    not on the whole page. After checking each chunk you should update your
2925 *    max_bitflips value accordingly.
2926 * 2/ When checking for bitflips in erased pages you should not only check
2927 *    the payload data but also their associated ECC data, because a user might
2928 *    have programmed almost all bits to 1 but a few. In this case, we
2929 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2930 *    this case.
2931 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2932 *    data are protected by the ECC engine.
2933 *    It could also be used if you support subpages and want to attach some
2934 *    extra OOB data to an ECC chunk.
2935 *
2936 * Returns a positive number of bitflips less than or equal to
2937 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2938 * threshold. In case of success, the passed buffers are filled with 0xff.
2939 */
2940int nand_check_erased_ecc_chunk(void *data, int datalen,
2941                                void *ecc, int ecclen,
2942                                void *extraoob, int extraooblen,
2943                                int bitflips_threshold)
2944{
2945        int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2946
2947        data_bitflips = nand_check_erased_buf(data, datalen,
2948                                              bitflips_threshold);
2949        if (data_bitflips < 0)
2950                return data_bitflips;
2951
2952        bitflips_threshold -= data_bitflips;
2953
2954        ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2955        if (ecc_bitflips < 0)
2956                return ecc_bitflips;
2957
2958        bitflips_threshold -= ecc_bitflips;
2959
2960        extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2961                                                  bitflips_threshold);
2962        if (extraoob_bitflips < 0)
2963                return extraoob_bitflips;
2964
2965        if (data_bitflips)
2966                memset(data, 0xff, datalen);
2967
2968        if (ecc_bitflips)
2969                memset(ecc, 0xff, ecclen);
2970
2971        if (extraoob_bitflips)
2972                memset(extraoob, 0xff, extraooblen);
2973
2974        return data_bitflips + ecc_bitflips + extraoob_bitflips;
2975}
2976EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2977
2978/**
2979 * nand_read_page_raw - [INTERN] read raw page data without ecc
2980 * @mtd: mtd info structure
2981 * @chip: nand chip info structure
2982 * @buf: buffer to store read data
2983 * @oob_required: caller requires OOB data read to chip->oob_poi
2984 * @page: page number to read
2985 *
2986 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2987 */
2988int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2989                       uint8_t *buf, int oob_required, int page)
2990{
2991        int ret;
2992
2993        ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2994        if (ret)
2995                return ret;
2996
2997        if (oob_required) {
2998                ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2999                                        false);
3000                if (ret)
3001                        return ret;
3002        }
3003
3004        return 0;
3005}
3006EXPORT_SYMBOL(nand_read_page_raw);
3007
3008/**
3009 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
3010 * @mtd: mtd info structure
3011 * @chip: nand chip info structure
3012 * @buf: buffer to store read data
3013 * @oob_required: caller requires OOB data read to chip->oob_poi
3014 * @page: page number to read
3015 *
3016 * We need a special oob layout and handling even when OOB isn't used.
3017 */
3018static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
3019                                       struct nand_chip *chip, uint8_t *buf,
3020                                       int oob_required, int page)
3021{
3022        int eccsize = chip->ecc.size;
3023        int eccbytes = chip->ecc.bytes;
3024        uint8_t *oob = chip->oob_poi;
3025        int steps, size, ret;
3026
3027        ret = nand_read_page_op(chip, page, 0, NULL, 0);
3028        if (ret)
3029                return ret;
3030
3031        for (steps = chip->ecc.steps; steps > 0; steps--) {
3032                ret = nand_read_data_op(chip, buf, eccsize, false);
3033                if (ret)
3034                        return ret;
3035
3036                buf += eccsize;
3037
3038                if (chip->ecc.prepad) {
3039                        ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3040                                                false);
3041                        if (ret)
3042                                return ret;
3043
3044                        oob += chip->ecc.prepad;
3045                }
3046
3047                ret = nand_read_data_op(chip, oob, eccbytes, false);
3048                if (ret)
3049                        return ret;
3050
3051                oob += eccbytes;
3052
3053                if (chip->ecc.postpad) {
3054                        ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3055                                                false);
3056                        if (ret)
3057                                return ret;
3058
3059                        oob += chip->ecc.postpad;
3060                }
3061        }
3062
3063        size = mtd->oobsize - (oob - chip->oob_poi);
3064        if (size) {
3065                ret = nand_read_data_op(chip, oob, size, false);
3066                if (ret)
3067                        return ret;
3068        }
3069
3070        return 0;
3071}
3072
3073/**
3074 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3075 * @mtd: mtd info structure
3076 * @chip: nand chip info structure
3077 * @buf: buffer to store read data
3078 * @oob_required: caller requires OOB data read to chip->oob_poi
3079 * @page: page number to read
3080 */
3081static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
3082                                uint8_t *buf, int oob_required, int page)
3083{
3084        int i, eccsize = chip->ecc.size, ret;
3085        int eccbytes = chip->ecc.bytes;
3086        int eccsteps = chip->ecc.steps;
3087        uint8_t *p = buf;
3088        uint8_t *ecc_calc = chip->ecc.calc_buf;
3089        uint8_t *ecc_code = chip->ecc.code_buf;
3090        unsigned int max_bitflips = 0;
3091
3092        chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
3093
3094        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3095                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3096
3097        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3098                                         chip->ecc.total);
3099        if (ret)
3100                return ret;
3101
3102        eccsteps = chip->ecc.steps;
3103        p = buf;
3104
3105        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3106                int stat;
3107
3108                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3109                if (stat < 0) {
3110                        mtd->ecc_stats.failed++;
3111                } else {
3112                        mtd->ecc_stats.corrected += stat;
3113                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3114                }
3115        }
3116        return max_bitflips;
3117}
3118
3119/**
3120 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3121 * @mtd: mtd info structure
3122 * @chip: nand chip info structure
3123 * @data_offs: offset of requested data within the page
3124 * @readlen: data length
3125 * @bufpoi: buffer to store read data
3126 * @page: page number to read
3127 */
3128static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
3129                        uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
3130                        int page)
3131{
3132        int start_step, end_step, num_steps, ret;
3133        uint8_t *p;
3134        int data_col_addr, i, gaps = 0;
3135        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3136        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3137        int index, section = 0;
3138        unsigned int max_bitflips = 0;
3139        struct mtd_oob_region oobregion = { };
3140
3141        /* Column address within the page aligned to ECC size (256bytes) */
3142        start_step = data_offs / chip->ecc.size;
3143        end_step = (data_offs + readlen - 1) / chip->ecc.size;
3144        num_steps = end_step - start_step + 1;
3145        index = start_step * chip->ecc.bytes;
3146
3147        /* Data size aligned to ECC ecc.size */
3148        datafrag_len = num_steps * chip->ecc.size;
3149        eccfrag_len = num_steps * chip->ecc.bytes;
3150
3151        data_col_addr = start_step * chip->ecc.size;
3152        /* If we read not a page aligned data */
3153        p = bufpoi + data_col_addr;
3154        ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3155        if (ret)
3156                return ret;
3157
3158        /* Calculate ECC */
3159        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3160                chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]);
3161
3162        /*
3163         * The performance is faster if we position offsets according to
3164         * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3165         */
3166        ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3167        if (ret)
3168                return ret;
3169
3170        if (oobregion.length < eccfrag_len)
3171                gaps = 1;
3172
3173        if (gaps) {
3174                ret = nand_change_read_column_op(chip, mtd->writesize,
3175                                                 chip->oob_poi, mtd->oobsize,
3176                                                 false);
3177                if (ret)
3178                        return ret;
3179        } else {
3180                /*
3181                 * Send the command to read the particular ECC bytes take care
3182                 * about buswidth alignment in read_buf.
3183                 */
3184                aligned_pos = oobregion.offset & ~(busw - 1);
3185                aligned_len = eccfrag_len;
3186                if (oobregion.offset & (busw - 1))
3187                        aligned_len++;
3188                if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3189                    (busw - 1))
3190                        aligned_len++;
3191
3192                ret = nand_change_read_column_op(chip,
3193                                                 mtd->writesize + aligned_pos,
3194                                                 &chip->oob_poi[aligned_pos],
3195                                                 aligned_len, false);
3196                if (ret)
3197                        return ret;
3198        }
3199
3200        ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3201                                         chip->oob_poi, index, eccfrag_len);
3202        if (ret)
3203                return ret;
3204
3205        p = bufpoi + data_col_addr;
3206        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3207                int stat;
3208
3209                stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i],
3210                                         &chip->ecc.calc_buf[i]);
3211                if (stat == -EBADMSG &&
3212                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3213                        /* check for empty pages with bitflips */
3214                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3215                                                &chip->ecc.code_buf[i],
3216                                                chip->ecc.bytes,
3217                                                NULL, 0,
3218                                                chip->ecc.strength);
3219                }
3220
3221                if (stat < 0) {
3222                        mtd->ecc_stats.failed++;
3223                } else {
3224                        mtd->ecc_stats.corrected += stat;
3225                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3226                }
3227        }
3228        return max_bitflips;
3229}
3230
3231/**
3232 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3233 * @mtd: mtd info structure
3234 * @chip: nand chip info structure
3235 * @buf: buffer to store read data
3236 * @oob_required: caller requires OOB data read to chip->oob_poi
3237 * @page: page number to read
3238 *
3239 * Not for syndrome calculating ECC controllers which need a special oob layout.
3240 */
3241static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
3242                                uint8_t *buf, int oob_required, int page)
3243{
3244        int i, eccsize = chip->ecc.size, ret;
3245        int eccbytes = chip->ecc.bytes;
3246        int eccsteps = chip->ecc.steps;
3247        uint8_t *p = buf;
3248        uint8_t *ecc_calc = chip->ecc.calc_buf;
3249        uint8_t *ecc_code = chip->ecc.code_buf;
3250        unsigned int max_bitflips = 0;
3251
3252        ret = nand_read_page_op(chip, page, 0, NULL, 0);
3253        if (ret)
3254                return ret;
3255
3256        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3257                chip->ecc.hwctl(mtd, NAND_ECC_READ);
3258
3259                ret = nand_read_data_op(chip, p, eccsize, false);
3260                if (ret)
3261                        return ret;
3262
3263                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3264        }
3265
3266        ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3267        if (ret)
3268                return ret;
3269
3270        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3271                                         chip->ecc.total);
3272        if (ret)
3273                return ret;
3274
3275        eccsteps = chip->ecc.steps;
3276        p = buf;
3277
3278        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3279                int stat;
3280
3281                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3282                if (stat == -EBADMSG &&
3283                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3284                        /* check for empty pages with bitflips */
3285                        stat = nand_check_erased_ecc_chunk(p, eccsize,
3286                                                &ecc_code[i], eccbytes,
3287                                                NULL, 0,
3288                                                chip->ecc.strength);
3289                }
3290
3291                if (stat < 0) {
3292                        mtd->ecc_stats.failed++;
3293                } else {
3294                        mtd->ecc_stats.corrected += stat;
3295                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3296                }
3297        }
3298        return max_bitflips;
3299}
3300
3301/**
3302 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
3303 * @mtd: mtd info structure
3304 * @chip: nand chip info structure
3305 * @buf: buffer to store read data
3306 * @oob_required: caller requires OOB data read to chip->oob_poi
3307 * @page: page number to read
3308 *
3309 * Hardware ECC for large page chips, require OOB to be read first. For this
3310 * ECC mode, the write_page method is re-used from ECC_HW. These methods
3311 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
3312 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
3313 * the data area, by overwriting the NAND manufacturer bad block markings.
3314 */
3315static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
3316        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
3317{
3318        int i, eccsize = chip->ecc.size, ret;
3319        int eccbytes = chip->ecc.bytes;
3320        int eccsteps = chip->ecc.steps;
3321        uint8_t *p = buf;
3322        uint8_t *ecc_code = chip->ecc.code_buf;
3323        uint8_t *ecc_calc = chip->ecc.calc_buf;
3324        unsigned int max_bitflips = 0;
3325
3326        /* Read the OOB area first */
3327        ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3328        if (ret)
3329                return ret;
3330
3331        ret = nand_read_page_op(chip, page, 0, NULL, 0);
3332        if (ret)
3333                return ret;
3334
3335        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3336                                         chip->ecc.total);
3337        if (ret)
3338                return ret;
3339
3340        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3341                int stat;
3342
3343                chip->ecc.hwctl(mtd, NAND_ECC_READ);
3344
3345                ret = nand_read_data_op(chip, p, eccsize, false);
3346                if (ret)
3347                        return ret;
3348
3349                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3350
3351                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3352                if (stat == -EBADMSG &&
3353                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3354                        /* check for empty pages with bitflips */
3355                        stat = nand_check_erased_ecc_chunk(p, eccsize,
3356                                                &ecc_code[i], eccbytes,
3357                                                NULL, 0,
3358                                                chip->ecc.strength);
3359                }
3360
3361                if (stat < 0) {
3362                        mtd->ecc_stats.failed++;
3363                } else {
3364                        mtd->ecc_stats.corrected += stat;
3365                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3366                }
3367        }
3368        return max_bitflips;
3369}
3370
3371/**
3372 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3373 * @mtd: mtd info structure
3374 * @chip: nand chip info structure
3375 * @buf: buffer to store read data
3376 * @oob_required: caller requires OOB data read to chip->oob_poi
3377 * @page: page number to read
3378 *
3379 * The hw generator calculates the error syndrome automatically. Therefore we
3380 * need a special oob layout and handling.
