linux/drivers/mtd/ubi/build.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2007
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём),
  20 *         Frank Haverkamp
  21 */
  22
  23/*
  24 * This file includes UBI initialization and building of UBI devices.
  25 *
  26 * When UBI is initialized, it attaches all the MTD devices specified as the
  27 * module load parameters or the kernel boot parameters. If MTD devices were
  28 * specified, UBI does not attach any MTD device, but it is possible to do
  29 * later using the "UBI control device".
  30 */
  31
  32#include <linux/err.h>
  33#include <linux/module.h>
  34#include <linux/moduleparam.h>
  35#include <linux/stringify.h>
  36#include <linux/namei.h>
  37#include <linux/stat.h>
  38#include <linux/miscdevice.h>
  39#include <linux/mtd/partitions.h>
  40#include <linux/log2.h>
  41#include <linux/kthread.h>
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/major.h>
  45#include "ubi.h"
  46
  47/* Maximum length of the 'mtd=' parameter */
  48#define MTD_PARAM_LEN_MAX 64
  49
  50/* Maximum number of comma-separated items in the 'mtd=' parameter */
  51#define MTD_PARAM_MAX_COUNT 4
  52
  53/* Maximum value for the number of bad PEBs per 1024 PEBs */
  54#define MAX_MTD_UBI_BEB_LIMIT 768
  55
  56#ifdef CONFIG_MTD_UBI_MODULE
  57#define ubi_is_module() 1
  58#else
  59#define ubi_is_module() 0
  60#endif
  61
  62/**
  63 * struct mtd_dev_param - MTD device parameter description data structure.
  64 * @name: MTD character device node path, MTD device name, or MTD device number
  65 *        string
  66 * @vid_hdr_offs: VID header offset
  67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
  68 */
  69struct mtd_dev_param {
  70        char name[MTD_PARAM_LEN_MAX];
  71        int ubi_num;
  72        int vid_hdr_offs;
  73        int max_beb_per1024;
  74};
  75
  76/* Numbers of elements set in the @mtd_dev_param array */
  77static int mtd_devs;
  78
  79/* MTD devices specification parameters */
  80static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
  81#ifdef CONFIG_MTD_UBI_FASTMAP
  82/* UBI module parameter to enable fastmap automatically on non-fastmap images */
  83static bool fm_autoconvert;
  84static bool fm_debug;
  85#endif
  86
  87/* Slab cache for wear-leveling entries */
  88struct kmem_cache *ubi_wl_entry_slab;
  89
  90/* UBI control character device */
  91static struct miscdevice ubi_ctrl_cdev = {
  92        .minor = MISC_DYNAMIC_MINOR,
  93        .name = "ubi_ctrl",
  94        .fops = &ubi_ctrl_cdev_operations,
  95};
  96
  97/* All UBI devices in system */
  98static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
  99
 100/* Serializes UBI devices creations and removals */
 101DEFINE_MUTEX(ubi_devices_mutex);
 102
 103/* Protects @ubi_devices and @ubi->ref_count */
 104static DEFINE_SPINLOCK(ubi_devices_lock);
 105
 106/* "Show" method for files in '/<sysfs>/class/ubi/' */
 107/* UBI version attribute ('/<sysfs>/class/ubi/version') */
 108static ssize_t version_show(struct class *class, struct class_attribute *attr,
 109                            char *buf)
 110{
 111        return sprintf(buf, "%d\n", UBI_VERSION);
 112}
 113static CLASS_ATTR_RO(version);
 114
 115static struct attribute *ubi_class_attrs[] = {
 116        &class_attr_version.attr,
 117        NULL,
 118};
 119ATTRIBUTE_GROUPS(ubi_class);
 120
 121/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
 122struct class ubi_class = {
 123        .name           = UBI_NAME_STR,
 124        .owner          = THIS_MODULE,
 125        .class_groups   = ubi_class_groups,
 126};
 127
 128static ssize_t dev_attribute_show(struct device *dev,
 129                                  struct device_attribute *attr, char *buf);
 130
 131/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
 132static struct device_attribute dev_eraseblock_size =
 133        __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
 134static struct device_attribute dev_avail_eraseblocks =
 135        __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 136static struct device_attribute dev_total_eraseblocks =
 137        __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 138static struct device_attribute dev_volumes_count =
 139        __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
 140static struct device_attribute dev_max_ec =
 141        __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
 142static struct device_attribute dev_reserved_for_bad =
 143        __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
 144static struct device_attribute dev_bad_peb_count =
 145        __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
 146static struct device_attribute dev_max_vol_count =
 147        __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
 148static struct device_attribute dev_min_io_size =
 149        __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
 150static struct device_attribute dev_bgt_enabled =
 151        __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
 152static struct device_attribute dev_mtd_num =
 153        __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
 154static struct device_attribute dev_ro_mode =
 155        __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
 156
 157/**
 158 * ubi_volume_notify - send a volume change notification.
 159 * @ubi: UBI device description object
 160 * @vol: volume description object of the changed volume
 161 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 162 *
 163 * This is a helper function which notifies all subscribers about a volume
 164 * change event (creation, removal, re-sizing, re-naming, updating). Returns
 165 * zero in case of success and a negative error code in case of failure.
 166 */
 167int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
 168{
 169        int ret;
 170        struct ubi_notification nt;
 171
 172        ubi_do_get_device_info(ubi, &nt.di);
 173        ubi_do_get_volume_info(ubi, vol, &nt.vi);
 174
 175        switch (ntype) {
 176        case UBI_VOLUME_ADDED:
 177        case UBI_VOLUME_REMOVED:
 178        case UBI_VOLUME_RESIZED:
 179        case UBI_VOLUME_RENAMED:
 180                ret = ubi_update_fastmap(ubi);
 181                if (ret)
 182                        ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
 183        }
 184
 185        return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
 186}
 187
 188/**
 189 * ubi_notify_all - send a notification to all volumes.
