linux/drivers/net/ethernet/atheros/alx/main.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
   3 *
   4 *  This file is free software: you may copy, redistribute and/or modify it
   5 *  under the terms of the GNU General Public License as published by the
   6 *  Free Software Foundation, either version 2 of the License, or (at your
   7 *  option) any later version.
   8 *
   9 *  This file is distributed in the hope that it will be useful, but
  10 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 *  General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * This file incorporates work covered by the following copyright and
  18 * permission notice:
  19 *
  20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
  21 *
  22 * Permission to use, copy, modify, and/or distribute this software for any
  23 * purpose with or without fee is hereby granted, provided that the above
  24 * copyright notice and this permission notice appear in all copies.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/pci.h>
  37#include <linux/interrupt.h>
  38#include <linux/ip.h>
  39#include <linux/ipv6.h>
  40#include <linux/if_vlan.h>
  41#include <linux/mdio.h>
  42#include <linux/aer.h>
  43#include <linux/bitops.h>
  44#include <linux/netdevice.h>
  45#include <linux/etherdevice.h>
  46#include <net/ip6_checksum.h>
  47#include <linux/crc32.h>
  48#include "alx.h"
  49#include "hw.h"
  50#include "reg.h"
  51
  52const char alx_drv_name[] = "alx";
  53
  54static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
  55{
  56        struct alx_buffer *txb = &txq->bufs[entry];
  57
  58        if (dma_unmap_len(txb, size)) {
  59                dma_unmap_single(txq->dev,
  60                                 dma_unmap_addr(txb, dma),
  61                                 dma_unmap_len(txb, size),
  62                                 DMA_TO_DEVICE);
  63                dma_unmap_len_set(txb, size, 0);
  64        }
  65
  66        if (txb->skb) {
  67                dev_kfree_skb_any(txb->skb);
  68                txb->skb = NULL;
  69        }
  70}
  71
  72static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
  73{
  74        struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
  75        struct sk_buff *skb;
  76        struct alx_buffer *cur_buf;
  77        dma_addr_t dma;
  78        u16 cur, next, count = 0;
  79
  80        next = cur = rxq->write_idx;
  81        if (++next == alx->rx_ringsz)
  82                next = 0;
  83        cur_buf = &rxq->bufs[cur];
  84
  85        while (!cur_buf->skb && next != rxq->read_idx) {
  86                struct alx_rfd *rfd = &rxq->rfd[cur];
  87
  88                /*
  89                 * When DMA RX address is set to something like
  90                 * 0x....fc0, it will be very likely to cause DMA
  91                 * RFD overflow issue.
  92                 *
  93                 * To work around it, we apply rx skb with 64 bytes
  94                 * longer space, and offset the address whenever
  95                 * 0x....fc0 is detected.
  96                 */
  97                skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
  98                if (!skb)
  99                        break;
 100
 101                if (((unsigned long)skb->data & 0xfff) == 0xfc0)
 102                        skb_reserve(skb, 64);
 103
 104                dma = dma_map_single(&alx->hw.pdev->dev,
 105                                     skb->data, alx->rxbuf_size,
 106                                     DMA_FROM_DEVICE);
 107                if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
 108                        dev_kfree_skb(skb);
 109                        break;
 110                }
 111
 112                /* Unfortunately, RX descriptor buffers must be 4-byte
 113                 * aligned, so we can't use IP alignment.
 114                 */
 115                if (WARN_ON(dma & 3)) {
 116                        dev_kfree_skb(skb);
 117                        break;
 118                }
 119
 120                cur_buf->skb = skb;
 121                dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
 122                dma_unmap_addr_set(cur_buf, dma, dma);
 123                rfd->addr = cpu_to_le64(dma);
 124
 125                cur = next;
 126                if (++next == alx->rx_ringsz)
 127                        next = 0;
 128                cur_buf = &rxq->bufs[cur];
 129                count++;
 130        }
 131
 132        if (count) {
 133                /* flush all updates before updating hardware */
 134                wmb();
 135                rxq->write_idx = cur;
 136                alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
 137        }
 138
 139        return count;
 140}
 141
 142static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
 143                                                 struct sk_buff *skb)
 144{
 145        unsigned int r_idx = skb->queue_mapping;
 146
 147        if (r_idx >= alx->num_txq)
 148                r_idx = r_idx % alx->num_txq;
 149
 150        return alx->qnapi[r_idx]->txq;
 151}
 152
 153static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
 154{
 155        return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
 156}
 157
 158static inline int alx_tpd_avail(struct alx_tx_queue *txq)
 159{
 160        if (txq->write_idx >= txq->read_idx)
 161                return txq->count + txq->read_idx - txq->write_idx - 1;
 162        return txq->read_idx - txq->write_idx - 1;
 163}
 164
 165static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
 166{
 167        struct alx_priv *alx;
 168        struct netdev_queue *tx_queue;
 169        u16 hw_read_idx, sw_read_idx;
 170        unsigned int total_bytes = 0, total_packets = 0;
 171        int budget = ALX_DEFAULT_TX_WORK;
 172
 173        alx = netdev_priv(txq->netdev);
 174        tx_queue = alx_get_tx_queue(txq);
 175
 176        sw_read_idx = txq->read_idx;
 177        hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
 178
 179        if (sw_read_idx != hw_read_idx) {
 180                while (sw_read_idx != hw_read_idx && budget > 0) {
 181                        struct sk_buff *skb;
 182
 183                        skb = txq->bufs[sw_read_idx].skb;
 184                        if (skb) {
 185                                total_bytes += skb->len;
 186                                total_packets++;
 187                                budget--;
 188                        }
 189
 190                        alx_free_txbuf(txq, sw_read_idx);
 191
 192                        if (++sw_read_idx == txq->count)
 193                                sw_read_idx = 0;
 194                }
 195                txq->read_idx = sw_read_idx;
 196
 197                netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
 198        }
 199
 200        if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
 201            alx_tpd_avail(txq) > txq->count / 4)
 202                netif_tx_wake_queue(tx_queue);
 203
 204        return sw_read_idx == hw_read_idx;
 205}
 206
 207static void alx_schedule_link_check(struct alx_priv *alx)
 208{
 209        schedule_work(&alx->link_check_wk);
 210}
 211
 212static void alx_schedule_reset(struct alx_priv *alx)
 213{
 214        schedule_work(&alx->reset_wk);
 215}
 216
 217static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
 218{
 219        struct alx_priv *alx;
 220        struct alx_rrd *rrd;
 221        struct alx_buffer *rxb;
 222        struct sk_buff *skb;
 223        u16 length, rfd_cleaned = 0;
 224        int work = 0;
 225
 226        alx = netdev_priv(rxq->netdev);
 227
 228        while (work < budget) {
 229                rrd = &rxq->rrd[rxq->rrd_read_idx];
 230                if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
 231                        break;
 232                rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
 233
 234                if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 235                                  RRD_SI) != rxq->read_idx ||
 236                    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 237                                  RRD_NOR) != 1) {
 238                        alx_schedule_reset(alx);
 239                        return work;
 240                }
 241
 242                rxb = &rxq->bufs[rxq->read_idx];
 243                dma_unmap_single(rxq->dev,
 244                                 dma_unmap_addr(rxb, dma),