3381 */
3382static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3383                                   uint8_t *buf, int oob_required, int page)
3384{
3385        int ret, i, eccsize = chip->ecc.size;
3386        int eccbytes = chip->ecc.bytes;
3387        int eccsteps = chip->ecc.steps;
3388        int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3389        uint8_t *p = buf;
3390        uint8_t *oob = chip->oob_poi;
3391        unsigned int max_bitflips = 0;
3392
3393        ret = nand_read_page_op(chip, page, 0, NULL, 0);
3394        if (ret)
3395                return ret;
3396
3397        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3398                int stat;
3399
3400                chip->ecc.hwctl(mtd, NAND_ECC_READ);
3401
3402                ret = nand_read_data_op(chip, p, eccsize, false);
3403                if (ret)
3404                        return ret;
3405
3406                if (chip->ecc.prepad) {
3407                        ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3408                                                false);
3409                        if (ret)
3410                                return ret;
3411
3412                        oob += chip->ecc.prepad;
3413                }
3414
3415                chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
3416
3417                ret = nand_read_data_op(chip, oob, eccbytes, false);
3418                if (ret)
3419                        return ret;
3420
3421                stat = chip->ecc.correct(mtd, p, oob, NULL);
3422
3423                oob += eccbytes;
3424
3425                if (chip->ecc.postpad) {
3426                        ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3427                                                false);
3428                        if (ret)
3429                                return ret;
3430
3431                        oob += chip->ecc.postpad;
3432                }
3433
3434                if (stat == -EBADMSG &&
3435                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3436                        /* check for empty pages with bitflips */
3437                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3438                                                           oob - eccpadbytes,
3439                                                           eccpadbytes,
3440                                                           NULL, 0,
3441                                                           chip->ecc.strength);
3442                }
3443
3444                if (stat < 0) {
3445                        mtd->ecc_stats.failed++;
3446                } else {
3447                        mtd->ecc_stats.corrected += stat;
3448                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3449                }
3450        }
3451
3452        /* Calculate remaining oob bytes */
3453        i = mtd->oobsize - (oob - chip->oob_poi);
3454        if (i) {
3455                ret = nand_read_data_op(chip, oob, i, false);
3456                if (ret)
3457                        return ret;
3458        }
3459
3460        return max_bitflips;
3461}
3462
3463/**
3464 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3465 * @mtd: mtd info structure
3466 * @oob: oob destination address
3467 * @ops: oob ops structure
3468 * @len: size of oob to transfer
3469 */
3470static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
3471                                  struct mtd_oob_ops *ops, size_t len)
3472{
3473        struct nand_chip *chip = mtd_to_nand(mtd);
3474        int ret;
3475
3476        switch (ops->mode) {
3477
3478        case MTD_OPS_PLACE_OOB:
3479        case MTD_OPS_RAW:
3480                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3481                return oob + len;
3482
3483        case MTD_OPS_AUTO_OOB:
3484                ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3485                                                  ops->ooboffs, len);
3486                BUG_ON(ret);
3487                return oob + len;
3488
3489        default:
3490                BUG();
3491        }
3492        return NULL;
3493}
3494
3495/**
3496 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3497 * @mtd: MTD device structure
3498 * @retry_mode: the retry mode to use
3499 *
3500 * Some vendors supply a special command to shift the Vt threshold, to be used
3501 * when there are too many bitflips in a page (i.e., ECC error). After setting
3502 * a new threshold, the host should retry reading the page.
3503 */
3504static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
3505{
3506        struct nand_chip *chip = mtd_to_nand(mtd);
3507
3508        pr_debug("setting READ RETRY mode %d\n", retry_mode);
3509
3510        if (retry_mode >= chip->read_retries)
3511                return -EINVAL;
3512
3513        if (!chip->setup_read_retry)
3514                return -EOPNOTSUPP;
3515
3516        return chip->setup_read_retry(mtd, retry_mode);
3517}
3518
3519/**
3520 * nand_do_read_ops - [INTERN] Read data with ECC
3521 * @mtd: MTD device structure
3522 * @from: offset to read from
3523 * @ops: oob ops structure
3524 *
3525 * Internal function. Called with chip held.
3526 */
3527static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
3528                            struct mtd_oob_ops *ops)
3529{
3530        int chipnr, page, realpage, col, bytes, aligned, oob_required;
3531        struct nand_chip *chip = mtd_to_nand(mtd);
3532        int ret = 0;
3533        uint32_t readlen = ops->len;
3534        uint32_t oobreadlen = ops->ooblen;
3535        uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3536
3537        uint8_t *bufpoi, *oob, *buf;
3538        int use_bufpoi;
3539        unsigned int max_bitflips = 0;
3540        int retry_mode = 0;
3541        bool ecc_fail = false;
3542
3543        chipnr = (int)(from >> chip->chip_shift);
3544        chip->select_chip(mtd, chipnr);
3545
3546        realpage = (int)(from >> chip->page_shift);
3547        page = realpage & chip->pagemask;
3548
3549        col = (int)(from & (mtd->writesize - 1));
3550
3551        buf = ops->datbuf;
3552        oob = ops->oobbuf;
3553        oob_required = oob ? 1 : 0;
3554
3555        while (1) {
3556                unsigned int ecc_failures = mtd->ecc_stats.failed;
3557
3558                bytes = min(mtd->writesize - col, readlen);
3559                aligned = (bytes == mtd->writesize);
3560
3561                if (!aligned)
3562                        use_bufpoi = 1;
3563                else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3564                        use_bufpoi = !virt_addr_valid(buf) ||
3565                                     !IS_ALIGNED((unsigned long)buf,
3566                                                 chip->buf_align);
3567                else
3568                        use_bufpoi = 0;
3569
3570                /* Is the current page in the buffer? */
3571                if (realpage != chip->pagebuf || oob) {
3572                        bufpoi = use_bufpoi ? chip->data_buf : buf;
3573
3574                        if (use_bufpoi && aligned)
3575                                pr_debug("%s: using read bounce buffer for buf@%p\n",
3576                                                 __func__, buf);
3577
3578read_retry:
3579                        /*
3580                         * Now read the page into the buffer.  Absent an error,
3581                         * the read methods return max bitflips per ecc step.
3582                         */
3583                        if (unlikely(ops->mode == MTD_OPS_RAW))
3584                                ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
3585                                                              oob_required,
3586                                                              page);
3587                        else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3588                                 !oob)
3589                                ret = chip->ecc.read_subpage(mtd, chip,
3590                                                        col, bytes, bufpoi,
3591                                                        page);
3592                        else
3593                                ret = chip->ecc.read_page(mtd, chip, bufpoi,
3594                                                          oob_required, page);
3595                        if (ret < 0) {
3596                                if (use_bufpoi)
3597                                        /* Invalidate page cache */
3598                                        chip->pagebuf = -1;
3599                                break;
3600                        }
3601
3602                        /* Transfer not aligned data */
3603                        if (use_bufpoi) {
3604                                if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3605                                    !(mtd->ecc_stats.failed - ecc_failures) &&
3606                                    (ops->mode != MTD_OPS_RAW)) {
3607                                        chip->pagebuf = realpage;
3608                                        chip->pagebuf_bitflips = ret;
3609                                } else {
3610                                        /* Invalidate page cache */
3611                                        chip->pagebuf = -1;
3612                                }
3613                                memcpy(buf, chip->data_buf + col, bytes);
3614                        }
3615
3616                        if (unlikely(oob)) {
3617                                int toread = min(oobreadlen, max_oobsize);
3618
3619                                if (toread) {
3620                                        oob = nand_transfer_oob(mtd,
3621                                                oob, ops, toread);
3622                                        oobreadlen -= toread;
3623                                }
3624                        }
3625
3626                        if (chip->options & NAND_NEED_READRDY) {
3627                                /* Apply delay or wait for ready/busy pin */
3628                                if (!chip->dev_ready)
3629                                        udelay(chip->chip_delay);
3630                                else
3631                                        nand_wait_ready(mtd);
3632                        }
3633
3634                        if (mtd->ecc_stats.failed - ecc_failures) {
3635                                if (retry_mode + 1 < chip->read_retries) {
3636                                        retry_mode++;
3637                                        ret = nand_setup_read_retry(mtd,
3638                                                        retry_mode);
3639                                        if (ret < 0)
3640                                                break;
3641
3642                                        /* Reset failures; retry */
3643                                        mtd->ecc_stats.failed = ecc_failures;
3644                                        goto read_retry;
3645                                } else {
3646                                        /* No more retry modes; real failure */
3647                                        ecc_fail = true;
3648                                }
3649                        }
3650
3651                        buf += bytes;
3652                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
3653                } else {
3654                        memcpy(buf, chip->data_buf + col, bytes);
3655                        buf += bytes;
3656                        max_bitflips = max_t(unsigned int, max_bitflips,
3657                                             chip->pagebuf_bitflips);
3658                }
3659
3660                readlen -= bytes;
3661
3662                /* Reset to retry mode 0 */
3663                if (retry_mode) {
3664                        ret = nand_setup_read_retry(mtd, 0);
3665                        if (ret < 0)
3666                                break;
3667                        retry_mode = 0;
3668                }
3669
3670                if (!readlen)
3671                        break;
3672
3673                /* For subsequent reads align to page boundary */
3674                col = 0;
3675                /* Increment page address */
3676                realpage++;
3677
3678                page = realpage & chip->pagemask;
3679                /* Check, if we cross a chip boundary */
3680                if (!page) {
3681                        chipnr++;
3682                        chip->select_chip(mtd, -1);
3683                        chip->select_chip(mtd, chipnr);
3684                }
3685        }
3686        chip->select_chip(mtd, -1);
3687
3688        ops->retlen = ops->len - (size_t) readlen;
3689        if (oob)
3690                ops->oobretlen = ops->ooblen - oobreadlen;
3691
3692        if (ret < 0)
3693                return ret;
3694
3695        if (ecc_fail)
3696                return -EBADMSG;
3697
3698        return max_bitflips;
3699}
3700
3701/**
3702 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3703 * @mtd: mtd info structure
3704 * @chip: nand chip info structure
3705 * @page: page number to read
3706 */
3707int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
3708{
3709        return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3710}
3711EXPORT_SYMBOL(nand_read_oob_std);
3712
3713/**
3714 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3715 *                          with syndromes
3716 * @mtd: mtd info structure
3717 * @chip: nand chip info structure
3718 * @page: page number to read
3719 */
3720int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3721                           int page)
3722{
3723        int length = mtd->oobsize;
3724        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3725        int eccsize = chip->ecc.size;
3726        uint8_t *bufpoi = chip->oob_poi;
3727        int i, toread, sndrnd = 0, pos, ret;
3728
3729        ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3730        if (ret)
3731                return ret;
3732
3733        for (i = 0; i < chip->ecc.steps; i++) {
3734                if (sndrnd) {
3735                        int ret;
3736
3737                        pos = eccsize + i * (eccsize + chunk);
3738                        if (mtd->writesize > 512)
3739                                ret = nand_change_read_column_op(chip, pos,
3740                                                                 NULL, 0,
3741                                                                 false);
3742                        else
3743                                ret = nand_read_page_op(chip, page, pos, NULL,
3744                                                        0);
3745
3746                        if (ret)
3747                                return ret;
3748                } else
3749                        sndrnd = 1;
3750                toread = min_t(int, length, chunk);
3751
3752                ret = nand_read_data_op(chip, bufpoi, toread, false);
3753                if (ret)
3754                        return ret;
3755
3756                bufpoi += toread;
3757                length -= toread;
3758        }
3759        if (length > 0) {
3760                ret = nand_read_data_op(chip, bufpoi, length, false);
3761                if (ret)
3762                        return ret;
3763        }
3764
3765        return 0;
3766}
3767EXPORT_SYMBOL(nand_read_oob_syndrome);
3768
3769/**
3770 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3771 * @mtd: mtd info structure
3772 * @chip: nand chip info structure
3773 * @page: page number to write
3774 */
3775int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
3776{
3777        return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3778                                 mtd->oobsize);
3779}
3780EXPORT_SYMBOL(nand_write_oob_std);
3781
3782/**
3783 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3784 *                           with syndrome - only for large page flash
3785 * @mtd: mtd info structure
3786 * @chip: nand chip info structure
3787 * @page: page number to write
3788 */
3789int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3790                            int page)
3791{
3792        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3793        int eccsize = chip->ecc.size, length = mtd->oobsize;
3794        int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3795        const uint8_t *bufpoi = chip->oob_poi;
3796
3797        /*
3798         * data-ecc-data-ecc ... ecc-oob
3799         * or
3800         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3801         */
3802        if (!chip->ecc.prepad && !chip->ecc.postpad) {
3803                pos = steps * (eccsize + chunk);
3804                steps = 0;
3805        } else
3806                pos = eccsize;
3807
3808        ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3809        if (ret)
3810                return ret;
3811
3812        for (i = 0; i < steps; i++) {
3813                if (sndcmd) {
3814                        if (mtd->writesize <= 512) {
3815                                uint32_t fill = 0xFFFFFFFF;
3816
3817                                len = eccsize;
3818                                while (len > 0) {
3819                                        int num = min_t(int, len, 4);
3820
3821                                        ret = nand_write_data_op(chip, &fill,
3822                                                                 num, false);
3823                                        if (ret)
3824                                                return ret;
3825
3826                                        len -= num;
3827                                }
3828                        } else {
3829                                pos = eccsize + i * (eccsize + chunk);
3830                                ret = nand_change_write_column_op(chip, pos,
3831                                                                  NULL, 0,
3832                                                                  false);
3833                                if (ret)
3834                                        return ret;
3835                        }
3836                } else
3837                        sndcmd = 1;
3838                len = min_t(int, length, chunk);
3839
3840                ret = nand_write_data_op(chip, bufpoi, len, false);
3841                if (ret)
3842                        return ret;
3843
3844                bufpoi += len;
3845                length -= len;
3846        }
3847        if (length > 0) {
3848                ret = nand_write_data_op(chip, bufpoi, length, false);
3849                if (ret)
3850                        return ret;
3851        }
3852
3853        return nand_prog_page_end_op(chip);
3854}
3855EXPORT_SYMBOL(nand_write_oob_syndrome);
3856
3857/**
3858 * nand_do_read_oob - [INTERN] NAND read out-of-band
3859 * @mtd: MTD device structure
3860 * @from: offset to read from
3861 * @ops: oob operations description structure
3862 *
3863 * NAND read out-of-band data from the spare area.
3864 */
3865static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
3866                            struct mtd_oob_ops *ops)
3867{
3868        unsigned int max_bitflips = 0;
3869        int page, realpage, chipnr;
3870        struct nand_chip *chip = mtd_to_nand(mtd);
3871        struct mtd_ecc_stats stats;
3872        int readlen = ops->ooblen;
3873        int len;
3874        uint8_t *buf = ops->oobbuf;
3875        int ret = 0;
3876
3877        pr_debug("%s: from = 0x%08Lx, len = %i\n",
3878                        __func__, (unsigned long long)from, readlen);
3879
3880        stats = mtd->ecc_stats;
3881
3882        len = mtd_oobavail(mtd, ops);
3883
3884        chipnr = (int)(from >> chip->chip_shift);
3885        chip->select_chip(mtd, chipnr);
3886
3887        /* Shift to get page */
3888        realpage = (int)(from >> chip->page_shift);
3889        page = realpage & chip->pagemask;
3890
3891        while (1) {
3892                if (ops->mode == MTD_OPS_RAW)
3893                        ret = chip->ecc.read_oob_raw(mtd, chip, page);
3894                else
3895                        ret = chip->ecc.read_oob(mtd, chip, page);
3896
3897                if (ret < 0)
3898                        break;
3899
3900                len = min(len, readlen);
3901                buf = nand_transfer_oob(mtd, buf, ops, len);
3902
3903                if (chip->options & NAND_NEED_READRDY) {
3904                        /* Apply delay or wait for ready/busy pin */
3905                        if (!chip->dev_ready)
3906                                udelay(chip->chip_delay);
3907                        else
3908                                nand_wait_ready(mtd);
3909                }
3910
3911                max_bitflips = max_t(unsigned int, max_bitflips, ret);
3912
3913                readlen -= len;
3914                if (!readlen)
3915                        break;
3916
3917                /* Increment page address */
3918                realpage++;
3919
3920                page = realpage & chip->pagemask;
3921                /* Check, if we cross a chip boundary */
3922                if (!page) {
3923                        chipnr++;
3924                        chip->select_chip(mtd, -1);
3925                        chip->select_chip(mtd, chipnr);
3926                }
3927        }
3928        chip->select_chip(mtd, -1);
3929
3930        ops->oobretlen = ops->ooblen - readlen;
3931
3932        if (ret < 0)
3933                return ret;
3934
3935        if (mtd->ecc_stats.failed - stats.failed)
3936                return -EBADMSG;
3937
3938        return max_bitflips;
3939}
3940
3941/**
3942 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3943 * @mtd: MTD device structure
3944 * @from: offset to read from
3945 * @ops: oob operation description structure
3946 *
3947 * NAND read data and/or out-of-band data.
