linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c
<<
>>
Prefs
   1/*
   2 * Broadcom GENET (Gigabit Ethernet) controller driver
   3 *
   4 * Copyright (c) 2014-2017 Broadcom
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#define pr_fmt(fmt)                             "bcmgenet: " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/sched.h>
  16#include <linux/types.h>
  17#include <linux/fcntl.h>
  18#include <linux/interrupt.h>
  19#include <linux/string.h>
  20#include <linux/if_ether.h>
  21#include <linux/init.h>
  22#include <linux/errno.h>
  23#include <linux/delay.h>
  24#include <linux/platform_device.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/pm.h>
  27#include <linux/clk.h>
  28#include <linux/of.h>
  29#include <linux/of_address.h>
  30#include <linux/of_irq.h>
  31#include <linux/of_net.h>
  32#include <linux/of_platform.h>
  33#include <net/arp.h>
  34
  35#include <linux/mii.h>
  36#include <linux/ethtool.h>
  37#include <linux/netdevice.h>
  38#include <linux/inetdevice.h>
  39#include <linux/etherdevice.h>
  40#include <linux/skbuff.h>
  41#include <linux/in.h>
  42#include <linux/ip.h>
  43#include <linux/ipv6.h>
  44#include <linux/phy.h>
  45#include <linux/platform_data/bcmgenet.h>
  46
  47#include <asm/unaligned.h>
  48
  49#include "bcmgenet.h"
  50
  51/* Maximum number of hardware queues, downsized if needed */
  52#define GENET_MAX_MQ_CNT        4
  53
  54/* Default highest priority queue for multi queue support */
  55#define GENET_Q0_PRIORITY       0
  56
  57#define GENET_Q16_RX_BD_CNT     \
  58        (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
  59#define GENET_Q16_TX_BD_CNT     \
  60        (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
  61
  62#define RX_BUF_LENGTH           2048
  63#define SKB_ALIGNMENT           32
  64
  65/* Tx/Rx DMA register offset, skip 256 descriptors */
  66#define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
  67#define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
  68
  69#define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
  70                                TOTAL_DESC * DMA_DESC_SIZE)
  71
  72#define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
  73                                TOTAL_DESC * DMA_DESC_SIZE)
  74
  75static inline void bcmgenet_writel(u32 value, void __iomem *offset)
  76{
  77        /* MIPS chips strapped for BE will automagically configure the
  78         * peripheral registers for CPU-native byte order.
  79         */
  80        if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  81                __raw_writel(value, offset);
  82        else
  83                writel_relaxed(value, offset);
  84}
  85
  86static inline u32 bcmgenet_readl(void __iomem *offset)
  87{
  88        if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  89                return __raw_readl(offset);
  90        else
  91                return readl_relaxed(offset);
  92}
  93
  94static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
  95                                             void __iomem *d, u32 value)
  96{
  97        bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
  98}
  99
 100static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
 101                                            void __iomem *d)
 102{
 103        return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
 104}
 105
 106static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
 107                                    void __iomem *d,
 108                                    dma_addr_t addr)
 109{
 110        bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
 111
 112        /* Register writes to GISB bus can take couple hundred nanoseconds
 113         * and are done for each packet, save these expensive writes unless
 114         * the platform is explicitly configured for 64-bits/LPAE.
 115         */
 116#ifdef CONFIG_PHYS_ADDR_T_64BIT
 117        if (priv->hw_params->flags & GENET_HAS_40BITS)
 118                bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
 119#endif
 120}
 121
 122/* Combined address + length/status setter */
 123static inline void dmadesc_set(struct bcmgenet_priv *priv,
 124                               void __iomem *d, dma_addr_t addr, u32 val)
 125{
 126        dmadesc_set_addr(priv, d, addr);
 127        dmadesc_set_length_status(priv, d, val);
 128}
 129
 130static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
 131                                          void __iomem *d)
 132{
 133        dma_addr_t addr;
 134
 135        addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
 136
 137        /* Register writes to GISB bus can take couple hundred nanoseconds
 138         * and are done for each packet, save these expensive writes unless
 139         * the platform is explicitly configured for 64-bits/LPAE.
 140         */
 141#ifdef CONFIG_PHYS_ADDR_T_64BIT
 142        if (priv->hw_params->flags & GENET_HAS_40BITS)
 143                addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
 144#endif
 145        return addr;
 146}
 147
 148#define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
 149
 150#define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
 151                                NETIF_MSG_LINK)
 152
 153static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
 154{
 155        if (GENET_IS_V1(priv))
 156                return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
 157        else
 158                return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
 159}
 160
 161static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 162{
 163        if (GENET_IS_V1(priv))
 164                bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
 165        else
 166                bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
 167}
 168
 169/* These macros are defined to deal with register map change
 170 * between GENET1.1 and GENET2. Only those currently being used
 171 * by driver are defined.
 172 */
 173static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
 174{
 175        if (GENET_IS_V1(priv))
 176                return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
 177        else
 178                return bcmgenet_readl(priv->base +
 179                                      priv->hw_params->tbuf_offset + TBUF_CTRL);
 180}
 181
 182static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 183{
 184        if (GENET_IS_V1(priv))
 185                bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
 186        else
 187                bcmgenet_writel(val, priv->base +
 188                                priv->hw_params->tbuf_offset + TBUF_CTRL);
 189}
 190
 191static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
 192{
 193        if (GENET_IS_V1(priv))
 194                return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
 195        else
 196                return bcmgenet_readl(priv->base +
 197                                      priv->hw_params->tbuf_offset + TBUF_BP_MC);
 198}
 199
 200static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
 201{
 202        if (GENET_IS_V1(priv))
 203                bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
 204        else
 205                bcmgenet_writel(val, priv->base +
 206                                priv->hw_params->tbuf_offset + TBUF_BP_MC);
 207}
 208
 209/* RX/TX DMA register accessors */
 210enum dma_reg {
 211        DMA_RING_CFG = 0,
 212        DMA_CTRL,
 213        DMA_STATUS,
 214        DMA_SCB_BURST_SIZE,
 215        DMA_ARB_CTRL,
 216        DMA_PRIORITY_0,
 217        DMA_PRIORITY_1,
 218        DMA_PRIORITY_2,
 219        DMA_INDEX2RING_0,
 220        DMA_INDEX2RING_1,
 221        DMA_INDEX2RING_2,
 222        DMA_INDEX2RING_3,
 223        DMA_INDEX2RING_4,
 224        DMA_INDEX2RING_5,
 225        DMA_INDEX2RING_6,
 226        DMA_INDEX2RING_7,
 227        DMA_RING0_TIMEOUT,
 228        DMA_RING1_TIMEOUT,
 229        DMA_RING2_TIMEOUT,
 230        DMA_RING3_TIMEOUT,
 231        DMA_RING4_TIMEOUT,
 232        DMA_RING5_TIMEOUT,
 233        DMA_RING6_TIMEOUT,
 234        DMA_RING7_TIMEOUT,
 235        DMA_RING8_TIMEOUT,
 236        DMA_RING9_TIMEOUT,
 237        DMA_RING10_TIMEOUT,
 238        DMA_RING11_TIMEOUT,
 239        DMA_RING12_TIMEOUT,
 240        DMA_RING13_TIMEOUT,
 241        DMA_RING14_TIMEOUT,
 242        DMA_RING15_TIMEOUT,
 243        DMA_RING16_TIMEOUT,
 244};
 245
 246static const u8 bcmgenet_dma_regs_v3plus[] = {
 247        [DMA_RING_CFG]          = 0x00,
 248        [DMA_CTRL]              = 0x04,
 249        [DMA_STATUS]            = 0x08,
 250        [DMA_SCB_BURST_SIZE]    = 0x0C,
 251        [DMA_ARB_CTRL]          = 0x2C,
 252        [DMA_PRIORITY_0]        = 0x30,
 253        [DMA_PRIORITY_1]        = 0x34,
 254        [DMA_PRIORITY_2]        = 0x38,
 255        [DMA_RING0_TIMEOUT]     = 0x2C,
 256        [DMA_RING1_TIMEOUT]     = 0x30,
 257        [DMA_RING2_TIMEOUT]     = 0x34,
 258        [DMA_RING3_TIMEOUT]     = 0x38,
 259        [DMA_RING4_TIMEOUT]     = 0x3c,
 260        [DMA_RING5_TIMEOUT]     = 0x40,
 261        [DMA_RING6_TIMEOUT]     = 0x44,
 262        [DMA_RING7_TIMEOUT]     = 0x48,
 263        [DMA_RING8_TIMEOUT]     = 0x4c,
 264        [DMA_RING9_TIMEOUT]     = 0x50,
 265        [DMA_RING10_TIMEOUT]    = 0x54,
 266        [DMA_RING11_TIMEOUT]    = 0x58,
 267        [DMA_RING12_TIMEOUT]    = 0x5c,
 268        [DMA_RING13_TIMEOUT]    = 0x60,
 269        [DMA_RING14_TIMEOUT]    = 0x64,
 270        [DMA_RING15_TIMEOUT]    = 0x68,
 271        [DMA_RING16_TIMEOUT]    = 0x6C,
 272        [DMA_INDEX2RING_0]      = 0x70,
 273        [DMA_INDEX2RING_1]      = 0x74,
 274        [DMA_INDEX2RING_2]      = 0x78,
 275        [DMA_INDEX2RING_3]      = 0x7C,
 276        [DMA_INDEX2RING_4]      = 0x80,
 277        [DMA_INDEX2RING_5]      = 0x84,
 278        [DMA_INDEX2RING_6]      = 0x88,
 279        [DMA_INDEX2RING_7]      = 0x8C,
 280};
 281
 282static const u8 bcmgenet_dma_regs_v2[] = {
 283        [DMA_RING_CFG]          = 0x00,
 284        [DMA_CTRL]              = 0x04,
 285        [DMA_STATUS]            = 0x08,
 286        [DMA_SCB_BURST_SIZE]    = 0x0C,
 287        [DMA_ARB_CTRL]          = 0x30,
 288        [DMA_PRIORITY_0]        = 0x34,
 289        [DMA_PRIORITY_1]        = 0x38,
 290        [DMA_PRIORITY_2]        = 0x3C,
 291        [DMA_RING0_TIMEOUT]     = 0x2C,
 292        [DMA_RING1_TIMEOUT]     = 0x30,
 293        [DMA_RING2_TIMEOUT]     = 0x34,
 294        [DMA_RING3_TIMEOUT]     = 0x38,
 295        [DMA_RING4_TIMEOUT]     = 0x3c,
 296        [DMA_RING5_TIMEOUT]     = 0x40,
 297        [DMA_RING6_TIMEOUT]     = 0x44,
 298        [DMA_RING7_TIMEOUT]     = 0x48,
 299        [DMA_RING8_TIMEOUT]     = 0x4c,
 300        [DMA_RING9_TIMEOUT]     = 0x50,
 301        [DMA_RING10_TIMEOUT]    = 0x54,
 302        [DMA_RING11_TIMEOUT]    = 0x58,
 303        [DMA_RING12_TIMEOUT]    = 0x5c,
 304        [DMA_RING13_TIMEOUT]    = 0x60,
 305        [DMA_RING14_TIMEOUT]    = 0x64,
 306        [DMA_RING15_TIMEOUT]    = 0x68,
 307        [DMA_RING16_TIMEOUT]    = 0x6C,
 308};
 309
 310static const u8 bcmgenet_dma_regs_v1[] = {
 311        [DMA_CTRL]              = 0x00,
 312        [DMA_STATUS]            = 0x04,
 313        [DMA_SCB_BURST_SIZE]    = 0x0C,
 314        [DMA_ARB_CTRL]          = 0x30,
 315        [DMA_PRIORITY_0]        = 0x34,
 316        [DMA_PRIORITY_1]        = 0x38,
 317        [DMA_PRIORITY_2]        = 0x3C,
 318        [DMA_RING0_TIMEOUT]     = 0x2C,
 319        [DMA_RING1_TIMEOUT]     = 0x30,
 320        [DMA_RING2_TIMEOUT]     = 0x34,
 321        [DMA_RING3_TIMEOUT]     = 0x38,
 322        [DMA_RING4_TIMEOUT]     = 0x3c,
 323        [DMA_RING5_TIMEOUT]     = 0x40,
 324        [DMA_RING6_TIMEOUT]     = 0x44,
 325        [DMA_RING7_TIMEOUT]     = 0x48,
 326        [DMA_RING8_TIMEOUT]     = 0x4c,
 327        [DMA_RING9_TIMEOUT]     = 0x50,
 328        [DMA_RING10_TIMEOUT]    = 0x54,
 329        [DMA_RING11_TIMEOUT]    = 0x58,
 330        [DMA_RING12_TIMEOUT]    = 0x5c,
 331        [DMA_RING13_TIMEOUT]    = 0x60,
 332        [DMA_RING14_TIMEOUT]    = 0x64,
 333        [DMA_RING15_TIMEOUT]    = 0x68,
 334        [DMA_RING16_TIMEOUT]    = 0x6C,
 335};
 336
 337/* Set at runtime once bcmgenet version is known */
 338static const u8 *bcmgenet_dma_regs;
 339
 340static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
 341{
 342        return netdev_priv(dev_get_drvdata(dev));
 343}
 344
 345static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
 346                                      enum dma_reg r)
 347{
 348        return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 349                              DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 350}
 351
 352static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
 353                                        u32 val, enum dma_reg r)
 354{
 355        bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 356                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 357}
 358
 359static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
 360                                      enum dma_reg r)
 361{
 362        return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 363                              DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 364}
 365
 366static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
 367                                        u32 val, enum dma_reg r)
 368{
 369        bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 370                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 371}
 372
 373/* RDMA/TDMA ring registers and accessors
 374 * we merge the common fields and just prefix with T/D the registers
 375 * having different meaning depending on the direction
 376 */
 377enum dma_ring_reg {
 378        TDMA_READ_PTR = 0,
 379        RDMA_WRITE_PTR = TDMA_READ_PTR,
 380        TDMA_READ_PTR_HI,
 381        RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
 382        TDMA_CONS_INDEX,
 383        RDMA_PROD_INDEX = TDMA_CONS_INDEX,
 384        TDMA_PROD_INDEX,
 385        RDMA_CONS_INDEX = TDMA_PROD_INDEX,
 386        DMA_RING_BUF_SIZE,
 387        DMA_START_ADDR,
 388        DMA_START_ADDR_HI,
 389        DMA_END_ADDR,
 390        DMA_END_ADDR_HI,
 391        DMA_MBUF_DONE_THRESH,
 392        TDMA_FLOW_PERIOD,
 393        RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
 394        TDMA_WRITE_PTR,
 395        RDMA_READ_PTR = TDMA_WRITE_PTR,
 396        TDMA_WRITE_PTR_HI,
 397        RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
 398};
 399
 400/* GENET v4 supports 40-bits pointer addressing
 401 * for obvious reasons the LO and HI word parts
 402 * are contiguous, but this offsets the other
 403 * registers.
