linux/drivers/mtd/nand/raw/s3c2410.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2004-2008 Simtec Electronics
   3 *      http://armlinux.simtec.co.uk/
   4 *      Ben Dooks <ben@simtec.co.uk>
   5 *
   6 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21*/
  22
  23#define pr_fmt(fmt) "nand-s3c2410: " fmt
  24
  25#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
  26#define DEBUG
  27#endif
  28
  29#include <linux/module.h>
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/io.h>
  34#include <linux/ioport.h>
  35#include <linux/platform_device.h>
  36#include <linux/delay.h>
  37#include <linux/err.h>
  38#include <linux/slab.h>
  39#include <linux/clk.h>
  40#include <linux/cpufreq.h>
  41#include <linux/of.h>
  42#include <linux/of_device.h>
  43
  44#include <linux/mtd/mtd.h>
  45#include <linux/mtd/rawnand.h>
  46#include <linux/mtd/nand_ecc.h>
  47#include <linux/mtd/partitions.h>
  48
  49#include <linux/platform_data/mtd-nand-s3c2410.h>
  50
  51#define S3C2410_NFREG(x) (x)
  52
  53#define S3C2410_NFCONF          S3C2410_NFREG(0x00)
  54#define S3C2410_NFCMD           S3C2410_NFREG(0x04)
  55#define S3C2410_NFADDR          S3C2410_NFREG(0x08)
  56#define S3C2410_NFDATA          S3C2410_NFREG(0x0C)
  57#define S3C2410_NFSTAT          S3C2410_NFREG(0x10)
  58#define S3C2410_NFECC           S3C2410_NFREG(0x14)
  59#define S3C2440_NFCONT          S3C2410_NFREG(0x04)
  60#define S3C2440_NFCMD           S3C2410_NFREG(0x08)
  61#define S3C2440_NFADDR          S3C2410_NFREG(0x0C)
  62#define S3C2440_NFDATA          S3C2410_NFREG(0x10)
  63#define S3C2440_NFSTAT          S3C2410_NFREG(0x20)
  64#define S3C2440_NFMECC0         S3C2410_NFREG(0x2C)
  65#define S3C2412_NFSTAT          S3C2410_NFREG(0x28)
  66#define S3C2412_NFMECC0         S3C2410_NFREG(0x34)
  67#define S3C2410_NFCONF_EN               (1<<15)
  68#define S3C2410_NFCONF_INITECC          (1<<12)
  69#define S3C2410_NFCONF_nFCE             (1<<11)
  70#define S3C2410_NFCONF_TACLS(x)         ((x)<<8)
  71#define S3C2410_NFCONF_TWRPH0(x)        ((x)<<4)
  72#define S3C2410_NFCONF_TWRPH1(x)        ((x)<<0)
  73#define S3C2410_NFSTAT_BUSY             (1<<0)
  74#define S3C2440_NFCONF_TACLS(x)         ((x)<<12)
  75#define S3C2440_NFCONF_TWRPH0(x)        ((x)<<8)
  76#define S3C2440_NFCONF_TWRPH1(x)        ((x)<<4)
  77#define S3C2440_NFCONT_INITECC          (1<<4)
  78#define S3C2440_NFCONT_nFCE             (1<<1)
  79#define S3C2440_NFCONT_ENABLE           (1<<0)
  80#define S3C2440_NFSTAT_READY            (1<<0)
  81#define S3C2412_NFCONF_NANDBOOT         (1<<31)
  82#define S3C2412_NFCONT_INIT_MAIN_ECC    (1<<5)
  83#define S3C2412_NFCONT_nFCE0            (1<<1)
  84#define S3C2412_NFSTAT_READY            (1<<0)
  85
  86/* new oob placement block for use with hardware ecc generation
  87 */
  88static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
  89                                 struct mtd_oob_region *oobregion)
  90{
  91        if (section)
  92                return -ERANGE;
  93
  94        oobregion->offset = 0;
  95        oobregion->length = 3;
  96
  97        return 0;
  98}
  99
 100static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
 101                                  struct mtd_oob_region *oobregion)
 102{
 103        if (section)
 104                return -ERANGE;
 105
 106        oobregion->offset = 8;
 107        oobregion->length = 8;
 108
 109        return 0;
 110}
 111
 112static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
 113        .ecc = s3c2410_ooblayout_ecc,
 114        .free = s3c2410_ooblayout_free,
 115};
 116
 117/* controller and mtd information */
 118
 119struct s3c2410_nand_info;
 120
 121/**
 122 * struct s3c2410_nand_mtd - driver MTD structure
 123 * @mtd: The MTD instance to pass to the MTD layer.
 124 * @chip: The NAND chip information.
 125 * @set: The platform information supplied for this set of NAND chips.
 126 * @info: Link back to the hardware information.