 190 * @ubi: UBI device description object
 191 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 192 * @nb: the notifier to call
 193 *
 194 * This function walks all volumes of UBI device @ubi and sends the @ntype
 195 * notification for each volume. If @nb is %NULL, then all registered notifiers
 196 * are called, otherwise only the @nb notifier is called. Returns the number of
 197 * sent notifications.
 198 */
 199int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
 200{
 201        struct ubi_notification nt;
 202        int i, count = 0;
 203
 204        ubi_do_get_device_info(ubi, &nt.di);
 205
 206        mutex_lock(&ubi->device_mutex);
 207        for (i = 0; i < ubi->vtbl_slots; i++) {
 208                /*
 209                 * Since the @ubi->device is locked, and we are not going to
 210                 * change @ubi->volumes, we do not have to lock
 211                 * @ubi->volumes_lock.
 212                 */
 213                if (!ubi->volumes[i])
 214                        continue;
 215
 216                ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
 217                if (nb)
 218                        nb->notifier_call(nb, ntype, &nt);
 219                else
 220                        blocking_notifier_call_chain(&ubi_notifiers, ntype,
 221                                                     &nt);
 222                count += 1;
 223        }
 224        mutex_unlock(&ubi->device_mutex);
 225
 226        return count;
 227}
 228
 229/**
 230 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
 231 * @nb: the notifier to call
 232 *
 233 * This function walks all UBI devices and volumes and sends the
 234 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
 235 * registered notifiers are called, otherwise only the @nb notifier is called.
 236 * Returns the number of sent notifications.
 237 */
 238int ubi_enumerate_volumes(struct notifier_block *nb)
 239{
 240        int i, count = 0;
 241
 242        /*
 243         * Since the @ubi_devices_mutex is locked, and we are not going to
 244         * change @ubi_devices, we do not have to lock @ubi_devices_lock.
 245         */
 246        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 247                struct ubi_device *ubi = ubi_devices[i];
 248
 249                if (!ubi)
 250                        continue;
 251                count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
 252        }
 253
 254        return count;
 255}
 256
 257/**
 258 * ubi_get_device - get UBI device.
 259 * @ubi_num: UBI device number
 260 *
 261 * This function returns UBI device description object for UBI device number
 262 * @ubi_num, or %NULL if the device does not exist. This function increases the
 263 * device reference count to prevent removal of the device. In other words, the
 264 * device cannot be removed if its reference count is not zero.
 265 */
 266struct ubi_device *ubi_get_device(int ubi_num)
 267{
 268        struct ubi_device *ubi;
 269
 270        spin_lock(&ubi_devices_lock);
 271        ubi = ubi_devices[ubi_num];
 272        if (ubi) {
 273                ubi_assert(ubi->ref_count >= 0);
 274                ubi->ref_count += 1;
 275                get_device(&ubi->dev);
 276        }
 277        spin_unlock(&ubi_devices_lock);
 278
 279        return ubi;
 280}
 281
 282/**
 283 * ubi_put_device - drop an UBI device reference.
 284 * @ubi: UBI device description object
 285 */
 286void ubi_put_device(struct ubi_device *ubi)
 287{
 288        spin_lock(&ubi_devices_lock);
 289        ubi->ref_count -= 1;
 290        put_device(&ubi->dev);
 291        spin_unlock(&ubi_devices_lock);
 292}
 293
 294/**
 295 * ubi_get_by_major - get UBI device by character device major number.
 296 * @major: major number
 297 *
 298 * This function is similar to 'ubi_get_device()', but it searches the device
 299 * by its major number.
 300 */
 301struct ubi_device *ubi_get_by_major(int major)
 302{
 303        int i;
 304        struct ubi_device *ubi;
 305
 306        spin_lock(&ubi_devices_lock);
 307        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 308                ubi = ubi_devices[i];
 309                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 310                        ubi_assert(ubi->ref_count >= 0);
 311                        ubi->ref_count += 1;
 312                        get_device(&ubi->dev);
 313                        spin_unlock(&ubi_devices_lock);
 314                        return ubi;
 315                }
 316        }
 317        spin_unlock(&ubi_devices_lock);
 318
 319        return NULL;
 320}
 321
 322/**
 323 * ubi_major2num - get UBI device number by character device major number.
 324 * @major: major number
 325 *
 326 * This function searches UBI device number object by its major number. If UBI
 327 * device was not found, this function returns -ENODEV, otherwise the UBI device
 328 * number is returned.
 329 */
 330int ubi_major2num(int major)
 331{
 332        int i, ubi_num = -ENODEV;
 333
 334        spin_lock(&ubi_devices_lock);
 335        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 336                struct ubi_device *ubi = ubi_devices[i];
 337
 338                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 339                        ubi_num = ubi->ubi_num;
 340                        break;
 341                }
 342        }
 343        spin_unlock(&ubi_devices_lock);
 344
 345        return ubi_num;
 346}
 347
 348/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
 349static ssize_t dev_attribute_show(struct device *dev,
 350                                  struct device_attribute *attr, char *buf)
 351{
 352        ssize_t ret;
 353        struct ubi_device *ubi;
 354
 355        /*
 356         * The below code looks weird, but it actually makes sense. We get the
 357         * UBI device reference from the contained 'struct ubi_device'. But it
 358         * is unclear if the device was removed or not yet. Indeed, if the
 359         * device was removed before we increased its reference count,
 360         * 'ubi_get_device()' will return -ENODEV and we fail.
 361         *
 362         * Remember, 'struct ubi_device' is freed in the release function, so
 363         * we still can use 'ubi->ubi_num'.