3948 */
3949static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3950                         struct mtd_oob_ops *ops)
3951{
3952        int ret;
3953
3954        ops->retlen = 0;
3955
3956        if (ops->mode != MTD_OPS_PLACE_OOB &&
3957            ops->mode != MTD_OPS_AUTO_OOB &&
3958            ops->mode != MTD_OPS_RAW)
3959                return -ENOTSUPP;
3960
3961        nand_get_device(mtd, FL_READING);
3962
3963        if (!ops->datbuf)
3964                ret = nand_do_read_oob(mtd, from, ops);
3965        else
3966                ret = nand_do_read_ops(mtd, from, ops);
3967
3968        nand_release_device(mtd);
3969        return ret;
3970}
3971
3972
3973/**
3974 * nand_write_page_raw - [INTERN] raw page write function
3975 * @mtd: mtd info structure
3976 * @chip: nand chip info structure
3977 * @buf: data buffer
3978 * @oob_required: must write chip->oob_poi to OOB
3979 * @page: page number to write
3980 *
3981 * Not for syndrome calculating ECC controllers, which use a special oob layout.
3982 */
3983int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
3984                        const uint8_t *buf, int oob_required, int page)
3985{
3986        int ret;
3987
3988        ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3989        if (ret)
3990                return ret;
3991
3992        if (oob_required) {
3993                ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3994                                         false);
3995                if (ret)
3996                        return ret;
3997        }
3998
3999        return nand_prog_page_end_op(chip);
4000}
4001EXPORT_SYMBOL(nand_write_page_raw);
4002
4003/**
4004 * nand_write_page_raw_syndrome - [INTERN] raw page write function
4005 * @mtd: mtd info structure
4006 * @chip: nand chip info structure
4007 * @buf: data buffer
4008 * @oob_required: must write chip->oob_poi to OOB
4009 * @page: page number to write
4010 *
4011 * We need a special oob layout and handling even when ECC isn't checked.
4012 */
4013static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
4014                                        struct nand_chip *chip,
4015                                        const uint8_t *buf, int oob_required,
4016                                        int page)
4017{
4018        int eccsize = chip->ecc.size;
4019        int eccbytes = chip->ecc.bytes;
4020        uint8_t *oob = chip->oob_poi;
4021        int steps, size, ret;
4022
4023        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4024        if (ret)
4025                return ret;
4026
4027        for (steps = chip->ecc.steps; steps > 0; steps--) {
4028                ret = nand_write_data_op(chip, buf, eccsize, false);
4029                if (ret)
4030                        return ret;
4031
4032                buf += eccsize;
4033
4034                if (chip->ecc.prepad) {
4035                        ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4036                                                 false);
4037                        if (ret)
4038                                return ret;
4039
4040                        oob += chip->ecc.prepad;
4041                }
4042
4043                ret = nand_write_data_op(chip, oob, eccbytes, false);
4044                if (ret)
4045                        return ret;
4046
4047                oob += eccbytes;
4048
4049                if (chip->ecc.postpad) {
4050                        ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4051                                                 false);
4052                        if (ret)
4053                                return ret;
4054
4055                        oob += chip->ecc.postpad;
4056                }
4057        }
4058
4059        size = mtd->oobsize - (oob - chip->oob_poi);
4060        if (size) {
4061                ret = nand_write_data_op(chip, oob, size, false);
4062                if (ret)
4063                        return ret;
4064        }
4065
4066        return nand_prog_page_end_op(chip);
4067}
4068/**
4069 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4070 * @mtd: mtd info structure
4071 * @chip: nand chip info structure
4072 * @buf: data buffer
4073 * @oob_required: must write chip->oob_poi to OOB
4074 * @page: page number to write
4075 */
4076static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
4077                                 const uint8_t *buf, int oob_required,
4078                                 int page)
4079{
4080        int i, eccsize = chip->ecc.size, ret;
4081        int eccbytes = chip->ecc.bytes;
4082        int eccsteps = chip->ecc.steps;
4083        uint8_t *ecc_calc = chip->ecc.calc_buf;
4084        const uint8_t *p = buf;
4085
4086        /* Software ECC calculation */
4087        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4088                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
4089
4090        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4091                                         chip->ecc.total);
4092        if (ret)
4093                return ret;
4094
4095        return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
4096}
4097
4098/**
4099 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4100 * @mtd: mtd info structure
4101 * @chip: nand chip info structure
4102 * @buf: data buffer
4103 * @oob_required: must write chip->oob_poi to OOB
4104 * @page: page number to write
4105 */
4106static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
4107                                  const uint8_t *buf, int oob_required,
4108                                  int page)
4109{
4110        int i, eccsize = chip->ecc.size, ret;
4111        int eccbytes = chip->ecc.bytes;
4112        int eccsteps = chip->ecc.steps;
4113        uint8_t *ecc_calc = chip->ecc.calc_buf;
4114        const uint8_t *p = buf;
4115
4116        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4117        if (ret)
4118                return ret;
4119
4120        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4121                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4122
4123                ret = nand_write_data_op(chip, p, eccsize, false);
4124                if (ret)
4125                        return ret;
4126
4127                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
4128        }
4129
4130        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4131                                         chip->ecc.total);
4132        if (ret)
4133                return ret;
4134
4135        ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4136        if (ret)
4137                return ret;
4138
4139        return nand_prog_page_end_op(chip);
4140}
4141
4142
4143/**
4144 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4145 * @mtd:        mtd info structure
4146 * @chip:       nand chip info structure
4147 * @offset:     column address of subpage within the page
4148 * @data_len:   data length
4149 * @buf:        data buffer
4150 * @oob_required: must write chip->oob_poi to OOB
4151 * @page: page number to write
4152 */
4153static int nand_write_subpage_hwecc(struct mtd_info *mtd,
4154                                struct nand_chip *chip, uint32_t offset,
4155                                uint32_t data_len, const uint8_t *buf,
4156                                int oob_required, int page)
4157{
4158        uint8_t *oob_buf  = chip->oob_poi;
4159        uint8_t *ecc_calc = chip->ecc.calc_buf;
4160        int ecc_size      = chip->ecc.size;
4161        int ecc_bytes     = chip->ecc.bytes;
4162        int ecc_steps     = chip->ecc.steps;
4163        uint32_t start_step = offset / ecc_size;
4164        uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4165        int oob_bytes       = mtd->oobsize / ecc_steps;
4166        int step, ret;
4167
4168        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4169        if (ret)
4170                return ret;
4171
4172        for (step = 0; step < ecc_steps; step++) {
4173                /* configure controller for WRITE access */
4174                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4175
4176                /* write data (untouched subpages already masked by 0xFF) */
4177                ret = nand_write_data_op(chip, buf, ecc_size, false);
4178                if (ret)
4179                        return ret;
4180
4181                /* mask ECC of un-touched subpages by padding 0xFF */
4182                if ((step < start_step) || (step > end_step))
4183                        memset(ecc_calc, 0xff, ecc_bytes);
4184                else
4185                        chip->ecc.calculate(mtd, buf, ecc_calc);
4186
4187                /* mask OOB of un-touched subpages by padding 0xFF */
4188                /* if oob_required, preserve OOB metadata of written subpage */
4189                if (!oob_required || (step < start_step) || (step > end_step))
4190                        memset(oob_buf, 0xff, oob_bytes);
4191
4192                buf += ecc_size;
4193                ecc_calc += ecc_bytes;
4194                oob_buf  += oob_bytes;
4195        }
4196
4197        /* copy calculated ECC for whole page to chip->buffer->oob */
4198        /* this include masked-value(0xFF) for unwritten subpages */
4199        ecc_calc = chip->ecc.calc_buf;
4200        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4201                                         chip->ecc.total);
4202        if (ret)
4203                return ret;
4204
4205        /* write OOB buffer to NAND device */
4206        ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4207        if (ret)
4208                return ret;
4209
4210        return nand_prog_page_end_op(chip);
4211}
4212
4213
4214/**
4215 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4216 * @mtd: mtd info structure
4217 * @chip: nand chip info structure
4218 * @buf: data buffer
4219 * @oob_required: must write chip->oob_poi to OOB
4220 * @page: page number to write
4221 *
4222 * The hw generator calculates the error syndrome automatically. Therefore we
4223 * need a special oob layout and handling.
4224 */
4225static int nand_write_page_syndrome(struct mtd_info *mtd,
4226                                    struct nand_chip *chip,
4227                                    const uint8_t *buf, int oob_required,
4228                                    int page)
4229{
4230        int i, eccsize = chip->ecc.size;
4231        int eccbytes = chip->ecc.bytes;
4232        int eccsteps = chip->ecc.steps;
4233        const uint8_t *p = buf;
4234        uint8_t *oob = chip->oob_poi;
4235        int ret;
4236
4237        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4238        if (ret)
4239                return ret;
4240
4241        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4242                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4243
4244                ret = nand_write_data_op(chip, p, eccsize, false);
4245                if (ret)
4246                        return ret;
4247
4248                if (chip->ecc.prepad) {
4249                        ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4250                                                 false);
4251                        if (ret)
4252                                return ret;
4253
4254                        oob += chip->ecc.prepad;
4255                }
4256
4257                chip->ecc.calculate(mtd, p, oob);
4258
4259                ret = nand_write_data_op(chip, oob, eccbytes, false);
4260                if (ret)
4261                        return ret;
4262
4263                oob += eccbytes;
4264
4265                if (chip->ecc.postpad) {
4266                        ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4267                                                 false);
4268                        if (ret)
4269                                return ret;
4270
4271                        oob += chip->ecc.postpad;
4272                }
4273        }
4274
4275        /* Calculate remaining oob bytes */
4276        i = mtd->oobsize - (oob - chip->oob_poi);
4277        if (i) {
4278                ret = nand_write_data_op(chip, oob, i, false);
4279                if (ret)
4280                        return ret;
4281        }
4282
4283        return nand_prog_page_end_op(chip);
4284}
4285
4286/**
4287 * nand_write_page - write one page
4288 * @mtd: MTD device structure
4289 * @chip: NAND chip descriptor
4290 * @offset: address offset within the page
4291 * @data_len: length of actual data to be written
4292 * @buf: the data to write
4293 * @oob_required: must write chip->oob_poi to OOB
4294 * @page: page number to write
4295 * @raw: use _raw version of write_page
4296 */
4297static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
4298                uint32_t offset, int data_len, const uint8_t *buf,
4299                int oob_required, int page, int raw)
4300{
4301        int status, subpage;
4302
4303        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4304                chip->ecc.write_subpage)
4305                subpage = offset || (data_len < mtd->writesize);
4306        else
4307                subpage = 0;
4308
4309        if (unlikely(raw))
4310                status = chip->ecc.write_page_raw(mtd, chip, buf,
4311                                                  oob_required, page);
4312        else if (subpage)
4313                status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
4314                                                 buf, oob_required, page);
4315        else
4316                status = chip->ecc.write_page(mtd, chip, buf, oob_required,
4317                                              page);
4318
4319        if (status < 0)
4320                return status;
4321
4322        return 0;
4323}
4324
4325/**
4326 * nand_fill_oob - [INTERN] Transfer client buffer to oob
4327 * @mtd: MTD device structure
4328 * @oob: oob data buffer
4329 * @len: oob data write length
4330 * @ops: oob ops structure
4331 */
4332static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
4333                              struct mtd_oob_ops *ops)
4334{
4335        struct nand_chip *chip = mtd_to_nand(mtd);
4336        int ret;
4337
4338        /*
4339         * Initialise to all 0xFF, to avoid the possibility of left over OOB
4340         * data from a previous OOB read.
4341         */
4342        memset(chip->oob_poi, 0xff, mtd->oobsize);
4343
4344        switch (ops->mode) {
4345
4346        case MTD_OPS_PLACE_OOB:
4347        case MTD_OPS_RAW:
4348                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
4349                return oob + len;
4350
4351        case MTD_OPS_AUTO_OOB:
4352                ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
4353                                                  ops->ooboffs, len);
4354                BUG_ON(ret);
4355                return oob + len;
4356
4357        default:
4358                BUG();
4359        }
4360        return NULL;
4361}
4362
4363#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
4364
4365/**
4366 * nand_do_write_ops - [INTERN] NAND write with ECC
4367 * @mtd: MTD device structure
4368 * @to: offset to write to
4369 * @ops: oob operations description structure
4370 *
4371 * NAND write with ECC.