 245                                 dma_unmap_len(rxb, size),
 246                                 DMA_FROM_DEVICE);
 247                dma_unmap_len_set(rxb, size, 0);
 248                skb = rxb->skb;
 249                rxb->skb = NULL;
 250
 251                if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
 252                    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
 253                        rrd->word3 = 0;
 254                        dev_kfree_skb_any(skb);
 255                        goto next_pkt;
 256                }
 257
 258                length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
 259                                       RRD_PKTLEN) - ETH_FCS_LEN;
 260                skb_put(skb, length);
 261                skb->protocol = eth_type_trans(skb, rxq->netdev);
 262
 263                skb_checksum_none_assert(skb);
 264                if (alx->dev->features & NETIF_F_RXCSUM &&
 265                    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
 266                                    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
 267                        switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
 268                                              RRD_PID)) {
 269                        case RRD_PID_IPV6UDP:
 270                        case RRD_PID_IPV4UDP:
 271                        case RRD_PID_IPV4TCP:
 272                        case RRD_PID_IPV6TCP:
 273                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 274                                break;
 275                        }
 276                }
 277
 278                napi_gro_receive(&rxq->np->napi, skb);
 279                work++;
 280
 281next_pkt:
 282                if (++rxq->read_idx == rxq->count)
 283                        rxq->read_idx = 0;
 284                if (++rxq->rrd_read_idx == rxq->count)
 285                        rxq->rrd_read_idx = 0;
 286
 287                if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
 288                        rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
 289        }
 290
 291        if (rfd_cleaned)
 292                alx_refill_rx_ring(alx, GFP_ATOMIC);
 293
 294        return work;
 295}
 296
 297static int alx_poll(struct napi_struct *napi, int budget)
 298{
 299        struct alx_napi *np = container_of(napi, struct alx_napi, napi);
 300        struct alx_priv *alx = np->alx;
 301        struct alx_hw *hw = &alx->hw;
 302        unsigned long flags;
 303        bool tx_complete = true;
 304        int work = 0;
 305
 306        if (np->txq)
 307                tx_complete = alx_clean_tx_irq(np->txq);
 308        if (np->rxq)
 309                work = alx_clean_rx_irq(np->rxq, budget);
 310
 311        if (!tx_complete || work == budget)
 312                return budget;
 313
 314        napi_complete_done(&np->napi, work);
 315
 316        /* enable interrupt */
 317        if (alx->hw.pdev->msix_enabled) {
 318                alx_mask_msix(hw, np->vec_idx, false);
 319        } else {
 320                spin_lock_irqsave(&alx->irq_lock, flags);
 321                alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
 322                alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 323                spin_unlock_irqrestore(&alx->irq_lock, flags);
 324        }
 325
 326        alx_post_write(hw);
 327
 328        return work;
 329}
 330
 331static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
 332{
 333        struct alx_hw *hw = &alx->hw;
 334
 335        if (intr & ALX_ISR_FATAL) {
 336                netif_warn(alx, hw, alx->dev,
 337                           "fatal interrupt 0x%x, resetting\n", intr);
 338                alx_schedule_reset(alx);
 339                return true;
 340        }
 341
 342        if (intr & ALX_ISR_ALERT)
 343                netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
 344
 345        if (intr & ALX_ISR_PHY) {
 346                /* suppress PHY interrupt, because the source
 347                 * is from PHY internal. only the internal status
 348                 * is cleared, the interrupt status could be cleared.
 349                 */
 350                alx->int_mask &= ~ALX_ISR_PHY;
 351                alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 352                alx_schedule_link_check(alx);
 353        }
 354
 355        return false;
 356}
 357
 358static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
 359{
 360        struct alx_hw *hw = &alx->hw;
 361
 362        spin_lock(&alx->irq_lock);
 363
 364        /* ACK interrupt */
 365        alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
 366        intr &= alx->int_mask;
 367
 368        if (alx_intr_handle_misc(alx, intr))
 369                goto out;
 370
 371        if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
 372                napi_schedule(&alx->qnapi[0]->napi);
 373                /* mask rx/tx interrupt, enable them when napi complete */
 374                alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 375                alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 376        }
 377
 378        alx_write_mem32(hw, ALX_ISR, 0);
 379
 380 out:
 381        spin_unlock(&alx->irq_lock);
 382        return IRQ_HANDLED;
 383}
 384
 385static irqreturn_t alx_intr_msix_ring(int irq, void *data)
 386{
 387        struct alx_napi *np = data;
 388        struct alx_hw *hw = &np->alx->hw;
 389
 390        /* mask interrupt to ACK chip */
 391        alx_mask_msix(hw, np->vec_idx, true);
 392        /* clear interrupt status */
 393        alx_write_mem32(hw, ALX_ISR, np->vec_mask);
 394
 395        napi_schedule(&np->napi);
 396
 397        return IRQ_HANDLED;
 398}
 399
 400static irqreturn_t alx_intr_msix_misc(int irq, void *data)
 401{
 402        struct alx_priv *alx = data;
 403        struct alx_hw *hw = &alx->hw;
 404        u32 intr;
 405
 406        /* mask interrupt to ACK chip */
 407        alx_mask_msix(hw, 0, true);
 408
 409        /* read interrupt status */
 410        intr = alx_read_mem32(hw, ALX_ISR);
 411        intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
 412
 413        if (alx_intr_handle_misc(alx, intr))
 414                return IRQ_HANDLED;
 415
 416        /* clear interrupt status */
 417        alx_write_mem32(hw, ALX_ISR, intr);
 418
 419        /* enable interrupt again */
 420        alx_mask_msix(hw, 0, false);
 421
 422        return IRQ_HANDLED;
 423}
 424
 425static irqreturn_t alx_intr_msi(int irq, void *data)
 426{
 427        struct alx_priv *alx = data;
 428
 429        return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
 430}
 431
 432static irqreturn_t alx_intr_legacy(int irq, void *data)
 433{
 434        struct alx_priv *alx = data;
 435        struct alx_hw *hw = &alx->hw;
 436        u32 intr;
 437
 438        intr = alx_read_mem32(hw, ALX_ISR);
 439
 440        if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
 441                return IRQ_NONE;
 442
 443        return alx_intr_handle(alx, intr);
 444}
 445
 446static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
 447                                        ALX_TPD_PRI1_ADDR_LO,
 448                                        ALX_TPD_PRI2_ADDR_LO,
 449                                        ALX_TPD_PRI3_ADDR_LO};
 450
 451static void alx_init_ring_ptrs(struct alx_priv *alx)
 452{
 453        struct alx_hw *hw = &alx->hw;
 454        u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
 455        struct alx_napi *np;
 456        int i;
 457
 458        for (i = 0; i < alx->num_napi; i++) {
 459                np = alx->qnapi[i];
 460                if (np->txq) {
 461                        np->txq->read_idx = 0;
 462                        np->txq->write_idx = 0;
 463                        alx_write_mem32(hw,
 464                                        txring_header_reg[np->txq->queue_idx],
 465                                        np->txq->tpd_dma);
 466                }
 467
 468                if (np->rxq) {
 469                        np->rxq->read_idx = 0;
 470                        np->rxq->write_idx = 0;
 471                        np->rxq->rrd_read_idx = 0;
 472                        alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
 473                        alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
 474                }
 475        }
 476
 477        alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