 404 */
 405static const u8 genet_dma_ring_regs_v4[] = {
 406        [TDMA_READ_PTR]                 = 0x00,
 407        [TDMA_READ_PTR_HI]              = 0x04,
 408        [TDMA_CONS_INDEX]               = 0x08,
 409        [TDMA_PROD_INDEX]               = 0x0C,
 410        [DMA_RING_BUF_SIZE]             = 0x10,
 411        [DMA_START_ADDR]                = 0x14,
 412        [DMA_START_ADDR_HI]             = 0x18,
 413        [DMA_END_ADDR]                  = 0x1C,
 414        [DMA_END_ADDR_HI]               = 0x20,
 415        [DMA_MBUF_DONE_THRESH]          = 0x24,
 416        [TDMA_FLOW_PERIOD]              = 0x28,
 417        [TDMA_WRITE_PTR]                = 0x2C,
 418        [TDMA_WRITE_PTR_HI]             = 0x30,
 419};
 420
 421static const u8 genet_dma_ring_regs_v123[] = {
 422        [TDMA_READ_PTR]                 = 0x00,
 423        [TDMA_CONS_INDEX]               = 0x04,
 424        [TDMA_PROD_INDEX]               = 0x08,
 425        [DMA_RING_BUF_SIZE]             = 0x0C,
 426        [DMA_START_ADDR]                = 0x10,
 427        [DMA_END_ADDR]                  = 0x14,
 428        [DMA_MBUF_DONE_THRESH]          = 0x18,
 429        [TDMA_FLOW_PERIOD]              = 0x1C,
 430        [TDMA_WRITE_PTR]                = 0x20,
 431};
 432
 433/* Set at runtime once GENET version is known */
 434static const u8 *genet_dma_ring_regs;
 435
 436static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
 437                                           unsigned int ring,
 438                                           enum dma_ring_reg r)
 439{
 440        return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 441                              (DMA_RING_SIZE * ring) +
 442                              genet_dma_ring_regs[r]);
 443}
 444
 445static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
 446                                             unsigned int ring, u32 val,
 447                                             enum dma_ring_reg r)
 448{
 449        bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 450                        (DMA_RING_SIZE * ring) +
 451                        genet_dma_ring_regs[r]);
 452}
 453
 454static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
 455                                           unsigned int ring,
 456                                           enum dma_ring_reg r)
 457{
 458        return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 459                              (DMA_RING_SIZE * ring) +
 460                              genet_dma_ring_regs[r]);
 461}
 462
 463static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
 464                                             unsigned int ring, u32 val,
 465                                             enum dma_ring_reg r)
 466{
 467        bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 468                        (DMA_RING_SIZE * ring) +
 469                        genet_dma_ring_regs[r]);
 470}
 471
 472static int bcmgenet_begin(struct net_device *dev)
 473{
 474        struct bcmgenet_priv *priv = netdev_priv(dev);
 475
 476        /* Turn on the clock */
 477        return clk_prepare_enable(priv->clk);
 478}
 479
 480static void bcmgenet_complete(struct net_device *dev)
 481{
 482        struct bcmgenet_priv *priv = netdev_priv(dev);
 483
 484        /* Turn off the clock */
 485        clk_disable_unprepare(priv->clk);
 486}
 487
 488static int bcmgenet_get_link_ksettings(struct net_device *dev,
 489                                       struct ethtool_link_ksettings *cmd)
 490{
 491        if (!netif_running(dev))
 492                return -EINVAL;
 493
 494        if (!dev->phydev)
 495                return -ENODEV;
 496
 497        phy_ethtool_ksettings_get(dev->phydev, cmd);
 498
 499        return 0;
 500}
 501
 502static int bcmgenet_set_link_ksettings(struct net_device *dev,
 503                                       const struct ethtool_link_ksettings *cmd)
 504{
 505        if (!netif_running(dev))
 506                return -EINVAL;
 507
 508        if (!dev->phydev)
 509                return -ENODEV;
 510
 511        return phy_ethtool_ksettings_set(dev->phydev, cmd);
 512}
 513
 514static int bcmgenet_set_rx_csum(struct net_device *dev,
 515                                netdev_features_t wanted)
 516{
 517        struct bcmgenet_priv *priv = netdev_priv(dev);
 518        u32 rbuf_chk_ctrl;
 519        bool rx_csum_en;
 520
 521        rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
 522
 523        rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
 524
 525        /* enable rx checksumming */
 526        if (rx_csum_en)
 527                rbuf_chk_ctrl |= RBUF_RXCHK_EN;
 528        else
 529                rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
 530        priv->desc_rxchk_en = rx_csum_en;
 531
 532        /* If UniMAC forwards CRC, we need to skip over it to get
 533         * a valid CHK bit to be set in the per-packet status word
 534        */
 535        if (rx_csum_en && priv->crc_fwd_en)
 536                rbuf_chk_ctrl |= RBUF_SKIP_FCS;
 537        else
 538                rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
 539
 540        bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
 541
 542        return 0;
 543}
 544
 545static int bcmgenet_set_tx_csum(struct net_device *dev,
 546                                netdev_features_t wanted)
 547{
 548        struct bcmgenet_priv *priv = netdev_priv(dev);
 549        bool desc_64b_en;
 550        u32 tbuf_ctrl, rbuf_ctrl;
 551
 552        tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
 553        rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
 554
 555        desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
 556
 557        /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
 558        if (desc_64b_en) {
 559                tbuf_ctrl |= RBUF_64B_EN;
 560                rbuf_ctrl |= RBUF_64B_EN;
 561        } else {
 562                tbuf_ctrl &= ~RBUF_64B_EN;
 563                rbuf_ctrl &= ~RBUF_64B_EN;
 564        }
 565        priv->desc_64b_en = desc_64b_en;
 566
 567        bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
 568        bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
 569
 570        return 0;
 571}
 572
 573static int bcmgenet_set_features(struct net_device *dev,
 574                                 netdev_features_t features)
 575{
 576        netdev_features_t changed = features ^ dev->features;
 577        netdev_features_t wanted = dev->wanted_features;
 578        int ret = 0;
 579
 580        if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
 581                ret = bcmgenet_set_tx_csum(dev, wanted);
 582        if (changed & (NETIF_F_RXCSUM))
 583                ret = bcmgenet_set_rx_csum(dev, wanted);
 584
 585        return ret;
 586}
 587
 588static u32 bcmgenet_get_msglevel(struct net_device *dev)
 589{
 590        struct bcmgenet_priv *priv = netdev_priv(dev);
 591
 592        return priv->msg_enable;
 593}
 594
 595static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
 596{
 597        struct bcmgenet_priv *priv = netdev_priv(dev);
 598
 599        priv->msg_enable = level;
 600}
 601
 602static int bcmgenet_get_coalesce(struct net_device *dev,
 603                                 struct ethtool_coalesce *ec)
 604{
 605        struct bcmgenet_priv *priv = netdev_priv(dev);
 606        struct bcmgenet_rx_ring *ring;
 607        unsigned int i;
 608
 609        ec->tx_max_coalesced_frames =
 610                bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
 611                                         DMA_MBUF_DONE_THRESH);
 612        ec->rx_max_coalesced_frames =
 613                bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
 614                                         DMA_MBUF_DONE_THRESH);
 615        ec->rx_coalesce_usecs =
 616                bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
 617
 618        for (i = 0; i < priv->hw_params->rx_queues; i++) {
 619                ring = &priv->rx_rings[i];
 620                ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 621        }
 622        ring = &priv->rx_rings[DESC_INDEX];
 623        ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 624
 625        return 0;
 626}
 627
 628static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
 629                                     u32 usecs, u32 pkts)
 630{
 631        struct bcmgenet_priv *priv = ring->priv;
 632        unsigned int i = ring->index;
 633        u32 reg;
 634
 635        bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
 636
 637        reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
 638        reg &= ~DMA_TIMEOUT_MASK;
 639        reg |= DIV_ROUND_UP(usecs * 1000, 8192);
 640        bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
 641}
 642
 643static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
 644                                          struct ethtool_coalesce *ec)
 645{
 646        struct net_dim_cq_moder moder;
 647        u32 usecs, pkts;
 648
 649        ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
 650        ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
 651        usecs = ring->rx_coalesce_usecs;
 652        pkts = ring->rx_max_coalesced_frames;
 653
 654        if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
 655                moder = net_dim_get_def_profile(ring->dim.dim.mode);
 656                usecs = moder.usec;
 657                pkts = moder.pkts;
 658        }
 659
 660        ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
 661        bcmgenet_set_rx_coalesce(ring, usecs, pkts);
 662}
 663
 664static int bcmgenet_set_coalesce(struct net_device *dev,
 665                                 struct ethtool_coalesce *ec)
 666{
 667        struct bcmgenet_priv *priv = netdev_priv(dev);
 668        unsigned int i;
 669
 670        /* Base system clock is 125Mhz, DMA timeout is this reference clock
 671         * divided by 1024, which yields roughly 8.192us, our maximum value
 672         * has to fit in the DMA_TIMEOUT_MASK (16 bits)
 673         */
 674        if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 675            ec->tx_max_coalesced_frames == 0 ||
 676            ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 677            ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
 678                return -EINVAL;
 679
 680        if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
 681                return -EINVAL;
 682
 683        /* GENET TDMA hardware does not support a configurable timeout, but will
 684         * always generate an interrupt either after MBDONE packets have been
 685         * transmitted, or when the ring is empty.