 364         */
 365        ubi = container_of(dev, struct ubi_device, dev);
 366        ubi = ubi_get_device(ubi->ubi_num);
 367        if (!ubi)
 368                return -ENODEV;
 369
 370        if (attr == &dev_eraseblock_size)
 371                ret = sprintf(buf, "%d\n", ubi->leb_size);
 372        else if (attr == &dev_avail_eraseblocks)
 373                ret = sprintf(buf, "%d\n", ubi->avail_pebs);
 374        else if (attr == &dev_total_eraseblocks)
 375                ret = sprintf(buf, "%d\n", ubi->good_peb_count);
 376        else if (attr == &dev_volumes_count)
 377                ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
 378        else if (attr == &dev_max_ec)
 379                ret = sprintf(buf, "%d\n", ubi->max_ec);
 380        else if (attr == &dev_reserved_for_bad)
 381                ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
 382        else if (attr == &dev_bad_peb_count)
 383                ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
 384        else if (attr == &dev_max_vol_count)
 385                ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
 386        else if (attr == &dev_min_io_size)
 387                ret = sprintf(buf, "%d\n", ubi->min_io_size);
 388        else if (attr == &dev_bgt_enabled)
 389                ret = sprintf(buf, "%d\n", ubi->thread_enabled);
 390        else if (attr == &dev_mtd_num)
 391                ret = sprintf(buf, "%d\n", ubi->mtd->index);
 392        else if (attr == &dev_ro_mode)
 393                ret = sprintf(buf, "%d\n", ubi->ro_mode);
 394        else
 395                ret = -EINVAL;
 396
 397        ubi_put_device(ubi);
 398        return ret;
 399}
 400
 401static struct attribute *ubi_dev_attrs[] = {
 402        &dev_eraseblock_size.attr,
 403        &dev_avail_eraseblocks.attr,
 404        &dev_total_eraseblocks.attr,
 405        &dev_volumes_count.attr,
 406        &dev_max_ec.attr,
 407        &dev_reserved_for_bad.attr,
 408        &dev_bad_peb_count.attr,
 409        &dev_max_vol_count.attr,
 410        &dev_min_io_size.attr,
 411        &dev_bgt_enabled.attr,
 412        &dev_mtd_num.attr,
 413        &dev_ro_mode.attr,
 414        NULL
 415};
 416ATTRIBUTE_GROUPS(ubi_dev);
 417
 418static void dev_release(struct device *dev)
 419{
 420        struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
 421
 422        kfree(ubi);
 423}
 424
 425/**
 426 * kill_volumes - destroy all user volumes.
 427 * @ubi: UBI device description object
 428 */
 429static void kill_volumes(struct ubi_device *ubi)
 430{
 431        int i;
 432
 433        for (i = 0; i < ubi->vtbl_slots; i++)
 434                if (ubi->volumes[i])
 435                        ubi_free_volume(ubi, ubi->volumes[i]);
 436}
 437
 438/**
 439 * uif_init - initialize user interfaces for an UBI device.
 440 * @ubi: UBI device description object
 441 *
 442 * This function initializes various user interfaces for an UBI device. If the
 443 * initialization fails at an early stage, this function frees all the
 444 * resources it allocated, returns an error.
 445 *
 446 * This function returns zero in case of success and a negative error code in
 447 * case of failure.
 448 */
 449static int uif_init(struct ubi_device *ubi)
 450{
 451        int i, err;
 452        dev_t dev;
 453
 454        sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
 455
 456        /*
 457         * Major numbers for the UBI character devices are allocated
 458         * dynamically. Major numbers of volume character devices are
 459         * equivalent to ones of the corresponding UBI character device. Minor
 460         * numbers of UBI character devices are 0, while minor numbers of
 461         * volume character devices start from 1. Thus, we allocate one major
 462         * number and ubi->vtbl_slots + 1 minor numbers.
 463         */
 464        err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
 465        if (err) {
 466                ubi_err(ubi, "cannot register UBI character devices");
 467                return err;
 468        }
 469
 470        ubi->dev.devt = dev;
 471
 472        ubi_assert(MINOR(dev) == 0);
 473        cdev_init(&ubi->cdev, &ubi_cdev_operations);
 474        dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
 475        ubi->cdev.owner = THIS_MODULE;
 476
 477        dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
 478        err = cdev_device_add(&ubi->cdev, &ubi->dev);
 479        if (err)
 480                goto out_unreg;
 481
 482        for (i = 0; i < ubi->vtbl_slots; i++)
 483                if (ubi->volumes[i]) {
 484                        err = ubi_add_volume(ubi, ubi->volumes[i]);
 485                        if (err) {
 486                                ubi_err(ubi, "cannot add volume %d", i);
 487                                goto out_volumes;
 488                        }
 489                }
 490
 491        return 0;
 492
 493out_volumes:
 494        kill_volumes(ubi);
 495        cdev_device_del(&ubi->cdev, &ubi->dev);
 496out_unreg:
 497        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 498        ubi_err(ubi, "cannot initialize UBI %s, error %d",
 499                ubi->ubi_name, err);
 500        return err;
 501}
 502
 503/**
 504 * uif_close - close user interfaces for an UBI device.
 505 * @ubi: UBI device description object
 506 *
 507 * Note, since this function un-registers UBI volume device objects (@vol->dev),
 508 * the memory allocated voe the volumes is freed as well (in the release
 509 * function).
 510 */
 511static void uif_close(struct ubi_device *ubi)
 512{
 513        kill_volumes(ubi);
 514        cdev_device_del(&ubi->cdev, &ubi->dev);
 515        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 516}
 517
 518/**
 519 * ubi_free_internal_volumes - free internal volumes.
 520 * @ubi: UBI device description object
 521 */
 522void ubi_free_internal_volumes(struct ubi_device *ubi)
 523{
 524        int i;
 525
 526        for (i = ubi->vtbl_slots;
 527             i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 528                ubi_eba_replace_table(ubi->volumes[i], NULL);
 529                kfree(ubi->volumes[i]);
 530        }
 531}
 532
 533static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
 534{
 535        int limit, device_pebs;
 536        uint64_t device_size;
 537
 538        if (!max_beb_per1024) {
 539                /*
 540                 * Since max_beb_per1024 has not been set by the user in either
 541                 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
 542                 * limit if it is supported by the device.