 127*/
 128struct s3c2410_nand_mtd {
 129        struct nand_chip                chip;
 130        struct s3c2410_nand_set         *set;
 131        struct s3c2410_nand_info        *info;
 132};
 133
 134enum s3c_cpu_type {
 135        TYPE_S3C2410,
 136        TYPE_S3C2412,
 137        TYPE_S3C2440,
 138};
 139
 140enum s3c_nand_clk_state {
 141        CLOCK_DISABLE   = 0,
 142        CLOCK_ENABLE,
 143        CLOCK_SUSPEND,
 144};
 145
 146/* overview of the s3c2410 nand state */
 147
 148/**
 149 * struct s3c2410_nand_info - NAND controller state.
 150 * @mtds: An array of MTD instances on this controoler.
 151 * @platform: The platform data for this board.
 152 * @device: The platform device we bound to.
 153 * @clk: The clock resource for this controller.
 154 * @regs: The area mapped for the hardware registers.
 155 * @sel_reg: Pointer to the register controlling the NAND selection.
 156 * @sel_bit: The bit in @sel_reg to select the NAND chip.
 157 * @mtd_count: The number of MTDs created from this controller.
 158 * @save_sel: The contents of @sel_reg to be saved over suspend.
 159 * @clk_rate: The clock rate from @clk.
 160 * @clk_state: The current clock state.
 161 * @cpu_type: The exact type of this controller.
 162 */
 163struct s3c2410_nand_info {
 164        /* mtd info */
 165        struct nand_hw_control          controller;
 166        struct s3c2410_nand_mtd         *mtds;
 167        struct s3c2410_platform_nand    *platform;
 168
 169        /* device info */
 170        struct device                   *device;
 171        struct clk                      *clk;
 172        void __iomem                    *regs;
 173        void __iomem                    *sel_reg;
 174        int                             sel_bit;
 175        int                             mtd_count;
 176        unsigned long                   save_sel;
 177        unsigned long                   clk_rate;
 178        enum s3c_nand_clk_state         clk_state;
 179
 180        enum s3c_cpu_type               cpu_type;
 181
 182#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
 183        struct notifier_block   freq_transition;
 184#endif
 185};
 186
 187struct s3c24XX_nand_devtype_data {
 188        enum s3c_cpu_type type;
 189};
 190
 191static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
 192        .type = TYPE_S3C2410,
 193};
 194
 195static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
 196        .type = TYPE_S3C2412,
 197};
 198
 199static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
 200        .type = TYPE_S3C2440,
 201};
 202
 203/* conversion functions */
 204
 205static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
 206{
 207        return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
 208                            chip);
 209}
 210
 211static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
 212{
 213        return s3c2410_nand_mtd_toours(mtd)->info;
 214}
 215
 216static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
 217{
 218        return platform_get_drvdata(dev);
 219}
 220
 221static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
 222{
 223        return dev_get_platdata(&dev->dev);
 224}
 225
 226static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
 227{
 228#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
 229        return 1;
 230#else
 231        return 0;
 232#endif
 233}
 234
 235/**
 236 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
 237 * @info: The controller instance.
 238 * @new_state: State to which clock should be set.
 239 */
 240static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
 241                enum s3c_nand_clk_state new_state)
 242{
 243        if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
 244                return;
 245
 246        if (info->clk_state == CLOCK_ENABLE) {
 247                if (new_state != CLOCK_ENABLE)
 248                        clk_disable_unprepare(info->clk);
 249        } else {
 250                if (new_state == CLOCK_ENABLE)
 251                        clk_prepare_enable(info->clk);
 252        }
 253
 254        info->clk_state = new_state;
 255}
 256
 257/* timing calculations */
 258
 259#define NS_IN_KHZ 1000000
 260
 261/**
 262 * s3c_nand_calc_rate - calculate timing data.
 263 * @wanted: The cycle time in nanoseconds.
 264 * @clk: The clock rate in kHz.
 265 * @max: The maximum divider value.
 266 *
 267 * Calculate the timing value from the given parameters.
 268 */
 269static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
 270{
 271        int result;
 272
 273        result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
 274
 275        pr_debug("result %d from %ld, %d\n", result, clk, wanted);
 276
 277        if (result > max) {
 278                pr_err("%d ns is too big for current clock rate %ld\n",
 279                        wanted, clk);
 280                return -1;
 281        }
 282
 283        if (result < 1)
 284                result = 1;
 285
 286        return result;
 287}
 288
 289#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
 290
 291/* controller setup */
 292
 293/**
 294 * s3c2410_nand_setrate - setup controller timing information.
 295 * @info: The controller instance.
 296 *
 297 * Given the information supplied by the platform, calculate and set
 298 * the necessary timing registers in the hardware to generate the
 299 * necessary timing cycles to the hardware.