4372 */
4373static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
4374                             struct mtd_oob_ops *ops)
4375{
4376        int chipnr, realpage, page, column;
4377        struct nand_chip *chip = mtd_to_nand(mtd);
4378        uint32_t writelen = ops->len;
4379
4380        uint32_t oobwritelen = ops->ooblen;
4381        uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4382
4383        uint8_t *oob = ops->oobbuf;
4384        uint8_t *buf = ops->datbuf;
4385        int ret;
4386        int oob_required = oob ? 1 : 0;
4387
4388        ops->retlen = 0;
4389        if (!writelen)
4390                return 0;
4391
4392        /* Reject writes, which are not page aligned */
4393        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4394                pr_notice("%s: attempt to write non page aligned data\n",
4395                           __func__);
4396                return -EINVAL;
4397        }
4398
4399        column = to & (mtd->writesize - 1);
4400
4401        chipnr = (int)(to >> chip->chip_shift);
4402        chip->select_chip(mtd, chipnr);
4403
4404        /* Check, if it is write protected */
4405        if (nand_check_wp(mtd)) {
4406                ret = -EIO;
4407                goto err_out;
4408        }
4409
4410        realpage = (int)(to >> chip->page_shift);
4411        page = realpage & chip->pagemask;
4412
4413        /* Invalidate the page cache, when we write to the cached page */
4414        if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
4415            ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
4416                chip->pagebuf = -1;
4417
4418        /* Don't allow multipage oob writes with offset */
4419        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4420                ret = -EINVAL;
4421                goto err_out;
4422        }
4423
4424        while (1) {
4425                int bytes = mtd->writesize;
4426                uint8_t *wbuf = buf;
4427                int use_bufpoi;
4428                int part_pagewr = (column || writelen < mtd->writesize);
4429
4430                if (part_pagewr)
4431                        use_bufpoi = 1;
4432                else if (chip->options & NAND_USE_BOUNCE_BUFFER)
4433                        use_bufpoi = !virt_addr_valid(buf) ||
4434                                     !IS_ALIGNED((unsigned long)buf,
4435                                                 chip->buf_align);
4436                else
4437                        use_bufpoi = 0;
4438
4439                /* Partial page write?, or need to use bounce buffer */
4440                if (use_bufpoi) {
4441                        pr_debug("%s: using write bounce buffer for buf@%p\n",
4442                                         __func__, buf);
4443                        if (part_pagewr)
4444                                bytes = min_t(int, bytes - column, writelen);
4445                        chip->pagebuf = -1;
4446                        memset(chip->data_buf, 0xff, mtd->writesize);
4447                        memcpy(&chip->data_buf[column], buf, bytes);
4448                        wbuf = chip->data_buf;
4449                }
4450
4451                if (unlikely(oob)) {
4452                        size_t len = min(oobwritelen, oobmaxlen);
4453                        oob = nand_fill_oob(mtd, oob, len, ops);
4454                        oobwritelen -= len;
4455                } else {
4456                        /* We still need to erase leftover OOB data */
4457                        memset(chip->oob_poi, 0xff, mtd->oobsize);
4458                }
4459
4460                ret = nand_write_page(mtd, chip, column, bytes, wbuf,
4461                                      oob_required, page,
4462                                      (ops->mode == MTD_OPS_RAW));
4463                if (ret)
4464                        break;
4465
4466                writelen -= bytes;
4467                if (!writelen)
4468                        break;
4469
4470                column = 0;
4471                buf += bytes;
4472                realpage++;
4473
4474                page = realpage & chip->pagemask;
4475                /* Check, if we cross a chip boundary */
4476                if (!page) {
4477                        chipnr++;
4478                        chip->select_chip(mtd, -1);
4479                        chip->select_chip(mtd, chipnr);
4480                }
4481        }
4482
4483        ops->retlen = ops->len - writelen;
4484        if (unlikely(oob))
4485                ops->oobretlen = ops->ooblen;
4486
4487err_out:
4488        chip->select_chip(mtd, -1);
4489        return ret;
4490}
4491
4492/**
4493 * panic_nand_write - [MTD Interface] NAND write with ECC
4494 * @mtd: MTD device structure
4495 * @to: offset to write to
4496 * @len: number of bytes to write
4497 * @retlen: pointer to variable to store the number of written bytes
4498 * @buf: the data to write
4499 *
4500 * NAND write with ECC. Used when performing writes in interrupt context, this
4501 * may for example be called by mtdoops when writing an oops while in panic.
4502 */
4503static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4504                            size_t *retlen, const uint8_t *buf)
4505{
4506        struct nand_chip *chip = mtd_to_nand(mtd);
4507        int chipnr = (int)(to >> chip->chip_shift);
4508        struct mtd_oob_ops ops;
4509        int ret;
4510
4511        /* Grab the device */
4512        panic_nand_get_device(chip, mtd, FL_WRITING);
4513
4514        chip->select_chip(mtd, chipnr);
4515
4516        /* Wait for the device to get ready */
4517        panic_nand_wait(mtd, chip, 400);
4518
4519        memset(&ops, 0, sizeof(ops));
4520        ops.len = len;
4521        ops.datbuf = (uint8_t *)buf;
4522        ops.mode = MTD_OPS_PLACE_OOB;
4523
4524        ret = nand_do_write_ops(mtd, to, &ops);
4525
4526        *retlen = ops.retlen;
4527        return ret;
4528}
4529
4530/**
4531 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
4532 * @mtd: MTD device structure
4533 * @to: offset to write to
4534 * @ops: oob operation description structure
4535 *
4536 * NAND write out-of-band.
4537 */
4538static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
4539                             struct mtd_oob_ops *ops)
4540{
4541        int chipnr, page, status, len;
4542        struct nand_chip *chip = mtd_to_nand(mtd);
4543
4544        pr_debug("%s: to = 0x%08x, len = %i\n",
4545                         __func__, (unsigned int)to, (int)ops->ooblen);
4546
4547        len = mtd_oobavail(mtd, ops);
4548
4549        /* Do not allow write past end of page */
4550        if ((ops->ooboffs + ops->ooblen) > len) {
4551                pr_debug("%s: attempt to write past end of page\n",
4552                                __func__);
4553                return -EINVAL;
4554        }
4555
4556        chipnr = (int)(to >> chip->chip_shift);
4557
4558        /*
4559         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
4560         * of my DiskOnChip 2000 test units) will clear the whole data page too
4561         * if we don't do this. I have no clue why, but I seem to have 'fixed'
4562         * it in the doc2000 driver in August 1999.  dwmw2.
4563         */
4564        nand_reset(chip, chipnr);
4565
4566        chip->select_chip(mtd, chipnr);
4567
4568        /* Shift to get page */
4569        page = (int)(to >> chip->page_shift);
4570
4571        /* Check, if it is write protected */
4572        if (nand_check_wp(mtd)) {
4573                chip->select_chip(mtd, -1);
4574                return -EROFS;
4575        }
4576
4577        /* Invalidate the page cache, if we write to the cached page */
4578        if (page == chip->pagebuf)
4579                chip->pagebuf = -1;
4580
4581        nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
4582
4583        if (ops->mode == MTD_OPS_RAW)
4584                status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
4585        else
4586                status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
4587
4588        chip->select_chip(mtd, -1);
4589
4590        if (status)
4591                return status;
4592
4593        ops->oobretlen = ops->ooblen;
4594
4595        return 0;
4596}
4597
4598/**
4599 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4600 * @mtd: MTD device structure
4601 * @to: offset to write to
4602 * @ops: oob operation description structure
4603 */
4604static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4605                          struct mtd_oob_ops *ops)
4606{
4607        int ret = -ENOTSUPP;
4608
4609        ops->retlen = 0;
4610
4611        nand_get_device(mtd, FL_WRITING);
4612
4613        switch (ops->mode) {
4614        case MTD_OPS_PLACE_OOB:
4615        case MTD_OPS_AUTO_OOB:
4616        case MTD_OPS_RAW:
4617                break;
4618
4619        default:
4620                goto out;
4621        }
4622
4623        if (!ops->datbuf)
4624                ret = nand_do_write_oob(mtd, to, ops);
4625        else
4626                ret = nand_do_write_ops(mtd, to, ops);
4627
4628out:
4629        nand_release_device(mtd);
4630        return ret;
4631}
4632
4633/**
4634 * single_erase - [GENERIC] NAND standard block erase command function
4635 * @mtd: MTD device structure
4636 * @page: the page address of the block which will be erased
4637 *
4638 * Standard erase command for NAND chips. Returns NAND status.
4639 */
4640static int single_erase(struct mtd_info *mtd, int page)
4641{
4642        struct nand_chip *chip = mtd_to_nand(mtd);
4643        unsigned int eraseblock;
4644
4645        /* Send commands to erase a block */
4646        eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
4647
4648        return nand_erase_op(chip, eraseblock);
4649}
4650
4651/**
4652 * nand_erase - [MTD Interface] erase block(s)
4653 * @mtd: MTD device structure
4654 * @instr: erase instruction
4655 *
4656 * Erase one ore more blocks.
4657 */
4658static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4659{
4660        return nand_erase_nand(mtd, instr, 0);
4661}
4662
4663/**
4664 * nand_erase_nand - [INTERN] erase block(s)
4665 * @mtd: MTD device structure
4666 * @instr: erase instruction
4667 * @allowbbt: allow erasing the bbt area
4668 *
4669 * Erase one ore more blocks.
4670 */
4671int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
4672                    int allowbbt)
4673{
4674        int page, status, pages_per_block, ret, chipnr;
4675        struct nand_chip *chip = mtd_to_nand(mtd);
4676        loff_t len;
4677
4678        pr_debug("%s: start = 0x%012llx, len = %llu\n",
4679                        __func__, (unsigned long long)instr->addr,
4680                        (unsigned long long)instr->len);
4681
4682        if (check_offs_len(mtd, instr->addr, instr->len))
4683                return -EINVAL;
4684
4685        /* Grab the lock and see if the device is available */
4686        nand_get_device(mtd, FL_ERASING);
4687
4688        /* Shift to get first page */
4689        page = (int)(instr->addr >> chip->page_shift);
4690        chipnr = (int)(instr->addr >> chip->chip_shift);
4691
4692        /* Calculate pages in each block */
4693        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4694
4695        /* Select the NAND device */
4696        chip->select_chip(mtd, chipnr);
4697
4698        /* Check, if it is write protected */
4699        if (nand_check_wp(mtd)) {
4700                pr_debug("%s: device is write protected!\n",
4701                                __func__);
4702                ret = -EIO;
4703                goto erase_exit;
4704        }
4705
4706        /* Loop through the pages */
4707        len = instr->len;
4708
4709        while (len) {
4710                /* Check if we have a bad block, we do not erase bad blocks! */
4711                if (nand_block_checkbad(mtd, ((loff_t) page) <<
4712                                        chip->page_shift, allowbbt)) {
4713                        pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4714                                    __func__, page);
4715                        ret = -EIO;
4716                        goto erase_exit;
4717                }
4718
4719                /*
4720                 * Invalidate the page cache, if we erase the block which
4721                 * contains the current cached page.
4722                 */
4723                if (page <= chip->pagebuf && chip->pagebuf <
4724                    (page + pages_per_block))
4725                        chip->pagebuf = -1;
4726
4727                status = chip->erase(mtd, page & chip->pagemask);
4728
4729                /* See if block erase succeeded */
4730                if (status) {
4731                        pr_debug("%s: failed erase, page 0x%08x\n",
4732                                        __func__, page);
4733                        ret = -EIO;
4734                        instr->fail_addr =
4735                                ((loff_t)page << chip->page_shift);
4736                        goto erase_exit;
4737                }
4738
4739                /* Increment page address and decrement length */
4740                len -= (1ULL << chip->phys_erase_shift);
4741                page += pages_per_block;
4742
4743                /* Check, if we cross a chip boundary */
4744                if (len && !(page & chip->pagemask)) {
4745                        chipnr++;
4746                        chip->select_chip(mtd, -1);
4747                        chip->select_chip(mtd, chipnr);
4748                }
4749        }
4750
4751        ret = 0;
4752erase_exit:
4753
4754        /* Deselect and wake up anyone waiting on the device */
4755        chip->select_chip(mtd, -1);
4756        nand_release_device(mtd);
4757
4758        /* Return more or less happy */
4759        return ret;
4760}
4761
4762/**
4763 * nand_sync - [MTD Interface] sync
4764 * @mtd: MTD device structure
4765 *
4766 * Sync is actually a wait for chip ready function.
4767 */
4768static void nand_sync(struct mtd_info *mtd)
4769{
4770        pr_debug("%s: called\n", __func__);
4771
4772        /* Grab the lock and see if the device is available */
4773        nand_get_device(mtd, FL_SYNCING);
4774        /* Release it and go back */
4775        nand_release_device(mtd);
4776}
4777
4778/**
4779 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4780 * @mtd: MTD device structure
4781 * @offs: offset relative to mtd start
4782 */
4783static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4784{
4785        struct nand_chip *chip = mtd_to_nand(mtd);
4786        int chipnr = (int)(offs >> chip->chip_shift);
4787        int ret;
4788
4789        /* Select the NAND device */
4790        nand_get_device(mtd, FL_READING);
4791        chip->select_chip(mtd, chipnr);
4792
4793        ret = nand_block_checkbad(mtd, offs, 0);
4794
4795        chip->select_chip(mtd, -1);
4796        nand_release_device(mtd);
4797
4798        return ret;
4799}
4800
4801/**
4802 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4803 * @mtd: MTD device structure
4804 * @ofs: offset relative to mtd start
4805 */
4806static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4807{
4808        int ret;
4809
4810        ret = nand_block_isbad(mtd, ofs);
4811        if (ret) {
4812                /* If it was bad already, return success and do nothing */
4813                if (ret > 0)
4814                        return 0;
4815                return ret;
4816        }
4817
4818        return nand_block_markbad_lowlevel(mtd, ofs);
4819}
4820
4821/**
4822 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
4823 * @mtd: MTD device structure
4824 * @ofs: offset relative to mtd start
4825 * @len: length of mtd
4826 */
4827static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
4828{
4829        struct nand_chip *chip = mtd_to_nand(mtd);
4830        u32 part_start_block;
4831        u32 part_end_block;
4832        u32 part_start_die;
4833        u32 part_end_die;
4834
4835        /*
4836         * max_bb_per_die and blocks_per_die used to determine
4837         * the maximum bad block count.
4838         */
4839        if (!chip->max_bb_per_die || !chip->blocks_per_die)
4840                return -ENOTSUPP;
4841
4842        /* Get the start and end of the partition in erase blocks. */
4843        part_start_block = mtd_div_by_eb(ofs, mtd);
4844        part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
4845
4846        /* Get the start and end LUNs of the partition. */
4847        part_start_die = part_start_block / chip->blocks_per_die;
4848        part_end_die = part_end_block / chip->blocks_per_die;
4849
4850        /*
4851         * Look up the bad blocks per unit and multiply by the number of units
4852         * that the partition spans.
4853         */
4854        return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
4855}
4856
4857/**
4858 * nand_default_set_features- [REPLACEABLE] set NAND chip features
4859 * @mtd: MTD device structure
4860 * @chip: nand chip info structure
4861 * @addr: feature address.
4862 * @subfeature_param: the subfeature parameters, a four bytes array.
4863 */
4864static int nand_default_set_features(struct mtd_info *mtd,
4865                                     struct nand_chip *chip, int addr,
4866                                     uint8_t *subfeature_param)
4867{
4868        return nand_set_features_op(chip, addr, subfeature_param);
4869}
4870
4871/**
4872 * nand_default_get_features- [REPLACEABLE] get NAND chip features
4873 * @mtd: MTD device structure
4874 * @chip: nand chip info structure
4875 * @addr: feature address.
4876 * @subfeature_param: the subfeature parameters, a four bytes array.
4877 */
4878static int nand_default_get_features(struct mtd_info *mtd,
4879                                     struct nand_chip *chip, int addr,
4880                                     uint8_t *subfeature_param)
4881{
4882        return nand_get_features_op(chip, addr, subfeature_param);
4883}
4884
4885/**
4886 * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
4887 * @mtd: MTD device structure
4888 * @chip: nand chip info structure
4889 * @addr: feature address.
4890 * @subfeature_param: the subfeature parameters, a four bytes array.
4891 *
4892 * Should be used by NAND controller drivers that do not support the SET/GET
4893 * FEATURES operations.
