linux/drivers/mtd/nftlmount.c
<<
>>
Prefs
   1/*
   2 * NFTL mount code with extensive checks
   3 *
   4 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
   5 * Copyright © 2000 Netgem S.A.
   6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 */
  22
  23#include <linux/kernel.h>
  24#include <asm/errno.h>
  25#include <linux/delay.h>
  26#include <linux/slab.h>
  27#include <linux/mtd/mtd.h>
  28#include <linux/mtd/rawnand.h>
  29#include <linux/mtd/nftl.h>
  30
  31#define SECTORSIZE 512
  32
  33/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
  34 *      various device information of the NFTL partition and Bad Unit Table. Update
  35 *      the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
  36 *      is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
  37 */
  38static int find_boot_record(struct NFTLrecord *nftl)
  39{
  40        struct nftl_uci1 h1;
  41        unsigned int block, boot_record_count = 0;
  42        size_t retlen;
  43        u8 buf[SECTORSIZE];
  44        struct NFTLMediaHeader *mh = &nftl->MediaHdr;
  45        struct mtd_info *mtd = nftl->mbd.mtd;
  46        unsigned int i;
  47
  48        /* Assume logical EraseSize == physical erasesize for starting the scan.
  49           We'll sort it out later if we find a MediaHeader which says otherwise */
  50        /* Actually, we won't.  The new DiskOnChip driver has already scanned
  51           the MediaHeader and adjusted the virtual erasesize it presents in
  52           the mtd device accordingly.  We could even get rid of
  53           nftl->EraseSize if there were any point in doing so. */
  54        nftl->EraseSize = nftl->mbd.mtd->erasesize;
  55        nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
  56
  57        nftl->MediaUnit = BLOCK_NIL;
  58        nftl->SpareMediaUnit = BLOCK_NIL;
  59
  60        /* search for a valid boot record */
  61        for (block = 0; block < nftl->nb_blocks; block++) {
  62                int ret;
  63
  64                /* Check for ANAND header first. Then can whinge if it's found but later
  65                   checks fail */
  66                ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE,
  67                               &retlen, buf);
  68                /* We ignore ret in case the ECC of the MediaHeader is invalid
  69                   (which is apparently acceptable) */
  70                if (retlen != SECTORSIZE) {
  71                        static int warncount = 5;
  72
  73                        if (warncount) {
  74                                printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
  75                                       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
  76                                if (!--warncount)
  77                                        printk(KERN_WARNING "Further failures for this block will not be printed\n");
  78                        }
  79                        continue;
  80                }
  81
  82                if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
  83                        /* ANAND\0 not found. Continue */
  84#if 0
  85                        printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
  86                               block * nftl->EraseSize, nftl->mbd.mtd->index);
  87#endif
  88                        continue;
  89                }
  90
  91                /* To be safer with BIOS, also use erase mark as discriminant */
  92                ret = nftl_read_oob(mtd, block * nftl->EraseSize +
  93                                         SECTORSIZE + 8, 8, &retlen,
  94                                         (char *)&h1);
  95                if (ret < 0) {
  96                        printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
  97                               block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
  98                        continue;
  99                }
 100
 101#if 0 /* Some people seem to have devices without ECC or erase marks
 102         on the Media Header blocks. There are enough other sanity
 103         checks in here that we can probably do without it.