 478        alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
 479
 480        alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
 481        alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
 482        alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
 483        alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
 484
 485        /* load these pointers into the chip */
 486        alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
 487}
 488
 489static void alx_free_txring_buf(struct alx_tx_queue *txq)
 490{
 491        int i;
 492
 493        if (!txq->bufs)
 494                return;
 495
 496        for (i = 0; i < txq->count; i++)
 497                alx_free_txbuf(txq, i);
 498
 499        memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
 500        memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
 501        txq->write_idx = 0;
 502        txq->read_idx = 0;
 503
 504        netdev_tx_reset_queue(alx_get_tx_queue(txq));
 505}
 506
 507static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
 508{
 509        struct alx_buffer *cur_buf;
 510        u16 i;
 511
 512        if (!rxq->bufs)
 513                return;
 514
 515        for (i = 0; i < rxq->count; i++) {
 516                cur_buf = rxq->bufs + i;
 517                if (cur_buf->skb) {
 518                        dma_unmap_single(rxq->dev,
 519                                         dma_unmap_addr(cur_buf, dma),
 520                                         dma_unmap_len(cur_buf, size),
 521                                         DMA_FROM_DEVICE);
 522                        dev_kfree_skb(cur_buf->skb);
 523                        cur_buf->skb = NULL;
 524                        dma_unmap_len_set(cur_buf, size, 0);
 525                        dma_unmap_addr_set(cur_buf, dma, 0);
 526                }
 527        }
 528
 529        rxq->write_idx = 0;
 530        rxq->read_idx = 0;
 531        rxq->rrd_read_idx = 0;
 532}
 533
 534static void alx_free_buffers(struct alx_priv *alx)
 535{
 536        int i;
 537
 538        for (i = 0; i < alx->num_txq; i++)
 539                if (alx->qnapi[i] && alx->qnapi[i]->txq)
 540                        alx_free_txring_buf(alx->qnapi[i]->txq);
 541
 542        if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 543                alx_free_rxring_buf(alx->qnapi[0]->rxq);
 544}
 545
 546static int alx_reinit_rings(struct alx_priv *alx)
 547{
 548        alx_free_buffers(alx);
 549
 550        alx_init_ring_ptrs(alx);
 551
 552        if (!alx_refill_rx_ring(alx, GFP_KERNEL))
 553                return -ENOMEM;
 554
 555        return 0;
 556}
 557
 558static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
 559{
 560        u32 crc32, bit, reg;
 561
 562        crc32 = ether_crc(ETH_ALEN, addr);
 563        reg = (crc32 >> 31) & 0x1;
 564        bit = (crc32 >> 26) & 0x1F;
 565
 566        mc_hash[reg] |= BIT(bit);
 567}
 568
 569static void __alx_set_rx_mode(struct net_device *netdev)
 570{
 571        struct alx_priv *alx = netdev_priv(netdev);
 572        struct alx_hw *hw = &alx->hw;
 573        struct netdev_hw_addr *ha;
 574        u32 mc_hash[2] = {};
 575
 576        if (!(netdev->flags & IFF_ALLMULTI)) {
 577                netdev_for_each_mc_addr(ha, netdev)
 578                        alx_add_mc_addr(hw, ha->addr, mc_hash);
 579
 580                alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
 581                alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
 582        }
 583
 584        hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
 585        if (netdev->flags & IFF_PROMISC)
 586                hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
 587        if (netdev->flags & IFF_ALLMULTI)
 588                hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
 589
 590        alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
 591}
 592
 593static void alx_set_rx_mode(struct net_device *netdev)
 594{
 595        __alx_set_rx_mode(netdev);
 596}
 597
 598static int alx_set_mac_address(struct net_device *netdev, void *data)
 599{
 600        struct alx_priv *alx = netdev_priv(netdev);
 601        struct alx_hw *hw = &alx->hw;
 602        struct sockaddr *addr = data;
 603
 604        if (!is_valid_ether_addr(addr->sa_data))
 605                return -EADDRNOTAVAIL;
 606
 607        if (netdev->addr_assign_type & NET_ADDR_RANDOM)
 608                netdev->addr_assign_type ^= NET_ADDR_RANDOM;
 609
 610        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 611        memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
 612        alx_set_macaddr(hw, hw->mac_addr);
 613
 614        return 0;
 615}
 616
 617static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
 618                             int offset)
 619{
 620        txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 621        if (!txq->bufs)
 622                return -ENOMEM;
 623
 624        txq->tpd = alx->descmem.virt + offset;
 625        txq->tpd_dma = alx->descmem.dma + offset;
 626        offset += sizeof(struct alx_txd) * txq->count;
 627
 628        return offset;
 629}
 630
 631static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
 632                             int offset)
 633{
 634        rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 635        if (!rxq->bufs)
 636                return -ENOMEM;
 637
 638        rxq->rrd = alx->descmem.virt + offset;
 639        rxq->rrd_dma = alx->descmem.dma + offset;
 640        offset += sizeof(struct alx_rrd) * rxq->count;
 641
 642        rxq->rfd = alx->descmem.virt + offset;
 643        rxq->rfd_dma = alx->descmem.dma + offset;
 644        offset += sizeof(struct alx_rfd) * rxq->count;
 645
 646        return offset;
 647}
 648
 649static int alx_alloc_rings(struct alx_priv *alx)
 650{
 651        int i, offset = 0;
 652
 653        /* physical tx/rx ring descriptors
 654         *
 655         * Allocate them as a single chunk because they must not cross a
 656         * 4G boundary (hardware has a single register for high 32 bits
 657         * of addresses only)
 658         */
 659        alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
 660                            alx->num_txq +
 661                            sizeof(struct alx_rrd) * alx->rx_ringsz +
 662                            sizeof(struct alx_rfd) * alx->rx_ringsz;
 663        alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
 664                                                alx->descmem.size,
 665                                                &alx->descmem.dma,
 666                                                GFP_KERNEL);
 667        if (!alx->descmem.virt)
 668                return -ENOMEM;
 669
 670        /* alignment requirements */
 671        BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
 672        BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
 673
 674        for (i = 0; i < alx->num_txq; i++) {
 675                offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
 676                if (offset < 0) {
 677                        netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
 678                        return -ENOMEM;
 679                }
 680        }
 681
 682        offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
 683        if (offset < 0) {
 684                netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
 685                return -ENOMEM;
 686        }
 687
 688        return 0;
 689}
 690
 691static void alx_free_rings(struct alx_priv *alx)
 692{
 693        int i;
 694
 695        alx_free_buffers(alx);
 696
 697        for (i = 0; i < alx->num_txq; i++)
 698                if (alx->qnapi[i] && alx->qnapi[i]->txq)
 699                        kfree(alx->qnapi[i]->txq->bufs);
 700
 701        if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 702                kfree(alx->qnapi[0]->rxq->bufs);
 703
 704        if (alx->descmem.virt)
 705                dma_free_coherent(&alx->hw.pdev->dev,
 706                                  alx->descmem.size,
 707                                  alx->descmem.virt,
 708                                  alx->descmem.dma);
 709}
 710
 711static void alx_free_napis(struct alx_priv *alx)
 712{
 713        struct alx_napi *np;
 714        int i;
 715
 716        for (i = 0; i < alx->num_napi; i++) {
 717                np = alx->qnapi[i];
 718                if (!np)
 719                        continue;