 543                 */
 544                limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
 545                if (limit < 0)
 546                        return 0;
 547                return limit;
 548        }
 549
 550        /*
 551         * Here we are using size of the entire flash chip and
 552         * not just the MTD partition size because the maximum
 553         * number of bad eraseblocks is a percentage of the
 554         * whole device and bad eraseblocks are not fairly
 555         * distributed over the flash chip. So the worst case
 556         * is that all the bad eraseblocks of the chip are in
 557         * the MTD partition we are attaching (ubi->mtd).
 558         */
 559        device_size = mtd_get_device_size(ubi->mtd);
 560        device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
 561        limit = mult_frac(device_pebs, max_beb_per1024, 1024);
 562
 563        /* Round it up */
 564        if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
 565                limit += 1;
 566
 567        return limit;
 568}
 569
 570/**
 571 * io_init - initialize I/O sub-system for a given UBI device.
 572 * @ubi: UBI device description object
 573 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 574 *
 575 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
 576 * assumed:
 577 *   o EC header is always at offset zero - this cannot be changed;
 578 *   o VID header starts just after the EC header at the closest address
 579 *     aligned to @io->hdrs_min_io_size;
 580 *   o data starts just after the VID header at the closest address aligned to
 581 *     @io->min_io_size
 582 *
 583 * This function returns zero in case of success and a negative error code in
 584 * case of failure.
 585 */
 586static int io_init(struct ubi_device *ubi, int max_beb_per1024)
 587{
 588        dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
 589        dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
 590
 591        if (ubi->mtd->numeraseregions != 0) {
 592                /*
 593                 * Some flashes have several erase regions. Different regions
 594                 * may have different eraseblock size and other
 595                 * characteristics. It looks like mostly multi-region flashes
 596                 * have one "main" region and one or more small regions to
 597                 * store boot loader code or boot parameters or whatever. I
 598                 * guess we should just pick the largest region. But this is
 599                 * not implemented.
 600                 */
 601                ubi_err(ubi, "multiple regions, not implemented");
 602                return -EINVAL;
 603        }
 604
 605        if (ubi->vid_hdr_offset < 0)
 606                return -EINVAL;
 607
 608        /*
 609         * Note, in this implementation we support MTD devices with 0x7FFFFFFF
 610         * physical eraseblocks maximum.
 611         */
 612
 613        ubi->peb_size   = ubi->mtd->erasesize;
 614        ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
 615        ubi->flash_size = ubi->mtd->size;
 616
 617        if (mtd_can_have_bb(ubi->mtd)) {
 618                ubi->bad_allowed = 1;
 619                ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
 620        }
 621
 622        if (ubi->mtd->type == MTD_NORFLASH) {
 623                ubi_assert(ubi->mtd->writesize == 1);
 624                ubi->nor_flash = 1;
 625        }
 626
 627        ubi->min_io_size = ubi->mtd->writesize;
 628        ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
 629
 630        /*
 631         * Make sure minimal I/O unit is power of 2. Note, there is no
 632         * fundamental reason for this assumption. It is just an optimization
 633         * which allows us to avoid costly division operations.
 634         */
 635        if (!is_power_of_2(ubi->min_io_size)) {
 636                ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
 637                        ubi->min_io_size);
 638                return -EINVAL;
 639        }
 640
 641        ubi_assert(ubi->hdrs_min_io_size > 0);
 642        ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
 643        ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
 644
 645        ubi->max_write_size = ubi->mtd->writebufsize;
 646        /*
 647         * Maximum write size has to be greater or equivalent to min. I/O
 648         * size, and be multiple of min. I/O size.
 649         */
 650        if (ubi->max_write_size < ubi->min_io_size ||
 651            ubi->max_write_size % ubi->min_io_size ||
 652            !is_power_of_2(ubi->max_write_size)) {
 653                ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
 654                        ubi->max_write_size, ubi->min_io_size);
 655                return -EINVAL;
 656        }
 657
 658        /* Calculate default aligned sizes of EC and VID headers */
 659        ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
 660        ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
 661
 662        dbg_gen("min_io_size      %d", ubi->min_io_size);
 663        dbg_gen("max_write_size   %d", ubi->max_write_size);
 664        dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
 665        dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
 666        dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
 667
 668        if (ubi->vid_hdr_offset == 0)
 669                /* Default offset */
 670                ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
 671                                      ubi->ec_hdr_alsize;
 672        else {
 673                ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
 674                                                ~(ubi->hdrs_min_io_size - 1);
 675                ubi->vid_hdr_shift = ubi->vid_hdr_offset -
 676                                                ubi->vid_hdr_aloffset;
 677        }
 678
 679        /* Similar for the data offset */
 680        ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
 681        ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
 682
 683        dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
 684        dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
 685        dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
 686        dbg_gen("leb_start        %d", ubi->leb_start);
 687
 688        /* The shift must be aligned to 32-bit boundary */
 689        if (ubi->vid_hdr_shift % 4) {
 690                ubi_err(ubi, "unaligned VID header shift %d",
 691                        ubi->vid_hdr_shift);
 692                return -EINVAL;
 693        }
 694
 695        /* Check sanity */
 696        if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
 697            ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
 698            ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
 699            ubi->leb_start & (ubi->min_io_size - 1)) {
 700                ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
 701                        ubi->vid_hdr_offset, ubi->leb_start);
 702                return -EINVAL;
 703        }
 704
 705        /*
 706         * Set maximum amount of physical erroneous eraseblocks to be 10%.
 707         * Erroneous PEB are those which have read errors.
 708         */
 709        ubi->max_erroneous = ubi->peb_count / 10;
 710        if (ubi->max_erroneous < 16)
 711                ubi->max_erroneous = 16;
 712        dbg_gen("max_erroneous    %d", ubi->max_erroneous);
 713
 714        /*
 715         * It may happen that EC and VID headers are situated in one minimal
 716         * I/O unit. In this case we can only accept this UBI image in
 717         * read-only mode.