 104      */
 105                if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
 106                        printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
 107                               block * nftl->EraseSize, nftl->mbd.mtd->index,
 108                               le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
 109                        continue;
 110                }
 111
 112                /* Finally reread to check ECC */
 113                ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
 114                                &retlen, buf);
 115                if (ret < 0) {
 116                        printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
 117                               block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
 118                        continue;
 119                }
 120
 121                /* Paranoia. Check the ANAND header is still there after the ECC read */
 122                if (memcmp(buf, "ANAND", 6)) {
 123                        printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
 124                               block * nftl->EraseSize, nftl->mbd.mtd->index);
 125                        printk(KERN_NOTICE "New data are: %6ph\n", buf);
 126                        continue;
 127                }
 128#endif
 129                /* OK, we like it. */
 130
 131                if (boot_record_count) {
 132                        /* We've already processed one. So we just check if
 133                           this one is the same as the first one we found */
 134                        if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
 135                                printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
 136                                       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
 137                                /* if (debug) Print both side by side */
 138                                if (boot_record_count < 2) {
 139                                        /* We haven't yet seen two real ones */
 140                                        return -1;
 141                                }
 142                                continue;
 143                        }
 144                        if (boot_record_count == 1)
 145                                nftl->SpareMediaUnit = block;
 146
 147                        /* Mark this boot record (NFTL MediaHeader) block as reserved */
 148                        nftl->ReplUnitTable[block] = BLOCK_RESERVED;
 149
 150
 151                        boot_record_count++;
 152                        continue;
 153                }
 154
 155                /* This is the first we've seen. Copy the media header structure into place */
 156                memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
 157
 158                /* Do some sanity checks on it */
 159#if 0
 160The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
 161erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd
 162device is already correct.
 163                if (mh->UnitSizeFactor == 0) {
 164                        printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
 165                } else if (mh->UnitSizeFactor < 0xfc) {
 166                        printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
 167                               mh->UnitSizeFactor);
 168                        return -1;
 169                } else if (mh->UnitSizeFactor != 0xff) {
 170                        printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
 171                               mh->UnitSizeFactor);
 172                        nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
 173                        nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
 174                }
 175#endif
 176                nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
 177                if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
 178                        printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
 179                        printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
 180                               nftl->nb_boot_blocks, nftl->nb_blocks);
 181                        return -1;
 182                }
 183
 184                nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
 185                if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
 186                        printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
 187                        printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
 188                               nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
 189                        return -1;
 190                }
 191
 192                nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
 193
 194                /* If we're not using the last sectors in the device for some reason,
 195                   reduce nb_blocks accordingly so we forget they're there */
 196                nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
 197
 198                /* XXX: will be suppressed */
 199                nftl->lastEUN = nftl->nb_blocks - 1;
 200
 201                /* memory alloc */
 202                nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
 203                if (!nftl->EUNtable) {
 204                        printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
 205                        return -ENOMEM;
 206                }
 207
 208                nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
 209                if (!nftl->ReplUnitTable) {
 210                        kfree(nftl->EUNtable);
 211                        printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
 212                        return -ENOMEM;
 213                }
 214
 215                /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
 216                for (i = 0; i < nftl->nb_boot_blocks; i++)
 217                        nftl->ReplUnitTable[i] = BLOCK_RESERVED;
 218                /* mark all remaining blocks as potentially containing data */
 219                for (; i < nftl->nb_blocks; i++) {
 220                        nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
 221                }
 222
 223                /* Mark this boot record (NFTL MediaHeader) block as reserved */
 224                nftl->ReplUnitTable[block] = BLOCK_RESERVED;
 225
 226                /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
 227                for (i = 0; i < nftl->nb_blocks; i++) {
 228#if 0
 229The new DiskOnChip driver already scanned the bad block table.  Just query it.