 686         */
 687        if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
 688            ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
 689            ec->use_adaptive_tx_coalesce)
 690                return -EOPNOTSUPP;
 691
 692        /* Program all TX queues with the same values, as there is no
 693         * ethtool knob to do coalescing on a per-queue basis
 694         */
 695        for (i = 0; i < priv->hw_params->tx_queues; i++)
 696                bcmgenet_tdma_ring_writel(priv, i,
 697                                          ec->tx_max_coalesced_frames,
 698                                          DMA_MBUF_DONE_THRESH);
 699        bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
 700                                  ec->tx_max_coalesced_frames,
 701                                  DMA_MBUF_DONE_THRESH);
 702
 703        for (i = 0; i < priv->hw_params->rx_queues; i++)
 704                bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
 705        bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
 706
 707        return 0;
 708}
 709
 710/* standard ethtool support functions. */
 711enum bcmgenet_stat_type {
 712        BCMGENET_STAT_NETDEV = -1,
 713        BCMGENET_STAT_MIB_RX,
 714        BCMGENET_STAT_MIB_TX,
 715        BCMGENET_STAT_RUNT,
 716        BCMGENET_STAT_MISC,
 717        BCMGENET_STAT_SOFT,
 718};
 719
 720struct bcmgenet_stats {
 721        char stat_string[ETH_GSTRING_LEN];
 722        int stat_sizeof;
 723        int stat_offset;
 724        enum bcmgenet_stat_type type;
 725        /* reg offset from UMAC base for misc counters */
 726        u16 reg_offset;
 727};
 728
 729#define STAT_NETDEV(m) { \
 730        .stat_string = __stringify(m), \
 731        .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
 732        .stat_offset = offsetof(struct net_device_stats, m), \
 733        .type = BCMGENET_STAT_NETDEV, \
 734}
 735
 736#define STAT_GENET_MIB(str, m, _type) { \
 737        .stat_string = str, \
 738        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 739        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 740        .type = _type, \
 741}
 742
 743#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
 744#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
 745#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
 746#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
 747
 748#define STAT_GENET_MISC(str, m, offset) { \
 749        .stat_string = str, \
 750        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 751        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 752        .type = BCMGENET_STAT_MISC, \
 753        .reg_offset = offset, \
 754}
 755
 756#define STAT_GENET_Q(num) \
 757        STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
 758                        tx_rings[num].packets), \
 759        STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
 760                        tx_rings[num].bytes), \
 761        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
 762                        rx_rings[num].bytes),    \
 763        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
 764                        rx_rings[num].packets), \
 765        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
 766                        rx_rings[num].errors), \
 767        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
 768                        rx_rings[num].dropped)
 769
 770/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 771 * between the end of TX stats and the beginning of the RX RUNT
 772 */
 773#define BCMGENET_STAT_OFFSET    0xc
 774
 775/* Hardware counters must be kept in sync because the order/offset
 776 * is important here (order in structure declaration = order in hardware)
 777 */
 778static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
 779        /* general stats */
 780        STAT_NETDEV(rx_packets),
 781        STAT_NETDEV(tx_packets),
 782        STAT_NETDEV(rx_bytes),
 783        STAT_NETDEV(tx_bytes),
 784        STAT_NETDEV(rx_errors),
 785        STAT_NETDEV(tx_errors),
 786        STAT_NETDEV(rx_dropped),
 787        STAT_NETDEV(tx_dropped),
 788        STAT_NETDEV(multicast),
 789        /* UniMAC RSV counters */
 790        STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
 791        STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
 792        STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
 793        STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
 794        STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
 795        STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
 796        STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
 797        STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
 798        STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
 799        STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
 800        STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
 801        STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
 802        STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
 803        STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
 804        STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
 805        STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
 806        STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
 807        STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
 808        STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
 809        STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
 810        STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
 811        STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
 812        STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
 813        STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
 814        STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
 815        STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
 816        STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
 817        STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
 818        STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
 819        /* UniMAC TSV counters */
 820        STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
 821        STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
 822        STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
 823        STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
 824        STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
 825        STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
 826        STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
 827        STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
 828        STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
 829        STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
 830        STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
 831        STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
 832        STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
 833        STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
 834        STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
 835        STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
 836        STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
 837        STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
 838        STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
 839        STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
 840        STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
 841        STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
 842        STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
 843        STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
 844        STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
 845        STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
 846        STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
 847        STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
 848        STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
 849        /* UniMAC RUNT counters */
 850        STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
 851        STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
 852        STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
 853        STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
 854        /* Misc UniMAC counters */
 855        STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
 856                        UMAC_RBUF_OVFL_CNT_V1),
 857        STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
 858                        UMAC_RBUF_ERR_CNT_V1),
 859        STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
 860        STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
 861        STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
 862        STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
 863        /* Per TX queues */
 864        STAT_GENET_Q(0),
 865        STAT_GENET_Q(1),
 866        STAT_GENET_Q(2),
 867        STAT_GENET_Q(3),
 868        STAT_GENET_Q(16),
 869};
 870
 871#define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
 872
 873static void bcmgenet_get_drvinfo(struct net_device *dev,
 874                                 struct ethtool_drvinfo *info)
 875{
 876        strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
 877        strlcpy(info->version, "v2.0", sizeof(info->version));
 878}
 879
 880static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
 881{
 882        switch (string_set) {
 883        case ETH_SS_STATS:
 884                return BCMGENET_STATS_LEN;
 885        default:
 886                return -EOPNOTSUPP;
 887        }
 888}
 889
 890static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
 891                                 u8 *data)
 892{
 893        int i;
 894
 895        switch (stringset) {
 896        case ETH_SS_STATS:
 897                for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 898                        memcpy(data + i * ETH_GSTRING_LEN,
 899                               bcmgenet_gstrings_stats[i].stat_string,
 900                               ETH_GSTRING_LEN);
 901                }
 902                break;
 903        }
 904}
 905
 906static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
 907{
 908        u16 new_offset;
 909        u32 val;
 910
 911        switch (offset) {
 912        case UMAC_RBUF_OVFL_CNT_V1:
 913                if (GENET_IS_V2(priv))
 914                        new_offset = RBUF_OVFL_CNT_V2;
 915                else
 916                        new_offset = RBUF_OVFL_CNT_V3PLUS;
 917
 918                val = bcmgenet_rbuf_readl(priv, new_offset);
 919                /* clear if overflowed */
 920                if (val == ~0)
 921                        bcmgenet_rbuf_writel(priv, 0, new_offset);
 922                break;
 923        case UMAC_RBUF_ERR_CNT_V1:
 924                if (GENET_IS_V2(priv))
 925                        new_offset = RBUF_ERR_CNT_V2;
 926                else
 927                        new_offset = RBUF_ERR_CNT_V3PLUS;
 928
 929                val = bcmgenet_rbuf_readl(priv, new_offset);
 930                /* clear if overflowed */
 931                if (val == ~0)
 932                        bcmgenet_rbuf_writel(priv, 0, new_offset);
 933                break;
 934        default:
 935                val = bcmgenet_umac_readl(priv, offset);
 936                /* clear if overflowed */
 937                if (val == ~0)
 938                        bcmgenet_umac_writel(priv, 0, offset);
 939                break;
 940        }
 941
 942        return val;
 943}
 944
 945static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
 946{
 947        int i, j = 0;
 948
 949        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 950                const struct bcmgenet_stats *s;
 951                u8 offset = 0;
 952                u32 val = 0;
 953                char *p;
 954
 955                s = &bcmgenet_gstrings_stats[i];
 956                switch (s->type) {
 957                case BCMGENET_STAT_NETDEV:
 958                case BCMGENET_STAT_SOFT:
 959                        continue;
 960                case BCMGENET_STAT_RUNT:
 961                        offset += BCMGENET_STAT_OFFSET;
 962                        /* fall through */
 963                case BCMGENET_STAT_MIB_TX:
 964                        offset += BCMGENET_STAT_OFFSET;
 965                        /* fall through */
 966                case BCMGENET_STAT_MIB_RX:
 967                        val = bcmgenet_umac_readl(priv,
 968                                                  UMAC_MIB_START + j + offset);
 969                        offset = 0;     /* Reset Offset */
 970                        break;
 971                case BCMGENET_STAT_MISC:
 972                        if (GENET_IS_V1(priv)) {
 973                                val = bcmgenet_umac_readl(priv, s->reg_offset);
 974                                /* clear if overflowed */
 975                                if (val == ~0)
 976                                        bcmgenet_umac_writel(priv, 0,
 977                                                             s->reg_offset);
 978                        } else {
 979                                val = bcmgenet_update_stat_misc(priv,
 980                                                                s->reg_offset);
 981                        }
 982                        break;
 983                }
 984
 985                j += s->stat_sizeof;
 986                p = (char *)priv + s->stat_offset;
 987                *(u32 *)p = val;
 988        }
 989}
 990
 991static void bcmgenet_get_ethtool_stats(struct net_device *dev,
 992                                       struct ethtool_stats *stats,
 993                                       u64 *data)
 994{
 995        struct bcmgenet_priv *priv = netdev_priv(dev);
 996        int i;
 997
 998        if (netif_running(dev))
 999                bcmgenet_update_mib_counters(priv);
1000
1001        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1002                const struct bcmgenet_stats *s;
1003                char *p;
1004
1005                s = &bcmgenet_gstrings_stats[i];
1006                if (s->type == BCMGENET_STAT_NETDEV)
1007                        p = (char *)&dev->stats;
1008                else
1009                        p = (char *)priv;
1010                p += s->stat_offset;
1011                if (sizeof(unsigned long) != sizeof(u32) &&
1012                    s->stat_sizeof == sizeof(unsigned long))
1013                        data[i] = *(unsigned long *)p;
1014                else
1015                        data[i] = *(u32 *)p;
1016        }
1017}
1018
1019static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1020{
1021        struct bcmgenet_priv *priv = netdev_priv(dev);
1022        u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1023        u32 reg;
1024
1025        if (enable && !priv->clk_eee_enabled) {
1026                clk_prepare_enable(priv->clk_eee);
1027                priv->clk_eee_enabled = true;
1028        }
1029
1030        reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1031        if (enable)
1032                reg |= EEE_EN;
1033        else
1034                reg &= ~EEE_EN;
1035        bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1036
1037        /* Enable EEE and switch to a 27Mhz clock automatically */
1038        reg = bcmgenet_readl(priv->base + off);
1039        if (enable)
1040                reg |= TBUF_EEE_EN | TBUF_PM_EN;
1041        else
1042                reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1043        bcmgenet_writel(reg, priv->base + off);
1044
1045        /* Do the same for thing for RBUF */
1046        reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1047        if (enable)
1048                reg |= RBUF_EEE_EN | RBUF_PM_EN;
1049        else
1050                reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1051        bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1052
1053        if (!enable && priv->clk_eee_enabled) {
1054                clk_disable_unprepare(priv->clk_eee);
1055                priv->clk_eee_enabled = false;
1056        }
1057
1058        priv->eee.eee_enabled = enable;
1059        priv->eee.eee_active = enable;
1060}
1061
1062static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1063{
1064        struct bcmgenet_priv *priv = netdev_priv(dev);
1065        struct ethtool_eee *p = &priv->eee;
1066
1067        if (GENET_IS_V1(priv))
1068                return -EOPNOTSUPP;
1069
1070        if (!dev->phydev)
1071                return -ENODEV;
1072
1073        e->eee_enabled = p->eee_enabled;
1074        e->eee_active = p->eee_active;
1075        e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1076
1077        return phy_ethtool_get_eee(dev->phydev, e);
1078}
1079
1080static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1081{
1082        struct bcmgenet_priv *priv = netdev_priv(dev);
1083        struct ethtool_eee *p = &priv->eee;
1084        int ret = 0;
1085
1086        if (GENET_IS_V1(priv))
1087                return -EOPNOTSUPP;
1088
1089        if (!dev->phydev)
1090                return -ENODEV;
1091
1092        p->eee_enabled = e->eee_enabled;
1093
1094        if (!p->eee_enabled) {
1095                bcmgenet_eee_enable_set(dev, false);
1096        } else {
1097                ret = phy_init_eee(dev->phydev, 0);
1098                if (ret) {
1099                        netif_err(priv, hw, dev, "EEE initialization failed\n");
1100                        return ret;
1101                }
1102
1103                bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1104                bcmgenet_eee_enable_set(dev, true);
1105        }
1106
1107        return phy_ethtool_set_eee(dev->phydev, e);
1108}
1109
1110/* standard ethtool support functions. */
1111static const struct ethtool_ops bcmgenet_ethtool_ops = {
1112        .begin                  = bcmgenet_begin,
1113        .complete               = bcmgenet_complete,
1114        .get_strings            = bcmgenet_get_strings,
1115        .get_sset_count         = bcmgenet_get_sset_count,
1116        .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1117        .get_drvinfo            = bcmgenet_get_drvinfo,
1118        .get_link               = ethtool_op_get_link,
1119        .get_msglevel           = bcmgenet_get_msglevel,
1120        .set_msglevel           = bcmgenet_set_msglevel,
1121        .get_wol                = bcmgenet_get_wol,
1122        .set_wol                = bcmgenet_set_wol,
1123        .get_eee                = bcmgenet_get_eee,
1124        .set_eee                = bcmgenet_set_eee,
1125        .nway_reset             = phy_ethtool_nway_reset,
1126        .get_coalesce           = bcmgenet_get_coalesce,
1127        .set_coalesce           = bcmgenet_set_coalesce,
1128        .get_link_ksettings     = bcmgenet_get_link_ksettings,
1129        .set_link_ksettings     = bcmgenet_set_link_ksettings,
1130};
1131
1132/* Power down the unimac, based on mode. */
1133static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1134                                enum bcmgenet_power_mode mode)
1135{
1136        int ret = 0;
1137        u32 reg;
1138
1139        switch (mode) {
1140        case GENET_POWER_CABLE_SENSE:
1141                phy_detach(priv->dev->phydev);
1142                break;
1143
1144        case GENET_POWER_WOL_MAGIC:
1145                ret = bcmgenet_wol_power_down_cfg(priv, mode);
1146                break;
1147
1148        case GENET_POWER_PASSIVE:
1149                /* Power down LED */
1150                if (priv->hw_params->flags & GENET_HAS_EXT) {
1151                        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1152                        if (GENET_IS_V5(priv))
1153                                reg |= EXT_PWR_DOWN_PHY_EN |
1154                                       EXT_PWR_DOWN_PHY_RD |
1155                                       EXT_PWR_DOWN_PHY_SD |
1156                                       EXT_PWR_DOWN_PHY_RX |
1157                                       EXT_PWR_DOWN_PHY_TX |
1158                                       EXT_IDDQ_GLBL_PWR;
1159                        else
1160                                reg |= EXT_PWR_DOWN_PHY;
1161
1162                        reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1163                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1164
1165                        bcmgenet_phy_power_set(priv->dev, false);
1166                }
1167                break;
1168        default:
1169                break;
1170        }
1171
1172        return 0;
1173}
1174
1175static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1176                              enum bcmgenet_power_mode mode)
1177{
1178        u32 reg;
1179
1180        if (!(priv->hw_params->flags & GENET_HAS_EXT))
1181                return;
1182
1183        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1184
1185        switch (mode) {
1186        case GENET_POWER_PASSIVE:
1187                reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1188                if (GENET_IS_V5(priv)) {
1189                        reg &= ~(EXT_PWR_DOWN_PHY_EN |
1190                                 EXT_PWR_DOWN_PHY_RD |
1191                                 EXT_PWR_DOWN_PHY_SD |
1192                                 EXT_PWR_DOWN_PHY_RX |
1193                                 EXT_PWR_DOWN_PHY_TX |
1194                                 EXT_IDDQ_GLBL_PWR);
1195                        reg |=   EXT_PHY_RESET;
1196                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1197                        mdelay(1);
1198
1199                        reg &=  ~EXT_PHY_RESET;
1200                } else {
1201                        reg &= ~EXT_PWR_DOWN_PHY;
1202                        reg |= EXT_PWR_DN_EN_LD;
1203                }
1204                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1205                bcmgenet_phy_power_set(priv->dev, true);
1206                break;
1207
1208        case GENET_POWER_CABLE_SENSE:
1209                /* enable APD */
1210                if (!GENET_IS_V5(priv)) {
1211                        reg |= EXT_PWR_DN_EN_LD;
1212                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1213                }
1214                break;
1215        case GENET_POWER_WOL_MAGIC:
1216                bcmgenet_wol_power_up_cfg(priv, mode);
1217                return;
1218        default:
1219                break;
1220        }
1221}
1222
1223/* ioctl handle special commands that are not present in ethtool. */
1224static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1225{
1226        if (!netif_running(dev))
1227                return -EINVAL;
1228
1229        if (!dev->phydev)
1230                return -ENODEV;
1231
1232        return phy_mii_ioctl(dev->phydev, rq, cmd);
1233}
1234
1235static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1236                                         struct bcmgenet_tx_ring *ring)
1237{
1238        struct enet_cb *tx_cb_ptr;
1239
1240        tx_cb_ptr = ring->cbs;
1241        tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1242
1243        /* Advancing local write pointer */
1244        if (ring->write_ptr == ring->end_ptr)
1245                ring->write_ptr = ring->cb_ptr;
1246        else
1247                ring->write_ptr++;
1248
1249        return tx_cb_ptr;
1250}
1251
1252static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1253                                         struct bcmgenet_tx_ring *ring)
1254{
1255        struct enet_cb *tx_cb_ptr;
1256
1257        tx_cb_ptr = ring->cbs;
1258        tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1259
1260        /* Rewinding local write pointer */
1261        if (ring->write_ptr == ring->cb_ptr)
1262                ring->write_ptr = ring->end_ptr;
1263        else
1264                ring->write_ptr--;
1265
1266        return tx_cb_ptr;
1267}
1268
1269static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1270{
1271        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1272                                 INTRL2_CPU_MASK_SET);
1273}
1274
1275static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1276{
1277        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1278                                 INTRL2_CPU_MASK_CLEAR);
1279}
1280
1281static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1282{
1283        bcmgenet_intrl2_1_writel(ring->priv,
1284                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1285                                 INTRL2_CPU_MASK_SET);
1286}
1287
1288static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1289{
1290        bcmgenet_intrl2_1_writel(ring->priv,
1291                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1292                                 INTRL2_CPU_MASK_CLEAR);
1293}
1294
1295static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1296{
1297        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1298                                 INTRL2_CPU_MASK_SET);
1299}
1300
1301static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1302{
1303        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1304                                 INTRL2_CPU_MASK_CLEAR);
1305}
1306
1307static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1308{
1309        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1310                                 INTRL2_CPU_MASK_CLEAR);
1311}
1312
1313static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1314{
1315        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1316                                 INTRL2_CPU_MASK_SET);
1317}
1318
1319/* Simple helper to free a transmit control block's resources
1320 * Returns an skb when the last transmit control block associated with the
1321 * skb is freed.  The skb should be freed by the caller if necessary.