 718         */
 719        if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
 720                ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
 721                ubi->ro_mode = 1;
 722        }
 723
 724        ubi->leb_size = ubi->peb_size - ubi->leb_start;
 725
 726        if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
 727                ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
 728                        ubi->mtd->index);
 729                ubi->ro_mode = 1;
 730        }
 731
 732        /*
 733         * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
 734         * unfortunately, MTD does not provide this information. We should loop
 735         * over all physical eraseblocks and invoke mtd->block_is_bad() for
 736         * each physical eraseblock. So, we leave @ubi->bad_peb_count
 737         * uninitialized so far.
 738         */
 739
 740        return 0;
 741}
 742
 743/**
 744 * autoresize - re-size the volume which has the "auto-resize" flag set.
 745 * @ubi: UBI device description object
 746 * @vol_id: ID of the volume to re-size
 747 *
 748 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
 749 * the volume table to the largest possible size. See comments in ubi-header.h
 750 * for more description of the flag. Returns zero in case of success and a
 751 * negative error code in case of failure.
 752 */
 753static int autoresize(struct ubi_device *ubi, int vol_id)
 754{
 755        struct ubi_volume_desc desc;
 756        struct ubi_volume *vol = ubi->volumes[vol_id];
 757        int err, old_reserved_pebs = vol->reserved_pebs;
 758
 759        if (ubi->ro_mode) {
 760                ubi_warn(ubi, "skip auto-resize because of R/O mode");
 761                return 0;
 762        }
 763
 764        /*
 765         * Clear the auto-resize flag in the volume in-memory copy of the
 766         * volume table, and 'ubi_resize_volume()' will propagate this change
 767         * to the flash.
 768         */
 769        ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
 770
 771        if (ubi->avail_pebs == 0) {
 772                struct ubi_vtbl_record vtbl_rec;
 773
 774                /*
 775                 * No available PEBs to re-size the volume, clear the flag on
 776                 * flash and exit.
 777                 */
 778                vtbl_rec = ubi->vtbl[vol_id];
 779                err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
 780                if (err)
 781                        ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
 782                                vol_id);
 783        } else {
 784                desc.vol = vol;
 785                err = ubi_resize_volume(&desc,
 786                                        old_reserved_pebs + ubi->avail_pebs);
 787                if (err)
 788                        ubi_err(ubi, "cannot auto-resize volume %d",
 789                                vol_id);
 790        }
 791
 792        if (err)
 793                return err;
 794
 795        ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
 796                vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
 797        return 0;
 798}
 799
 800/**
 801 * ubi_attach_mtd_dev - attach an MTD device.
 802 * @mtd: MTD device description object
 803 * @ubi_num: number to assign to the new UBI device
 804 * @vid_hdr_offset: VID header offset
 805 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 806 *
 807 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
 808 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
 809 * which case this function finds a vacant device number and assigns it
 810 * automatically. Returns the new UBI device number in case of success and a
 811 * negative error code in case of failure.
 812 *
 813 * Note, the invocations of this function has to be serialized by the
 814 * @ubi_devices_mutex.
 815 */
 816int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
 817                       int vid_hdr_offset, int max_beb_per1024)
 818{
 819        struct ubi_device *ubi;
 820        int i, err;
 821
 822        if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
 823                return -EINVAL;
 824
 825        if (!max_beb_per1024)
 826                max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
 827
 828        /*
 829         * Check if we already have the same MTD device attached.
 830         *
 831         * Note, this function assumes that UBI devices creations and deletions
 832         * are serialized, so it does not take the &ubi_devices_lock.
 833         */
 834        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 835                ubi = ubi_devices[i];
 836                if (ubi && mtd->index == ubi->mtd->index) {
 837                        pr_err("ubi: mtd%d is already attached to ubi%d\n",
 838                                mtd->index, i);
 839                        return -EEXIST;
 840                }
 841        }
 842
 843        /*
 844         * Make sure this MTD device is not emulated on top of an UBI volume
 845         * already. Well, generally this recursion works fine, but there are
 846         * different problems like the UBI module takes a reference to itself
 847         * by attaching (and thus, opening) the emulated MTD device. This
 848         * results in inability to unload the module. And in general it makes
 849         * no sense to attach emulated MTD devices, so we prohibit this.
 850         */
 851        if (mtd->type == MTD_UBIVOLUME) {
 852                pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
 853                        mtd->index);
 854                return -EINVAL;
 855        }
 856
 857        /*
 858         * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
 859         * MLC NAND is different and needs special care, otherwise UBI or UBIFS
 860         * will die soon and you will lose all your data.