 300 */
 301static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
 302{
 303        struct s3c2410_platform_nand *plat = info->platform;
 304        int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
 305        int tacls, twrph0, twrph1;
 306        unsigned long clkrate = clk_get_rate(info->clk);
 307        unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
 308        unsigned long flags;
 309
 310        /* calculate the timing information for the controller */
 311
 312        info->clk_rate = clkrate;
 313        clkrate /= 1000;        /* turn clock into kHz for ease of use */
 314
 315        if (plat != NULL) {
 316                tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
 317                twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
 318                twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
 319        } else {
 320                /* default timings */
 321                tacls = tacls_max;
 322                twrph0 = 8;
 323                twrph1 = 8;
 324        }
 325
 326        if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
 327                dev_err(info->device, "cannot get suitable timings\n");
 328                return -EINVAL;
 329        }
 330
 331        dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
 332                tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
 333                                                twrph1, to_ns(twrph1, clkrate));
 334
 335        switch (info->cpu_type) {
 336        case TYPE_S3C2410:
 337                mask = (S3C2410_NFCONF_TACLS(3) |
 338                        S3C2410_NFCONF_TWRPH0(7) |
 339                        S3C2410_NFCONF_TWRPH1(7));
 340                set = S3C2410_NFCONF_EN;
 341                set |= S3C2410_NFCONF_TACLS(tacls - 1);
 342                set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
 343                set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
 344                break;
 345
 346        case TYPE_S3C2440:
 347        case TYPE_S3C2412:
 348                mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
 349                        S3C2440_NFCONF_TWRPH0(7) |
 350                        S3C2440_NFCONF_TWRPH1(7));
 351
 352                set = S3C2440_NFCONF_TACLS(tacls - 1);
 353                set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
 354                set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
 355                break;
 356
 357        default:
 358                BUG();
 359        }
 360
 361        local_irq_save(flags);
 362
 363        cfg = readl(info->regs + S3C2410_NFCONF);
 364        cfg &= ~mask;
 365        cfg |= set;
 366        writel(cfg, info->regs + S3C2410_NFCONF);
 367
 368        local_irq_restore(flags);
 369
 370        dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
 371
 372        return 0;
 373}
 374
 375/**
 376 * s3c2410_nand_inithw - basic hardware initialisation
 377 * @info: The hardware state.
 378 *
 379 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
 380 * to setup the hardware access speeds and set the controller to be enabled.
 381*/
 382static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
 383{
 384        int ret;
 385
 386        ret = s3c2410_nand_setrate(info);
 387        if (ret < 0)
 388                return ret;
 389
 390        switch (info->cpu_type) {
 391        case TYPE_S3C2410:
 392        default:
 393                break;
 394
 395        case TYPE_S3C2440:
 396        case TYPE_S3C2412:
 397                /* enable the controller and de-assert nFCE */
 398
 399                writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
 400        }
 401
 402        return 0;
 403}
 404
 405/**
 406 * s3c2410_nand_select_chip - select the given nand chip
 407 * @mtd: The MTD instance for this chip.
 408 * @chip: The chip number.
 409 *
 410 * This is called by the MTD layer to either select a given chip for the
 411 * @mtd instance, or to indicate that the access has finished and the
 412 * chip can be de-selected.
 413 *
 414 * The routine ensures that the nFCE line is correctly setup, and any
 415 * platform specific selection code is called to route nFCE to the specific
 416 * chip.
 417 */
 418static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
 419{
 420        struct s3c2410_nand_info *info;
 421        struct s3c2410_nand_mtd *nmtd;
 422        struct nand_chip *this = mtd_to_nand(mtd);
 423        unsigned long cur;
 424
 425        nmtd = nand_get_controller_data(this);
 426        info = nmtd->info;
 427
 428        if (chip != -1)
 429                s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
 430
 431        cur = readl(info->sel_reg);
 432
 433        if (chip == -1) {
 434                cur |= info->sel_bit;
 435        } else {
 436                if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
 437                        dev_err(info->device, "invalid chip %d\n", chip);
 438                        return;
 439                }
 440
 441                if (info->platform != NULL) {
 442                        if (info->platform->select_chip != NULL)
 443                                (info->platform->select_chip) (nmtd->set, chip);
 444                }
 445
 446                cur &= ~info->sel_bit;
 447        }
 448
 449        writel(cur, info->sel_reg);
 450
 451        if (chip == -1)
 452                s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
 453}
 454
 455/* s3c2410_nand_hwcontrol
 456 *
 457 * Issue command and address cycles to the chip
 458*/
 459
 460static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
 461                                   unsigned int ctrl)
 462{
 463        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 464
 465        if (cmd == NAND_CMD_NONE)
 466                return;
 467
 468        if (ctrl & NAND_CLE)
 469                writeb(cmd, info->regs + S3C2410_NFCMD);
 470        else
 471                writeb(cmd, info->regs + S3C2410_NFADDR);
 472}
 473
 474/* command and control functions */
 475
 476static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
 477                                   unsigned int ctrl)
 478{
 479        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 480
 481        if (cmd == NAND_CMD_NONE)