1322 */
1323static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1324                                           struct enet_cb *cb)
1325{
1326        struct sk_buff *skb;
1327
1328        skb = cb->skb;
1329
1330        if (skb) {
1331                cb->skb = NULL;
1332                if (cb == GENET_CB(skb)->first_cb)
1333                        dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1334                                         dma_unmap_len(cb, dma_len),
1335                                         DMA_TO_DEVICE);
1336                else
1337                        dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1338                                       dma_unmap_len(cb, dma_len),
1339                                       DMA_TO_DEVICE);
1340                dma_unmap_addr_set(cb, dma_addr, 0);
1341
1342                if (cb == GENET_CB(skb)->last_cb)
1343                        return skb;
1344
1345        } else if (dma_unmap_addr(cb, dma_addr)) {
1346                dma_unmap_page(dev,
1347                               dma_unmap_addr(cb, dma_addr),
1348                               dma_unmap_len(cb, dma_len),
1349                               DMA_TO_DEVICE);
1350                dma_unmap_addr_set(cb, dma_addr, 0);
1351        }
1352
1353        return NULL;
1354}
1355
1356/* Simple helper to free a receive control block's resources */
1357static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1358                                           struct enet_cb *cb)
1359{
1360        struct sk_buff *skb;
1361
1362        skb = cb->skb;
1363        cb->skb = NULL;
1364
1365        if (dma_unmap_addr(cb, dma_addr)) {
1366                dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1367                                 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1368                dma_unmap_addr_set(cb, dma_addr, 0);
1369        }
1370
1371        return skb;
1372}
1373
1374/* Unlocked version of the reclaim routine */
1375static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1376                                          struct bcmgenet_tx_ring *ring)
1377{
1378        struct bcmgenet_priv *priv = netdev_priv(dev);
1379        unsigned int txbds_processed = 0;
1380        unsigned int bytes_compl = 0;
1381        unsigned int pkts_compl = 0;
1382        unsigned int txbds_ready;
1383        unsigned int c_index;
1384        struct sk_buff *skb;
1385
1386        /* Clear status before servicing to reduce spurious interrupts */
1387        if (ring->index == DESC_INDEX)
1388                bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1389                                         INTRL2_CPU_CLEAR);
1390        else
1391                bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1392                                         INTRL2_CPU_CLEAR);
1393
1394        /* Compute how many buffers are transmitted since last xmit call */
1395        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1396                & DMA_C_INDEX_MASK;
1397        txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1398
1399        netif_dbg(priv, tx_done, dev,
1400                  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1401                  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1402
1403        /* Reclaim transmitted buffers */
1404        while (txbds_processed < txbds_ready) {
1405                skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1406                                          &priv->tx_cbs[ring->clean_ptr]);
1407                if (skb) {
1408                        pkts_compl++;
1409                        bytes_compl += GENET_CB(skb)->bytes_sent;
1410                        dev_consume_skb_any(skb);
1411                }
1412
1413                txbds_processed++;
1414                if (likely(ring->clean_ptr < ring->end_ptr))
1415                        ring->clean_ptr++;
1416                else
1417                        ring->clean_ptr = ring->cb_ptr;
1418        }
1419
1420        ring->free_bds += txbds_processed;
1421        ring->c_index = c_index;
1422
1423        ring->packets += pkts_compl;
1424        ring->bytes += bytes_compl;
1425
1426        netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1427                                  pkts_compl, bytes_compl);
1428
1429        return txbds_processed;
1430}
1431
1432static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1433                                struct bcmgenet_tx_ring *ring)
1434{
1435        unsigned int released;
1436
1437        spin_lock_bh(&ring->lock);
1438        released = __bcmgenet_tx_reclaim(dev, ring);
1439        spin_unlock_bh(&ring->lock);
1440
1441        return released;
1442}
1443
1444static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1445{
1446        struct bcmgenet_tx_ring *ring =
1447                container_of(napi, struct bcmgenet_tx_ring, napi);
1448        unsigned int work_done = 0;
1449        struct netdev_queue *txq;
1450
1451        spin_lock(&ring->lock);
1452        work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1453        if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1454                txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1455                netif_tx_wake_queue(txq);
1456        }
1457        spin_unlock(&ring->lock);
1458
1459        if (work_done == 0) {
1460                napi_complete(napi);
1461                ring->int_enable(ring);
1462
1463                return 0;
1464        }
1465
1466        return budget;
1467}
1468
1469static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1470{
1471        struct bcmgenet_priv *priv = netdev_priv(dev);
1472        int i;
1473
1474        if (netif_is_multiqueue(dev)) {
1475                for (i = 0; i < priv->hw_params->tx_queues; i++)
1476                        bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1477        }
1478
1479        bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1480}
1481
1482/* Reallocate the SKB to put enough headroom in front of it and insert
1483 * the transmit checksum offsets in the descriptors
1484 */
1485static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1486                                            struct sk_buff *skb)
1487{
1488        struct status_64 *status = NULL;
1489        struct sk_buff *new_skb;
1490        u16 offset;
1491        u8 ip_proto;
1492        __be16 ip_ver;
1493        u32 tx_csum_info;
1494
1495        if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1496                /* If 64 byte status block enabled, must make sure skb has
1497                 * enough headroom for us to insert 64B status block.
1498                 */
1499                new_skb = skb_realloc_headroom(skb, sizeof(*status));
1500                dev_kfree_skb(skb);
1501                if (!new_skb) {
1502                        dev->stats.tx_dropped++;
1503                        return NULL;
1504                }
1505                skb = new_skb;
1506        }
1507
1508        skb_push(skb, sizeof(*status));
1509        status = (struct status_64 *)skb->data;
1510
1511        if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1512                ip_ver = skb->protocol;
1513                switch (ip_ver) {
1514                case htons(ETH_P_IP):
1515                        ip_proto = ip_hdr(skb)->protocol;
1516                        break;
1517                case htons(ETH_P_IPV6):
1518                        ip_proto = ipv6_hdr(skb)->nexthdr;
1519                        break;
1520                default:
1521                        return skb;
1522                }
1523
1524                offset = skb_checksum_start_offset(skb) - sizeof(*status);
1525                tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1526                                (offset + skb->csum_offset);
1527
1528                /* Set the length valid bit for TCP and UDP and just set
1529                 * the special UDP flag for IPv4, else just set to 0.
1530                 */
1531                if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1532                        tx_csum_info |= STATUS_TX_CSUM_LV;
1533                        if (ip_proto == IPPROTO_UDP &&
1534                            ip_ver == htons(ETH_P_IP))
1535                                tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1536                } else {
1537                        tx_csum_info = 0;
1538                }
1539
1540                status->tx_csum_info = tx_csum_info;
1541        }
1542
1543        return skb;
1544}
1545
1546static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1547{
1548        struct bcmgenet_priv *priv = netdev_priv(dev);
1549        struct device *kdev = &priv->pdev->dev;
1550        struct bcmgenet_tx_ring *ring = NULL;
1551        struct enet_cb *tx_cb_ptr;
1552        struct netdev_queue *txq;
1553        int nr_frags, index;
1554        dma_addr_t mapping;
1555        unsigned int size;
1556        skb_frag_t *frag;
1557        u32 len_stat;
1558        int ret;
1559        int i;
1560
1561        index = skb_get_queue_mapping(skb);
1562        /* Mapping strategy:
1563         * queue_mapping = 0, unclassified, packet xmited through ring16
1564         * queue_mapping = 1, goes to ring 0. (highest priority queue
1565         * queue_mapping = 2, goes to ring 1.
1566         * queue_mapping = 3, goes to ring 2.
1567         * queue_mapping = 4, goes to ring 3.
1568         */
1569        if (index == 0)
1570                index = DESC_INDEX;
1571        else
1572                index -= 1;
1573
1574        ring = &priv->tx_rings[index];
1575        txq = netdev_get_tx_queue(dev, ring->queue);
1576
1577        nr_frags = skb_shinfo(skb)->nr_frags;
1578
1579        spin_lock(&ring->lock);
1580        if (ring->free_bds <= (nr_frags + 1)) {
1581                if (!netif_tx_queue_stopped(txq)) {
1582                        netif_tx_stop_queue(txq);
1583                        netdev_err(dev,
1584                                   "%s: tx ring %d full when queue %d awake\n",
1585                                   __func__, index, ring->queue);
1586                }
1587                ret = NETDEV_TX_BUSY;
1588                goto out;
1589        }
1590
1591        if (skb_padto(skb, ETH_ZLEN)) {
1592                ret = NETDEV_TX_OK;
1593                goto out;
1594        }
1595
1596        /* Retain how many bytes will be sent on the wire, without TSB inserted
1597         * by transmit checksum offload
1598         */
1599        GENET_CB(skb)->bytes_sent = skb->len;
1600
1601        /* set the SKB transmit checksum */
1602        if (priv->desc_64b_en) {
1603                skb = bcmgenet_put_tx_csum(dev, skb);
1604                if (!skb) {
1605                        ret = NETDEV_TX_OK;
1606                        goto out;
1607                }
1608        }
1609
1610        for (i = 0; i <= nr_frags; i++) {
1611                tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1612
1613                BUG_ON(!tx_cb_ptr);
1614
1615                if (!i) {
1616                        /* Transmit single SKB or head of fragment list */
1617                        GENET_CB(skb)->first_cb = tx_cb_ptr;
1618                        size = skb_headlen(skb);
1619                        mapping = dma_map_single(kdev, skb->data, size,
1620                                                 DMA_TO_DEVICE);
1621                } else {
1622                        /* xmit fragment */
1623                        frag = &skb_shinfo(skb)->frags[i - 1];
1624                        size = skb_frag_size(frag);
1625                        mapping = skb_frag_dma_map(kdev, frag, 0, size,
1626                                                   DMA_TO_DEVICE);
1627                }
1628
1629                ret = dma_mapping_error(kdev, mapping);
1630                if (ret) {
1631                        priv->mib.tx_dma_failed++;
1632                        netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1633                        ret = NETDEV_TX_OK;
1634                        goto out_unmap_frags;
1635                }
1636                dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1637                dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1638
1639                tx_cb_ptr->skb = skb;
1640
1641                len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1642                           (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1643
1644                if (!i) {
1645                        len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1646                        if (skb->ip_summed == CHECKSUM_PARTIAL)
1647                                len_stat |= DMA_TX_DO_CSUM;
1648                }
1649                if (i == nr_frags)
1650                        len_stat |= DMA_EOP;
1651
1652                dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1653        }
1654
1655        GENET_CB(skb)->last_cb = tx_cb_ptr;
1656        skb_tx_timestamp(skb);
1657
1658        /* Decrement total BD count and advance our write pointer */
1659        ring->free_bds -= nr_frags + 1;
1660        ring->prod_index += nr_frags + 1;
1661        ring->prod_index &= DMA_P_INDEX_MASK;
1662
1663        netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1664
1665        if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1666                netif_tx_stop_queue(txq);
1667
1668        if (!skb->xmit_more || netif_xmit_stopped(txq))
1669                /* Packets are ready, update producer index */
1670                bcmgenet_tdma_ring_writel(priv, ring->index,
1671                                          ring->prod_index, TDMA_PROD_INDEX);
1672out:
1673        spin_unlock(&ring->lock);
1674
1675        return ret;
1676
1677out_unmap_frags:
1678        /* Back up for failed control block mapping */
1679        bcmgenet_put_txcb(priv, ring);
1680
1681        /* Unmap successfully mapped control blocks */
1682        while (i-- > 0) {
1683                tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1684                bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1685        }
1686
1687        dev_kfree_skb(skb);
1688        goto out;
1689}
1690
1691static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1692                                          struct enet_cb *cb)
1693{
1694        struct device *kdev = &priv->pdev->dev;
1695        struct sk_buff *skb;
1696        struct sk_buff *rx_skb;
1697        dma_addr_t mapping;
1698
1699        /* Allocate a new Rx skb */
1700        skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1701        if (!skb) {
1702                priv->mib.alloc_rx_buff_failed++;
1703                netif_err(priv, rx_err, priv->dev,
1704                          "%s: Rx skb allocation failed\n", __func__);
1705                return NULL;
1706        }
1707
1708        /* DMA-map the new Rx skb */
1709        mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1710                                 DMA_FROM_DEVICE);
1711        if (dma_mapping_error(kdev, mapping)) {
1712                priv->mib.rx_dma_failed++;
1713                dev_kfree_skb_any(skb);
1714                netif_err(priv, rx_err, priv->dev,
1715                          "%s: Rx skb DMA mapping failed\n", __func__);
1716                return NULL;
1717        }
1718
1719        /* Grab the current Rx skb from the ring and DMA-unmap it */
1720        rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1721
1722        /* Put the new Rx skb on the ring */
1723        cb->skb = skb;
1724        dma_unmap_addr_set(cb, dma_addr, mapping);
1725        dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1726        dmadesc_set_addr(priv, cb->bd_addr, mapping);
1727
1728        /* Return the current Rx skb to caller */
1729        return rx_skb;
1730}
1731
1732/* bcmgenet_desc_rx - descriptor based rx process.