 230                        if ((i & (SECTORSIZE - 1)) == 0) {
 231                                /* read one sector for every SECTORSIZE of blocks */
 232                                ret = mtd->read(nftl->mbd.mtd,
 233                                                block * nftl->EraseSize + i +
 234                                                SECTORSIZE, SECTORSIZE,
 235                                                &retlen, buf);
 236                                if (ret < 0) {
 237                                        printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
 238                                               ret);
 239                                        kfree(nftl->ReplUnitTable);
 240                                        kfree(nftl->EUNtable);
 241                                        return -1;
 242                                }
 243                        }
 244                        /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
 245                        if (buf[i & (SECTORSIZE - 1)] != 0xff)
 246                                nftl->ReplUnitTable[i] = BLOCK_RESERVED;
 247#endif
 248                        if (mtd_block_isbad(nftl->mbd.mtd,
 249                                            i * nftl->EraseSize))
 250                                nftl->ReplUnitTable[i] = BLOCK_RESERVED;
 251                }
 252
 253                nftl->MediaUnit = block;
 254                boot_record_count++;
 255
 256        } /* foreach (block) */
 257
 258        return boot_record_count?0:-1;
 259}
 260
 261static int memcmpb(void *a, int c, int n)
 262{
 263        int i;
 264        for (i = 0; i < n; i++) {
 265                if (c != ((unsigned char *)a)[i])
 266                        return 1;
 267        }
 268        return 0;
 269}
 270
 271/* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
 272static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
 273                              int check_oob)
 274{
 275        u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
 276        struct mtd_info *mtd = nftl->mbd.mtd;
 277        size_t retlen;
 278        int i;
 279
 280        for (i = 0; i < len; i += SECTORSIZE) {
 281                if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
 282                        return -1;
 283                if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
 284                        return -1;
 285
 286                if (check_oob) {
 287                        if(nftl_read_oob(mtd, address, mtd->oobsize,
 288                                         &retlen, &buf[SECTORSIZE]) < 0)
 289                                return -1;
 290                        if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
 291                                return -1;
 292                }
 293                address += SECTORSIZE;
 294        }
 295
 296        return 0;
 297}
 298
 299/* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
 300 *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
 301 *
 302 * Return: 0 when succeed, -1 on error.
 303 *
 304 *  ToDo: 1. Is it necessary to check_free_sector after erasing ??
 305 */
 306int NFTL_formatblock(struct NFTLrecord *nftl, int block)
 307{
 308        size_t retlen;
 309        unsigned int nb_erases, erase_mark;
 310        struct nftl_uci1 uci;
 311        struct erase_info *instr = &nftl->instr;
 312        struct mtd_info *mtd = nftl->mbd.mtd;
 313
 314        /* Read the Unit Control Information #1 for Wear-Leveling */
 315        if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
 316                          8, &retlen, (char *)&uci) < 0)
 317                goto default_uci1;
 318
 319        erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
 320        if (erase_mark != ERASE_MARK) {
 321        default_uci1:
 322                uci.EraseMark = cpu_to_le16(ERASE_MARK);
 323                uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
 324                uci.WearInfo = cpu_to_le32(0);
 325        }
 326
 327        memset(instr, 0, sizeof(struct erase_info));
 328
 329        /* XXX: use async erase interface, XXX: test return code */
 330        instr->addr = block * nftl->EraseSize;
 331        instr->len = nftl->EraseSize;
 332        if (mtd_erase(mtd, instr)) {
 333                printk("Error while formatting block %d\n", block);
 334                goto fail;
 335        }
 336
 337                /* increase and write Wear-Leveling info */
 338                nb_erases = le32_to_cpu(uci.WearInfo);
 339                nb_erases++;
 340
 341                /* wrap (almost impossible with current flash) or free block */
 342                if (nb_erases == 0)
 343                        nb_erases = 1;
 344
 345                /* check the "freeness" of Erase Unit before updating metadata
 346                 * FixMe:  is this check really necessary ? since we have check the
 347                 *         return code after the erase operation. */
 348                if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
 349                        goto fail;
 350
 351                uci.WearInfo = le32_to_cpu(nb_erases);
 352                if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
 353                                   8, 8, &retlen, (char *)&uci) < 0)
 354                        goto fail;
 355                return 0;
 356fail:
 357        /* could not format, update the bad block table (caller is responsible
 358           for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
 359        mtd_block_markbad(nftl->mbd.mtd, instr->addr);
 360        return -1;
 361}
 362
 363/* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
 364 *      Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
 365 *      was being folded when NFTL was interrupted.