 482                return;
 483
 484        if (ctrl & NAND_CLE)
 485                writeb(cmd, info->regs + S3C2440_NFCMD);
 486        else
 487                writeb(cmd, info->regs + S3C2440_NFADDR);
 488}
 489
 490/* s3c2410_nand_devready()
 491 *
 492 * returns 0 if the nand is busy, 1 if it is ready
 493*/
 494
 495static int s3c2410_nand_devready(struct mtd_info *mtd)
 496{
 497        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 498        return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
 499}
 500
 501static int s3c2440_nand_devready(struct mtd_info *mtd)
 502{
 503        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 504        return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
 505}
 506
 507static int s3c2412_nand_devready(struct mtd_info *mtd)
 508{
 509        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 510        return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
 511}
 512
 513/* ECC handling functions */
 514
 515static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
 516                                     u_char *read_ecc, u_char *calc_ecc)
 517{
 518        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 519        unsigned int diff0, diff1, diff2;
 520        unsigned int bit, byte;
 521
 522        pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
 523
 524        diff0 = read_ecc[0] ^ calc_ecc[0];
 525        diff1 = read_ecc[1] ^ calc_ecc[1];
 526        diff2 = read_ecc[2] ^ calc_ecc[2];
 527
 528        pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
 529                 __func__, 3, read_ecc, 3, calc_ecc,
 530                 diff0, diff1, diff2);
 531
 532        if (diff0 == 0 && diff1 == 0 && diff2 == 0)
 533                return 0;               /* ECC is ok */
 534
 535        /* sometimes people do not think about using the ECC, so check
 536         * to see if we have an 0xff,0xff,0xff read ECC and then ignore
 537         * the error, on the assumption that this is an un-eccd page.
 538         */
 539        if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
 540            && info->platform->ignore_unset_ecc)
 541                return 0;
 542
 543        /* Can we correct this ECC (ie, one row and column change).
 544         * Note, this is similar to the 256 error code on smartmedia */
 545
 546        if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
 547            ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
 548            ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
 549                /* calculate the bit position of the error */
 550
 551                bit  = ((diff2 >> 3) & 1) |
 552                       ((diff2 >> 4) & 2) |
 553                       ((diff2 >> 5) & 4);
 554
 555                /* calculate the byte position of the error */
 556
 557                byte = ((diff2 << 7) & 0x100) |
 558                       ((diff1 << 0) & 0x80)  |
 559                       ((diff1 << 1) & 0x40)  |
 560                       ((diff1 << 2) & 0x20)  |
 561                       ((diff1 << 3) & 0x10)  |
 562                       ((diff0 >> 4) & 0x08)  |
 563                       ((diff0 >> 3) & 0x04)  |
 564                       ((diff0 >> 2) & 0x02)  |
 565                       ((diff0 >> 1) & 0x01);
 566
 567                dev_dbg(info->device, "correcting error bit %d, byte %d\n",
 568                        bit, byte);
 569
 570                dat[byte] ^= (1 << bit);
 571                return 1;
 572        }
 573
 574        /* if there is only one bit difference in the ECC, then
 575         * one of only a row or column parity has changed, which
 576         * means the error is most probably in the ECC itself */
 577
 578        diff0 |= (diff1 << 8);
 579        diff0 |= (diff2 << 16);
 580
 581        /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
 582        if ((diff0 & (diff0 - 1)) == 0)
 583                return 1;
 584
 585        return -1;
 586}
 587
 588/* ECC functions
 589 *
 590 * These allow the s3c2410 and s3c2440 to use the controller's ECC
 591 * generator block to ECC the data as it passes through]
 592*/
 593
 594static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 595{
 596        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 597        unsigned long ctrl;
 598
 599        ctrl = readl(info->regs + S3C2410_NFCONF);
 600        ctrl |= S3C2410_NFCONF_INITECC;
 601        writel(ctrl, info->regs + S3C2410_NFCONF);
 602}
 603
 604static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 605{
 606        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 607        unsigned long ctrl;
 608
 609        ctrl = readl(info->regs + S3C2440_NFCONT);
 610        writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
 611               info->regs + S3C2440_NFCONT);
 612}
 613
 614static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 615{
 616        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 617        unsigned long ctrl;
 618
 619        ctrl = readl(info->regs + S3C2440_NFCONT);
 620        writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
 621}
 622
 623static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 624                                      u_char *ecc_code)
 625{
 626        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 627
 628        ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
 629        ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
 630        ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
 631
 632        pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
 633
 634        return 0;
 635}
 636
 637static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 638                                      u_char *ecc_code)
 639{
 640        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 641        unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
 642
 643        ecc_code[0] = ecc;
 644        ecc_code[1] = ecc >> 8;
 645        ecc_code[2] = ecc >> 16;
 646
 647        pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
 648
 649        return 0;
 650}
 651
 652static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 653                                      u_char *ecc_code)
 654{