 720
 721                netif_napi_del(&np->napi);
 722                kfree(np->txq);
 723                kfree(np->rxq);
 724                kfree(np);
 725                alx->qnapi[i] = NULL;
 726        }
 727}
 728
 729static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
 730                                  ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
 731static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
 732                                  ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
 733static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
 734                                   ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
 735static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
 736                                   ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
 737                                   ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
 738                                   ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
 739
 740static int alx_alloc_napis(struct alx_priv *alx)
 741{
 742        struct alx_napi *np;
 743        struct alx_rx_queue *rxq;
 744        struct alx_tx_queue *txq;
 745        int i;
 746
 747        alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 748
 749        /* allocate alx_napi structures */
 750        for (i = 0; i < alx->num_napi; i++) {
 751                np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
 752                if (!np)
 753                        goto err_out;
 754
 755                np->alx = alx;
 756                netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
 757                alx->qnapi[i] = np;
 758        }
 759
 760        /* allocate tx queues */
 761        for (i = 0; i < alx->num_txq; i++) {
 762                np = alx->qnapi[i];
 763                txq = kzalloc(sizeof(*txq), GFP_KERNEL);
 764                if (!txq)
 765                        goto err_out;
 766
 767                np->txq = txq;
 768                txq->p_reg = tx_pidx_reg[i];
 769                txq->c_reg = tx_cidx_reg[i];
 770                txq->queue_idx = i;
 771                txq->count = alx->tx_ringsz;
 772                txq->netdev = alx->dev;
 773                txq->dev = &alx->hw.pdev->dev;
 774                np->vec_mask |= tx_vect_mask[i];
 775                alx->int_mask |= tx_vect_mask[i];
 776        }
 777
 778        /* allocate rx queues */
 779        np = alx->qnapi[0];
 780        rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
 781        if (!rxq)
 782                goto err_out;
 783
 784        np->rxq = rxq;
 785        rxq->np = alx->qnapi[0];
 786        rxq->queue_idx = 0;
 787        rxq->count = alx->rx_ringsz;
 788        rxq->netdev = alx->dev;
 789        rxq->dev = &alx->hw.pdev->dev;
 790        np->vec_mask |= rx_vect_mask[0];
 791        alx->int_mask |= rx_vect_mask[0];
 792
 793        return 0;
 794
 795err_out:
 796        netdev_err(alx->dev, "error allocating internal structures\n");
 797        alx_free_napis(alx);
 798        return -ENOMEM;
 799}
 800
 801static const int txq_vec_mapping_shift[] = {
 802        0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
 803        0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
 804        1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
 805        1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
 806};
 807
 808static void alx_config_vector_mapping(struct alx_priv *alx)
 809{
 810        struct alx_hw *hw = &alx->hw;
 811        u32 tbl[2] = {0, 0};
 812        int i, vector, idx, shift;
 813
 814        if (alx->hw.pdev->msix_enabled) {
 815                /* tx mappings */
 816                for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
 817                        idx = txq_vec_mapping_shift[i * 2];
 818                        shift = txq_vec_mapping_shift[i * 2 + 1];
 819                        tbl[idx] |= vector << shift;
 820                }
 821
 822                /* rx mapping */
 823                tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
 824        }
 825
 826        alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
 827        alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
 828        alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
 829}
 830
 831static int alx_enable_msix(struct alx_priv *alx)
 832{
 833        int err, num_vec, num_txq, num_rxq;
 834
 835        num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
 836        num_rxq = 1;
 837        num_vec = max_t(int, num_txq, num_rxq) + 1;
 838
 839        err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
 840                        PCI_IRQ_MSIX);
 841        if (err < 0) {
 842                netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
 843                return err;
 844        }
 845
 846        alx->num_vec = num_vec;
 847        alx->num_napi = num_vec - 1;
 848        alx->num_txq = num_txq;
 849        alx->num_rxq = num_rxq;
 850
 851        return err;
 852}
 853
 854static int alx_request_msix(struct alx_priv *alx)
 855{
 856        struct net_device *netdev = alx->dev;
 857        int i, err, vector = 0, free_vector = 0;
 858
 859        err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
 860                          0, netdev->name, alx);
 861        if (err)
 862                goto out_err;
 863
 864        for (i = 0; i < alx->num_napi; i++) {
 865                struct alx_napi *np = alx->qnapi[i];
 866
 867                vector++;
 868
 869                if (np->txq && np->rxq)
 870                        sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
 871                                np->txq->queue_idx);
 872                else if (np->txq)
 873                        sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
 874                                np->txq->queue_idx);
 875                else if (np->rxq)
 876                        sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
 877                                np->rxq->queue_idx);
 878                else
 879                        sprintf(np->irq_lbl, "%s-unused", netdev->name);
 880
 881                np->vec_idx = vector;
 882                err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
 883                                  alx_intr_msix_ring, 0, np->irq_lbl, np);
 884                if (err)
 885                        goto out_free;
 886        }
 887        return 0;
 888
 889out_free:
 890        free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
 891
 892        vector--;
 893        for (i = 0; i < vector; i++)
 894                free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
 895                         alx->qnapi[i]);
 896
 897out_err:
 898        return err;
 899}
 900
 901static int alx_init_intr(struct alx_priv *alx)
 902{
 903        int ret;
 904
 905        ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
 906                        PCI_IRQ_MSI | PCI_IRQ_LEGACY);
 907        if (ret < 0)
 908                return ret;
 909
 910        alx->num_vec = 1;
 911        alx->num_napi = 1;
 912        alx->num_txq = 1;
 913        alx->num_rxq = 1;
 914        return 0;
 915}
 916
 917static void alx_irq_enable(struct alx_priv *alx)
 918{
 919        struct alx_hw *hw = &alx->hw;
 920        int i;
 921
 922        /* level-1 interrupt switch */
 923        alx_write_mem32(hw, ALX_ISR, 0);
 924        alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 925        alx_post_write(hw);
 926
 927        if (alx->hw.pdev->msix_enabled) {
 928                /* enable all msix irqs */
 929                for (i = 0; i < alx->num_vec; i++)
 930                        alx_mask_msix(hw, i, false);
 931        }
 932}
 933
 934static void alx_irq_disable(struct alx_priv *alx)
 935{
 936        struct alx_hw *hw = &alx->hw;
 937        int i;
 938
 939        alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
 940        alx_write_mem32(hw, ALX_IMR, 0);
 941        alx_post_write(hw);
 942
 943        if (alx->hw.pdev->msix_enabled) {
 944                for (i = 0; i < alx->num_vec; i++) {
 945                        alx_mask_msix(hw, i, true);
 946                        synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
 947                }
 948        } else {
 949                synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
 950        }
 951}
 952