4894 */
4895int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
4896                                  int addr, u8 *subfeature_param)
4897{
4898        return -ENOTSUPP;
4899}
4900EXPORT_SYMBOL(nand_get_set_features_notsupp);
4901
4902/**
4903 * nand_suspend - [MTD Interface] Suspend the NAND flash
4904 * @mtd: MTD device structure
4905 */
4906static int nand_suspend(struct mtd_info *mtd)
4907{
4908        return nand_get_device(mtd, FL_PM_SUSPENDED);
4909}
4910
4911/**
4912 * nand_resume - [MTD Interface] Resume the NAND flash
4913 * @mtd: MTD device structure
4914 */
4915static void nand_resume(struct mtd_info *mtd)
4916{
4917        struct nand_chip *chip = mtd_to_nand(mtd);
4918
4919        if (chip->state == FL_PM_SUSPENDED)
4920                nand_release_device(mtd);
4921        else
4922                pr_err("%s called for a chip which is not in suspended state\n",
4923                        __func__);
4924}
4925
4926/**
4927 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4928 *                 prevent further operations
4929 * @mtd: MTD device structure
4930 */
4931static void nand_shutdown(struct mtd_info *mtd)
4932{
4933        nand_get_device(mtd, FL_PM_SUSPENDED);
4934}
4935
4936/* Set default functions */
4937static void nand_set_defaults(struct nand_chip *chip)
4938{
4939        unsigned int busw = chip->options & NAND_BUSWIDTH_16;
4940
4941        /* check for proper chip_delay setup, set 20us if not */
4942        if (!chip->chip_delay)
4943                chip->chip_delay = 20;
4944
4945        /* check, if a user supplied command function given */
4946        if (!chip->cmdfunc && !chip->exec_op)
4947                chip->cmdfunc = nand_command;
4948
4949        /* check, if a user supplied wait function given */
4950        if (chip->waitfunc == NULL)
4951                chip->waitfunc = nand_wait;
4952
4953        if (!chip->select_chip)
4954                chip->select_chip = nand_select_chip;
4955
4956        /* set for ONFI nand */
4957        if (!chip->set_features)
4958                chip->set_features = nand_default_set_features;
4959        if (!chip->get_features)
4960                chip->get_features = nand_default_get_features;
4961
4962        /* If called twice, pointers that depend on busw may need to be reset */
4963        if (!chip->read_byte || chip->read_byte == nand_read_byte)
4964                chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
4965        if (!chip->read_word)
4966                chip->read_word = nand_read_word;
4967        if (!chip->block_bad)
4968                chip->block_bad = nand_block_bad;
4969        if (!chip->block_markbad)
4970                chip->block_markbad = nand_default_block_markbad;
4971        if (!chip->write_buf || chip->write_buf == nand_write_buf)
4972                chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
4973        if (!chip->write_byte || chip->write_byte == nand_write_byte)
4974                chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
4975        if (!chip->read_buf || chip->read_buf == nand_read_buf)
4976                chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
4977        if (!chip->scan_bbt)
4978                chip->scan_bbt = nand_default_bbt;
4979
4980        if (!chip->controller) {
4981                chip->controller = &chip->hwcontrol;
4982                nand_hw_control_init(chip->controller);
4983        }
4984
4985        if (!chip->buf_align)
4986                chip->buf_align = 1;
4987}
4988
4989/* Sanitize ONFI strings so we can safely print them */
4990static void sanitize_string(uint8_t *s, size_t len)
4991{
4992        ssize_t i;
4993
4994        /* Null terminate */
4995        s[len - 1] = 0;
4996
4997        /* Remove non printable chars */
4998        for (i = 0; i < len - 1; i++) {
4999                if (s[i] < ' ' || s[i] > 127)
5000                        s[i] = '?';
5001        }
5002
5003        /* Remove trailing spaces */
5004        strim(s);
5005}
5006
5007static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
5008{
5009        int i;
5010        while (len--) {
5011                crc ^= *p++ << 8;
5012                for (i = 0; i < 8; i++)
5013                        crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
5014        }
5015
5016        return crc;
5017}
5018
5019/* Parse the Extended Parameter Page. */
5020static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
5021                                            struct nand_onfi_params *p)
5022{
5023        struct onfi_ext_param_page *ep;
5024        struct onfi_ext_section *s;
5025        struct onfi_ext_ecc_info *ecc;
5026        uint8_t *cursor;
5027        int ret;
5028        int len;
5029        int i;
5030
5031        len = le16_to_cpu(p->ext_param_page_length) * 16;
5032        ep = kmalloc(len, GFP_KERNEL);
5033        if (!ep)
5034                return -ENOMEM;
5035
5036        /* Send our own NAND_CMD_PARAM. */
5037        ret = nand_read_param_page_op(chip, 0, NULL, 0);
5038        if (ret)
5039                goto ext_out;
5040
5041        /* Use the Change Read Column command to skip the ONFI param pages. */
5042        ret = nand_change_read_column_op(chip,
5043                                         sizeof(*p) * p->num_of_param_pages,
5044                                         ep, len, true);
5045        if (ret)
5046                goto ext_out;
5047
5048        ret = -EINVAL;
5049        if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
5050                != le16_to_cpu(ep->crc))) {
5051                pr_debug("fail in the CRC.\n");
5052                goto ext_out;
5053        }
5054
5055        /*
5056         * Check the signature.
5057         * Do not strictly follow the ONFI spec, maybe changed in future.
5058         */
5059        if (strncmp(ep->sig, "EPPS", 4)) {
5060                pr_debug("The signature is invalid.\n");
5061                goto ext_out;
5062        }
5063
5064        /* find the ECC section. */
5065        cursor = (uint8_t *)(ep + 1);
5066        for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
5067                s = ep->sections + i;
5068                if (s->type == ONFI_SECTION_TYPE_2)
5069                        break;
5070                cursor += s->length * 16;
5071        }
5072        if (i == ONFI_EXT_SECTION_MAX) {
5073                pr_debug("We can not find the ECC section.\n");
5074                goto ext_out;
5075        }
5076
5077        /* get the info we want. */
5078        ecc = (struct onfi_ext_ecc_info *)cursor;
5079
5080        if (!ecc->codeword_size) {
5081                pr_debug("Invalid codeword size\n");
5082                goto ext_out;
5083        }
5084
5085        chip->ecc_strength_ds = ecc->ecc_bits;
5086        chip->ecc_step_ds = 1 << ecc->codeword_size;
5087        ret = 0;
5088
5089ext_out:
5090        kfree(ep);
5091        return ret;
5092}
5093
5094/*
5095 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
5096 */
5097static int nand_flash_detect_onfi(struct nand_chip *chip)
5098{
5099        struct mtd_info *mtd = nand_to_mtd(chip);
5100        struct nand_onfi_params *p;
5101        char id[4];
5102        int i, ret, val;
5103
5104        /* Try ONFI for unknown chip or LP */
5105        ret = nand_readid_op(chip, 0x20, id, sizeof(id));
5106        if (ret || strncmp(id, "ONFI", 4))
5107                return 0;
5108
5109        /* ONFI chip: allocate a buffer to hold its parameter page */
5110        p = kzalloc(sizeof(*p), GFP_KERNEL);
5111        if (!p)
5112                return -ENOMEM;
5113
5114        ret = nand_read_param_page_op(chip, 0, NULL, 0);
5115        if (ret) {
5116                ret = 0;
5117                goto free_onfi_param_page;
5118        }
5119
5120        for (i = 0; i < 3; i++) {
5121                ret = nand_read_data_op(chip, p, sizeof(*p), true);
5122                if (ret) {
5123                        ret = 0;
5124                        goto free_onfi_param_page;
5125                }
5126
5127                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
5128                                le16_to_cpu(p->crc)) {
5129                        break;
5130                }
5131        }
5132
5133        if (i == 3) {
5134                pr_err("Could not find valid ONFI parameter page; aborting\n");
5135                goto free_onfi_param_page;
5136        }
5137
5138        /* Check version */
5139        val = le16_to_cpu(p->revision);
5140        if (val & (1 << 5))
5141                chip->parameters.onfi.version = 23;
5142        else if (val & (1 << 4))
5143                chip->parameters.onfi.version = 22;
5144        else if (val & (1 << 3))
5145                chip->parameters.onfi.version = 21;
5146        else if (val & (1 << 2))
5147                chip->parameters.onfi.version = 20;
5148        else if (val & (1 << 1))
5149                chip->parameters.onfi.version = 10;
5150
5151        if (!chip->parameters.onfi.version) {
5152                pr_info("unsupported ONFI version: %d\n", val);
5153                goto free_onfi_param_page;
5154        } else {
5155                ret = 1;
5156        }
5157
5158        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5159        sanitize_string(p->model, sizeof(p->model));
5160        strncpy(chip->parameters.model, p->model,
5161                sizeof(chip->parameters.model) - 1);
5162
5163        mtd->writesize = le32_to_cpu(p->byte_per_page);
5164
5165        /*
5166         * pages_per_block and blocks_per_lun may not be a power-of-2 size
5167         * (don't ask me who thought of this...). MTD assumes that these
5168         * dimensions will be power-of-2, so just truncate the remaining area.
5169         */
5170        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5171        mtd->erasesize *= mtd->writesize;
5172
5173        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
5174
5175        /* See erasesize comment */
5176        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
5177        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
5178        chip->bits_per_cell = p->bits_per_cell;
5179
5180        chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
5181        chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
5182
5183        if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS)
5184                chip->options |= NAND_BUSWIDTH_16;
5185
5186        if (p->ecc_bits != 0xff) {
5187                chip->ecc_strength_ds = p->ecc_bits;
5188                chip->ecc_step_ds = 512;
5189        } else if (chip->parameters.onfi.version >= 21 &&
5190                (le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
5191
5192                /*
5193                 * The nand_flash_detect_ext_param_page() uses the
5194                 * Change Read Column command which maybe not supported
5195                 * by the chip->cmdfunc. So try to update the chip->cmdfunc
5196                 * now. We do not replace user supplied command function.
5197                 */
5198                if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5199                        chip->cmdfunc = nand_command_lp;
5200
5201                /* The Extended Parameter Page is supported since ONFI 2.1. */
5202                if (nand_flash_detect_ext_param_page(chip, p))
5203                        pr_warn("Failed to detect ONFI extended param page\n");
5204        } else {
5205                pr_warn("Could not retrieve ONFI ECC requirements\n");
5206        }
5207
5208        /* Save some parameters from the parameter page for future use */
5209        if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) {
5210                chip->parameters.supports_set_get_features = true;
5211                bitmap_set(chip->parameters.get_feature_list,
5212                           ONFI_FEATURE_ADDR_TIMING_MODE, 1);
5213                bitmap_set(chip->parameters.set_feature_list,
5214                           ONFI_FEATURE_ADDR_TIMING_MODE, 1);
5215        }
5216        chip->parameters.onfi.tPROG = le16_to_cpu(p->t_prog);
5217        chip->parameters.onfi.tBERS = le16_to_cpu(p->t_bers);
5218        chip->parameters.onfi.tR = le16_to_cpu(p->t_r);
5219        chip->parameters.onfi.tCCS = le16_to_cpu(p->t_ccs);
5220        chip->parameters.onfi.async_timing_mode =
5221                le16_to_cpu(p->async_timing_mode);
5222        chip->parameters.onfi.vendor_revision =
5223                le16_to_cpu(p->vendor_revision);
5224        memcpy(chip->parameters.onfi.vendor, p->vendor,
5225               sizeof(p->vendor));
5226
5227free_onfi_param_page:
5228        kfree(p);
5229        return ret;
5230}
5231
5232/*
5233 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
5234 */
5235static int nand_flash_detect_jedec(struct nand_chip *chip)
5236{
5237        struct mtd_info *mtd = nand_to_mtd(chip);
5238        struct nand_jedec_params *p;
5239        struct jedec_ecc_info *ecc;
5240        int jedec_version = 0;
5241        char id[5];
5242        int i, val, ret;
5243
5244        /* Try JEDEC for unknown chip or LP */
5245        ret = nand_readid_op(chip, 0x40, id, sizeof(id));
5246        if (ret || strncmp(id, "JEDEC", sizeof(id)))
5247                return 0;
5248
5249        /* JEDEC chip: allocate a buffer to hold its parameter page */
5250        p = kzalloc(sizeof(*p), GFP_KERNEL);
5251        if (!p)
5252                return -ENOMEM;
5253
5254        ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
5255        if (ret) {
5256                ret = 0;
5257                goto free_jedec_param_page;
5258        }
5259
5260        for (i = 0; i < 3; i++) {
5261                ret = nand_read_data_op(chip, p, sizeof(*p), true);
5262                if (ret) {
5263                        ret = 0;
5264                        goto free_jedec_param_page;
5265                }
5266
5267                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
5268                                le16_to_cpu(p->crc))
5269                        break;
5270        }
5271
5272        if (i == 3) {
5273                pr_err("Could not find valid JEDEC parameter page; aborting\n");
5274                goto free_jedec_param_page;
5275        }
5276
5277        /* Check version */
5278        val = le16_to_cpu(p->revision);
5279        if (val & (1 << 2))
5280                jedec_version = 10;
5281        else if (val & (1 << 1))
5282                jedec_version = 1; /* vendor specific version */
5283
5284        if (!jedec_version) {
5285                pr_info("unsupported JEDEC version: %d\n", val);
5286                goto free_jedec_param_page;
5287        }
5288
5289        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5290        sanitize_string(p->model, sizeof(p->model));
5291        strncpy(chip->parameters.model, p->model,
5292                sizeof(chip->parameters.model) - 1);
5293
5294        mtd->writesize = le32_to_cpu(p->byte_per_page);
5295
5296        /* Please reference to the comment for nand_flash_detect_onfi. */
5297        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5298        mtd->erasesize *= mtd->writesize;
5299
5300        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
5301
5302        /* Please reference to the comment for nand_flash_detect_onfi. */
5303        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
5304        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
5305        chip->bits_per_cell = p->bits_per_cell;
5306
5307        if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS)
5308                chip->options |= NAND_BUSWIDTH_16;
5309
5310        /* ECC info */
5311        ecc = &p->ecc_info[0];
5312
5313        if (ecc->codeword_size >= 9) {
5314                chip->ecc_strength_ds = ecc->ecc_bits;
5315                chip->ecc_step_ds = 1 << ecc->codeword_size;
5316        } else {
5317                pr_warn("Invalid codeword size\n");
5318        }
5319
5320free_jedec_param_page:
5321        kfree(p);
5322        return ret;
5323}
5324
5325/*
5326 * nand_id_has_period - Check if an ID string has a given wraparound period
5327 * @id_data: the ID string
5328 * @arrlen: the length of the @id_data array
5329 * @period: the period of repitition
5330 *
5331 * Check if an ID string is repeated within a given sequence of bytes at
5332 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
5333 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
5334 * if the repetition has a period of @period; otherwise, returns zero.
5335 */
5336static int nand_id_has_period(u8 *id_data, int arrlen, int period)
5337{
5338        int i, j;
5339        for (i = 0; i < period; i++)
5340                for (j = i + period; j < arrlen; j += period)
5341                        if (id_data[i] != id_data[j])
5342                                return 0;
5343        return 1;
5344}
5345
5346/*
5347 * nand_id_len - Get the length of an ID string returned by CMD_READID
5348 * @id_data: the ID string
5349 * @arrlen: the length of the @id_data array
5350
5351 * Returns the length of the ID string, according to known wraparound/trailing
5352 * zero patterns. If no pattern exists, returns the length of the array.