 655        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 656        unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
 657
 658        ecc_code[0] = ecc;
 659        ecc_code[1] = ecc >> 8;
 660        ecc_code[2] = ecc >> 16;
 661
 662        pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
 663
 664        return 0;
 665}
 666
 667/* over-ride the standard functions for a little more speed. We can
 668 * use read/write block to move the data buffers to/from the controller
 669*/
 670
 671static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 672{
 673        struct nand_chip *this = mtd_to_nand(mtd);
 674        readsb(this->IO_ADDR_R, buf, len);
 675}
 676
 677static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 678{
 679        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 680
 681        readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
 682
 683        /* cleanup if we've got less than a word to do */
 684        if (len & 3) {
 685                buf += len & ~3;
 686
 687                for (; len & 3; len--)
 688                        *buf++ = readb(info->regs + S3C2440_NFDATA);
 689        }
 690}
 691
 692static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
 693                                   int len)
 694{
 695        struct nand_chip *this = mtd_to_nand(mtd);
 696        writesb(this->IO_ADDR_W, buf, len);
 697}
 698
 699static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
 700                                   int len)
 701{
 702        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 703
 704        writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
 705
 706        /* cleanup any fractional write */
 707        if (len & 3) {
 708                buf += len & ~3;
 709
 710                for (; len & 3; len--, buf++)
 711                        writeb(*buf, info->regs + S3C2440_NFDATA);
 712        }
 713}
 714
 715/* cpufreq driver support */
 716
 717#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
 718
 719static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
 720                                          unsigned long val, void *data)
 721{
 722        struct s3c2410_nand_info *info;
 723        unsigned long newclk;
 724
 725        info = container_of(nb, struct s3c2410_nand_info, freq_transition);
 726        newclk = clk_get_rate(info->clk);
 727
 728        if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
 729            (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
 730                s3c2410_nand_setrate(info);
 731        }
 732
 733        return 0;
 734}
 735
 736static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
 737{
 738        info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
 739
 740        return cpufreq_register_notifier(&info->freq_transition,
 741                                         CPUFREQ_TRANSITION_NOTIFIER);
 742}
 743
 744static inline void
 745s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
 746{
 747        cpufreq_unregister_notifier(&info->freq_transition,
 748                                    CPUFREQ_TRANSITION_NOTIFIER);
 749}
 750
 751#else
 752static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
 753{
 754        return 0;
 755}
 756
 757static inline void
 758s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
 759{
 760}
 761#endif
 762
 763/* device management functions */
 764
 765static int s3c24xx_nand_remove(struct platform_device *pdev)
 766{
 767        struct s3c2410_nand_info *info = to_nand_info(pdev);
 768
 769        if (info == NULL)
 770                return 0;
 771
 772        s3c2410_nand_cpufreq_deregister(info);
 773
 774        /* Release all our mtds  and their partitions, then go through
 775         * freeing the resources used
 776         */
 777
 778        if (info->mtds != NULL) {
 779                struct s3c2410_nand_mtd *ptr = info->mtds;
 780                int mtdno;
 781
 782                for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
 783                        pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
 784                        nand_release(nand_to_mtd(&ptr->chip));
 785                }
 786        }
 787
 788        /* free the common resources */
 789
 790        if (!IS_ERR(info->clk))
 791                s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
 792
 793        return 0;
 794}
 795
 796static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
 797                                      struct s3c2410_nand_mtd *mtd,
 798                                      struct s3c2410_nand_set *set)
 799{
 800        if (set) {
 801                struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
 802
 803                mtdinfo->name = set->name;
 804
 805                return mtd_device_parse_register(mtdinfo, NULL, NULL,
 806                                         set->partitions, set->nr_partitions);
 807        }
 808
 809        return -ENODEV;
 810}
 811
 812static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
 813                                        const struct nand_data_interface *conf)
 814{
 815        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 816        struct s3c2410_platform_nand *pdata = info->platform;
 817        const struct nand_sdr_timings *timings;
 818        int tacls;
 819
 820        timings = nand_get_sdr_timings(conf);
 821        if (IS_ERR(timings))
 822                return -ENOTSUPP;
 823
 824        tacls = timings->tCLS_min - timings->tWP_min;
 825        if (tacls < 0)
 826                tacls = 0;
 827
 828        pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
 829        pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
 830        pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
 831
 832        return s3c2410_nand_setrate(info);
 833}
 834
 835/**
 836 * s3c2410_nand_init_chip - initialise a single instance of an chip
 837 * @info: The base NAND controller the chip is on.
 838 * @nmtd: The new controller MTD instance to fill in.
 839 * @set: The information passed from the board specific platform data.
 840 *
 841 * Initialise the given @nmtd from the information in @info and @set. This
 842 * readies the structure for use with the MTD layer functions by ensuring
 843 * all pointers are setup and the necessary control routines selected.