1733 * this could be called from bottom half, or from NAPI polling method.
1734 */
1735static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1736                                     unsigned int budget)
1737{
1738        struct bcmgenet_priv *priv = ring->priv;
1739        struct net_device *dev = priv->dev;
1740        struct enet_cb *cb;
1741        struct sk_buff *skb;
1742        u32 dma_length_status;
1743        unsigned long dma_flag;
1744        int len;
1745        unsigned int rxpktprocessed = 0, rxpkttoprocess;
1746        unsigned int bytes_processed = 0;
1747        unsigned int p_index, mask;
1748        unsigned int discards;
1749        unsigned int chksum_ok = 0;
1750
1751        /* Clear status before servicing to reduce spurious interrupts */
1752        if (ring->index == DESC_INDEX) {
1753                bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1754                                         INTRL2_CPU_CLEAR);
1755        } else {
1756                mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1757                bcmgenet_intrl2_1_writel(priv,
1758                                         mask,
1759                                         INTRL2_CPU_CLEAR);
1760        }
1761
1762        p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1763
1764        discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1765                   DMA_P_INDEX_DISCARD_CNT_MASK;
1766        if (discards > ring->old_discards) {
1767                discards = discards - ring->old_discards;
1768                ring->errors += discards;
1769                ring->old_discards += discards;
1770
1771                /* Clear HW register when we reach 75% of maximum 0xFFFF */
1772                if (ring->old_discards >= 0xC000) {
1773                        ring->old_discards = 0;
1774                        bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1775                                                  RDMA_PROD_INDEX);
1776                }
1777        }
1778
1779        p_index &= DMA_P_INDEX_MASK;
1780        rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1781
1782        netif_dbg(priv, rx_status, dev,
1783                  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1784
1785        while ((rxpktprocessed < rxpkttoprocess) &&
1786               (rxpktprocessed < budget)) {
1787                cb = &priv->rx_cbs[ring->read_ptr];
1788                skb = bcmgenet_rx_refill(priv, cb);
1789
1790                if (unlikely(!skb)) {
1791                        ring->dropped++;
1792                        goto next;
1793                }
1794
1795                if (!priv->desc_64b_en) {
1796                        dma_length_status =
1797                                dmadesc_get_length_status(priv, cb->bd_addr);
1798                } else {
1799                        struct status_64 *status;
1800
1801                        status = (struct status_64 *)skb->data;
1802                        dma_length_status = status->length_status;
1803                }
1804
1805                /* DMA flags and length are still valid no matter how
1806                 * we got the Receive Status Vector (64B RSB or register)
1807                 */
1808                dma_flag = dma_length_status & 0xffff;
1809                len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1810
1811                netif_dbg(priv, rx_status, dev,
1812                          "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1813                          __func__, p_index, ring->c_index,
1814                          ring->read_ptr, dma_length_status);
1815
1816                if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1817                        netif_err(priv, rx_status, dev,
1818                                  "dropping fragmented packet!\n");
1819                        ring->errors++;
1820                        dev_kfree_skb_any(skb);
1821                        goto next;
1822                }
1823
1824                /* report errors */
1825                if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1826                                                DMA_RX_OV |
1827                                                DMA_RX_NO |
1828                                                DMA_RX_LG |
1829                                                DMA_RX_RXER))) {
1830                        netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1831                                  (unsigned int)dma_flag);
1832                        if (dma_flag & DMA_RX_CRC_ERROR)
1833                                dev->stats.rx_crc_errors++;
1834                        if (dma_flag & DMA_RX_OV)
1835                                dev->stats.rx_over_errors++;
1836                        if (dma_flag & DMA_RX_NO)
1837                                dev->stats.rx_frame_errors++;
1838                        if (dma_flag & DMA_RX_LG)
1839                                dev->stats.rx_length_errors++;
1840                        dev->stats.rx_errors++;
1841                        dev_kfree_skb_any(skb);
1842                        goto next;
1843                } /* error packet */
1844
1845                chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1846                             priv->desc_rxchk_en;
1847
1848                skb_put(skb, len);
1849                if (priv->desc_64b_en) {
1850                        skb_pull(skb, 64);
1851                        len -= 64;
1852                }
1853
1854                if (likely(chksum_ok))
1855                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1856
1857                /* remove hardware 2bytes added for IP alignment */
1858                skb_pull(skb, 2);
1859                len -= 2;
1860
1861                if (priv->crc_fwd_en) {
1862                        skb_trim(skb, len - ETH_FCS_LEN);
1863                        len -= ETH_FCS_LEN;
1864                }
1865
1866                bytes_processed += len;
1867
1868                /*Finish setting up the received SKB and send it to the kernel*/
1869                skb->protocol = eth_type_trans(skb, priv->dev);
1870                ring->packets++;
1871                ring->bytes += len;
1872                if (dma_flag & DMA_RX_MULT)
1873                        dev->stats.multicast++;
1874
1875                /* Notify kernel */
1876                napi_gro_receive(&ring->napi, skb);
1877                netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1878
1879next:
1880                rxpktprocessed++;
1881                if (likely(ring->read_ptr < ring->end_ptr))
1882                        ring->read_ptr++;
1883                else
1884                        ring->read_ptr = ring->cb_ptr;
1885
1886                ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1887                bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1888        }
1889
1890        ring->dim.bytes = bytes_processed;
1891        ring->dim.packets = rxpktprocessed;
1892
1893        return rxpktprocessed;
1894}
1895
1896/* Rx NAPI polling method */
1897static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1898{
1899        struct bcmgenet_rx_ring *ring = container_of(napi,
1900                        struct bcmgenet_rx_ring, napi);
1901        struct net_dim_sample dim_sample;
1902        unsigned int work_done;
1903
1904        work_done = bcmgenet_desc_rx(ring, budget);
1905
1906        if (work_done < budget) {
1907                napi_complete_done(napi, work_done);
1908                ring->int_enable(ring);
1909        }
1910
1911        if (ring->dim.use_dim) {
1912                net_dim_sample(ring->dim.event_ctr, ring->dim.packets,
1913                               ring->dim.bytes, &dim_sample);
1914                net_dim(&ring->dim.dim, dim_sample);
1915        }
1916
1917        return work_done;
1918}
1919
1920static void bcmgenet_dim_work(struct work_struct *work)
1921{
1922        struct net_dim *dim = container_of(work, struct net_dim, work);
1923        struct bcmgenet_net_dim *ndim =
1924                        container_of(dim, struct bcmgenet_net_dim, dim);
1925        struct bcmgenet_rx_ring *ring =
1926                        container_of(ndim, struct bcmgenet_rx_ring, dim);
1927        struct net_dim_cq_moder cur_profile =
1928                        net_dim_get_profile(dim->mode, dim->profile_ix);
1929
1930        bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1931        dim->state = NET_DIM_START_MEASURE;
1932}
1933
1934/* Assign skb to RX DMA descriptor. */
1935static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1936                                     struct bcmgenet_rx_ring *ring)
1937{
1938        struct enet_cb *cb;
1939        struct sk_buff *skb;
1940        int i;
1941
1942        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1943
1944        /* loop here for each buffer needing assign */
1945        for (i = 0; i < ring->size; i++) {
1946                cb = ring->cbs + i;
1947                skb = bcmgenet_rx_refill(priv, cb);
1948                if (skb)
1949                        dev_consume_skb_any(skb);
1950                if (!cb->skb)
1951                        return -ENOMEM;
1952        }
1953
1954        return 0;
1955}
1956
1957static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1958{
1959        struct sk_buff *skb;
1960        struct enet_cb *cb;
1961        int i;
1962
1963        for (i = 0; i < priv->num_rx_bds; i++) {
1964                cb = &priv->rx_cbs[i];
1965
1966                skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1967                if (skb)
1968                        dev_consume_skb_any(skb);
1969        }
1970}
1971
1972static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1973{
1974        u32 reg;
1975
1976        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1977        if (enable)
1978                reg |= mask;
1979        else
1980                reg &= ~mask;
1981        bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1982
1983        /* UniMAC stops on a packet boundary, wait for a full-size packet
1984         * to be processed
1985         */
1986        if (enable == 0)
1987                usleep_range(1000, 2000);
1988}
1989
1990static void reset_umac(struct bcmgenet_priv *priv)
1991{
1992        /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1993        bcmgenet_rbuf_ctrl_set(priv, 0);
1994        udelay(10);
1995
1996        /* disable MAC while updating its registers */
1997        bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1998
1999        /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
2000        bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
2001        udelay(2);
2002        bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2003}
2004
2005static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2006{
2007        /* Mask all interrupts.*/
2008        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2009        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2010        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2011        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2012}
2013
2014static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2015{
2016        u32 int0_enable = 0;
2017
2018        /* Monitor cable plug/unplugged event for internal PHY, external PHY
2019         * and MoCA PHY
2020         */
2021        if (priv->internal_phy) {
2022                int0_enable |= UMAC_IRQ_LINK_EVENT;
2023        } else if (priv->ext_phy) {
2024                int0_enable |= UMAC_IRQ_LINK_EVENT;
2025        } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2026                if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2027                        int0_enable |= UMAC_IRQ_LINK_EVENT;
2028        }
2029        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2030}
2031
2032static void init_umac(struct bcmgenet_priv *priv)
2033{
2034        struct device *kdev = &priv->pdev->dev;
2035        u32 reg;
2036        u32 int0_enable = 0;
2037
2038        dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2039
2040        reset_umac(priv);
2041
2042        /* clear tx/rx counter */
2043        bcmgenet_umac_writel(priv,
2044                             MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2045                             UMAC_MIB_CTRL);
2046        bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2047
2048        bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2049
2050        /* init rx registers, enable ip header optimization */
2051        reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2052        reg |= RBUF_ALIGN_2B;
2053        bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2054
2055        if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2056                bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2057
2058        bcmgenet_intr_disable(priv);
2059
2060        /* Configure backpressure vectors for MoCA */
2061        if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2062                reg = bcmgenet_bp_mc_get(priv);
2063                reg |= BIT(priv->hw_params->bp_in_en_shift);
2064
2065                /* bp_mask: back pressure mask */
2066                if (netif_is_multiqueue(priv->dev))
2067                        reg |= priv->hw_params->bp_in_mask;
2068                else
2069                        reg &= ~priv->hw_params->bp_in_mask;
2070                bcmgenet_bp_mc_set(priv, reg);
2071        }
2072
2073        /* Enable MDIO interrupts on GENET v3+ */
2074        if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2075                int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2076
2077        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2078
2079        dev_dbg(kdev, "done init umac\n");
2080}
2081
2082static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2083                              void (*cb)(struct work_struct *work))
2084{
2085        struct bcmgenet_net_dim *dim = &ring->dim;
2086
2087        INIT_WORK(&dim->dim.work, cb);
2088        dim->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2089        dim->event_ctr = 0;
2090        dim->packets = 0;
2091        dim->bytes = 0;
2092}
2093
2094static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2095{
2096        struct bcmgenet_net_dim *dim = &ring->dim;
2097        struct net_dim_cq_moder moder;
2098        u32 usecs, pkts;
2099
2100        usecs = ring->rx_coalesce_usecs;
2101        pkts = ring->rx_max_coalesced_frames;
2102
2103        /* If DIM was enabled, re-apply default parameters */
2104        if (dim->use_dim) {
2105                moder = net_dim_get_def_profile(dim->dim.mode);
2106                usecs = moder.usec;
2107                pkts = moder.pkts;
2108        }
2109
2110        bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2111}
2112
2113/* Initialize a Tx ring along with corresponding hardware registers */
2114static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2115                                  unsigned int index, unsigned int size,
2116                                  unsigned int start_ptr, unsigned int end_ptr)
2117{
2118        struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2119        u32 words_per_bd = WORDS_PER_BD(priv);
2120        u32 flow_period_val = 0;
2121
2122        spin_lock_init(&ring->lock);
2123        ring->priv = priv;
2124        ring->index = index;
2125        if (index == DESC_INDEX) {
2126                ring->queue = 0;
2127                ring->int_enable = bcmgenet_tx_ring16_int_enable;
2128                ring->int_disable = bcmgenet_tx_ring16_int_disable;
2129        } else {
2130                ring->queue = index + 1;
2131                ring->int_enable = bcmgenet_tx_ring_int_enable;
2132                ring->int_disable = bcmgenet_tx_ring_int_disable;
2133        }
2134        ring->cbs = priv->tx_cbs + start_ptr;
2135        ring->size = size;
2136        ring->clean_ptr = start_ptr;
2137        ring->c_index = 0;
2138        ring->free_bds = size;
2139        ring->write_ptr = start_ptr;
2140        ring->cb_ptr = start_ptr;
2141        ring->end_ptr = end_ptr - 1;
2142        ring->prod_index = 0;
2143
2144        /* Set flow period for ring != 16 */
2145        if (index != DESC_INDEX)
2146                flow_period_val = ENET_MAX_MTU_SIZE << 16;
2147
2148        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2149        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2150        bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2151        /* Disable rate control for now */
2152        bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2153                                  TDMA_FLOW_PERIOD);
2154        bcmgenet_tdma_ring_writel(priv, index,
2155                                  ((size << DMA_RING_SIZE_SHIFT) |
2156                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2157
2158        /* Set start and end address, read and write pointers */
2159        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2160                                  DMA_START_ADDR);
2161        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2162                                  TDMA_READ_PTR);
2163        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2164                                  TDMA_WRITE_PTR);
2165        bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2166                                  DMA_END_ADDR);
2167
2168        /* Initialize Tx NAPI */
2169        netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2170                       NAPI_POLL_WEIGHT);
2171}
2172
2173/* Initialize a RDMA ring */
2174static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2175                                 unsigned int index, unsigned int size,
2176                                 unsigned int start_ptr, unsigned int end_ptr)
2177{
2178        struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2179        u32 words_per_bd = WORDS_PER_BD(priv);
2180        int ret;
2181
2182        ring->priv = priv;
2183        ring->index = index;
2184        if (index == DESC_INDEX) {
2185                ring->int_enable = bcmgenet_rx_ring16_int_enable;
2186                ring->int_disable = bcmgenet_rx_ring16_int_disable;
2187        } else {
2188                ring->int_enable = bcmgenet_rx_ring_int_enable;
2189                ring->int_disable = bcmgenet_rx_ring_int_disable;
2190        }
2191        ring->cbs = priv->rx_cbs + start_ptr;
2192        ring->size = size;
2193        ring->c_index = 0;
2194        ring->read_ptr = start_ptr;
2195        ring->cb_ptr = start_ptr;
2196        ring->end_ptr = end_ptr - 1;
2197
2198        ret = bcmgenet_alloc_rx_buffers(priv, ring);
2199        if (ret)
2200                return ret;
2201
2202        bcmgenet_init_dim(ring, bcmgenet_dim_work);
2203        bcmgenet_init_rx_coalesce(ring);
2204
2205        /* Initialize Rx NAPI */
2206        netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2207                       NAPI_POLL_WEIGHT);
2208
2209        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2210        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2211        bcmgenet_rdma_ring_writel(priv, index,
2212                                  ((size << DMA_RING_SIZE_SHIFT) |
2213                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2214        bcmgenet_rdma_ring_writel(priv, index,
2215                                  (DMA_FC_THRESH_LO <<
2216                                   DMA_XOFF_THRESHOLD_SHIFT) |
2217                                   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2218
2219        /* Set start and end address, read and write pointers */
2220        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2221                                  DMA_START_ADDR);
2222        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2223                                  RDMA_READ_PTR);
2224        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2225                                  RDMA_WRITE_PTR);
2226        bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2227                                  DMA_END_ADDR);
2228
2229        return ret;
2230}
2231
2232static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2233{
2234        unsigned int i;
2235        struct bcmgenet_tx_ring *ring;
2236
2237        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2238                ring = &priv->tx_rings[i];
2239                napi_enable(&ring->napi);
2240                ring->int_enable(ring);
2241        }
2242
2243        ring = &priv->tx_rings[DESC_INDEX];
2244        napi_enable(&ring->napi);
2245        ring->int_enable(ring);
2246}
2247
2248static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2249{
2250        unsigned int i;
2251        struct bcmgenet_tx_ring *ring;
2252
2253        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2254                ring = &priv->tx_rings[i];
2255                napi_disable(&ring->napi);
2256        }
2257
2258        ring = &priv->tx_rings[DESC_INDEX];
2259        napi_disable(&ring->napi);
2260}
2261
2262static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2263{
2264        unsigned int i;
2265        struct bcmgenet_tx_ring *ring;
2266
2267        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2268                ring = &priv->tx_rings[i];
2269                netif_napi_del(&ring->napi);
2270        }
2271
2272        ring = &priv->tx_rings[DESC_INDEX];
2273        netif_napi_del(&ring->napi);
2274}
2275
2276/* Initialize Tx queues
2277 *
2278 * Queues 0-3 are priority-based, each one has 32 descriptors,
2279 * with queue 0 being the highest priority queue.