5353 */
5354static int nand_id_len(u8 *id_data, int arrlen)
5355{
5356        int last_nonzero, period;
5357
5358        /* Find last non-zero byte */
5359        for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
5360                if (id_data[last_nonzero])
5361                        break;
5362
5363        /* All zeros */
5364        if (last_nonzero < 0)
5365                return 0;
5366
5367        /* Calculate wraparound period */
5368        for (period = 1; period < arrlen; period++)
5369                if (nand_id_has_period(id_data, arrlen, period))
5370                        break;
5371
5372        /* There's a repeated pattern */
5373        if (period < arrlen)
5374                return period;
5375
5376        /* There are trailing zeros */
5377        if (last_nonzero < arrlen - 1)
5378                return last_nonzero + 1;
5379
5380        /* No pattern detected */
5381        return arrlen;
5382}
5383
5384/* Extract the bits of per cell from the 3rd byte of the extended ID */
5385static int nand_get_bits_per_cell(u8 cellinfo)
5386{
5387        int bits;
5388
5389        bits = cellinfo & NAND_CI_CELLTYPE_MSK;
5390        bits >>= NAND_CI_CELLTYPE_SHIFT;
5391        return bits + 1;
5392}
5393
5394/*
5395 * Many new NAND share similar device ID codes, which represent the size of the
5396 * chip. The rest of the parameters must be decoded according to generic or
5397 * manufacturer-specific "extended ID" decoding patterns.
5398 */
5399void nand_decode_ext_id(struct nand_chip *chip)
5400{
5401        struct mtd_info *mtd = nand_to_mtd(chip);
5402        int extid;
5403        u8 *id_data = chip->id.data;
5404        /* The 3rd id byte holds MLC / multichip data */
5405        chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5406        /* The 4th id byte is the important one */
5407        extid = id_data[3];
5408
5409        /* Calc pagesize */
5410        mtd->writesize = 1024 << (extid & 0x03);
5411        extid >>= 2;
5412        /* Calc oobsize */
5413        mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5414        extid >>= 2;
5415        /* Calc blocksize. Blocksize is multiples of 64KiB */
5416        mtd->erasesize = (64 * 1024) << (extid & 0x03);
5417        extid >>= 2;
5418        /* Get buswidth information */
5419        if (extid & 0x1)
5420                chip->options |= NAND_BUSWIDTH_16;
5421}
5422EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5423
5424/*
5425 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5426 * decodes a matching ID table entry and assigns the MTD size parameters for
5427 * the chip.
5428 */
5429static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5430{
5431        struct mtd_info *mtd = nand_to_mtd(chip);
5432
5433        mtd->erasesize = type->erasesize;
5434        mtd->writesize = type->pagesize;
5435        mtd->oobsize = mtd->writesize / 32;
5436
5437        /* All legacy ID NAND are small-page, SLC */
5438        chip->bits_per_cell = 1;
5439}
5440
5441/*
5442 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5443 * heuristic patterns using various detected parameters (e.g., manufacturer,
5444 * page size, cell-type information).
5445 */
5446static void nand_decode_bbm_options(struct nand_chip *chip)
5447{
5448        struct mtd_info *mtd = nand_to_mtd(chip);
5449
5450        /* Set the bad block position */
5451        if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5452                chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
5453        else
5454                chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
5455}
5456
5457static inline bool is_full_id_nand(struct nand_flash_dev *type)
5458{
5459        return type->id_len;
5460}
5461
5462static bool find_full_id_nand(struct nand_chip *chip,
5463                              struct nand_flash_dev *type)
5464{
5465        struct mtd_info *mtd = nand_to_mtd(chip);
5466        u8 *id_data = chip->id.data;
5467
5468        if (!strncmp(type->id, id_data, type->id_len)) {
5469                mtd->writesize = type->pagesize;
5470                mtd->erasesize = type->erasesize;
5471                mtd->oobsize = type->oobsize;
5472
5473                chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5474                chip->chipsize = (uint64_t)type->chipsize << 20;
5475                chip->options |= type->options;
5476                chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
5477                chip->ecc_step_ds = NAND_ECC_STEP(type);
5478                chip->onfi_timing_mode_default =
5479                                        type->onfi_timing_mode_default;
5480
5481                strncpy(chip->parameters.model, type->name,
5482                        sizeof(chip->parameters.model) - 1);
5483
5484                return true;
5485        }
5486        return false;
5487}
5488
5489/*
5490 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5491 * compliant and does not have a full-id or legacy-id entry in the nand_ids
5492 * table.
5493 */
5494static void nand_manufacturer_detect(struct nand_chip *chip)
5495{
5496        /*
5497         * Try manufacturer detection if available and use
5498         * nand_decode_ext_id() otherwise.
5499         */
5500        if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5501            chip->manufacturer.desc->ops->detect) {
5502                /* The 3rd id byte holds MLC / multichip data */
5503                chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5504                chip->manufacturer.desc->ops->detect(chip);
5505        } else {
5506                nand_decode_ext_id(chip);
5507        }
5508}
5509
5510/*
5511 * Manufacturer initialization. This function is called for all NANDs including
5512 * ONFI and JEDEC compliant ones.
5513 * Manufacturer drivers should put all their specific initialization code in
5514 * their ->init() hook.
5515 */
5516static int nand_manufacturer_init(struct nand_chip *chip)
5517{
5518        if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5519            !chip->manufacturer.desc->ops->init)
5520                return 0;
5521
5522        return chip->manufacturer.desc->ops->init(chip);
5523}
5524
5525/*
5526 * Manufacturer cleanup. This function is called for all NANDs including
5527 * ONFI and JEDEC compliant ones.
5528 * Manufacturer drivers should put all their specific cleanup code in their
5529 * ->cleanup() hook.
5530 */
5531static void nand_manufacturer_cleanup(struct nand_chip *chip)
5532{
5533        /* Release manufacturer private data */
5534        if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5535            chip->manufacturer.desc->ops->cleanup)
5536                chip->manufacturer.desc->ops->cleanup(chip);
5537}
5538
5539/*
5540 * Get the flash and manufacturer id and lookup if the type is supported.
5541 */
5542static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5543{
5544        const struct nand_manufacturer *manufacturer;
5545        struct mtd_info *mtd = nand_to_mtd(chip);
5546        int busw, ret;
5547        u8 *id_data = chip->id.data;
5548        u8 maf_id, dev_id;
5549
5550        /*
5551         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5552         * after power-up.
5553         */
5554        ret = nand_reset(chip, 0);
5555        if (ret)
5556                return ret;
5557
5558        /* Select the device */
5559        chip->select_chip(mtd, 0);
5560
5561        /* Send the command for reading device ID */
5562        ret = nand_readid_op(chip, 0, id_data, 2);
5563        if (ret)
5564                return ret;
5565
5566        /* Read manufacturer and device IDs */
5567        maf_id = id_data[0];
5568        dev_id = id_data[1];
5569
5570        /*
5571         * Try again to make sure, as some systems the bus-hold or other
5572         * interface concerns can cause random data which looks like a
5573         * possibly credible NAND flash to appear. If the two results do
5574         * not match, ignore the device completely.
5575         */
5576
5577        /* Read entire ID string */
5578        ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5579        if (ret)
5580                return ret;
5581
5582        if (id_data[0] != maf_id || id_data[1] != dev_id) {
5583                pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5584                        maf_id, dev_id, id_data[0], id_data[1]);
5585                return -ENODEV;
5586        }
5587
5588        chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5589
5590        /* Try to identify manufacturer */
5591        manufacturer = nand_get_manufacturer(maf_id);
5592        chip->manufacturer.desc = manufacturer;
5593
5594        if (!type)
5595                type = nand_flash_ids;
5596
5597        /*
5598         * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5599         * override it.
5600         * This is required to make sure initial NAND bus width set by the
5601         * NAND controller driver is coherent with the real NAND bus width
5602         * (extracted by auto-detection code).
5603         */
5604        busw = chip->options & NAND_BUSWIDTH_16;
5605
5606        /*
5607         * The flag is only set (never cleared), reset it to its default value
5608         * before starting auto-detection.
5609         */
5610        chip->options &= ~NAND_BUSWIDTH_16;
5611
5612        for (; type->name != NULL; type++) {
5613                if (is_full_id_nand(type)) {
5614                        if (find_full_id_nand(chip, type))
5615                                goto ident_done;
5616                } else if (dev_id == type->dev_id) {
5617                        break;
5618                }
5619        }
5620
5621        chip->parameters.onfi.version = 0;
5622        if (!type->name || !type->pagesize) {
5623                /* Check if the chip is ONFI compliant */
5624                ret = nand_flash_detect_onfi(chip);
5625                if (ret < 0)
5626                        return ret;
5627                else if (ret)
5628                        goto ident_done;
5629
5630                /* Check if the chip is JEDEC compliant */
5631                ret = nand_flash_detect_jedec(chip);
5632                if (ret < 0)
5633                        return ret;
5634                else if (ret)
5635                        goto ident_done;
5636        }
5637
5638        if (!type->name)
5639                return -ENODEV;
5640
5641        strncpy(chip->parameters.model, type->name,
5642                sizeof(chip->parameters.model) - 1);
5643
5644        chip->chipsize = (uint64_t)type->chipsize << 20;
5645
5646        if (!type->pagesize)
5647                nand_manufacturer_detect(chip);
5648        else
5649                nand_decode_id(chip, type);
5650
5651        /* Get chip options */
5652        chip->options |= type->options;
5653
5654ident_done:
5655        if (!mtd->name)
5656                mtd->name = chip->parameters.model;
5657
5658        if (chip->options & NAND_BUSWIDTH_AUTO) {
5659                WARN_ON(busw & NAND_BUSWIDTH_16);
5660                nand_set_defaults(chip);
5661        } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5662                /*
5663                 * Check, if buswidth is correct. Hardware drivers should set
5664                 * chip correct!
5665                 */
5666                pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5667                        maf_id, dev_id);
5668                pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5669                        mtd->name);
5670                pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5671                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5672                return -EINVAL;
5673        }
5674
5675        nand_decode_bbm_options(chip);
5676
5677        /* Calculate the address shift from the page size */
5678        chip->page_shift = ffs(mtd->writesize) - 1;
5679        /* Convert chipsize to number of pages per chip -1 */
5680        chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
5681
5682        chip->bbt_erase_shift = chip->phys_erase_shift =
5683                ffs(mtd->erasesize) - 1;
5684        if (chip->chipsize & 0xffffffff)
5685                chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
5686        else {
5687                chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
5688                chip->chip_shift += 32 - 1;
5689        }
5690
5691        if (chip->chip_shift - chip->page_shift > 16)
5692                chip->options |= NAND_ROW_ADDR_3;
5693
5694        chip->badblockbits = 8;
5695        chip->erase = single_erase;
5696
5697        /* Do not replace user supplied command function! */
5698        if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5699                chip->cmdfunc = nand_command_lp;
5700
5701        pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5702                maf_id, dev_id);
5703        pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5704                chip->parameters.model);
5705        pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5706                (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5707                mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5708        return 0;
5709}
5710
5711static const char * const nand_ecc_modes[] = {
5712        [NAND_ECC_NONE]         = "none",
5713        [NAND_ECC_SOFT]         = "soft",
5714        [NAND_ECC_HW]           = "hw",
5715        [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
5716        [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
5717        [NAND_ECC_ON_DIE]       = "on-die",
5718};
5719
5720static int of_get_nand_ecc_mode(struct device_node *np)
5721{
5722        const char *pm;
5723        int err, i;
5724
5725        err = of_property_read_string(np, "nand-ecc-mode", &pm);
5726        if (err < 0)
5727                return err;
5728
5729        for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
5730                if (!strcasecmp(pm, nand_ecc_modes[i]))
5731                        return i;
5732
5733        /*
5734         * For backward compatibility we support few obsoleted values that don't
5735         * have their mappings into nand_ecc_modes_t anymore (they were merged
5736         * with other enums).
5737         */
5738        if (!strcasecmp(pm, "soft_bch"))
5739                return NAND_ECC_SOFT;
5740
5741        return -ENODEV;
5742}
5743
5744static const char * const nand_ecc_algos[] = {
5745        [NAND_ECC_HAMMING]      = "hamming",
5746        [NAND_ECC_BCH]          = "bch",
5747};
5748
5749static int of_get_nand_ecc_algo(struct device_node *np)
5750{
5751        const char *pm;
5752        int err, i;
5753
5754        err = of_property_read_string(np, "nand-ecc-algo", &pm);
5755        if (!err) {
5756                for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
5757                        if (!strcasecmp(pm, nand_ecc_algos[i]))
5758                                return i;
5759                return -ENODEV;
5760        }
5761
5762        /*
5763         * For backward compatibility we also read "nand-ecc-mode" checking
5764         * for some obsoleted values that were specifying ECC algorithm.
5765         */
5766        err = of_property_read_string(np, "nand-ecc-mode", &pm);
5767        if (err < 0)
5768                return err;
5769
5770        if (!strcasecmp(pm, "soft"))
5771                return NAND_ECC_HAMMING;
5772        else if (!strcasecmp(pm, "soft_bch"))
5773                return NAND_ECC_BCH;
5774
5775        return -ENODEV;
5776}
5777
5778static int of_get_nand_ecc_step_size(struct device_node *np)
5779{
5780        int ret;
5781        u32 val;
5782
5783        ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
5784        return ret ? ret : val;
5785}
5786
5787static int of_get_nand_ecc_strength(struct device_node *np)
5788{
5789        int ret;
5790        u32 val;
5791
5792        ret = of_property_read_u32(np, "nand-ecc-strength", &val);
5793        return ret ? ret : val;
5794}
5795
5796static int of_get_nand_bus_width(struct device_node *np)
5797{
5798        u32 val;
5799
5800        if (of_property_read_u32(np, "nand-bus-width", &val))
5801                return 8;
5802
5803        switch (val) {
5804        case 8:
5805        case 16:
5806                return val;
5807        default:
5808                return -EIO;
5809        }
5810}
5811
5812static bool of_get_nand_on_flash_bbt(struct device_node *np)
5813{
5814        return of_property_read_bool(np, "nand-on-flash-bbt");
5815}
5816
5817static int nand_dt_init(struct nand_chip *chip)
5818{
5819        struct device_node *dn = nand_get_flash_node(chip);
5820        int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5821
5822        if (!dn)
5823                return 0;
5824
5825        if (of_get_nand_bus_width(dn) == 16)
5826                chip->options |= NAND_BUSWIDTH_16;
5827
5828        if (of_get_nand_on_flash_bbt(dn))
5829                chip->bbt_options |= NAND_BBT_USE_FLASH;
5830
5831        ecc_mode = of_get_nand_ecc_mode(dn);
5832        ecc_algo = of_get_nand_ecc_algo(dn);
5833        ecc_strength = of_get_nand_ecc_strength(dn);
5834        ecc_step = of_get_nand_ecc_step_size(dn);
5835
5836        if (ecc_mode >= 0)
5837                chip->ecc.mode = ecc_mode;
5838
5839        if (ecc_algo >= 0)
5840                chip->ecc.algo = ecc_algo;
5841
5842        if (ecc_strength >= 0)
5843                chip->ecc.strength = ecc_strength;
5844
5845        if (ecc_step > 0)
5846                chip->ecc.size = ecc_step;
5847
5848        if (of_property_read_bool(dn, "nand-ecc-maximize"))
5849                chip->ecc.options |= NAND_ECC_MAXIMIZE;
5850
5851        return 0;
5852}
5853
5854/**
5855 * nand_scan_ident - [NAND Interface] Scan for the NAND device
5856 * @mtd: MTD device structure
5857 * @maxchips: number of chips to scan for
5858 * @table: alternative NAND ID table
5859 *
5860 * This is the first phase of the normal nand_scan() function. It reads the
5861 * flash ID and sets up MTD fields accordingly.