 844 */
 845static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
 846                                   struct s3c2410_nand_mtd *nmtd,
 847                                   struct s3c2410_nand_set *set)
 848{
 849        struct device_node *np = info->device->of_node;
 850        struct nand_chip *chip = &nmtd->chip;
 851        void __iomem *regs = info->regs;
 852
 853        nand_set_flash_node(chip, set->of_node);
 854
 855        chip->write_buf    = s3c2410_nand_write_buf;
 856        chip->read_buf     = s3c2410_nand_read_buf;
 857        chip->select_chip  = s3c2410_nand_select_chip;
 858        chip->chip_delay   = 50;
 859        nand_set_controller_data(chip, nmtd);
 860        chip->options      = set->options;
 861        chip->controller   = &info->controller;
 862
 863        /*
 864         * let's keep behavior unchanged for legacy boards booting via pdata and
 865         * auto-detect timings only when booting with a device tree.
 866         */
 867        if (np)
 868                chip->setup_data_interface = s3c2410_nand_setup_data_interface;
 869
 870        switch (info->cpu_type) {
 871        case TYPE_S3C2410:
 872                chip->IO_ADDR_W = regs + S3C2410_NFDATA;
 873                info->sel_reg   = regs + S3C2410_NFCONF;
 874                info->sel_bit   = S3C2410_NFCONF_nFCE;
 875                chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
 876                chip->dev_ready = s3c2410_nand_devready;
 877                break;
 878
 879        case TYPE_S3C2440:
 880                chip->IO_ADDR_W = regs + S3C2440_NFDATA;
 881                info->sel_reg   = regs + S3C2440_NFCONT;
 882                info->sel_bit   = S3C2440_NFCONT_nFCE;
 883                chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
 884                chip->dev_ready = s3c2440_nand_devready;
 885                chip->read_buf  = s3c2440_nand_read_buf;
 886                chip->write_buf = s3c2440_nand_write_buf;
 887                break;
 888
 889        case TYPE_S3C2412:
 890                chip->IO_ADDR_W = regs + S3C2440_NFDATA;
 891                info->sel_reg   = regs + S3C2440_NFCONT;
 892                info->sel_bit   = S3C2412_NFCONT_nFCE0;
 893                chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
 894                chip->dev_ready = s3c2412_nand_devready;
 895
 896                if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
 897                        dev_info(info->device, "System booted from NAND\n");
 898
 899                break;
 900        }
 901
 902        chip->IO_ADDR_R = chip->IO_ADDR_W;
 903
 904        nmtd->info         = info;
 905        nmtd->set          = set;
 906
 907        chip->ecc.mode = info->platform->ecc_mode;
 908
 909        /*
 910         * If you use u-boot BBT creation code, specifying this flag will
 911         * let the kernel fish out the BBT from the NAND.
 912         */
 913        if (set->flash_bbt)
 914                chip->bbt_options |= NAND_BBT_USE_FLASH;
 915}
 916
 917/**
 918 * s3c2410_nand_update_chip - post probe update
 919 * @info: The controller instance.
 920 * @nmtd: The driver version of the MTD instance.
 921 *
 922 * This routine is called after the chip probe has successfully completed
 923 * and the relevant per-chip information updated. This call ensure that
 924 * we update the internal state accordingly.
 925 *
 926 * The internal state is currently limited to the ECC state information.
 927*/
 928static int s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
 929                                    struct s3c2410_nand_mtd *nmtd)
 930{
 931        struct nand_chip *chip = &nmtd->chip;
 932
 933        switch (chip->ecc.mode) {
 934
 935        case NAND_ECC_NONE:
 936                dev_info(info->device, "ECC disabled\n");
 937                break;
 938
 939        case NAND_ECC_SOFT:
 940                /*
 941                 * This driver expects Hamming based ECC when ecc_mode is set
 942                 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
 943                 * avoid adding an extra ecc_algo field to
 944                 * s3c2410_platform_nand.