 953static int alx_realloc_resources(struct alx_priv *alx)
 954{
 955        int err;
 956
 957        alx_free_rings(alx);
 958        alx_free_napis(alx);
 959        pci_free_irq_vectors(alx->hw.pdev);
 960
 961        err = alx_init_intr(alx);
 962        if (err)
 963                return err;
 964
 965        err = alx_alloc_napis(alx);
 966        if (err)
 967                return err;
 968
 969        err = alx_alloc_rings(alx);
 970        if (err)
 971                return err;
 972
 973        return 0;
 974}
 975
 976static int alx_request_irq(struct alx_priv *alx)
 977{
 978        struct pci_dev *pdev = alx->hw.pdev;
 979        struct alx_hw *hw = &alx->hw;
 980        int err;
 981        u32 msi_ctrl;
 982
 983        msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
 984
 985        if (alx->hw.pdev->msix_enabled) {
 986                alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
 987                err = alx_request_msix(alx);
 988                if (!err)
 989                        goto out;
 990
 991                /* msix request failed, realloc resources */
 992                err = alx_realloc_resources(alx);
 993                if (err)
 994                        goto out;
 995        }
 996
 997        if (alx->hw.pdev->msi_enabled) {
 998                alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
 999                                msi_ctrl | ALX_MSI_MASK_SEL_LINE);
1000                err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
1001                                  alx->dev->name, alx);
1002                if (!err)
1003                        goto out;
1004
1005                /* fall back to legacy interrupt */
1006                pci_free_irq_vectors(alx->hw.pdev);
1007        }
1008
1009        alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1010        err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1011                          alx->dev->name, alx);
1012out:
1013        if (!err)
1014                alx_config_vector_mapping(alx);
1015        else
1016                netdev_err(alx->dev, "IRQ registration failed!\n");
1017        return err;
1018}
1019
1020static void alx_free_irq(struct alx_priv *alx)
1021{
1022        struct pci_dev *pdev = alx->hw.pdev;
1023        int i;
1024
1025        free_irq(pci_irq_vector(pdev, 0), alx);
1026        if (alx->hw.pdev->msix_enabled) {
1027                for (i = 0; i < alx->num_napi; i++)
1028                        free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1029        }
1030
1031        pci_free_irq_vectors(pdev);
1032}
1033
1034static int alx_identify_hw(struct alx_priv *alx)
1035{
1036        struct alx_hw *hw = &alx->hw;
1037        int rev = alx_hw_revision(hw);
1038
1039        if (rev > ALX_REV_C0)
1040                return -EINVAL;
1041
1042        hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1043
1044        return 0;
1045}
1046
1047static int alx_init_sw(struct alx_priv *alx)
1048{
1049        struct pci_dev *pdev = alx->hw.pdev;
1050        struct alx_hw *hw = &alx->hw;
1051        int err;
1052
1053        err = alx_identify_hw(alx);
1054        if (err) {
1055                dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1056                return err;
1057        }
1058
1059        alx->hw.lnk_patch =
1060                pdev->device == ALX_DEV_ID_AR8161 &&
1061                pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1062                pdev->subsystem_device == 0x0091 &&
1063                pdev->revision == 0;
1064
1065        hw->smb_timer = 400;
1066        hw->mtu = alx->dev->mtu;
1067        alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1068        /* MTU range: 34 - 9256 */
1069        alx->dev->min_mtu = 34;
1070        alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1071        alx->tx_ringsz = 256;
1072        alx->rx_ringsz = 512;
1073        hw->imt = 200;
1074        alx->int_mask = ALX_ISR_MISC;
1075        hw->dma_chnl = hw->max_dma_chnl;
1076        hw->ith_tpd = alx->tx_ringsz / 3;
1077        hw->link_speed = SPEED_UNKNOWN;
1078        hw->duplex = DUPLEX_UNKNOWN;
1079        hw->adv_cfg = ADVERTISED_Autoneg |
1080                      ADVERTISED_10baseT_Half |
1081                      ADVERTISED_10baseT_Full |
1082                      ADVERTISED_100baseT_Full |
1083                      ADVERTISED_100baseT_Half |
1084                      ADVERTISED_1000baseT_Full;
1085        hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1086
1087        hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1088                      ALX_MAC_CTRL_MHASH_ALG_HI5B |
1089                      ALX_MAC_CTRL_BRD_EN |
1090                      ALX_MAC_CTRL_PCRCE |
1091                      ALX_MAC_CTRL_CRCE |
1092                      ALX_MAC_CTRL_RXFC_EN |
1093                      ALX_MAC_CTRL_TXFC_EN |
1094                      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1095
1096        return err;
1097}
1098
1099
1100static netdev_features_t alx_fix_features(struct net_device *netdev,
1101                                          netdev_features_t features)
1102{
1103        if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1104                features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1105
1106        return features;
1107}
1108
1109static void alx_netif_stop(struct alx_priv *alx)
1110{
1111        int i;
1112
1113        netif_trans_update(alx->dev);
1114        if (netif_carrier_ok(alx->dev)) {
1115                netif_carrier_off(alx->dev);
1116                netif_tx_disable(alx->dev);
1117                for (i = 0; i < alx->num_napi; i++)
1118                        napi_disable(&alx->qnapi[i]->napi);
1119        }
1120}
1121
1122static void alx_halt(struct alx_priv *alx)
1123{
1124        struct alx_hw *hw = &alx->hw;
1125
1126        alx_netif_stop(alx);
1127        hw->link_speed = SPEED_UNKNOWN;
1128        hw->duplex = DUPLEX_UNKNOWN;
1129
1130        alx_reset_mac(hw);
1131
1132        /* disable l0s/l1 */
1133        alx_enable_aspm(hw, false, false);
1134        alx_irq_disable(alx);
1135        alx_free_buffers(alx);
1136}
1137
1138static void alx_configure(struct alx_priv *alx)
1139{
1140        struct alx_hw *hw = &alx->hw;
1141
1142        alx_configure_basic(hw);
1143        alx_disable_rss(hw);
1144        __alx_set_rx_mode(alx->dev);
1145
1146        alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1147}
1148
1149static void alx_activate(struct alx_priv *alx)
1150{
1151        /* hardware setting lost, restore it */
1152        alx_reinit_rings(alx);
1153        alx_configure(alx);
1154
1155        /* clear old interrupts */
1156        alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1157
1158        alx_irq_enable(alx);
1159
1160        alx_schedule_link_check(alx);
1161}
1162
1163static void alx_reinit(struct alx_priv *alx)
1164{
1165        ASSERT_RTNL();
1166
1167        alx_halt(alx);
1168        alx_activate(alx);
1169}
1170
1171static int alx_change_mtu(struct net_device *netdev, int mtu)
1172{
1173        struct alx_priv *alx = netdev_priv(netdev);
1174        int max_frame = ALX_MAX_FRAME_LEN(mtu);
1175
1176        netdev->mtu = mtu;
1177        alx->hw.mtu = mtu;
1178        alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1179        netdev_update_features(netdev);
1180        if (netif_running(netdev))
1181                alx_reinit(alx);
1182        return 0;
1183}
1184
1185static void alx_netif_start(struct alx_priv *alx)
1186{
1187        int i;
1188
1189        netif_tx_wake_all_queues(alx->dev);
1190        for (i = 0; i < alx->num_napi; i++)
1191                napi_enable(&alx->qnapi[i]->napi);
1192        netif_carrier_on(alx->dev);
1193}
1194
1195static int __alx_open(struct alx_priv *alx, bool resume)
1196{
1197        int err;
1198
1199        err = alx_enable_msix(alx);
1200        if (err < 0) {
1201                err = alx_init_intr(alx);
1202                if (err)
1203                        return err;
1204        }
1205
1206        if (!resume)
1207                netif_carrier_off(alx->dev);
1208
1209        err = alx_alloc_napis(alx);
1210        if (err)
1211                goto out_disable_adv_intr;
1212
1213        err = alx_alloc_rings(alx);
1214        if (err)
1215                goto out_free_rings;
1216
1217        alx_configure(alx);
1218
1219        err = alx_request_irq(alx);
1220        if (err)
1221                goto out_free_rings;
1222