2280 *
2281 * Queue 16 is the default Tx queue with
2282 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2283 *
2284 * The transmit control block pool is then partitioned as follows:
2285 * - Tx queue 0 uses tx_cbs[0..31]
2286 * - Tx queue 1 uses tx_cbs[32..63]
2287 * - Tx queue 2 uses tx_cbs[64..95]
2288 * - Tx queue 3 uses tx_cbs[96..127]
2289 * - Tx queue 16 uses tx_cbs[128..255]
2290 */
2291static void bcmgenet_init_tx_queues(struct net_device *dev)
2292{
2293        struct bcmgenet_priv *priv = netdev_priv(dev);
2294        u32 i, dma_enable;
2295        u32 dma_ctrl, ring_cfg;
2296        u32 dma_priority[3] = {0, 0, 0};
2297
2298        dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2299        dma_enable = dma_ctrl & DMA_EN;
2300        dma_ctrl &= ~DMA_EN;
2301        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2302
2303        dma_ctrl = 0;
2304        ring_cfg = 0;
2305
2306        /* Enable strict priority arbiter mode */
2307        bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2308
2309        /* Initialize Tx priority queues */
2310        for (i = 0; i < priv->hw_params->tx_queues; i++) {
2311                bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2312                                      i * priv->hw_params->tx_bds_per_q,
2313                                      (i + 1) * priv->hw_params->tx_bds_per_q);
2314                ring_cfg |= (1 << i);
2315                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2316                dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2317                        ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2318        }
2319
2320        /* Initialize Tx default queue 16 */
2321        bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2322                              priv->hw_params->tx_queues *
2323                              priv->hw_params->tx_bds_per_q,
2324                              TOTAL_DESC);
2325        ring_cfg |= (1 << DESC_INDEX);
2326        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2327        dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2328                ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2329                 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2330
2331        /* Set Tx queue priorities */
2332        bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2333        bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2334        bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2335
2336        /* Enable Tx queues */
2337        bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2338
2339        /* Enable Tx DMA */
2340        if (dma_enable)
2341                dma_ctrl |= DMA_EN;
2342        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2343}
2344
2345static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2346{
2347        unsigned int i;
2348        struct bcmgenet_rx_ring *ring;
2349
2350        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2351                ring = &priv->rx_rings[i];
2352                napi_enable(&ring->napi);
2353                ring->int_enable(ring);
2354        }
2355
2356        ring = &priv->rx_rings[DESC_INDEX];
2357        napi_enable(&ring->napi);
2358        ring->int_enable(ring);
2359}
2360
2361static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2362{
2363        unsigned int i;
2364        struct bcmgenet_rx_ring *ring;
2365
2366        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2367                ring = &priv->rx_rings[i];
2368                napi_disable(&ring->napi);
2369                cancel_work_sync(&ring->dim.dim.work);
2370        }
2371
2372        ring = &priv->rx_rings[DESC_INDEX];
2373        napi_disable(&ring->napi);
2374        cancel_work_sync(&ring->dim.dim.work);
2375}
2376
2377static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2378{
2379        unsigned int i;
2380        struct bcmgenet_rx_ring *ring;
2381
2382        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2383                ring = &priv->rx_rings[i];
2384                netif_napi_del(&ring->napi);
2385        }
2386
2387        ring = &priv->rx_rings[DESC_INDEX];
2388        netif_napi_del(&ring->napi);
2389}
2390
2391/* Initialize Rx queues
2392 *
2393 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2394 * used to direct traffic to these queues.
2395 *
2396 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2397 */
2398static int bcmgenet_init_rx_queues(struct net_device *dev)
2399{
2400        struct bcmgenet_priv *priv = netdev_priv(dev);
2401        u32 i;
2402        u32 dma_enable;
2403        u32 dma_ctrl;
2404        u32 ring_cfg;
2405        int ret;
2406
2407        dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2408        dma_enable = dma_ctrl & DMA_EN;
2409        dma_ctrl &= ~DMA_EN;
2410        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2411
2412        dma_ctrl = 0;
2413        ring_cfg = 0;
2414
2415        /* Initialize Rx priority queues */
2416        for (i = 0; i < priv->hw_params->rx_queues; i++) {
2417                ret = bcmgenet_init_rx_ring(priv, i,
2418                                            priv->hw_params->rx_bds_per_q,
2419                                            i * priv->hw_params->rx_bds_per_q,
2420                                            (i + 1) *
2421                                            priv->hw_params->rx_bds_per_q);
2422                if (ret)
2423                        return ret;
2424
2425                ring_cfg |= (1 << i);
2426                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2427        }
2428
2429        /* Initialize Rx default queue 16 */
2430        ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2431                                    priv->hw_params->rx_queues *
2432                                    priv->hw_params->rx_bds_per_q,
2433                                    TOTAL_DESC);
2434        if (ret)
2435                return ret;
2436
2437        ring_cfg |= (1 << DESC_INDEX);
2438        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2439
2440        /* Enable rings */
2441        bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2442
2443        /* Configure ring as descriptor ring and re-enable DMA if enabled */
2444        if (dma_enable)
2445                dma_ctrl |= DMA_EN;
2446        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2447
2448        return 0;
2449}
2450
2451static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2452{
2453        int ret = 0;
2454        int timeout = 0;
2455        u32 reg;
2456        u32 dma_ctrl;
2457        int i;
2458
2459        /* Disable TDMA to stop add more frames in TX DMA */
2460        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2461        reg &= ~DMA_EN;
2462        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2463
2464        /* Check TDMA status register to confirm TDMA is disabled */
2465        while (timeout++ < DMA_TIMEOUT_VAL) {
2466                reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2467                if (reg & DMA_DISABLED)
2468                        break;
2469
2470                udelay(1);
2471        }
2472
2473        if (timeout == DMA_TIMEOUT_VAL) {
2474                netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2475                ret = -ETIMEDOUT;
2476        }
2477
2478        /* Wait 10ms for packet drain in both tx and rx dma */
2479        usleep_range(10000, 20000);
2480
2481        /* Disable RDMA */
2482        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2483        reg &= ~DMA_EN;
2484        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2485
2486        timeout = 0;
2487        /* Check RDMA status register to confirm RDMA is disabled */
2488        while (timeout++ < DMA_TIMEOUT_VAL) {
2489                reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2490                if (reg & DMA_DISABLED)
2491                        break;
2492
2493                udelay(1);
2494        }
2495
2496        if (timeout == DMA_TIMEOUT_VAL) {
2497                netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2498                ret = -ETIMEDOUT;
2499        }
2500
2501        dma_ctrl = 0;
2502        for (i = 0; i < priv->hw_params->rx_queues; i++)
2503                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2504        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2505        reg &= ~dma_ctrl;
2506        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2507
2508        dma_ctrl = 0;
2509        for (i = 0; i < priv->hw_params->tx_queues; i++)
2510                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2511        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2512        reg &= ~dma_ctrl;
2513        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2514
2515        return ret;
2516}
2517
2518static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2519{
2520        struct netdev_queue *txq;
2521        struct sk_buff *skb;
2522        struct enet_cb *cb;
2523        int i;
2524
2525        bcmgenet_fini_rx_napi(priv);
2526        bcmgenet_fini_tx_napi(priv);
2527
2528        for (i = 0; i < priv->num_tx_bds; i++) {
2529                cb = priv->tx_cbs + i;
2530                skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2531                if (skb)
2532                        dev_kfree_skb(skb);
2533        }
2534
2535        for (i = 0; i < priv->hw_params->tx_queues; i++) {
2536                txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2537                netdev_tx_reset_queue(txq);
2538        }
2539
2540        txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2541        netdev_tx_reset_queue(txq);
2542
2543        bcmgenet_free_rx_buffers(priv);
2544        kfree(priv->rx_cbs);
2545        kfree(priv->tx_cbs);
2546}
2547
2548/* init_edma: Initialize DMA control register */
2549static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2550{
2551        int ret;
2552        unsigned int i;
2553        struct enet_cb *cb;
2554
2555        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2556
2557        /* Initialize common Rx ring structures */
2558        priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2559        priv->num_rx_bds = TOTAL_DESC;
2560        priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2561                               GFP_KERNEL);
2562        if (!priv->rx_cbs)
2563                return -ENOMEM;
2564
2565        for (i = 0; i < priv->num_rx_bds; i++) {
2566                cb = priv->rx_cbs + i;
2567                cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2568        }
2569
2570        /* Initialize common TX ring structures */
2571        priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2572        priv->num_tx_bds = TOTAL_DESC;
2573        priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2574                               GFP_KERNEL);
2575        if (!priv->tx_cbs) {
2576                kfree(priv->rx_cbs);
2577                return -ENOMEM;
2578        }
2579
2580        for (i = 0; i < priv->num_tx_bds; i++) {
2581                cb = priv->tx_cbs + i;
2582                cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2583        }
2584
2585        /* Init rDma */
2586        bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2587
2588        /* Initialize Rx queues */
2589        ret = bcmgenet_init_rx_queues(priv->dev);
2590        if (ret) {
2591                netdev_err(priv->dev, "failed to initialize Rx queues\n");
2592                bcmgenet_free_rx_buffers(priv);
2593                kfree(priv->rx_cbs);
2594                kfree(priv->tx_cbs);
2595                return ret;
2596        }
2597
2598        /* Init tDma */
2599        bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2600
2601        /* Initialize Tx queues */
2602        bcmgenet_init_tx_queues(priv->dev);
2603
2604        return 0;
2605}
2606
2607/* Interrupt bottom half */
2608static void bcmgenet_irq_task(struct work_struct *work)
2609{
2610        unsigned int status;
2611        struct bcmgenet_priv *priv = container_of(
2612                        work, struct bcmgenet_priv, bcmgenet_irq_work);
2613
2614        netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2615
2616        spin_lock_irq(&priv->lock);
2617        status = priv->irq0_stat;
2618        priv->irq0_stat = 0;
2619        spin_unlock_irq(&priv->lock);
2620
2621        /* Link UP/DOWN event */
2622        if (status & UMAC_IRQ_LINK_EVENT) {
2623                priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP);
2624                phy_mac_interrupt(priv->dev->phydev);
2625        }
2626}
2627
2628/* bcmgenet_isr1: handle Rx and Tx priority queues */
2629static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2630{
2631        struct bcmgenet_priv *priv = dev_id;
2632        struct bcmgenet_rx_ring *rx_ring;
2633        struct bcmgenet_tx_ring *tx_ring;
2634        unsigned int index, status;
2635
2636        /* Read irq status */
2637        status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2638                ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2639
2640        /* clear interrupts */
2641        bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2642
2643        netif_dbg(priv, intr, priv->dev,
2644                  "%s: IRQ=0x%x\n", __func__, status);
2645
2646        /* Check Rx priority queue interrupts */
2647        for (index = 0; index < priv->hw_params->rx_queues; index++) {
2648                if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2649                        continue;
2650
2651                rx_ring = &priv->rx_rings[index];
2652                rx_ring->dim.event_ctr++;
2653
2654                if (likely(napi_schedule_prep(&rx_ring->napi))) {
2655                        rx_ring->int_disable(rx_ring);
2656                        __napi_schedule_irqoff(&rx_ring->napi);
2657                }
2658        }
2659
2660        /* Check Tx priority queue interrupts */
2661        for (index = 0; index < priv->hw_params->tx_queues; index++) {
2662                if (!(status & BIT(index)))
2663                        continue;
2664
2665                tx_ring = &priv->tx_rings[index];
2666
2667                if (likely(napi_schedule_prep(&tx_ring->napi))) {
2668                        tx_ring->int_disable(tx_ring);
2669                        __napi_schedule_irqoff(&tx_ring->napi);
2670                }
2671        }
2672
2673        return IRQ_HANDLED;
2674}
2675
2676/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2677static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2678{
2679        struct bcmgenet_priv *priv = dev_id;
2680        struct bcmgenet_rx_ring *rx_ring;
2681        struct bcmgenet_tx_ring *tx_ring;
2682        unsigned int status;
2683        unsigned long flags;
2684
2685        /* Read irq status */
2686        status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2687                ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2688
2689        /* clear interrupts */
2690        bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2691
2692        netif_dbg(priv, intr, priv->dev,
2693                  "IRQ=0x%x\n", status);
2694
2695        if (status & UMAC_IRQ_RXDMA_DONE) {
2696                rx_ring = &priv->rx_rings[DESC_INDEX];
2697                rx_ring->dim.event_ctr++;
2698
2699                if (likely(napi_schedule_prep(&rx_ring->napi))) {
2700                        rx_ring->int_disable(rx_ring);
2701                        __napi_schedule_irqoff(&rx_ring->napi);
2702                }
2703        }
2704
2705        if (status & UMAC_IRQ_TXDMA_DONE) {
2706                tx_ring = &priv->tx_rings[DESC_INDEX];
2707
2708                if (likely(napi_schedule_prep(&tx_ring->napi))) {
2709                        tx_ring->int_disable(tx_ring);