 945                 */
 946                chip->ecc.algo = NAND_ECC_HAMMING;
 947                dev_info(info->device, "soft ECC\n");
 948                break;
 949
 950        case NAND_ECC_HW:
 951                chip->ecc.calculate = s3c2410_nand_calculate_ecc;
 952                chip->ecc.correct   = s3c2410_nand_correct_data;
 953                chip->ecc.strength  = 1;
 954
 955                switch (info->cpu_type) {
 956                case TYPE_S3C2410:
 957                        chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
 958                        chip->ecc.calculate = s3c2410_nand_calculate_ecc;
 959                        break;
 960
 961                case TYPE_S3C2412:
 962                        chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
 963                        chip->ecc.calculate = s3c2412_nand_calculate_ecc;
 964                        break;
 965
 966                case TYPE_S3C2440:
 967                        chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
 968                        chip->ecc.calculate = s3c2440_nand_calculate_ecc;
 969                        break;
 970                }
 971
 972                dev_dbg(info->device, "chip %p => page shift %d\n",
 973                        chip, chip->page_shift);
 974
 975                /* change the behaviour depending on whether we are using
 976                 * the large or small page nand device */
 977                if (chip->page_shift > 10) {
 978                        chip->ecc.size      = 256;
 979                        chip->ecc.bytes     = 3;
 980                } else {
 981                        chip->ecc.size      = 512;
 982                        chip->ecc.bytes     = 3;
 983                        mtd_set_ooblayout(nand_to_mtd(chip),
 984                                          &s3c2410_ooblayout_ops);
 985                }
 986
 987                dev_info(info->device, "hardware ECC\n");
 988                break;
 989
 990        default:
 991                dev_err(info->device, "invalid ECC mode!\n");
 992                return -EINVAL;
 993        }
 994
 995        if (chip->bbt_options & NAND_BBT_USE_FLASH)
 996                chip->options |= NAND_SKIP_BBTSCAN;
 997
 998        return 0;
 999}
1000
1001static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1002        {
1003                .compatible = "samsung,s3c2410-nand",
1004                .data = &s3c2410_nand_devtype_data,
1005        }, {
1006                /* also compatible with s3c6400 */
1007                .compatible = "samsung,s3c2412-nand",
1008                .data = &s3c2412_nand_devtype_data,
1009        }, {
1010                .compatible = "samsung,s3c2440-nand",
1011                .data = &s3c2440_nand_devtype_data,
1012        },
1013        { /* sentinel */ }
1014};
1015MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1016
1017static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1018{
1019        const struct s3c24XX_nand_devtype_data *devtype_data;
1020        struct s3c2410_platform_nand *pdata;
1021        struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1022        struct device_node *np = pdev->dev.of_node, *child;
1023        struct s3c2410_nand_set *sets;
1024
1025        devtype_data = of_device_get_match_data(&pdev->dev);
1026        if (!devtype_data)
1027                return -ENODEV;
1028
1029        info->cpu_type = devtype_data->type;
1030
1031        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1032        if (!pdata)
1033                return -ENOMEM;
1034
1035        pdev->dev.platform_data = pdata;
1036
1037        pdata->nr_sets = of_get_child_count(np);
1038        if (!pdata->nr_sets)
1039                return 0;
1040
1041        sets = devm_kzalloc(&pdev->dev, sizeof(*sets) * pdata->nr_sets,
1042                            GFP_KERNEL);
1043        if (!sets)
1044                return -ENOMEM;
1045
1046        pdata->sets = sets;
1047
1048        for_each_available_child_of_node(np, child) {
1049                sets->name = (char *)child->name;
1050                sets->of_node = child;
1051                sets->nr_chips = 1;
1052
1053                of_node_get(child);
1054
1055                sets++;
1056        }
1057
1058        return 0;
1059}
1060
1061static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1062{
1063        struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1064
1065        info->cpu_type = platform_get_device_id(pdev)->driver_data;
1066
1067        return 0;
1068}
1069
1070/* s3c24xx_nand_probe
1071 *
1072 * called by device layer when it finds a device matching
1073 * one our driver can handled. This code checks to see if
1074 * it can allocate all necessary resources then calls the
1075 * nand layer to look for devices
1076*/
1077static int s3c24xx_nand_probe(struct platform_device *pdev)
1078{
1079        struct s3c2410_platform_nand *plat;
1080        struct s3c2410_nand_info *info;
1081        struct s3c2410_nand_mtd *nmtd;
1082        struct s3c2410_nand_set *sets;
1083        struct resource *res;
1084        int err = 0;
1085        int size;
1086        int nr_sets;
1087        int setno;
1088
1089        info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1090        if (info == NULL) {
1091                err = -ENOMEM;
1092                goto exit_error;
1093        }
1094
1095        platform_set_drvdata(pdev, info);
1096
1097        nand_hw_control_init(&info->controller);
1098
1099        /* get the clock source and enable it */
1100
1101        info->clk = devm_clk_get(&pdev->dev, "nand");
1102        if (IS_ERR(info->clk)) {
1103                dev_err(&pdev->dev, "failed to get clock\n");
1104                err = -ENOENT;
1105                goto exit_error;
1106        }
1107
1108        s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1109
1110        if (pdev->dev.of_node)
1111                err = s3c24xx_nand_probe_dt(pdev);
1112        else