 366 *
 367 *      The check_free_sectors in this function is necessary. There is a possible
 368 *      situation that after writing the Data area, the Block Control Information is
 369 *      not updated according (due to power failure or something) which leaves the block
 370 *      in an inconsistent state. So we have to check if a block is really FREE in this
 371 *      case. */
 372static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
 373{
 374        struct mtd_info *mtd = nftl->mbd.mtd;
 375        unsigned int block, i, status;
 376        struct nftl_bci bci;
 377        int sectors_per_block;
 378        size_t retlen;
 379
 380        sectors_per_block = nftl->EraseSize / SECTORSIZE;
 381        block = first_block;
 382        for (;;) {
 383                for (i = 0; i < sectors_per_block; i++) {
 384                        if (nftl_read_oob(mtd,
 385                                          block * nftl->EraseSize + i * SECTORSIZE,
 386                                          8, &retlen, (char *)&bci) < 0)
 387                                status = SECTOR_IGNORE;
 388                        else
 389                                status = bci.Status | bci.Status1;
 390
 391                        switch(status) {
 392                        case SECTOR_FREE:
 393                                /* verify that the sector is really free. If not, mark
 394                                   as ignore */
 395                                if (memcmpb(&bci, 0xff, 8) != 0 ||
 396                                    check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
 397                                                       SECTORSIZE, 0) != 0) {
 398                                        printk("Incorrect free sector %d in block %d: "
 399                                               "marking it as ignored\n",
 400                                               i, block);
 401
 402                                        /* sector not free actually : mark it as SECTOR_IGNORE  */
 403                                        bci.Status = SECTOR_IGNORE;
 404                                        bci.Status1 = SECTOR_IGNORE;
 405                                        nftl_write_oob(mtd, block *
 406                                                       nftl->EraseSize +
 407                                                       i * SECTORSIZE, 8,
 408                                                       &retlen, (char *)&bci);
 409                                }
 410                                break;
 411                        default:
 412                                break;
 413                        }
 414                }
 415
 416                /* proceed to next Erase Unit on the chain */
 417                block = nftl->ReplUnitTable[block];
 418                if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
 419                        printk("incorrect ReplUnitTable[] : %d\n", block);
 420                if (block == BLOCK_NIL || block >= nftl->nb_blocks)
 421                        break;
 422        }
 423}
 424
 425/* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
 426static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
 427{
 428        unsigned int length = 0, block = first_block;
 429
 430        for (;;) {
 431                length++;
 432                /* avoid infinite loops, although this is guaranteed not to
 433                   happen because of the previous checks */
 434                if (length >= nftl->nb_blocks) {
 435                        printk("nftl: length too long %d !\n", length);
 436                        break;
 437                }
 438
 439                block = nftl->ReplUnitTable[block];
 440                if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
 441                        printk("incorrect ReplUnitTable[] : %d\n", block);
 442                if (block == BLOCK_NIL || block >= nftl->nb_blocks)
 443                        break;
 444        }
 445        return length;
 446}
 447
 448/* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
 449 *      Virtual Unit Chain, i.e. all the units are disconnected.
 450 *
 451 *      It is not strictly correct to begin from the first block of the chain because
 452 *      if we stop the code, we may see again a valid chain if there was a first_block
 453 *      flag in a block inside it. But is it really a problem ?
 454 *
 455 * FixMe: Figure out what the last statement means. What if power failure when we are
 456 *      in the for (;;) loop formatting blocks ??
 457 */
 458static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
 459{
 460        unsigned int block = first_block, block1;
 461
 462        printk("Formatting chain at block %d\n", first_block);
 463
 464        for (;;) {
 465                block1 = nftl->ReplUnitTable[block];
 466
 467                printk("Formatting block %d\n", block);
 468                if (NFTL_formatblock(nftl, block) < 0) {
 469                        /* cannot format !!!! Mark it as Bad Unit */
 470                        nftl->ReplUnitTable[block] = BLOCK_RESERVED;
 471                } else {
 472                        nftl->ReplUnitTable[block] = BLOCK_FREE;
 473                }
 474
 475                /* goto next block on the chain */
 476                block = block1;
 477
 478                if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
 479                        printk("incorrect ReplUnitTable[] : %d\n", block);
 480                if (block == BLOCK_NIL || block >= nftl->nb_blocks)
 481                        break;
 482        }
 483}
 484
 485/* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
 486 *      totally free (only 0xff).