1223        /* must be called after alx_request_irq because the chip stops working
1224         * if we copy the dma addresses in alx_init_ring_ptrs twice when
1225         * requesting msi-x interrupts failed
1226         */
1227        alx_reinit_rings(alx);
1228
1229        netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1230        netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1231
1232        /* clear old interrupts */
1233        alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1234
1235        alx_irq_enable(alx);
1236
1237        if (!resume)
1238                netif_tx_start_all_queues(alx->dev);
1239
1240        alx_schedule_link_check(alx);
1241        return 0;
1242
1243out_free_rings:
1244        alx_free_rings(alx);
1245        alx_free_napis(alx);
1246out_disable_adv_intr:
1247        pci_free_irq_vectors(alx->hw.pdev);
1248        return err;
1249}
1250
1251static void __alx_stop(struct alx_priv *alx)
1252{
1253        alx_halt(alx);
1254        alx_free_irq(alx);
1255        alx_free_rings(alx);
1256        alx_free_napis(alx);
1257}
1258
1259static const char *alx_speed_desc(struct alx_hw *hw)
1260{
1261        switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1262        case ADVERTISED_1000baseT_Full:
1263                return "1 Gbps Full";
1264        case ADVERTISED_100baseT_Full:
1265                return "100 Mbps Full";
1266        case ADVERTISED_100baseT_Half:
1267                return "100 Mbps Half";
1268        case ADVERTISED_10baseT_Full:
1269                return "10 Mbps Full";
1270        case ADVERTISED_10baseT_Half:
1271                return "10 Mbps Half";
1272        default:
1273                return "Unknown speed";
1274        }
1275}
1276
1277static void alx_check_link(struct alx_priv *alx)
1278{
1279        struct alx_hw *hw = &alx->hw;
1280        unsigned long flags;
1281        int old_speed;
1282        u8 old_duplex;
1283        int err;
1284
1285        /* clear PHY internal interrupt status, otherwise the main
1286         * interrupt status will be asserted forever
1287         */
1288        alx_clear_phy_intr(hw);
1289
1290        old_speed = hw->link_speed;
1291        old_duplex = hw->duplex;
1292        err = alx_read_phy_link(hw);
1293        if (err < 0)
1294                goto reset;
1295
1296        spin_lock_irqsave(&alx->irq_lock, flags);
1297        alx->int_mask |= ALX_ISR_PHY;
1298        alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1299        spin_unlock_irqrestore(&alx->irq_lock, flags);
1300
1301        if (old_speed == hw->link_speed)
1302                return;
1303
1304        if (hw->link_speed != SPEED_UNKNOWN) {
1305                netif_info(alx, link, alx->dev,
1306                           "NIC Up: %s\n", alx_speed_desc(hw));
1307                alx_post_phy_link(hw);
1308                alx_enable_aspm(hw, true, true);
1309                alx_start_mac(hw);
1310
1311                if (old_speed == SPEED_UNKNOWN)
1312                        alx_netif_start(alx);
1313        } else {
1314                /* link is now down */
1315                alx_netif_stop(alx);
1316                netif_info(alx, link, alx->dev, "Link Down\n");
1317                err = alx_reset_mac(hw);
1318                if (err)
1319                        goto reset;
1320                alx_irq_disable(alx);
1321
1322                /* MAC reset causes all HW settings to be lost, restore all */
1323                err = alx_reinit_rings(alx);
1324                if (err)
1325                        goto reset;
1326                alx_configure(alx);
1327                alx_enable_aspm(hw, false, true);
1328                alx_post_phy_link(hw);
1329                alx_irq_enable(alx);
1330        }
1331
1332        return;
1333
1334reset:
1335        alx_schedule_reset(alx);
1336}
1337
1338static int alx_open(struct net_device *netdev)
1339{
1340        return __alx_open(netdev_priv(netdev), false);
1341}
1342
1343static int alx_stop(struct net_device *netdev)
1344{
1345        __alx_stop(netdev_priv(netdev));
1346        return 0;
1347}
1348
1349static void alx_link_check(struct work_struct *work)
1350{
1351        struct alx_priv *alx;
1352
1353        alx = container_of(work, struct alx_priv, link_check_wk);
1354
1355        rtnl_lock();
1356        alx_check_link(alx);
1357        rtnl_unlock();
1358}
1359
1360static void alx_reset(struct work_struct *work)
1361{
1362        struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1363
1364        rtnl_lock();
1365        alx_reinit(alx);
1366        rtnl_unlock();
1367}
1368
1369static int alx_tpd_req(struct sk_buff *skb)
1370{
1371        int num;
1372
1373        num = skb_shinfo(skb)->nr_frags + 1;
1374        /* we need one extra descriptor for LSOv2 */
1375        if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1376                num++;
1377
1378        return num;
1379}
1380
1381static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1382{
1383        u8 cso, css;
1384
1385        if (skb->ip_summed != CHECKSUM_PARTIAL)
1386                return 0;
1387
1388        cso = skb_checksum_start_offset(skb);
1389        if (cso & 1)
1390                return -EINVAL;
1391
1392        css = cso + skb->csum_offset;
1393        first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1394        first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1395        first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1396
1397        return 0;
1398}
1399
1400static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1401{
1402        int err;
1403
1404        if (skb->ip_summed != CHECKSUM_PARTIAL)
1405                return 0;
1406
1407        if (!skb_is_gso(skb))
1408                return 0;
1409
1410        err = skb_cow_head(skb, 0);
1411        if (err < 0)
1412                return err;
1413
1414        if (skb->protocol == htons(ETH_P_IP)) {
1415                struct iphdr *iph = ip_hdr(skb);
1416
1417                iph->check = 0;
1418                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1419                                                         0, IPPROTO_TCP, 0);
1420                first->word1 |= 1 << TPD_IPV4_SHIFT;
1421        } else if (skb_is_gso_v6(skb)) {
1422                ipv6_hdr(skb)->payload_len = 0;
1423                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1424                                                       &ipv6_hdr(skb)->daddr,
1425                                                       0, IPPROTO_TCP, 0);
1426                /* LSOv2: the first TPD only provides the packet length */
1427                first->adrl.l.pkt_len = skb->len;
1428                first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1429        }
1430
1431        first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1432        first->word1 |= (skb_transport_offset(skb) &
1433                         TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1434        first->word1 |= (skb_shinfo(skb)->gso_size &
1435                         TPD_MSS_MASK) << TPD_MSS_SHIFT;
1436        return 1;
1437}
1438
1439static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1440{
1441        struct alx_txd *tpd, *first_tpd;
1442        dma_addr_t dma;
1443        int maplen, f, first_idx = txq->write_idx;
1444
1445        first_tpd = &txq->tpd[txq->write_idx];
1446        tpd = first_tpd;
1447
1448        if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1449                if (++txq->write_idx == txq->count)
1450                        txq->write_idx = 0;
1451
1452                tpd = &txq->tpd[txq->write_idx];
1453                tpd->len = first_tpd->len;
1454                tpd->vlan_tag = first_tpd->vlan_tag;
1455                tpd->word1 = first_tpd->word1;
1456        }
1457
1458        maplen = skb_headlen(skb);
1459        dma = dma_map_single(txq->dev, skb->data, maplen,
1460                             DMA_TO_DEVICE);
1461        if (dma_mapping_error(txq->dev, dma))
1462                goto err_dma;
1463
1464        dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1465        dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1466
1467        tpd->adrl.addr = cpu_to_le64(dma);
1468        tpd->len = cpu_to_le16(maplen);
1469
1470        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1471                struct skb_frag_struct *frag;
1472
1473                frag = &skb_shinfo(skb)->frags[f];
1474
1475                if (++txq->write_idx == txq->count)