 861         */
 862        if (mtd->type == MTD_MLCNANDFLASH) {
 863                pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
 864                        mtd->index);
 865                return -EINVAL;
 866        }
 867
 868        if (ubi_num == UBI_DEV_NUM_AUTO) {
 869                /* Search for an empty slot in the @ubi_devices array */
 870                for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
 871                        if (!ubi_devices[ubi_num])
 872                                break;
 873                if (ubi_num == UBI_MAX_DEVICES) {
 874                        pr_err("ubi: only %d UBI devices may be created\n",
 875                                UBI_MAX_DEVICES);
 876                        return -ENFILE;
 877                }
 878        } else {
 879                if (ubi_num >= UBI_MAX_DEVICES)
 880                        return -EINVAL;
 881
 882                /* Make sure ubi_num is not busy */
 883                if (ubi_devices[ubi_num]) {
 884                        pr_err("ubi: ubi%i already exists\n", ubi_num);
 885                        return -EEXIST;
 886                }
 887        }
 888
 889        ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
 890        if (!ubi)
 891                return -ENOMEM;
 892
 893        device_initialize(&ubi->dev);
 894        ubi->dev.release = dev_release;
 895        ubi->dev.class = &ubi_class;
 896        ubi->dev.groups = ubi_dev_groups;
 897
 898        ubi->mtd = mtd;
 899        ubi->ubi_num = ubi_num;
 900        ubi->vid_hdr_offset = vid_hdr_offset;
 901        ubi->autoresize_vol_id = -1;
 902
 903#ifdef CONFIG_MTD_UBI_FASTMAP
 904        ubi->fm_pool.used = ubi->fm_pool.size = 0;
 905        ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
 906
 907        /*
 908         * fm_pool.max_size is 5% of the total number of PEBs but it's also
 909         * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
 910         */
 911        ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
 912                ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
 913        ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
 914                UBI_FM_MIN_POOL_SIZE);
 915
 916        ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
 917        ubi->fm_disabled = !fm_autoconvert;
 918        if (fm_debug)
 919                ubi_enable_dbg_chk_fastmap(ubi);
 920
 921        if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
 922            <= UBI_FM_MAX_START) {
 923                ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
 924                        UBI_FM_MAX_START);
 925                ubi->fm_disabled = 1;
 926        }
 927
 928        ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
 929        ubi_msg(ubi, "default fastmap WL pool size: %d",
 930                ubi->fm_wl_pool.max_size);
 931#else
 932        ubi->fm_disabled = 1;
 933#endif
 934        mutex_init(&ubi->buf_mutex);
 935        mutex_init(&ubi->ckvol_mutex);
 936        mutex_init(&ubi->device_mutex);
 937        spin_lock_init(&ubi->volumes_lock);
 938        init_rwsem(&ubi->fm_protect);
 939        init_rwsem(&ubi->fm_eba_sem);
 940
 941        ubi_msg(ubi, "attaching mtd%d", mtd->index);
 942
 943        err = io_init(ubi, max_beb_per1024);
 944        if (err)
 945                goto out_free;
 946
 947        err = -ENOMEM;
 948        ubi->peb_buf = vmalloc(ubi->peb_size);
 949        if (!ubi->peb_buf)
 950                goto out_free;
 951
 952#ifdef CONFIG_MTD_UBI_FASTMAP
 953        ubi->fm_size = ubi_calc_fm_size(ubi);
 954        ubi->fm_buf = vzalloc(ubi->fm_size);
 955        if (!ubi->fm_buf)
 956                goto out_free;
 957#endif
 958        err = ubi_attach(ubi, 0);
 959        if (err) {
 960                ubi_err(ubi, "failed to attach mtd%d, error %d",
 961                        mtd->index, err);
 962                goto out_free;
 963        }
 964
 965        if (ubi->autoresize_vol_id != -1) {
 966                err = autoresize(ubi, ubi->autoresize_vol_id);
 967                if (err)
 968                        goto out_detach;
 969        }
 970
 971        /* Make device "available" before it becomes accessible via sysfs */
 972        ubi_devices[ubi_num] = ubi;
 973
 974        err = uif_init(ubi);
 975        if (err)
 976                goto out_detach;
 977
 978        err = ubi_debugfs_init_dev(ubi);
 979        if (err)
 980                goto out_uif;
 981
 982        ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
 983        if (IS_ERR(ubi->bgt_thread)) {
 984                err = PTR_ERR(ubi->bgt_thread);
 985                ubi_err(ubi, "cannot spawn \"%s\", error %d",
 986                        ubi->bgt_name, err);
 987                goto out_debugfs;
 988        }
 989
 990        ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
 991                mtd->index, mtd->name, ubi->flash_size >> 20);
 992        ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
 993                ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
 994        ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
 995                ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
 996        ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
 997                ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
 998        ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
 999                ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1000        ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1001                ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1002                ubi->vtbl_slots);
1003        ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1004                ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1005                ubi->image_seq);
1006        ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1007                ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1008
1009        /*
1010         * The below lock makes sure we do not race with 'ubi_thread()' which
1011         * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1012         */
1013        spin_lock(&ubi->wl_lock);
1014        ubi->thread_enabled = 1;
1015        wake_up_process(ubi->bgt_thread);
1016        spin_unlock(&ubi->wl_lock);
1017
1018        ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1019        return ubi_num;
1020
1021out_debugfs:
1022        ubi_debugfs_exit_dev(ubi);
1023out_uif:
1024        uif_close(ubi);
1025out_detach:
1026        ubi_devices[ubi_num] = NULL;
1027        ubi_wl_close(ubi);
1028        ubi_free_internal_volumes(ubi);
1029        vfree(ubi->vtbl);
1030out_free:
1031        vfree(ubi->peb_buf);
1032        vfree(ubi->fm_buf);
1033        put_device(&ubi->dev);
1034        return err;
1035}
1036
1037/**
1038 * ubi_detach_mtd_dev - detach an MTD device.
1039 * @ubi_num: UBI device number to detach from
1040 * @anyway: detach MTD even if device reference count is not zero
1041 *
1042 * This function destroys an UBI device number @ubi_num and detaches the
1043 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1044 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1045 * exist.
1046 *
1047 * Note, the invocations of this function has to be serialized by the
1048 * @ubi_devices_mutex.
1049 */
1050int ubi_detach_mtd_dev(int ubi_num, int anyway)
1051{
1052        struct ubi_device *ubi;
1053
1054        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1055                return -EINVAL;
1056
1057        ubi = ubi_get_device(ubi_num);
1058        if (!ubi)
1059                return -EINVAL;
1060
1061        spin_lock(&ubi_devices_lock);
1062        put_device(&ubi->dev);
1063        ubi->ref_count -= 1;
1064        if (ubi->ref_count) {
1065                if (!anyway) {
1066                        spin_unlock(&ubi_devices_lock);
1067                        return -EBUSY;
1068                }
1069                /* This may only happen if there is a bug */
1070                ubi_err(ubi, "%s reference count %d, destroy anyway",
1071                        ubi->ubi_name, ubi->ref_count);
1072        }
1073        ubi_devices[ubi_num] = NULL;
1074        spin_unlock(&ubi_devices_lock);
1075
1076        ubi_assert(ubi_num == ubi->ubi_num);
1077        ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1078        ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1079#ifdef CONFIG_MTD_UBI_FASTMAP
1080        /* If we don't write a new fastmap at detach time we lose all
1081         * EC updates that have been made since the last written fastmap.