1113                err = s3c24xx_nand_probe_pdata(pdev);
1114
1115        if (err)
1116                goto exit_error;
1117
1118        plat = to_nand_plat(pdev);
1119
1120        /* allocate and map the resource */
1121
1122        /* currently we assume we have the one resource */
1123        res = pdev->resource;
1124        size = resource_size(res);
1125
1126        info->device    = &pdev->dev;
1127        info->platform  = plat;
1128
1129        info->regs = devm_ioremap_resource(&pdev->dev, res);
1130        if (IS_ERR(info->regs)) {
1131                err = PTR_ERR(info->regs);
1132                goto exit_error;
1133        }
1134
1135        dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1136
1137        sets = (plat != NULL) ? plat->sets : NULL;
1138        nr_sets = (plat != NULL) ? plat->nr_sets : 1;
1139
1140        info->mtd_count = nr_sets;
1141
1142        /* allocate our information */
1143
1144        size = nr_sets * sizeof(*info->mtds);
1145        info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1146        if (info->mtds == NULL) {
1147                err = -ENOMEM;
1148                goto exit_error;
1149        }
1150
1151        /* initialise all possible chips */
1152
1153        nmtd = info->mtds;
1154
1155        for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1156                struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1157
1158                pr_debug("initialising set %d (%p, info %p)\n",
1159                         setno, nmtd, info);
1160
1161                mtd->dev.parent = &pdev->dev;
1162                s3c2410_nand_init_chip(info, nmtd, sets);
1163
1164                err = nand_scan_ident(mtd, (sets) ? sets->nr_chips : 1, NULL);
1165                if (err)
1166                        goto exit_error;
1167
1168                err = s3c2410_nand_update_chip(info, nmtd);
1169                if (err < 0)
1170                        goto exit_error;
1171
1172                err = nand_scan_tail(mtd);
1173                if (err)
1174                        goto exit_error;
1175
1176                s3c2410_nand_add_partition(info, nmtd, sets);
1177
1178                if (sets != NULL)
1179                        sets++;
1180        }
1181
1182        /* initialise the hardware */
1183        err = s3c2410_nand_inithw(info);
1184        if (err != 0)
1185                goto exit_error;
1186
1187        err = s3c2410_nand_cpufreq_register(info);
1188        if (err < 0) {
1189                dev_err(&pdev->dev, "failed to init cpufreq support\n");
1190                goto exit_error;
1191        }
1192
1193        if (allow_clk_suspend(info)) {
1194                dev_info(&pdev->dev, "clock idle support enabled\n");
1195                s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1196        }
1197
1198        return 0;
1199
1200 exit_error:
1201        s3c24xx_nand_remove(pdev);
1202
1203        if (err == 0)
1204                err = -EINVAL;
1205        return err;
1206}
1207
1208/* PM Support */
1209#ifdef CONFIG_PM
1210
1211static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1212{
1213        struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1214
1215        if (info) {
1216                info->save_sel = readl(info->sel_reg);
1217
1218                /* For the moment, we must ensure nFCE is high during
1219                 * the time we are suspended. This really should be
1220                 * handled by suspending the MTDs we are using, but
1221                 * that is currently not the case. */
1222
1223                writel(info->save_sel | info->sel_bit, info->sel_reg);
1224
1225                s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1226        }
1227
1228        return 0;
1229}
1230
1231static int s3c24xx_nand_resume(struct platform_device *dev)
1232{
1233        struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1234        unsigned long sel;
1235
1236        if (info) {
1237                s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1238                s3c2410_nand_inithw(info);
1239
1240                /* Restore the state of the nFCE line. */
1241
1242                sel = readl(info->sel_reg);
1243                sel &= ~info->sel_bit;
1244                sel |= info->save_sel & info->sel_bit;
1245                writel(sel, info->sel_reg);
1246
1247                s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1248        }
1249
1250        return 0;
1251}
1252
1253#else
1254#define s3c24xx_nand_suspend NULL
1255#define s3c24xx_nand_resume NULL
1256#endif
1257
1258/* driver device registration */
1259
1260static const struct platform_device_id s3c24xx_driver_ids[] = {
1261        {
1262                .name           = "s3c2410-nand",
1263                .driver_data    = TYPE_S3C2410,
1264        }, {
1265                .name           = "s3c2440-nand",
1266                .driver_data    = TYPE_S3C2440,
1267        }, {
1268                .name           = "s3c2412-nand",
1269                .driver_data    = TYPE_S3C2412,
1270        }, {
1271                .name           = "s3c6400-nand",
1272                .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1273        },
1274        { }
1275};
1276
1277MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1278
1279static struct platform_driver s3c24xx_nand_driver = {
1280        .probe          = s3c24xx_nand_probe,
1281        .remove         = s3c24xx_nand_remove,
1282        .suspend        = s3c24xx_nand_suspend,
1283        .resume         = s3c24xx_nand_resume,
1284        .id_table       = s3c24xx_driver_ids,
1285        .driver         = {
1286                .name   = "s3c24xx-nand",
1287                .of_match_table = s3c24xx_nand_dt_ids,
1288        },
1289};
1290
1291module_platform_driver(s3c24xx_nand_driver);
1292
1293MODULE_LICENSE("GPL");
1294MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1295MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1296