2710                        __napi_schedule_irqoff(&tx_ring->napi);
2711                }
2712        }
2713
2714        if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2715                status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2716                wake_up(&priv->wq);
2717        }
2718
2719        /* all other interested interrupts handled in bottom half */
2720        status &= UMAC_IRQ_LINK_EVENT;
2721        if (status) {
2722                /* Save irq status for bottom-half processing. */
2723                spin_lock_irqsave(&priv->lock, flags);
2724                priv->irq0_stat |= status;
2725                spin_unlock_irqrestore(&priv->lock, flags);
2726
2727                schedule_work(&priv->bcmgenet_irq_work);
2728        }
2729
2730        return IRQ_HANDLED;
2731}
2732
2733static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2734{
2735        struct bcmgenet_priv *priv = dev_id;
2736
2737        pm_wakeup_event(&priv->pdev->dev, 0);
2738
2739        return IRQ_HANDLED;
2740}
2741
2742#ifdef CONFIG_NET_POLL_CONTROLLER
2743static void bcmgenet_poll_controller(struct net_device *dev)
2744{
2745        struct bcmgenet_priv *priv = netdev_priv(dev);
2746
2747        /* Invoke the main RX/TX interrupt handler */
2748        disable_irq(priv->irq0);
2749        bcmgenet_isr0(priv->irq0, priv);
2750        enable_irq(priv->irq0);
2751
2752        /* And the interrupt handler for RX/TX priority queues */
2753        disable_irq(priv->irq1);
2754        bcmgenet_isr1(priv->irq1, priv);
2755        enable_irq(priv->irq1);
2756}
2757#endif
2758
2759static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2760{
2761        u32 reg;
2762
2763        reg = bcmgenet_rbuf_ctrl_get(priv);
2764        reg |= BIT(1);
2765        bcmgenet_rbuf_ctrl_set(priv, reg);
2766        udelay(10);
2767
2768        reg &= ~BIT(1);
2769        bcmgenet_rbuf_ctrl_set(priv, reg);
2770        udelay(10);
2771}
2772
2773static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2774                                 unsigned char *addr)
2775{
2776        bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2777                        (addr[2] << 8) | addr[3], UMAC_MAC0);
2778        bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2779}
2780
2781/* Returns a reusable dma control register value */
2782static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2783{
2784        u32 reg;
2785        u32 dma_ctrl;
2786
2787        /* disable DMA */
2788        dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2789        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2790        reg &= ~dma_ctrl;
2791        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2792
2793        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2794        reg &= ~dma_ctrl;
2795        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2796
2797        bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2798        udelay(10);
2799        bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2800
2801        return dma_ctrl;
2802}
2803
2804static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2805{
2806        u32 reg;
2807
2808        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2809        reg |= dma_ctrl;
2810        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2811
2812        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2813        reg |= dma_ctrl;
2814        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2815}
2816
2817/* bcmgenet_hfb_clear
2818 *
2819 * Clear Hardware Filter Block and disable all filtering.
2820 */
2821static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2822{
2823        u32 i;
2824
2825        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2826        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2827        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2828
2829        for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2830                bcmgenet_rdma_writel(priv, 0x0, i);
2831
2832        for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2833                bcmgenet_hfb_reg_writel(priv, 0x0,
2834                                        HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2835
2836        for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2837                        priv->hw_params->hfb_filter_size; i++)
2838                bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2839}
2840
2841static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2842{
2843        if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2844                return;
2845
2846        bcmgenet_hfb_clear(priv);
2847}
2848
2849static void bcmgenet_netif_start(struct net_device *dev)
2850{
2851        struct bcmgenet_priv *priv = netdev_priv(dev);
2852
2853        /* Start the network engine */
2854        bcmgenet_enable_rx_napi(priv);
2855
2856        umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2857
2858        netif_tx_start_all_queues(dev);
2859        bcmgenet_enable_tx_napi(priv);
2860
2861        /* Monitor link interrupts now */
2862        bcmgenet_link_intr_enable(priv);
2863
2864        phy_start(dev->phydev);
2865}
2866
2867static int bcmgenet_open(struct net_device *dev)
2868{
2869        struct bcmgenet_priv *priv = netdev_priv(dev);
2870        unsigned long dma_ctrl;
2871        u32 reg;
2872        int ret;
2873
2874        netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2875
2876        /* Turn on the clock */
2877        clk_prepare_enable(priv->clk);
2878
2879        /* If this is an internal GPHY, power it back on now, before UniMAC is
2880         * brought out of reset as absolutely no UniMAC activity is allowed
2881         */
2882        if (priv->internal_phy)
2883                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2884
2885        /* take MAC out of reset */
2886        bcmgenet_umac_reset(priv);
2887
2888        init_umac(priv);
2889
2890        /* Make sure we reflect the value of CRC_CMD_FWD */
2891        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2892        priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2893
2894        bcmgenet_set_hw_addr(priv, dev->dev_addr);
2895
2896        if (priv->internal_phy) {
2897                reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2898                reg |= EXT_ENERGY_DET_MASK;
2899                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2900        }
2901
2902        /* Disable RX/TX DMA and flush TX queues */
2903        dma_ctrl = bcmgenet_dma_disable(priv);
2904
2905        /* Reinitialize TDMA and RDMA and SW housekeeping */
2906        ret = bcmgenet_init_dma(priv);
2907        if (ret) {
2908                netdev_err(dev, "failed to initialize DMA\n");
2909                goto err_clk_disable;
2910        }
2911
2912        /* Always enable ring 16 - descriptor ring */
2913        bcmgenet_enable_dma(priv, dma_ctrl);
2914
2915        /* HFB init */
2916        bcmgenet_hfb_init(priv);
2917
2918        ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2919                          dev->name, priv);
2920        if (ret < 0) {
2921                netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2922                goto err_fini_dma;
2923        }
2924
2925        ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2926                          dev->name, priv);
2927        if (ret < 0) {
2928                netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2929                goto err_irq0;
2930        }
2931
2932        ret = bcmgenet_mii_probe(dev);
2933        if (ret) {
2934                netdev_err(dev, "failed to connect to PHY\n");
2935                goto err_irq1;
2936        }
2937
2938        bcmgenet_netif_start(dev);
2939
2940        return 0;
2941
2942err_irq1:
2943        free_irq(priv->irq1, priv);
2944err_irq0:
2945        free_irq(priv->irq0, priv);
2946err_fini_dma:
2947        bcmgenet_dma_teardown(priv);
2948        bcmgenet_fini_dma(priv);
2949err_clk_disable:
2950        if (priv->internal_phy)
2951                bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2952        clk_disable_unprepare(priv->clk);
2953        return ret;
2954}
2955
2956static void bcmgenet_netif_stop(struct net_device *dev)
2957{
2958        struct bcmgenet_priv *priv = netdev_priv(dev);
2959
2960        bcmgenet_disable_tx_napi(priv);
2961        netif_tx_stop_all_queues(dev);
2962
2963        /* Disable MAC receive */
2964        umac_enable_set(priv, CMD_RX_EN, false);
2965
2966        bcmgenet_dma_teardown(priv);
2967
2968        /* Disable MAC transmit. TX DMA disabled must be done before this */
2969        umac_enable_set(priv, CMD_TX_EN, false);
2970
2971        phy_stop(dev->phydev);
2972        bcmgenet_disable_rx_napi(priv);
2973        bcmgenet_intr_disable(priv);
2974
2975        /* Wait for pending work items to complete. Since interrupts are
2976         * disabled no new work will be scheduled.
2977         */
2978        cancel_work_sync(&priv->bcmgenet_irq_work);
2979
2980        priv->old_link = -1;
2981        priv->old_speed = -1;
2982        priv->old_duplex = -1;
2983        priv->old_pause = -1;
2984
2985        /* tx reclaim */
2986        bcmgenet_tx_reclaim_all(dev);
2987        bcmgenet_fini_dma(priv);
2988}
2989
2990static int bcmgenet_close(struct net_device *dev)
2991{
2992        struct bcmgenet_priv *priv = netdev_priv(dev);
2993        int ret = 0;
2994
2995        netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2996
2997        bcmgenet_netif_stop(dev);
2998
2999        /* Really kill the PHY state machine and disconnect from it */
3000        phy_disconnect(dev->phydev);
3001
3002        free_irq(priv->irq0, priv);
3003        free_irq(priv->irq1, priv);
3004
3005        if (priv->internal_phy)
3006                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3007
3008        clk_disable_unprepare(priv->clk);
3009
3010        return ret;
3011}
3012
3013static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3014{
3015        struct bcmgenet_priv *priv = ring->priv;
3016        u32 p_index, c_index, intsts, intmsk;
3017        struct netdev_queue *txq;
3018        unsigned int free_bds;
3019        bool txq_stopped;
3020
3021        if (!netif_msg_tx_err(priv))
3022                return;
3023
3024        txq = netdev_get_tx_queue(priv->dev, ring->queue);
3025
3026        spin_lock(&ring->lock);
3027        if (ring->index == DESC_INDEX) {
3028                intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3029                intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3030        } else {
3031                intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3032                intmsk = 1 << ring->index;
3033        }
3034        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3035        p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3036        txq_stopped = netif_tx_queue_stopped(txq);
3037        free_bds = ring->free_bds;
3038        spin_unlock(&ring->lock);
3039
3040        netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3041                  "TX queue status: %s, interrupts: %s\n"
3042                  "(sw)free_bds: %d (sw)size: %d\n"
3043                  "(sw)p_index: %d (hw)p_index: %d\n"
3044                  "(sw)c_index: %d (hw)c_index: %d\n"
3045                  "(sw)clean_p: %d (sw)write_p: %d\n"
3046                  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3047                  ring->index, ring->queue,
3048                  txq_stopped ? "stopped" : "active",
3049                  intsts & intmsk ? "enabled" : "disabled",
3050                  free_bds, ring->size,
3051                  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3052                  ring->c_index, c_index & DMA_C_INDEX_MASK,
3053                  ring->clean_ptr, ring->write_ptr,
3054                  ring->cb_ptr, ring->end_ptr);
3055}
3056
3057static void bcmgenet_timeout(struct net_device *dev)
3058{
3059        struct bcmgenet_priv *priv = netdev_priv(dev);
3060        u32 int0_enable = 0;
3061        u32 int1_enable = 0;
3062        unsigned int q;
3063
3064        netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3065
3066        for (q = 0; q < priv->hw_params->tx_queues; q++)
3067                bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3068        bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3069
3070        bcmgenet_tx_reclaim_all(dev);
3071
3072        for (q = 0; q < priv->hw_params->tx_queues; q++)
3073                int1_enable |= (1 << q);
3074
3075        int0_enable = UMAC_IRQ_TXDMA_DONE;
3076
3077        /* Re-enable TX interrupts if disabled */
3078        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3079        bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3080
3081        netif_trans_update(dev);
3082
3083        dev->stats.tx_errors++;
3084
3085        netif_tx_wake_all_queues(dev);
3086}
3087
3088#define MAX_MC_COUNT    16
3089
3090static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3091                                         unsigned char *addr,
3092                                         int *i,
3093                                         int *mc)
3094{
3095        u32 reg;
3096
3097        bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3098                             UMAC_MDF_ADDR + (*i * 4));
3099        bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3100                             addr[4] << 8 | addr[5],
3101                             UMAC_MDF_ADDR + ((*i + 1) * 4));
3102        reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3103        reg |= (1 << (MAX_MC_COUNT - *mc));
3104        bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3105        *i += 2;
3106        (*mc)++;
3107}
3108
3109static void bcmgenet_set_rx_mode(struct net_device *dev)
3110{
3111        struct bcmgenet_priv *priv = netdev_priv(dev);
3112        struct netdev_hw_addr *ha;
3113        int i, mc;
3114        u32 reg;
3115
3116        netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3117
3118        /* Promiscuous mode */
3119        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3120        if (dev->flags & IFF_PROMISC) {
3121                reg |= CMD_PROMISC;
3122                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3123                bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3124                return;
3125        } else {
3126                reg &= ~CMD_PROMISC;
3127                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3128        }
3129
3130        /* UniMac doesn't support ALLMULTI */
3131        if (dev->flags & IFF_ALLMULTI) {
3132                netdev_warn(dev, "ALLMULTI is not supported\n");
3133                return;
3134        }
3135
3136        /* update MDF filter */
3137        i = 0;
3138        mc = 0;
3139        /* Broadcast */
3140        bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3141        /* my own address.*/
3142        bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3143        /* Unicast list*/
3144        if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3145                return;
3146
3147        if (!netdev_uc_empty(dev))
3148                netdev_for_each_uc_addr(ha, dev)
3149                        bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3150        /* Multicast */
3151        if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3152                return;
3153
3154        netdev_for_each_mc_addr(ha, dev)
3155                bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3156}
3157
3158/* Set the hardware MAC address. */
3159static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3160{
3161        struct sockaddr *addr = p;
3162
3163        /* Setting the MAC address at the hardware level is not possible
3164         * without disabling the UniMAC RX/TX enable bits.