1476                        txq->write_idx = 0;
1477                tpd = &txq->tpd[txq->write_idx];
1478
1479                tpd->word1 = first_tpd->word1;
1480
1481                maplen = skb_frag_size(frag);
1482                dma = skb_frag_dma_map(txq->dev, frag, 0,
1483                                       maplen, DMA_TO_DEVICE);
1484                if (dma_mapping_error(txq->dev, dma))
1485                        goto err_dma;
1486                dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1487                dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1488
1489                tpd->adrl.addr = cpu_to_le64(dma);
1490                tpd->len = cpu_to_le16(maplen);
1491        }
1492
1493        /* last TPD, set EOP flag and store skb */
1494        tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1495        txq->bufs[txq->write_idx].skb = skb;
1496
1497        if (++txq->write_idx == txq->count)
1498                txq->write_idx = 0;
1499
1500        return 0;
1501
1502err_dma:
1503        f = first_idx;
1504        while (f != txq->write_idx) {
1505                alx_free_txbuf(txq, f);
1506                if (++f == txq->count)
1507                        f = 0;
1508        }
1509        return -ENOMEM;
1510}
1511
1512static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1513                                       struct alx_tx_queue *txq)
1514{
1515        struct alx_priv *alx;
1516        struct alx_txd *first;
1517        int tso;
1518
1519        alx = netdev_priv(txq->netdev);
1520
1521        if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1522                netif_tx_stop_queue(alx_get_tx_queue(txq));
1523                goto drop;
1524        }
1525
1526        first = &txq->tpd[txq->write_idx];
1527        memset(first, 0, sizeof(*first));
1528
1529        tso = alx_tso(skb, first);
1530        if (tso < 0)
1531                goto drop;
1532        else if (!tso && alx_tx_csum(skb, first))
1533                goto drop;
1534
1535        if (alx_map_tx_skb(txq, skb) < 0)
1536                goto drop;
1537
1538        netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1539
1540        /* flush updates before updating hardware */
1541        wmb();
1542        alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1543
1544        if (alx_tpd_avail(txq) < txq->count / 8)
1545                netif_tx_stop_queue(alx_get_tx_queue(txq));
1546
1547        return NETDEV_TX_OK;
1548
1549drop:
1550        dev_kfree_skb_any(skb);
1551        return NETDEV_TX_OK;
1552}
1553
1554static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1555                                  struct net_device *netdev)
1556{
1557        struct alx_priv *alx = netdev_priv(netdev);
1558        return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1559}
1560
1561static void alx_tx_timeout(struct net_device *dev)
1562{
1563        struct alx_priv *alx = netdev_priv(dev);
1564
1565        alx_schedule_reset(alx);
1566}
1567
1568static int alx_mdio_read(struct net_device *netdev,
1569                         int prtad, int devad, u16 addr)
1570{
1571        struct alx_priv *alx = netdev_priv(netdev);
1572        struct alx_hw *hw = &alx->hw;
1573        u16 val;
1574        int err;
1575
1576        if (prtad != hw->mdio.prtad)
1577                return -EINVAL;
1578
1579        if (devad == MDIO_DEVAD_NONE)
1580                err = alx_read_phy_reg(hw, addr, &val);
1581        else
1582                err = alx_read_phy_ext(hw, devad, addr, &val);
1583
1584        if (err)
1585                return err;
1586        return val;
1587}
1588
1589static int alx_mdio_write(struct net_device *netdev,
1590                          int prtad, int devad, u16 addr, u16 val)
1591{
1592        struct alx_priv *alx = netdev_priv(netdev);
1593        struct alx_hw *hw = &alx->hw;
1594
1595        if (prtad != hw->mdio.prtad)
1596                return -EINVAL;
1597
1598        if (devad == MDIO_DEVAD_NONE)
1599                return alx_write_phy_reg(hw, addr, val);
1600
1601        return alx_write_phy_ext(hw, devad, addr, val);
1602}
1603
1604static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1605{
1606        struct alx_priv *alx = netdev_priv(netdev);
1607
1608        if (!netif_running(netdev))
1609                return -EAGAIN;
1610
1611        return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1612}
1613
1614#ifdef CONFIG_NET_POLL_CONTROLLER
1615static void alx_poll_controller(struct net_device *netdev)
1616{
1617        struct alx_priv *alx = netdev_priv(netdev);
1618        int i;
1619
1620        if (alx->hw.pdev->msix_enabled) {
1621                alx_intr_msix_misc(0, alx);
1622                for (i = 0; i < alx->num_txq; i++)
1623                        alx_intr_msix_ring(0, alx->qnapi[i]);
1624        } else if (alx->hw.pdev->msi_enabled)
1625                alx_intr_msi(0, alx);
1626        else
1627                alx_intr_legacy(0, alx);
1628}
1629#endif
1630
1631static void alx_get_stats64(struct net_device *dev,
1632                            struct rtnl_link_stats64 *net_stats)
1633{
1634        struct alx_priv *alx = netdev_priv(dev);
1635        struct alx_hw_stats *hw_stats = &alx->hw.stats;
1636
1637        spin_lock(&alx->stats_lock);
1638
1639        alx_update_hw_stats(&alx->hw);
1640
1641        net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1642        net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1643        net_stats->multicast  = hw_stats->rx_mcast;
1644        net_stats->collisions = hw_stats->tx_single_col +
1645                                hw_stats->tx_multi_col +
1646                                hw_stats->tx_late_col +
1647                                hw_stats->tx_abort_col;
1648
1649        net_stats->rx_errors  = hw_stats->rx_frag +
1650                                hw_stats->rx_fcs_err +
1651                                hw_stats->rx_len_err +
1652                                hw_stats->rx_ov_sz +
1653                                hw_stats->rx_ov_rrd +
1654                                hw_stats->rx_align_err +
1655                                hw_stats->rx_ov_rxf;
1656
1657        net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1658        net_stats->rx_length_errors = hw_stats->rx_len_err;
1659        net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1660        net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1661        net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1662
1663        net_stats->tx_errors = hw_stats->tx_late_col +
1664                               hw_stats->tx_abort_col +
1665                               hw_stats->tx_underrun +
1666                               hw_stats->tx_trunc;
1667
1668        net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1669        net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1670        net_stats->tx_window_errors  = hw_stats->tx_late_col;
1671
1672        net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1673        net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1674
1675        spin_unlock(&alx->stats_lock);
1676}
1677
1678static const struct net_device_ops alx_netdev_ops = {
1679        .ndo_open               = alx_open,
1680        .ndo_stop               = alx_stop,
1681        .ndo_start_xmit         = alx_start_xmit,
1682        .ndo_get_stats64        = alx_get_stats64,
1683        .ndo_set_rx_mode        = alx_set_rx_mode,
1684        .ndo_validate_addr      = eth_validate_addr,
1685        .ndo_set_mac_address    = alx_set_mac_address,
1686        .ndo_change_mtu         = alx_change_mtu,
1687        .ndo_do_ioctl           = alx_ioctl,
1688        .ndo_tx_timeout         = alx_tx_timeout,
1689        .ndo_fix_features       = alx_fix_features,
1690#ifdef CONFIG_NET_POLL_CONTROLLER
1691        .ndo_poll_controller    = alx_poll_controller,
1692#endif
1693};
1694
1695static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1696{
1697        struct net_device *netdev;
1698        struct alx_priv *alx;
1699        struct alx_hw *hw;
1700        bool phy_configured;
1701        int err;
1702
1703        err = pci_enable_device_mem(pdev);
1704        if (err)
1705                return err;
1706
1707        /* The alx chip can DMA to 64-bit addresses, but it uses a single
1708         * shared register for the high 32 bits, so only a single, aligned,
1709         * 4 GB physical address range can be used for descriptors.