 487 *
 488 * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
 489 *      following criteria:
 490 *      1. */
 491static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
 492{
 493        struct mtd_info *mtd = nftl->mbd.mtd;
 494        struct nftl_uci1 h1;
 495        unsigned int erase_mark;
 496        size_t retlen;
 497
 498        /* check erase mark. */
 499        if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
 500                          &retlen, (char *)&h1) < 0)
 501                return -1;
 502
 503        erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
 504        if (erase_mark != ERASE_MARK) {
 505                /* if no erase mark, the block must be totally free. This is
 506                   possible in two cases : empty filesystem or interrupted erase (very unlikely) */
 507                if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
 508                        return -1;
 509
 510                /* free block : write erase mark */
 511                h1.EraseMark = cpu_to_le16(ERASE_MARK);
 512                h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
 513                h1.WearInfo = cpu_to_le32(0);
 514                if (nftl_write_oob(mtd,
 515                                   block * nftl->EraseSize + SECTORSIZE + 8, 8,
 516                                   &retlen, (char *)&h1) < 0)
 517                        return -1;
 518        } else {
 519#if 0
 520                /* if erase mark present, need to skip it when doing check */
 521                for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
 522                        /* check free sector */
 523                        if (check_free_sectors (nftl, block * nftl->EraseSize + i,
 524                                                SECTORSIZE, 0) != 0)
 525                                return -1;
 526
 527                        if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
 528                                          16, &retlen, buf) < 0)
 529                                return -1;
 530                        if (i == SECTORSIZE) {
 531                                /* skip erase mark */
 532                                if (memcmpb(buf, 0xff, 8))
 533                                        return -1;
 534                        } else {
 535                                if (memcmpb(buf, 0xff, 16))
 536                                        return -1;
 537                        }
 538                }
 539#endif
 540        }
 541
 542        return 0;
 543}
 544
 545/* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
 546 *      to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
 547 *      is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
 548 *      for some reason. A clean up/check of the VUC is necessary in this case.
 549 *
 550 * WARNING: return 0 if read error
 551 */
 552static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
 553{
 554        struct mtd_info *mtd = nftl->mbd.mtd;
 555        struct nftl_uci2 uci;
 556        size_t retlen;
 557
 558        if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
 559                          8, &retlen, (char *)&uci) < 0)
 560                return 0;
 561
 562        return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
 563}
 564
 565int NFTL_mount(struct NFTLrecord *s)
 566{
 567        int i;
 568        unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
 569        unsigned int block, first_block, is_first_block;
 570        int chain_length, do_format_chain;
 571        struct nftl_uci0 h0;
 572        struct nftl_uci1 h1;
 573        struct mtd_info *mtd = s->mbd.mtd;
 574        size_t retlen;
 575
 576        /* search for NFTL MediaHeader and Spare NFTL Media Header */
 577        if (find_boot_record(s) < 0) {
 578                printk("Could not find valid boot record\n");
 579                return -1;
 580        }
 581
 582        /* init the logical to physical table */
 583        for (i = 0; i < s->nb_blocks; i++) {
 584                s->EUNtable[i] = BLOCK_NIL;
 585        }
 586
 587        /* first pass : explore each block chain */
 588        first_logical_block = 0;
 589        for (first_block = 0; first_block < s->nb_blocks; first_block++) {
 590                /* if the block was not already explored, we can look at it */
 591                if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
 592                        block = first_block;
 593                        chain_length = 0;
 594                        do_format_chain = 0;
 595
 596                        for (;;) {
 597                                /* read the block header. If error, we format the chain */
 598                                if (nftl_read_oob(mtd,
 599                                                  block * s->EraseSize + 8, 8,
 600                                                  &retlen, (char *)&h0) < 0 ||
 601                                    nftl_read_oob(mtd,
 602                                                  block * s->EraseSize +
 603                                                  SECTORSIZE + 8, 8,
 604                                                  &retlen, (char *)&h1) < 0) {
 605                                        s->ReplUnitTable[block] = BLOCK_NIL;
 606                                        do_format_chain = 1;
 607                                        break;
 608                                }
 609
 610                                logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
 611                                rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
 612                                nb_erases = le32_to_cpu (h1.WearInfo);
 613                                erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
 614
 615                                is_first_block = !(logical_block >> 15);
 616                                logical_block = logical_block & 0x7fff;
 617
 618                                /* invalid/free block test */