5862 *
5863 */
5864int nand_scan_ident(struct mtd_info *mtd, int maxchips,
5865                    struct nand_flash_dev *table)
5866{
5867        int i, nand_maf_id, nand_dev_id;
5868        struct nand_chip *chip = mtd_to_nand(mtd);
5869        int ret;
5870
5871        /* Enforce the right timings for reset/detection */
5872        onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5873
5874        ret = nand_dt_init(chip);
5875        if (ret)
5876                return ret;
5877
5878        if (!mtd->name && mtd->dev.parent)
5879                mtd->name = dev_name(mtd->dev.parent);
5880
5881        /*
5882         * ->cmdfunc() is legacy and will only be used if ->exec_op() is not
5883         * populated.
5884         */
5885        if (!chip->exec_op) {
5886                /*
5887                 * Default functions assigned for ->cmdfunc() and
5888                 * ->select_chip() both expect ->cmd_ctrl() to be populated.
5889                 */
5890                if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
5891                        pr_err("->cmd_ctrl() should be provided\n");
5892                        return -EINVAL;
5893                }
5894        }
5895
5896        /* Set the default functions */
5897        nand_set_defaults(chip);
5898
5899        /* Read the flash type */
5900        ret = nand_detect(chip, table);
5901        if (ret) {
5902                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5903                        pr_warn("No NAND device found\n");
5904                chip->select_chip(mtd, -1);
5905                return ret;
5906        }
5907
5908        nand_maf_id = chip->id.data[0];
5909        nand_dev_id = chip->id.data[1];
5910
5911        chip->select_chip(mtd, -1);
5912
5913        /* Check for a chip array */
5914        for (i = 1; i < maxchips; i++) {
5915                u8 id[2];
5916
5917                /* See comment in nand_get_flash_type for reset */
5918                nand_reset(chip, i);
5919
5920                chip->select_chip(mtd, i);
5921                /* Send the command for reading device ID */
5922                nand_readid_op(chip, 0, id, sizeof(id));
5923                /* Read manufacturer and device IDs */
5924                if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5925                        chip->select_chip(mtd, -1);
5926                        break;
5927                }
5928                chip->select_chip(mtd, -1);
5929        }
5930        if (i > 1)
5931                pr_info("%d chips detected\n", i);
5932
5933        /* Store the number of chips and calc total size for mtd */
5934        chip->numchips = i;
5935        mtd->size = i * chip->chipsize;
5936
5937        return 0;
5938}
5939EXPORT_SYMBOL(nand_scan_ident);
5940
5941static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
5942{
5943        struct nand_chip *chip = mtd_to_nand(mtd);
5944        struct nand_ecc_ctrl *ecc = &chip->ecc;
5945
5946        if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5947                return -EINVAL;
5948
5949        switch (ecc->algo) {
5950        case NAND_ECC_HAMMING:
5951                ecc->calculate = nand_calculate_ecc;
5952                ecc->correct = nand_correct_data;
5953                ecc->read_page = nand_read_page_swecc;
5954                ecc->read_subpage = nand_read_subpage;
5955                ecc->write_page = nand_write_page_swecc;
5956                ecc->read_page_raw = nand_read_page_raw;
5957                ecc->write_page_raw = nand_write_page_raw;
5958                ecc->read_oob = nand_read_oob_std;
5959                ecc->write_oob = nand_write_oob_std;
5960                if (!ecc->size)
5961                        ecc->size = 256;
5962                ecc->bytes = 3;
5963                ecc->strength = 1;
5964                return 0;
5965        case NAND_ECC_BCH:
5966                if (!mtd_nand_has_bch()) {
5967                        WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
5968                        return -EINVAL;
5969                }
5970                ecc->calculate = nand_bch_calculate_ecc;
5971                ecc->correct = nand_bch_correct_data;
5972                ecc->read_page = nand_read_page_swecc;
5973                ecc->read_subpage = nand_read_subpage;
5974                ecc->write_page = nand_write_page_swecc;
5975                ecc->read_page_raw = nand_read_page_raw;
5976                ecc->write_page_raw = nand_write_page_raw;
5977                ecc->read_oob = nand_read_oob_std;
5978                ecc->write_oob = nand_write_oob_std;
5979
5980                /*
5981                * Board driver should supply ecc.size and ecc.strength
5982                * values to select how many bits are correctable.
5983                * Otherwise, default to 4 bits for large page devices.
5984                */
5985                if (!ecc->size && (mtd->oobsize >= 64)) {
5986                        ecc->size = 512;
5987                        ecc->strength = 4;
5988                }
5989
5990                /*
5991                 * if no ecc placement scheme was provided pickup the default
5992                 * large page one.
5993                 */
5994                if (!mtd->ooblayout) {
5995                        /* handle large page devices only */
5996                        if (mtd->oobsize < 64) {
5997                                WARN(1, "OOB layout is required when using software BCH on small pages\n");
5998                                return -EINVAL;
5999                        }
6000
6001                        mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
6002
6003                }
6004
6005                /*
6006                 * We can only maximize ECC config when the default layout is
6007                 * used, otherwise we don't know how many bytes can really be
6008                 * used.
6009                 */
6010                if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
6011                    ecc->options & NAND_ECC_MAXIMIZE) {
6012                        int steps, bytes;
6013
6014                        /* Always prefer 1k blocks over 512bytes ones */
6015                        ecc->size = 1024;
6016                        steps = mtd->writesize / ecc->size;
6017
6018                        /* Reserve 2 bytes for the BBM */
6019                        bytes = (mtd->oobsize - 2) / steps;
6020                        ecc->strength = bytes * 8 / fls(8 * ecc->size);
6021                }
6022
6023                /* See nand_bch_init() for details. */
6024                ecc->bytes = 0;
6025                ecc->priv = nand_bch_init(mtd);
6026                if (!ecc->priv) {
6027                        WARN(1, "BCH ECC initialization failed!\n");
6028                        return -EINVAL;
6029                }
6030                return 0;
6031        default:
6032                WARN(1, "Unsupported ECC algorithm!\n");
6033                return -EINVAL;
6034        }
6035}
6036
6037/**
6038 * nand_check_ecc_caps - check the sanity of preset ECC settings
6039 * @chip: nand chip info structure
6040 * @caps: ECC caps info structure
6041 * @oobavail: OOB size that the ECC engine can use
6042 *
6043 * When ECC step size and strength are already set, check if they are supported
6044 * by the controller and the calculated ECC bytes fit within the chip's OOB.
6045 * On success, the calculated ECC bytes is set.
6046 */
6047int nand_check_ecc_caps(struct nand_chip *chip,
6048                        const struct nand_ecc_caps *caps, int oobavail)
6049{
6050        struct mtd_info *mtd = nand_to_mtd(chip);
6051        const struct nand_ecc_step_info *stepinfo;
6052        int preset_step = chip->ecc.size;
6053        int preset_strength = chip->ecc.strength;
6054        int nsteps, ecc_bytes;
6055        int i, j;
6056
6057        if (WARN_ON(oobavail < 0))
6058                return -EINVAL;
6059
6060        if (!preset_step || !preset_strength)
6061                return -ENODATA;
6062
6063        nsteps = mtd->writesize / preset_step;
6064
6065        for (i = 0; i < caps->nstepinfos; i++) {
6066                stepinfo = &caps->stepinfos[i];
6067
6068                if (stepinfo->stepsize != preset_step)
6069                        continue;
6070
6071                for (j = 0; j < stepinfo->nstrengths; j++) {
6072                        if (stepinfo->strengths[j] != preset_strength)
6073                                continue;
6074
6075                        ecc_bytes = caps->calc_ecc_bytes(preset_step,
6076                                                         preset_strength);
6077                        if (WARN_ON_ONCE(ecc_bytes < 0))
6078                                return ecc_bytes;
6079
6080                        if (ecc_bytes * nsteps > oobavail) {
6081                                pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6082                                       preset_step, preset_strength);
6083                                return -ENOSPC;
6084                        }
6085
6086                        chip->ecc.bytes = ecc_bytes;
6087
6088                        return 0;
6089                }
6090        }
6091
6092        pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6093               preset_step, preset_strength);
6094
6095        return -ENOTSUPP;
6096}
6097EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
6098
6099/**
6100 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6101 * @chip: nand chip info structure
6102 * @caps: ECC engine caps info structure
6103 * @oobavail: OOB size that the ECC engine can use
6104 *
6105 * If a chip's ECC requirement is provided, try to meet it with the least
6106 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6107 * On success, the chosen ECC settings are set.
6108 */
6109int nand_match_ecc_req(struct nand_chip *chip,
6110                       const struct nand_ecc_caps *caps, int oobavail)
6111{
6112        struct mtd_info *mtd = nand_to_mtd(chip);
6113        const struct nand_ecc_step_info *stepinfo;
6114        int req_step = chip->ecc_step_ds;
6115        int req_strength = chip->ecc_strength_ds;
6116        int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6117        int best_step, best_strength, best_ecc_bytes;
6118        int best_ecc_bytes_total = INT_MAX;
6119        int i, j;
6120
6121        if (WARN_ON(oobavail < 0))
6122                return -EINVAL;
6123
6124        /* No information provided by the NAND chip */
6125        if (!req_step || !req_strength)
6126                return -ENOTSUPP;
6127
6128        /* number of correctable bits the chip requires in a page */
6129        req_corr = mtd->writesize / req_step * req_strength;
6130
6131        for (i = 0; i < caps->nstepinfos; i++) {
6132                stepinfo = &caps->stepinfos[i];
6133                step_size = stepinfo->stepsize;
6134
6135                for (j = 0; j < stepinfo->nstrengths; j++) {
6136                        strength = stepinfo->strengths[j];
6137
6138                        /*
6139                         * If both step size and strength are smaller than the
6140                         * chip's requirement, it is not easy to compare the
6141                         * resulted reliability.
6142                         */
6143                        if (step_size < req_step && strength < req_strength)
6144                                continue;
6145
6146                        if (mtd->writesize % step_size)
6147                                continue;
6148
6149                        nsteps = mtd->writesize / step_size;
6150
6151                        ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6152                        if (WARN_ON_ONCE(ecc_bytes < 0))
6153                                continue;
6154                        ecc_bytes_total = ecc_bytes * nsteps;
6155
6156                        if (ecc_bytes_total > oobavail ||
6157                            strength * nsteps < req_corr)
6158                                continue;
6159
6160                        /*
6161                         * We assume the best is to meet the chip's requrement
6162                         * with the least number of ECC bytes.
6163                         */
6164                        if (ecc_bytes_total < best_ecc_bytes_total) {
6165                                best_ecc_bytes_total = ecc_bytes_total;
6166                                best_step = step_size;
6167                                best_strength = strength;
6168                                best_ecc_bytes = ecc_bytes;
6169                        }
6170                }
6171        }
6172
6173        if (best_ecc_bytes_total == INT_MAX)
6174                return -ENOTSUPP;
6175
6176        chip->ecc.size = best_step;
6177        chip->ecc.strength = best_strength;
6178        chip->ecc.bytes = best_ecc_bytes;
6179
6180        return 0;
6181}
6182EXPORT_SYMBOL_GPL(nand_match_ecc_req);
6183
6184/**
6185 * nand_maximize_ecc - choose the max ECC strength available
6186 * @chip: nand chip info structure
6187 * @caps: ECC engine caps info structure
6188 * @oobavail: OOB size that the ECC engine can use
6189 *
6190 * Choose the max ECC strength that is supported on the controller, and can fit
6191 * within the chip's OOB.  On success, the chosen ECC settings are set.
6192 */
6193int nand_maximize_ecc(struct nand_chip *chip,
6194                      const struct nand_ecc_caps *caps, int oobavail)
6195{
6196        struct mtd_info *mtd = nand_to_mtd(chip);
6197        const struct nand_ecc_step_info *stepinfo;
6198        int step_size, strength, nsteps, ecc_bytes, corr;
6199        int best_corr = 0;
6200        int best_step = 0;
6201        int best_strength, best_ecc_bytes;
6202        int i, j;
6203
6204        if (WARN_ON(oobavail < 0))
6205                return -EINVAL;
6206
6207        for (i = 0; i < caps->nstepinfos; i++) {
6208                stepinfo = &caps->stepinfos[i];
6209                step_size = stepinfo->stepsize;
6210
6211                /* If chip->ecc.size is already set, respect it */
6212                if (chip->ecc.size && step_size != chip->ecc.size)
6213                        continue;
6214
6215                for (j = 0; j < stepinfo->nstrengths; j++) {
6216                        strength = stepinfo->strengths[j];
6217
6218                        if (mtd->writesize % step_size)
6219                                continue;
6220
6221                        nsteps = mtd->writesize / step_size;
6222
6223                        ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6224                        if (WARN_ON_ONCE(ecc_bytes < 0))
6225                                continue;
6226
6227                        if (ecc_bytes * nsteps > oobavail)
6228                                continue;
6229
6230                        corr = strength * nsteps;
6231
6232                        /*
6233                         * If the number of correctable bits is the same,
6234                         * bigger step_size has more reliability.
6235                         */
6236                        if (corr > best_corr ||
6237                            (corr == best_corr && step_size > best_step)) {
6238                                best_corr = corr;
6239                                best_step = step_size;
6240                                best_strength = strength;
6241                                best_ecc_bytes = ecc_bytes;
6242                        }
6243                }
6244        }
6245
6246        if (!best_corr)
6247                return -ENOTSUPP;
6248
6249        chip->ecc.size = best_step;
6250        chip->ecc.strength = best_strength;
6251        chip->ecc.bytes = best_ecc_bytes;
6252
6253        return 0;
6254}
6255EXPORT_SYMBOL_GPL(nand_maximize_ecc);
6256
6257/*
6258 * Check if the chip configuration meet the datasheet requirements.
6259
6260 * If our configuration corrects A bits per B bytes and the minimum
6261 * required correction level is X bits per Y bytes, then we must ensure
6262 * both of the following are true:
6263 *
6264 * (1) A / B >= X / Y
6265 * (2) A >= X
6266 *
6267 * Requirement (1) ensures we can correct for the required bitflip density.