1710         */
1711        if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1712                dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1713        } else {
1714                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1715                if (err) {
1716                        dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1717                        goto out_pci_disable;
1718                }
1719        }
1720
1721        err = pci_request_mem_regions(pdev, alx_drv_name);
1722        if (err) {
1723                dev_err(&pdev->dev,
1724                        "pci_request_mem_regions failed\n");
1725                goto out_pci_disable;
1726        }
1727
1728        pci_enable_pcie_error_reporting(pdev);
1729        pci_set_master(pdev);
1730
1731        if (!pdev->pm_cap) {
1732                dev_err(&pdev->dev,
1733                        "Can't find power management capability, aborting\n");
1734                err = -EIO;
1735                goto out_pci_release;
1736        }
1737
1738        netdev = alloc_etherdev_mqs(sizeof(*alx),
1739                                    ALX_MAX_TX_QUEUES, 1);
1740        if (!netdev) {
1741                err = -ENOMEM;
1742                goto out_pci_release;
1743        }
1744
1745        SET_NETDEV_DEV(netdev, &pdev->dev);
1746        alx = netdev_priv(netdev);
1747        spin_lock_init(&alx->hw.mdio_lock);
1748        spin_lock_init(&alx->irq_lock);
1749        spin_lock_init(&alx->stats_lock);
1750        alx->dev = netdev;
1751        alx->hw.pdev = pdev;
1752        alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1753                          NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1754        hw = &alx->hw;
1755        pci_set_drvdata(pdev, alx);
1756
1757        hw->hw_addr = pci_ioremap_bar(pdev, 0);
1758        if (!hw->hw_addr) {
1759                dev_err(&pdev->dev, "cannot map device registers\n");
1760                err = -EIO;
1761                goto out_free_netdev;
1762        }
1763
1764        netdev->netdev_ops = &alx_netdev_ops;
1765        netdev->ethtool_ops = &alx_ethtool_ops;
1766        netdev->irq = pci_irq_vector(pdev, 0);
1767        netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1768
1769        if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1770                pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1771
1772        err = alx_init_sw(alx);
1773        if (err) {
1774                dev_err(&pdev->dev, "net device private data init failed\n");
1775                goto out_unmap;
1776        }
1777
1778        alx_reset_pcie(hw);
1779
1780        phy_configured = alx_phy_configured(hw);
1781
1782        if (!phy_configured)
1783                alx_reset_phy(hw);
1784
1785        err = alx_reset_mac(hw);
1786        if (err) {
1787                dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1788                goto out_unmap;
1789        }
1790
1791        /* setup link to put it in a known good starting state */
1792        if (!phy_configured) {
1793                err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1794                if (err) {
1795                        dev_err(&pdev->dev,
1796                                "failed to configure PHY speed/duplex (err=%d)\n",
1797                                err);
1798                        goto out_unmap;
1799                }
1800        }
1801
1802        netdev->hw_features = NETIF_F_SG |
1803                              NETIF_F_HW_CSUM |
1804                              NETIF_F_RXCSUM |
1805                              NETIF_F_TSO |
1806                              NETIF_F_TSO6;
1807
1808        if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1809                dev_warn(&pdev->dev,
1810                         "Invalid permanent address programmed, using random one\n");
1811                eth_hw_addr_random(netdev);
1812                memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1813        }
1814
1815        memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1816        memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1817        memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1818
1819        hw->mdio.prtad = 0;
1820        hw->mdio.mmds = 0;
1821        hw->mdio.dev = netdev;
1822        hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1823                                MDIO_SUPPORTS_C22 |
1824                                MDIO_EMULATE_C22;
1825        hw->mdio.mdio_read = alx_mdio_read;
1826        hw->mdio.mdio_write = alx_mdio_write;
1827
1828        if (!alx_get_phy_info(hw)) {
1829                dev_err(&pdev->dev, "failed to identify PHY\n");
1830                err = -EIO;
1831                goto out_unmap;
1832        }
1833
1834        INIT_WORK(&alx->link_check_wk, alx_link_check);
1835        INIT_WORK(&alx->reset_wk, alx_reset);
1836        netif_carrier_off(netdev);
1837
1838        err = register_netdev(netdev);
1839        if (err) {
1840                dev_err(&pdev->dev, "register netdevice failed\n");
1841                goto out_unmap;
1842        }
1843
1844        netdev_info(netdev,
1845                    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1846                    netdev->dev_addr);
1847
1848        return 0;
1849
1850out_unmap:
1851        iounmap(hw->hw_addr);
1852out_free_netdev:
1853        free_netdev(netdev);
1854out_pci_release:
1855        pci_release_mem_regions(pdev);
1856out_pci_disable:
1857        pci_disable_device(pdev);
1858        return err;
1859}
1860
1861static void alx_remove(struct pci_dev *pdev)
1862{
1863        struct alx_priv *alx = pci_get_drvdata(pdev);
1864        struct alx_hw *hw = &alx->hw;
1865
1866        cancel_work_sync(&alx->link_check_wk);
1867        cancel_work_sync(&alx->reset_wk);
1868
1869        /* restore permanent mac address */
1870        alx_set_macaddr(hw, hw->perm_addr);
1871
1872        unregister_netdev(alx->dev);
1873        iounmap(hw->hw_addr);
1874        pci_release_mem_regions(pdev);
1875
1876        pci_disable_pcie_error_reporting(pdev);
1877        pci_disable_device(pdev);
1878
1879        free_netdev(alx->dev);
1880}
1881
1882#ifdef CONFIG_PM_SLEEP
1883static int alx_suspend(struct device *dev)
1884{
1885        struct pci_dev *pdev = to_pci_dev(dev);
1886        struct alx_priv *alx = pci_get_drvdata(pdev);
1887
1888        if (!netif_running(alx->dev))
1889                return 0;
1890        netif_device_detach(alx->dev);
1891        __alx_stop(alx);
1892        return 0;
1893}
1894
1895static int alx_resume(struct device *dev)
1896{
1897        struct pci_dev *pdev = to_pci_dev(dev);
1898        struct alx_priv *alx = pci_get_drvdata(pdev);
1899        struct alx_hw *hw = &alx->hw;
1900
1901        alx_reset_phy(hw);
1902
1903        if (!netif_running(alx->dev))
1904                return 0;
1905        netif_device_attach(alx->dev);
1906        return __alx_open(alx, true);
1907}
1908
1909static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1910#define ALX_PM_OPS      (&alx_pm_ops)
1911#else
1912#define ALX_PM_OPS      NULL
1913#endif
1914
1915
1916static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1917                                               pci_channel_state_t state)
1918{
1919        struct alx_priv *alx = pci_get_drvdata(pdev);
1920        struct net_device *netdev = alx->dev;
1921        pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1922
1923        dev_info(&pdev->dev, "pci error detected\n");
1924
1925        rtnl_lock();
1926
1927        if (netif_running(netdev)) {
1928                netif_device_detach(netdev);
1929                alx_halt(alx);
1930        }
1931
1932        if (state == pci_channel_io_perm_failure)
1933                rc = PCI_ERS_RESULT_DISCONNECT;
1934        else
1935                pci_disable_device(pdev);
1936
1937        rtnl_unlock();
1938
1939        return rc;
1940}
1941
1942static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1943{
1944        struct alx_priv *alx = pci_get_drvdata(pdev);
1945        struct alx_hw *hw = &alx->hw;
1946        pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1947
1948        dev_info(&pdev->dev, "pci error slot reset\n");
1949
1950        rtnl_lock();
1951
1952        if (pci_enable_device(pdev)) {
1953                dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1954                goto out;
1955        }
1956
1957        pci_set_master(pdev);
1958
1959        alx_reset_pcie(hw);
1960        if (!alx_reset_mac(hw))
1961                rc = PCI_ERS_RESULT_RECOVERED;
1962out:
1963        pci_cleanup_aer_uncorrect_error_status(pdev);
1964
1965        rtnl_unlock();
1966
1967        return rc;
1968}
1969
1970static void alx_pci_error_resume(struct pci_dev *pdev)
1971{
1972        struct alx_priv *alx = pci_get_drvdata(pdev);
1973        struct net_device *netdev = alx->dev;
1974
1975        dev_info(&pdev->dev, "pci error resume\n");
1976
1977        rtnl_lock();
1978
1979        if (netif_running(netdev)) {
1980                alx_activate(alx);
1981                netif_device_attach(netdev);
1982        }
1983
1984        rtnl_unlock();
1985}
1986
1987static const struct pci_error_handlers alx_err_handlers = {
1988        .error_detected = alx_pci_error_detected,
1989        .slot_reset     = alx_pci_error_slot_reset,
1990        .resume         = alx_pci_error_resume,
1991};
1992
1993static const struct pci_device_id alx_pci_tbl[] = {
1994        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1995          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1996        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1997          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1998        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1999          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2000        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2001          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2002        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2003          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2004        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2005        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2006        {}
2007};
2008
2009static struct pci_driver alx_driver = {
2010        .name        = alx_drv_name,
2011        .id_table    = alx_pci_tbl,
2012        .probe       = alx_probe,
2013        .remove      = alx_remove,
2014        .err_handler = &alx_err_handlers,
2015        .driver.pm   = ALX_PM_OPS,
2016};
2017
2018module_pci_driver(alx_driver);
2019MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2020MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2021MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
2022MODULE_DESCRIPTION(
2023        "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2024MODULE_LICENSE("GPL");
2025