1082         * In case of fastmap debugging we omit the update to simulate an
1083         * unclean shutdown. */
1084        if (!ubi_dbg_chk_fastmap(ubi))
1085                ubi_update_fastmap(ubi);
1086#endif
1087        /*
1088         * Before freeing anything, we have to stop the background thread to
1089         * prevent it from doing anything on this device while we are freeing.
1090         */
1091        if (ubi->bgt_thread)
1092                kthread_stop(ubi->bgt_thread);
1093
1094        ubi_debugfs_exit_dev(ubi);
1095        uif_close(ubi);
1096
1097        ubi_wl_close(ubi);
1098        ubi_free_internal_volumes(ubi);
1099        vfree(ubi->vtbl);
1100        put_mtd_device(ubi->mtd);
1101        vfree(ubi->peb_buf);
1102        vfree(ubi->fm_buf);
1103        ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1104        put_device(&ubi->dev);
1105        return 0;
1106}
1107
1108/**
1109 * open_mtd_by_chdev - open an MTD device by its character device node path.
1110 * @mtd_dev: MTD character device node path
1111 *
1112 * This helper function opens an MTD device by its character node device path.
1113 * Returns MTD device description object in case of success and a negative
1114 * error code in case of failure.
1115 */
1116static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1117{
1118        int err, minor;
1119        struct path path;
1120        struct kstat stat;
1121
1122        /* Probably this is an MTD character device node path */
1123        err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1124        if (err)
1125                return ERR_PTR(err);
1126
1127        err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1128        path_put(&path);
1129        if (err)
1130                return ERR_PTR(err);
1131
1132        /* MTD device number is defined by the major / minor numbers */
1133        if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1134                return ERR_PTR(-EINVAL);
1135
1136        minor = MINOR(stat.rdev);
1137
1138        if (minor & 1)
1139                /*
1140                 * Just do not think the "/dev/mtdrX" devices support is need,
1141                 * so do not support them to avoid doing extra work.
1142                 */
1143                return ERR_PTR(-EINVAL);
1144
1145        return get_mtd_device(NULL, minor / 2);
1146}
1147
1148/**
1149 * open_mtd_device - open MTD device by name, character device path, or number.
1150 * @mtd_dev: name, character device node path, or MTD device device number
1151 *
1152 * This function tries to open and MTD device described by @mtd_dev string,
1153 * which is first treated as ASCII MTD device number, and if it is not true, it
1154 * is treated as MTD device name, and if that is also not true, it is treated
1155 * as MTD character device node path. Returns MTD device description object in
1156 * case of success and a negative error code in case of failure.
1157 */
1158static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1159{
1160        struct mtd_info *mtd;
1161        int mtd_num;
1162        char *endp;
1163
1164        mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1165        if (*endp != '\0' || mtd_dev == endp) {
1166                /*
1167                 * This does not look like an ASCII integer, probably this is
1168                 * MTD device name.
1169                 */
1170                mtd = get_mtd_device_nm(mtd_dev);
1171                if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1172                        /* Probably this is an MTD character device node path */
1173                        mtd = open_mtd_by_chdev(mtd_dev);
1174        } else
1175                mtd = get_mtd_device(NULL, mtd_num);
1176
1177        return mtd;
1178}
1179
1180static int __init ubi_init(void)
1181{
1182        int err, i, k;
1183
1184        /* Ensure that EC and VID headers have correct size */
1185        BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1186        BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1187
1188        if (mtd_devs > UBI_MAX_DEVICES) {
1189                pr_err("UBI error: too many MTD devices, maximum is %d\n",
1190                       UBI_MAX_DEVICES);
1191                return -EINVAL;
1192        }
1193
1194        /* Create base sysfs directory and sysfs files */
1195        err = class_register(&ubi_class);
1196        if (err < 0)
1197                return err;
1198
1199        err = misc_register(&ubi_ctrl_cdev);
1200        if (err) {
1201                pr_err("UBI error: cannot register device\n");
1202                goto out;
1203        }
1204
1205        ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1206                                              sizeof(struct ubi_wl_entry),
1207                                              0, 0, NULL);
1208        if (!ubi_wl_entry_slab) {
1209                err = -ENOMEM;
1210                goto out_dev_unreg;
1211        }
1212
1213        err = ubi_debugfs_init();
1214        if (err)
1215                goto out_slab;
1216
1217
1218        /* Attach MTD devices */
1219        for (i = 0; i < mtd_devs; i++) {
1220                struct mtd_dev_param *p = &mtd_dev_param[i];
1221                struct mtd_info *mtd;
1222
1223                cond_resched();
1224
1225                mtd = open_mtd_device(p->name);
1226                if (IS_ERR(mtd)) {
1227                        err = PTR_ERR(mtd);
1228                        pr_err("UBI error: cannot open mtd %s, error %d\n",
1229                               p->name, err);
1230                        /* See comment below re-ubi_is_module(). */
1231                        if (ubi_is_module())
1232                                goto out_detach;
1233                        continue;
1234                }
1235
1236                mutex_lock(&ubi_devices_mutex);
1237                err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1238                                         p->vid_hdr_offs, p->max_beb_per1024);
1239                mutex_unlock(&ubi_devices_mutex);
1240                if (err < 0) {
1241                        pr_err("UBI error: cannot attach mtd%d\n",
1242                               mtd->index);
1243                        put_mtd_device(mtd);
1244
1245                        /*
1246                         * Originally UBI stopped initializing on any error.
1247                         * However, later on it was found out that this
1248                         * behavior is not very good when UBI is compiled into
1249                         * the kernel and the MTD devices to attach are passed
1250                         * through the command line. Indeed, UBI failure
1251                         * stopped whole boot sequence.
1252                         *
1253                         * To fix this, we changed the behavior for the
1254                         * non-module case, but preserved the old behavior for
1255                         * the module case, just for compatibility. This is a
1256                         * little inconsistent, though.