6268 * Requirement (2) ensures we can correct even when all bitflips are clumped
6269 * in the same sector.
6270 */
6271static bool nand_ecc_strength_good(struct mtd_info *mtd)
6272{
6273        struct nand_chip *chip = mtd_to_nand(mtd);
6274        struct nand_ecc_ctrl *ecc = &chip->ecc;
6275        int corr, ds_corr;
6276
6277        if (ecc->size == 0 || chip->ecc_step_ds == 0)
6278                /* Not enough information */
6279                return true;
6280
6281        /*
6282         * We get the number of corrected bits per page to compare
6283         * the correction density.
6284         */
6285        corr = (mtd->writesize * ecc->strength) / ecc->size;
6286        ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
6287
6288        return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
6289}
6290
6291/**
6292 * nand_scan_tail - [NAND Interface] Scan for the NAND device
6293 * @mtd: MTD device structure
6294 *
6295 * This is the second phase of the normal nand_scan() function. It fills out
6296 * all the uninitialized function pointers with the defaults and scans for a
6297 * bad block table if appropriate.
6298 */
6299int nand_scan_tail(struct mtd_info *mtd)
6300{
6301        struct nand_chip *chip = mtd_to_nand(mtd);
6302        struct nand_ecc_ctrl *ecc = &chip->ecc;
6303        int ret, i;
6304
6305        /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6306        if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6307                   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6308                return -EINVAL;
6309        }
6310
6311        chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6312        if (!chip->data_buf)
6313                return -ENOMEM;
6314
6315        /*
6316         * FIXME: some NAND manufacturer drivers expect the first die to be
6317         * selected when manufacturer->init() is called. They should be fixed
6318         * to explictly select the relevant die when interacting with the NAND
6319         * chip.
6320         */
6321        chip->select_chip(mtd, 0);
6322        ret = nand_manufacturer_init(chip);
6323        chip->select_chip(mtd, -1);
6324        if (ret)
6325                goto err_free_buf;
6326
6327        /* Set the internal oob buffer location, just after the page data */
6328        chip->oob_poi = chip->data_buf + mtd->writesize;
6329
6330        /*
6331         * If no default placement scheme is given, select an appropriate one.
6332         */
6333        if (!mtd->ooblayout &&
6334            !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
6335                switch (mtd->oobsize) {
6336                case 8:
6337                case 16:
6338                        mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
6339                        break;
6340                case 64:
6341                case 128:
6342                        mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
6343                        break;
6344                default:
6345                        /*
6346                         * Expose the whole OOB area to users if ECC_NONE
6347                         * is passed. We could do that for all kind of
6348                         * ->oobsize, but we must keep the old large/small
6349                         * page with ECC layout when ->oobsize <= 128 for
6350                         * compatibility reasons.
6351                         */
6352                        if (ecc->mode == NAND_ECC_NONE) {
6353                                mtd_set_ooblayout(mtd,
6354                                                &nand_ooblayout_lp_ops);
6355                                break;
6356                        }
6357
6358                        WARN(1, "No oob scheme defined for oobsize %d\n",
6359                                mtd->oobsize);
6360                        ret = -EINVAL;
6361                        goto err_nand_manuf_cleanup;
6362                }
6363        }
6364
6365        /*
6366         * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6367         * selected and we have 256 byte pagesize fallback to software ECC
6368         */
6369
6370        switch (ecc->mode) {
6371        case NAND_ECC_HW_OOB_FIRST:
6372                /* Similar to NAND_ECC_HW, but a separate read_page handle */
6373                if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
6374                        WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6375                        ret = -EINVAL;
6376                        goto err_nand_manuf_cleanup;
6377                }
6378                if (!ecc->read_page)
6379                        ecc->read_page = nand_read_page_hwecc_oob_first;
6380
6381        case NAND_ECC_HW:
6382                /* Use standard hwecc read page function? */
6383                if (!ecc->read_page)
6384                        ecc->read_page = nand_read_page_hwecc;
6385                if (!ecc->write_page)
6386                        ecc->write_page = nand_write_page_hwecc;
6387                if (!ecc->read_page_raw)
6388                        ecc->read_page_raw = nand_read_page_raw;
6389                if (!ecc->write_page_raw)
6390                        ecc->write_page_raw = nand_write_page_raw;
6391                if (!ecc->read_oob)
6392                        ecc->read_oob = nand_read_oob_std;
6393                if (!ecc->write_oob)
6394                        ecc->write_oob = nand_write_oob_std;
6395                if (!ecc->read_subpage)
6396                        ecc->read_subpage = nand_read_subpage;
6397                if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
6398                        ecc->write_subpage = nand_write_subpage_hwecc;
6399
6400        case NAND_ECC_HW_SYNDROME:
6401                if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
6402                    (!ecc->read_page ||
6403                     ecc->read_page == nand_read_page_hwecc ||
6404                     !ecc->write_page ||
6405                     ecc->write_page == nand_write_page_hwecc)) {
6406                        WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6407                        ret = -EINVAL;
6408                        goto err_nand_manuf_cleanup;
6409                }
6410                /* Use standard syndrome read/write page function? */
6411                if (!ecc->read_page)
6412                        ecc->read_page = nand_read_page_syndrome;
6413                if (!ecc->write_page)
6414                        ecc->write_page = nand_write_page_syndrome;
6415                if (!ecc->read_page_raw)
6416                        ecc->read_page_raw = nand_read_page_raw_syndrome;
6417                if (!ecc->write_page_raw)
6418                        ecc->write_page_raw = nand_write_page_raw_syndrome;
6419                if (!ecc->read_oob)
6420                        ecc->read_oob = nand_read_oob_syndrome;
6421                if (!ecc->write_oob)
6422                        ecc->write_oob = nand_write_oob_syndrome;
6423
6424                if (mtd->writesize >= ecc->size) {
6425                        if (!ecc->strength) {
6426                                WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6427                                ret = -EINVAL;
6428                                goto err_nand_manuf_cleanup;
6429                        }
6430                        break;
6431                }
6432                pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6433                        ecc->size, mtd->writesize);
6434                ecc->mode = NAND_ECC_SOFT;
6435                ecc->algo = NAND_ECC_HAMMING;
6436
6437        case NAND_ECC_SOFT:
6438                ret = nand_set_ecc_soft_ops(mtd);
6439                if (ret) {
6440                        ret = -EINVAL;
6441                        goto err_nand_manuf_cleanup;
6442                }
6443                break;
6444
6445        case NAND_ECC_ON_DIE:
6446                if (!ecc->read_page || !ecc->write_page) {
6447                        WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6448                        ret = -EINVAL;
6449                        goto err_nand_manuf_cleanup;
6450                }
6451                if (!ecc->read_oob)
6452                        ecc->read_oob = nand_read_oob_std;
6453                if (!ecc->write_oob)
6454                        ecc->write_oob = nand_write_oob_std;
6455                break;
6456
6457        case NAND_ECC_NONE:
6458                pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
6459                ecc->read_page = nand_read_page_raw;
6460                ecc->write_page = nand_write_page_raw;
6461                ecc->read_oob = nand_read_oob_std;
6462                ecc->read_page_raw = nand_read_page_raw;
6463                ecc->write_page_raw = nand_write_page_raw;
6464                ecc->write_oob = nand_write_oob_std;
6465                ecc->size = mtd->writesize;
6466                ecc->bytes = 0;
6467                ecc->strength = 0;
6468                break;
6469
6470        default:
6471                WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
6472                ret = -EINVAL;
6473                goto err_nand_manuf_cleanup;
6474        }
6475
6476        if (ecc->correct || ecc->calculate) {
6477                ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6478                ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6479                if (!ecc->calc_buf || !ecc->code_buf) {
6480                        ret = -ENOMEM;
6481                        goto err_nand_manuf_cleanup;
6482                }
6483        }
6484
6485        /* For many systems, the standard OOB write also works for raw */
6486        if (!ecc->read_oob_raw)
6487                ecc->read_oob_raw = ecc->read_oob;
6488        if (!ecc->write_oob_raw)
6489                ecc->write_oob_raw = ecc->write_oob;
6490
6491        /* propagate ecc info to mtd_info */
6492        mtd->ecc_strength = ecc->strength;
6493        mtd->ecc_step_size = ecc->size;
6494
6495        /*
6496         * Set the number of read / write steps for one page depending on ECC
6497         * mode.
6498         */
6499        ecc->steps = mtd->writesize / ecc->size;
6500        if (ecc->steps * ecc->size != mtd->writesize) {
6501                WARN(1, "Invalid ECC parameters\n");
6502                ret = -EINVAL;
6503                goto err_nand_manuf_cleanup;
6504        }
6505        ecc->total = ecc->steps * ecc->bytes;
6506        if (ecc->total > mtd->oobsize) {
6507                WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6508                ret = -EINVAL;
6509                goto err_nand_manuf_cleanup;
6510        }
6511
6512        /*
6513         * The number of bytes available for a client to place data into
6514         * the out of band area.
6515         */
6516        ret = mtd_ooblayout_count_freebytes(mtd);
6517        if (ret < 0)
6518                ret = 0;
6519
6520        mtd->oobavail = ret;
6521
6522        /* ECC sanity check: warn if it's too weak */
6523        if (!nand_ecc_strength_good(mtd))
6524                pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
6525                        mtd->name);
6526
6527        /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6528        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6529                switch (ecc->steps) {
6530                case 2:
6531                        mtd->subpage_sft = 1;
6532                        break;
6533                case 4:
6534                case 8:
6535                case 16:
6536                        mtd->subpage_sft = 2;
6537                        break;
6538                }
6539        }
6540        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6541
6542        /* Initialize state */
6543        chip->state = FL_READY;
6544
6545        /* Invalidate the pagebuffer reference */
6546        chip->pagebuf = -1;
6547
6548        /* Large page NAND with SOFT_ECC should support subpage reads */
6549        switch (ecc->mode) {
6550        case NAND_ECC_SOFT:
6551                if (chip->page_shift > 9)
6552                        chip->options |= NAND_SUBPAGE_READ;
6553                break;
6554
6555        default:
6556                break;
6557        }
6558
6559        /* Fill in remaining MTD driver data */
6560        mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
6561        mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
6562                                                MTD_CAP_NANDFLASH;
6563        mtd->_erase = nand_erase;
6564        mtd->_point = NULL;
6565        mtd->_unpoint = NULL;
6566        mtd->_panic_write = panic_nand_write;
6567        mtd->_read_oob = nand_read_oob;
6568        mtd->_write_oob = nand_write_oob;
6569        mtd->_sync = nand_sync;
6570        mtd->_lock = NULL;
6571        mtd->_unlock = NULL;
6572        mtd->_suspend = nand_suspend;
6573        mtd->_resume = nand_resume;
6574        mtd->_reboot = nand_shutdown;
6575        mtd->_block_isreserved = nand_block_isreserved;
6576        mtd->_block_isbad = nand_block_isbad;
6577        mtd->_block_markbad = nand_block_markbad;
6578        mtd->_max_bad_blocks = nand_max_bad_blocks;
6579        mtd->writebufsize = mtd->writesize;
6580
6581        /*
6582         * Initialize bitflip_threshold to its default prior scan_bbt() call.
6583         * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6584         * properly set.
6585         */
6586        if (!mtd->bitflip_threshold)
6587                mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6588
6589        /* Initialize the ->data_interface field. */
6590        ret = nand_init_data_interface(chip);
6591        if (ret)
6592                goto err_nand_manuf_cleanup;
6593
6594        /* Enter fastest possible mode on all dies. */
6595        for (i = 0; i < chip->numchips; i++) {
6596                ret = nand_setup_data_interface(chip, i);
6597                if (ret)
6598                        goto err_nand_manuf_cleanup;
6599        }
6600
6601        /* Check, if we should skip the bad block table scan */
6602        if (chip->options & NAND_SKIP_BBTSCAN)
6603                return 0;
6604
6605        /* Build bad block table */
6606        ret = chip->scan_bbt(mtd);
6607        if (ret)
6608                goto err_nand_manuf_cleanup;
6609
6610        return 0;
6611
6612
6613err_nand_manuf_cleanup:
6614        nand_manufacturer_cleanup(chip);
6615
6616err_free_buf:
6617        kfree(chip->data_buf);
6618        kfree(ecc->code_buf);
6619        kfree(ecc->calc_buf);
6620
6621        return ret;
6622}
6623EXPORT_SYMBOL(nand_scan_tail);
6624
6625/*
6626 * is_module_text_address() isn't exported, and it's mostly a pointless
6627 * test if this is a module _anyway_ -- they'd have to try _really_ hard
6628 * to call us from in-kernel code if the core NAND support is modular.
6629 */
6630#ifdef MODULE
6631#define caller_is_module() (1)
6632#else
6633#define caller_is_module() \
6634        is_module_text_address((unsigned long)__builtin_return_address(0))
6635#endif
6636
6637/**
6638 * nand_scan - [NAND Interface] Scan for the NAND device
6639 * @mtd: MTD device structure
6640 * @maxchips: number of chips to scan for
6641 *
6642 * This fills out all the uninitialized function pointers with the defaults.
6643 * The flash ID is read and the mtd/chip structures are filled with the
6644 * appropriate values.
6645 */
6646int nand_scan(struct mtd_info *mtd, int maxchips)
6647{
6648        int ret;
6649
6650        ret = nand_scan_ident(mtd, maxchips, NULL);
6651        if (!ret)
6652                ret = nand_scan_tail(mtd);
6653        return ret;
6654}
6655EXPORT_SYMBOL(nand_scan);
6656
6657/**
6658 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6659 * @chip: NAND chip object
6660 */
6661void nand_cleanup(struct nand_chip *chip)
6662{
6663        if (chip->ecc.mode == NAND_ECC_SOFT &&
6664            chip->ecc.algo == NAND_ECC_BCH)
6665                nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
6666
6667        /* Free bad block table memory */
6668        kfree(chip->bbt);
6669        kfree(chip->data_buf);
6670        kfree(chip->ecc.code_buf);
6671        kfree(chip->ecc.calc_buf);
6672
6673        /* Free bad block descriptor memory */
6674        if (chip->badblock_pattern && chip->badblock_pattern->options
6675                        & NAND_BBT_DYNAMICSTRUCT)
6676                kfree(chip->badblock_pattern);
6677
6678        /* Free manufacturer priv data. */
6679        nand_manufacturer_cleanup(chip);
6680}
6681EXPORT_SYMBOL_GPL(nand_cleanup);
6682
6683/**
6684 * nand_release - [NAND Interface] Unregister the MTD device and free resources
6685 *                held by the NAND device
6686 * @mtd: MTD device structure
6687 */
6688void nand_release(struct mtd_info *mtd)
6689{
6690        mtd_device_unregister(mtd);
6691        nand_cleanup(mtd_to_nand(mtd));
6692}
6693EXPORT_SYMBOL_GPL(nand_release);
6694
6695MODULE_LICENSE("GPL");
6696MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6697MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6698MODULE_DESCRIPTION("Generic NAND flash driver code");
6699