 619                                if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
 620                                        if (chain_length == 0) {
 621                                                /* if not currently in a chain, we can handle it safely */
 622                                                if (check_and_mark_free_block(s, block) < 0) {
 623                                                        /* not really free: format it */
 624                                                        printk("Formatting block %d\n", block);
 625                                                        if (NFTL_formatblock(s, block) < 0) {
 626                                                                /* could not format: reserve the block */
 627                                                                s->ReplUnitTable[block] = BLOCK_RESERVED;
 628                                                        } else {
 629                                                                s->ReplUnitTable[block] = BLOCK_FREE;
 630                                                        }
 631                                                } else {
 632                                                        /* free block: mark it */
 633                                                        s->ReplUnitTable[block] = BLOCK_FREE;
 634                                                }
 635                                                /* directly examine the next block. */
 636                                                goto examine_ReplUnitTable;
 637                                        } else {
 638                                                /* the block was in a chain : this is bad. We
 639                                                   must format all the chain */
 640                                                printk("Block %d: free but referenced in chain %d\n",
 641                                                       block, first_block);
 642                                                s->ReplUnitTable[block] = BLOCK_NIL;
 643                                                do_format_chain = 1;
 644                                                break;
 645                                        }
 646                                }
 647
 648                                /* we accept only first blocks here */
 649                                if (chain_length == 0) {
 650                                        /* this block is not the first block in chain :
 651                                           ignore it, it will be included in a chain
 652                                           later, or marked as not explored */
 653                                        if (!is_first_block)
 654                                                goto examine_ReplUnitTable;
 655                                        first_logical_block = logical_block;
 656                                } else {
 657                                        if (logical_block != first_logical_block) {
 658                                                printk("Block %d: incorrect logical block: %d expected: %d\n",
 659                                                       block, logical_block, first_logical_block);
 660                                                /* the chain is incorrect : we must format it,
 661                                                   but we need to read it completely */
 662                                                do_format_chain = 1;
 663                                        }
 664                                        if (is_first_block) {
 665                                                /* we accept that a block is marked as first
 666                                                   block while being last block in a chain
 667                                                   only if the chain is being folded */
 668                                                if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
 669                                                    rep_block != 0xffff) {
 670                                                        printk("Block %d: incorrectly marked as first block in chain\n",
 671                                                               block);
 672                                                        /* the chain is incorrect : we must format it,
 673                                                           but we need to read it completely */
 674                                                        do_format_chain = 1;
 675                                                } else {
 676                                                        printk("Block %d: folding in progress - ignoring first block flag\n",
 677                                                               block);
 678                                                }
 679                                        }
 680                                }
 681                                chain_length++;
 682                                if (rep_block == 0xffff) {
 683                                        /* no more blocks after */
 684                                        s->ReplUnitTable[block] = BLOCK_NIL;
 685                                        break;
 686                                } else if (rep_block >= s->nb_blocks) {
 687                                        printk("Block %d: referencing invalid block %d\n",
 688                                               block, rep_block);
 689                                        do_format_chain = 1;
 690                                        s->ReplUnitTable[block] = BLOCK_NIL;
 691                                        break;
 692                                } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
 693                                        /* same problem as previous 'is_first_block' test:
 694                                           we accept that the last block of a chain has
 695                                           the first_block flag set if folding is in
 696                                           progress. We handle here the case where the
 697                                           last block appeared first */
 698                                        if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
 699                                            s->EUNtable[first_logical_block] == rep_block &&
 700                                            get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
 701                                                /* EUNtable[] will be set after */
 702                                                printk("Block %d: folding in progress - ignoring first block flag\n",
 703                                                       rep_block);
 704                                                s->ReplUnitTable[block] = rep_block;
 705                                                s->EUNtable[first_logical_block] = BLOCK_NIL;
 706                                        } else {
 707                                                printk("Block %d: referencing block %d already in another chain\n",
 708                                                       block, rep_block);
 709                                                /* XXX: should handle correctly fold in progress chains */
 710                                                do_format_chain = 1;
 711                                                s->ReplUnitTable[block] = BLOCK_NIL;
 712                                        }
 713                                        break;
 714                                } else {
 715                                        /* this is OK */
 716                                        s->ReplUnitTable[block] = rep_block;
 717                                        block = rep_block;
 718                                }
 719                        }
 720
 721                        /* the chain was completely explored. Now we can decide
 722                           what to do with it */
 723                        if (do_format_chain) {
 724                                /* invalid chain : format it */
 725                                format_chain(s, first_block);
 726                        } else {
 727                                unsigned int first_block1, chain_to_format, chain_length1;
 728                                int fold_mark;
 729
 730                                /* valid chain : get foldmark */
 731                                fold_mark = get_fold_mark(s, first_block);
 732                                if (fold_mark == 0) {
 733                                        /* cannot get foldmark : format the chain */
 734                                        printk("Could read foldmark at block %d\n", first_block);
 735                                        format_chain(s, first_block);
 736                                } else {
 737                                        if (fold_mark == FOLD_MARK_IN_PROGRESS)
 738                                                check_sectors_in_chain(s, first_block);
 739
 740                                        /* now handle the case where we find two chains at the
 741                                           same virtual address : we select the longer one,
 742                                           because the shorter one is the one which was being
 743                                           folded if the folding was not done in place */
 744                                        first_block1 = s->EUNtable[first_logical_block];
 745                                        if (first_block1 != BLOCK_NIL) {
 746                                                /* XXX: what to do if same length ? */
 747                                                chain_length1 = calc_chain_length(s, first_block1);
 748                                                printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
 749                                                       first_block1, chain_length1, first_block, chain_length);
 750
 751                                                if (chain_length >= chain_length1) {
 752                                                        chain_to_format = first_block1;
 753                                                        s->EUNtable[first_logical_block] = first_block;
 754                                                } else {
 755                                                        chain_to_format = first_block;
 756                                                }
 757                                                format_chain(s, chain_to_format);
 758                                        } else {
 759                                                s->EUNtable[first_logical_block] = first_block;
 760                                        }
 761                                }
 762                        }
 763                }
 764        examine_ReplUnitTable:;
 765        }
 766
 767        /* second pass to format unreferenced blocks  and init free block count */
 768        s->numfreeEUNs = 0;
 769        s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
 770
 771        for (block = 0; block < s->nb_blocks; block++) {
 772                if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
 773                        printk("Unreferenced block %d, formatting it\n", block);
 774                        if (NFTL_formatblock(s, block) < 0)
 775                                s->ReplUnitTable[block] = BLOCK_RESERVED;
 776                        else
 777                                s->ReplUnitTable[block] = BLOCK_FREE;
 778                }
 779                if (s->ReplUnitTable[block] == BLOCK_FREE) {
 780                        s->numfreeEUNs++;
 781                        s->LastFreeEUN = block;
 782                }
 783        }
 784
 785        return 0;
 786}
 787