1257                         */
1258                        if (ubi_is_module())
1259                                goto out_detach;
1260                }
1261        }
1262
1263        err = ubiblock_init();
1264        if (err) {
1265                pr_err("UBI error: block: cannot initialize, error %d\n", err);
1266
1267                /* See comment above re-ubi_is_module(). */
1268                if (ubi_is_module())
1269                        goto out_detach;
1270        }
1271
1272        return 0;
1273
1274out_detach:
1275        for (k = 0; k < i; k++)
1276                if (ubi_devices[k]) {
1277                        mutex_lock(&ubi_devices_mutex);
1278                        ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1279                        mutex_unlock(&ubi_devices_mutex);
1280                }
1281        ubi_debugfs_exit();
1282out_slab:
1283        kmem_cache_destroy(ubi_wl_entry_slab);
1284out_dev_unreg:
1285        misc_deregister(&ubi_ctrl_cdev);
1286out:
1287        class_unregister(&ubi_class);
1288        pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1289        return err;
1290}
1291late_initcall(ubi_init);
1292
1293static void __exit ubi_exit(void)
1294{
1295        int i;
1296
1297        ubiblock_exit();
1298
1299        for (i = 0; i < UBI_MAX_DEVICES; i++)
1300                if (ubi_devices[i]) {
1301                        mutex_lock(&ubi_devices_mutex);
1302                        ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1303                        mutex_unlock(&ubi_devices_mutex);
1304                }
1305        ubi_debugfs_exit();
1306        kmem_cache_destroy(ubi_wl_entry_slab);
1307        misc_deregister(&ubi_ctrl_cdev);
1308        class_unregister(&ubi_class);
1309}
1310module_exit(ubi_exit);
1311
1312/**
1313 * bytes_str_to_int - convert a number of bytes string into an integer.
1314 * @str: the string to convert
1315 *
1316 * This function returns positive resulting integer in case of success and a
1317 * negative error code in case of failure.
1318 */
1319static int bytes_str_to_int(const char *str)
1320{
1321        char *endp;
1322        unsigned long result;
1323
1324        result = simple_strtoul(str, &endp, 0);
1325        if (str == endp || result >= INT_MAX) {
1326                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1327                return -EINVAL;
1328        }
1329
1330        switch (*endp) {
1331        case 'G':
1332                result *= 1024;
1333        case 'M':
1334                result *= 1024;
1335        case 'K':
1336                result *= 1024;
1337                if (endp[1] == 'i' && endp[2] == 'B')
1338                        endp += 2;
1339        case '\0':
1340                break;
1341        default:
1342                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1343                return -EINVAL;
1344        }
1345
1346        return result;
1347}
1348
1349/**
1350 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1351 * @val: the parameter value to parse
1352 * @kp: not used
1353 *
1354 * This function returns zero in case of success and a negative error code in
1355 * case of error.
1356 */
1357static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1358{
1359        int i, len;
1360        struct mtd_dev_param *p;
1361        char buf[MTD_PARAM_LEN_MAX];
1362        char *pbuf = &buf[0];
1363        char *tokens[MTD_PARAM_MAX_COUNT], *token;
1364
1365        if (!val)
1366                return -EINVAL;
1367
1368        if (mtd_devs == UBI_MAX_DEVICES) {
1369                pr_err("UBI error: too many parameters, max. is %d\n",
1370                       UBI_MAX_DEVICES);
1371                return -EINVAL;
1372        }
1373
1374        len = strnlen(val, MTD_PARAM_LEN_MAX);
1375        if (len == MTD_PARAM_LEN_MAX) {
1376                pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1377                       val, MTD_PARAM_LEN_MAX);
1378                return -EINVAL;
1379        }
1380
1381        if (len == 0) {
1382                pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1383                return 0;
1384        }
1385
1386        strcpy(buf, val);
1387
1388        /* Get rid of the final newline */
1389        if (buf[len - 1] == '\n')
1390                buf[len - 1] = '\0';
1391
1392        for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1393                tokens[i] = strsep(&pbuf, ",");
1394
1395        if (pbuf) {
1396                pr_err("UBI error: too many arguments at \"%s\"\n", val);
1397                return -EINVAL;
1398        }
1399
1400        p = &mtd_dev_param[mtd_devs];
1401        strcpy(&p->name[0], tokens[0]);
1402
1403        token = tokens[1];
1404        if (token) {
1405                p->vid_hdr_offs = bytes_str_to_int(token);
1406
1407                if (p->vid_hdr_offs < 0)
1408                        return p->vid_hdr_offs;
1409        }
1410
1411        token = tokens[2];
1412        if (token) {
1413                int err = kstrtoint(token, 10, &p->max_beb_per1024);
1414
1415                if (err) {
1416                        pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1417                               token);
1418                        return -EINVAL;
1419                }
1420        }
1421
1422        token = tokens[3];
1423        if (token) {
1424                int err = kstrtoint(token, 10, &p->ubi_num);
1425
1426                if (err) {
1427                        pr_err("UBI error: bad value for ubi_num parameter: %s",
1428                               token);
1429                        return -EINVAL;
1430                }
1431        } else
1432                p->ubi_num = UBI_DEV_NUM_AUTO;
1433
1434        mtd_devs += 1;
1435        return 0;
1436}
1437
1438module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1439MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1440                      "Multiple \"mtd\" parameters may be specified.\n"
1441                      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1442                      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1443                      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1444                      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1445                      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1446                      "\n"
1447                      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1448                      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1449                      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1450                      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1451                      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1452#ifdef CONFIG_MTD_UBI_FASTMAP
1453module_param(fm_autoconvert, bool, 0644);
1454MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1455module_param(fm_debug, bool, 0);
1456MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1457#endif
1458MODULE_VERSION(__stringify(UBI_VERSION));
1459MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1460MODULE_AUTHOR("Artem Bityutskiy");
1461MODULE_LICENSE("GPL");
1462