3165         */
3166        if (netif_running(dev))
3167                return -EBUSY;
3168
3169        ether_addr_copy(dev->dev_addr, addr->sa_data);
3170
3171        return 0;
3172}
3173
3174static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3175{
3176        struct bcmgenet_priv *priv = netdev_priv(dev);
3177        unsigned long tx_bytes = 0, tx_packets = 0;
3178        unsigned long rx_bytes = 0, rx_packets = 0;
3179        unsigned long rx_errors = 0, rx_dropped = 0;
3180        struct bcmgenet_tx_ring *tx_ring;
3181        struct bcmgenet_rx_ring *rx_ring;
3182        unsigned int q;
3183
3184        for (q = 0; q < priv->hw_params->tx_queues; q++) {
3185                tx_ring = &priv->tx_rings[q];
3186                tx_bytes += tx_ring->bytes;
3187                tx_packets += tx_ring->packets;
3188        }
3189        tx_ring = &priv->tx_rings[DESC_INDEX];
3190        tx_bytes += tx_ring->bytes;
3191        tx_packets += tx_ring->packets;
3192
3193        for (q = 0; q < priv->hw_params->rx_queues; q++) {
3194                rx_ring = &priv->rx_rings[q];
3195
3196                rx_bytes += rx_ring->bytes;
3197                rx_packets += rx_ring->packets;
3198                rx_errors += rx_ring->errors;
3199                rx_dropped += rx_ring->dropped;
3200        }
3201        rx_ring = &priv->rx_rings[DESC_INDEX];
3202        rx_bytes += rx_ring->bytes;
3203        rx_packets += rx_ring->packets;
3204        rx_errors += rx_ring->errors;
3205        rx_dropped += rx_ring->dropped;
3206
3207        dev->stats.tx_bytes = tx_bytes;
3208        dev->stats.tx_packets = tx_packets;
3209        dev->stats.rx_bytes = rx_bytes;
3210        dev->stats.rx_packets = rx_packets;
3211        dev->stats.rx_errors = rx_errors;
3212        dev->stats.rx_missed_errors = rx_errors;
3213        return &dev->stats;
3214}
3215
3216static const struct net_device_ops bcmgenet_netdev_ops = {
3217        .ndo_open               = bcmgenet_open,
3218        .ndo_stop               = bcmgenet_close,
3219        .ndo_start_xmit         = bcmgenet_xmit,
3220        .ndo_tx_timeout         = bcmgenet_timeout,
3221        .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3222        .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3223        .ndo_do_ioctl           = bcmgenet_ioctl,
3224        .ndo_set_features       = bcmgenet_set_features,
3225#ifdef CONFIG_NET_POLL_CONTROLLER
3226        .ndo_poll_controller    = bcmgenet_poll_controller,
3227#endif
3228        .ndo_get_stats          = bcmgenet_get_stats,
3229};
3230
3231/* Array of GENET hardware parameters/characteristics */
3232static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3233        [GENET_V1] = {
3234                .tx_queues = 0,
3235                .tx_bds_per_q = 0,
3236                .rx_queues = 0,
3237                .rx_bds_per_q = 0,
3238                .bp_in_en_shift = 16,
3239                .bp_in_mask = 0xffff,
3240                .hfb_filter_cnt = 16,
3241                .qtag_mask = 0x1F,
3242                .hfb_offset = 0x1000,
3243                .rdma_offset = 0x2000,
3244                .tdma_offset = 0x3000,
3245                .words_per_bd = 2,
3246        },
3247        [GENET_V2] = {
3248                .tx_queues = 4,
3249                .tx_bds_per_q = 32,
3250                .rx_queues = 0,
3251                .rx_bds_per_q = 0,
3252                .bp_in_en_shift = 16,
3253                .bp_in_mask = 0xffff,
3254                .hfb_filter_cnt = 16,
3255                .qtag_mask = 0x1F,
3256                .tbuf_offset = 0x0600,
3257                .hfb_offset = 0x1000,
3258                .hfb_reg_offset = 0x2000,
3259                .rdma_offset = 0x3000,
3260                .tdma_offset = 0x4000,
3261                .words_per_bd = 2,
3262                .flags = GENET_HAS_EXT,
3263        },
3264        [GENET_V3] = {
3265                .tx_queues = 4,
3266                .tx_bds_per_q = 32,
3267                .rx_queues = 0,
3268                .rx_bds_per_q = 0,
3269                .bp_in_en_shift = 17,
3270                .bp_in_mask = 0x1ffff,
3271                .hfb_filter_cnt = 48,
3272                .hfb_filter_size = 128,
3273                .qtag_mask = 0x3F,
3274                .tbuf_offset = 0x0600,
3275                .hfb_offset = 0x8000,
3276                .hfb_reg_offset = 0xfc00,
3277                .rdma_offset = 0x10000,
3278                .tdma_offset = 0x11000,
3279                .words_per_bd = 2,
3280                .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3281                         GENET_HAS_MOCA_LINK_DET,
3282        },
3283        [GENET_V4] = {
3284                .tx_queues = 4,
3285                .tx_bds_per_q = 32,
3286                .rx_queues = 0,
3287                .rx_bds_per_q = 0,
3288                .bp_in_en_shift = 17,
3289                .bp_in_mask = 0x1ffff,
3290                .hfb_filter_cnt = 48,
3291                .hfb_filter_size = 128,
3292                .qtag_mask = 0x3F,
3293                .tbuf_offset = 0x0600,
3294                .hfb_offset = 0x8000,
3295                .hfb_reg_offset = 0xfc00,
3296                .rdma_offset = 0x2000,
3297                .tdma_offset = 0x4000,
3298                .words_per_bd = 3,
3299                .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3300                         GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3301        },
3302        [GENET_V5] = {
3303                .tx_queues = 4,
3304                .tx_bds_per_q = 32,
3305                .rx_queues = 0,
3306                .rx_bds_per_q = 0,
3307                .bp_in_en_shift = 17,
3308                .bp_in_mask = 0x1ffff,
3309                .hfb_filter_cnt = 48,
3310                .hfb_filter_size = 128,
3311                .qtag_mask = 0x3F,
3312                .tbuf_offset = 0x0600,
3313                .hfb_offset = 0x8000,
3314                .hfb_reg_offset = 0xfc00,
3315                .rdma_offset = 0x2000,
3316                .tdma_offset = 0x4000,
3317                .words_per_bd = 3,
3318                .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3319                         GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3320        },
3321};
3322
3323/* Infer hardware parameters from the detected GENET version */
3324static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3325{
3326        struct bcmgenet_hw_params *params;
3327        u32 reg;
3328        u8 major;
3329        u16 gphy_rev;
3330
3331        if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3332                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3333                genet_dma_ring_regs = genet_dma_ring_regs_v4;
3334                priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3335        } else if (GENET_IS_V3(priv)) {
3336                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3337                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3338                priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3339        } else if (GENET_IS_V2(priv)) {
3340                bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3341                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3342                priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3343        } else if (GENET_IS_V1(priv)) {
3344                bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3345                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3346                priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3347        }
3348
3349        /* enum genet_version starts at 1 */
3350        priv->hw_params = &bcmgenet_hw_params[priv->version];
3351        params = priv->hw_params;
3352
3353        /* Read GENET HW version */
3354        reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3355        major = (reg >> 24 & 0x0f);
3356        if (major == 6)
3357                major = 5;
3358        else if (major == 5)
3359                major = 4;
3360        else if (major == 0)
3361                major = 1;
3362        if (major != priv->version) {
3363                dev_err(&priv->pdev->dev,
3364                        "GENET version mismatch, got: %d, configured for: %d\n",
3365                        major, priv->version);
3366        }
3367
3368        /* Print the GENET core version */
3369        dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3370                 major, (reg >> 16) & 0x0f, reg & 0xffff);
3371
3372        /* Store the integrated PHY revision for the MDIO probing function
3373         * to pass this information to the PHY driver. The PHY driver expects
3374         * to find the PHY major revision in bits 15:8 while the GENET register
3375         * stores that information in bits 7:0, account for that.
3376         *
3377         * On newer chips, starting with PHY revision G0, a new scheme is
3378         * deployed similar to the Starfighter 2 switch with GPHY major
3379         * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3380         * is reserved as well as special value 0x01ff, we have a small
3381         * heuristic to check for the new GPHY revision and re-arrange things
3382         * so the GPHY driver is happy.
3383         */
3384        gphy_rev = reg & 0xffff;
3385
3386        if (GENET_IS_V5(priv)) {
3387                /* The EPHY revision should come from the MDIO registers of
3388                 * the PHY not from GENET.
3389                 */
3390                if (gphy_rev != 0) {
3391                        pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3392                                gphy_rev);
3393                }
3394        /* This is reserved so should require special treatment */
3395        } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3396                pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3397                return;
3398        /* This is the good old scheme, just GPHY major, no minor nor patch */
3399        } else if ((gphy_rev & 0xf0) != 0) {
3400                priv->gphy_rev = gphy_rev << 8;
3401        /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3402        } else if ((gphy_rev & 0xff00) != 0) {
3403                priv->gphy_rev = gphy_rev;
3404        }
3405
3406#ifdef CONFIG_PHYS_ADDR_T_64BIT
3407        if (!(params->flags & GENET_HAS_40BITS))
3408                pr_warn("GENET does not support 40-bits PA\n");
3409#endif
3410
3411        pr_debug("Configuration for version: %d\n"
3412                "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3413                "BP << en: %2d, BP msk: 0x%05x\n"
3414                "HFB count: %2d, QTAQ msk: 0x%05x\n"
3415                "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3416                "RDMA: 0x%05x, TDMA: 0x%05x\n"
3417                "Words/BD: %d\n",
3418                priv->version,
3419                params->tx_queues, params->tx_bds_per_q,
3420                params->rx_queues, params->rx_bds_per_q,
3421                params->bp_in_en_shift, params->bp_in_mask,
3422                params->hfb_filter_cnt, params->qtag_mask,
3423                params->tbuf_offset, params->hfb_offset,
3424                params->hfb_reg_offset,
3425                params->rdma_offset, params->tdma_offset,
3426                params->words_per_bd);
3427}
3428
3429static const struct of_device_id bcmgenet_match[] = {
3430        { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3431        { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3432        { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3433        { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3434        { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3435        { },
3436};
3437MODULE_DEVICE_TABLE(of, bcmgenet_match);
3438
3439static int bcmgenet_probe(struct platform_device *pdev)
3440{
3441        struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3442        struct device_node *dn = pdev->dev.of_node;
3443        const struct of_device_id *of_id = NULL;
3444        struct bcmgenet_priv *priv;
3445        struct net_device *dev;
3446        const void *macaddr;
3447        struct resource *r;
3448        unsigned int i;
3449        int err = -EIO;
3450        const char *phy_mode_str;
3451
3452        /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3453        dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3454                                 GENET_MAX_MQ_CNT + 1);
3455        if (!dev) {
3456                dev_err(&pdev->dev, "can't allocate net device\n");
3457                return -ENOMEM;
3458        }
3459
3460        if (dn) {
3461                of_id = of_match_node(bcmgenet_match, dn);
3462                if (!of_id)
3463                        return -EINVAL;
3464        }
3465
3466        priv = netdev_priv(dev);
3467        priv->irq0 = platform_get_irq(pdev, 0);
3468        priv->irq1 = platform_get_irq(pdev, 1);
3469        priv->wol_irq = platform_get_irq(pdev, 2);
3470        if (!priv->irq0 || !priv->irq1) {
3471                dev_err(&pdev->dev, "can't find IRQs\n");
3472                err = -EINVAL;
3473                goto err;
3474        }
3475
3476        if (dn) {
3477                macaddr = of_get_mac_address(dn);
3478                if (!macaddr) {
3479                        dev_err(&pdev->dev, "can't find MAC address\n");
3480                        err = -EINVAL;
3481                        goto err;
3482                }
3483        } else {
3484                macaddr = pd->mac_address;
3485        }
3486
3487        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3488        priv->base = devm_ioremap_resource(&pdev->dev, r);
3489        if (IS_ERR(priv->base)) {
3490                err = PTR_ERR(priv->base);
3491                goto err;
3492        }
3493
3494        spin_lock_init(&priv->lock);
3495
3496        SET_NETDEV_DEV(dev, &pdev->dev);
3497        dev_set_drvdata(&pdev->dev, dev);
3498        ether_addr_copy(dev->dev_addr, macaddr);
3499        dev->watchdog_timeo = 2 * HZ;
3500        dev->ethtool_ops = &bcmgenet_ethtool_ops;
3501        dev->netdev_ops = &bcmgenet_netdev_ops;
3502
3503        priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3504
3505        /* Set hardware features */
3506        dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3507                NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3508
3509        /* Request the WOL interrupt and advertise suspend if available */
3510        priv->wol_irq_disabled = true;
3511        err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3512                               dev->name, priv);
3513        if (!err)
3514                device_set_wakeup_capable(&pdev->dev, 1);
3515
3516        /* Set the needed headroom to account for any possible
3517         * features enabling/disabling at runtime
3518         */
3519        dev->needed_headroom += 64;
3520
3521        netdev_boot_setup_check(dev);
3522
3523        priv->dev = dev;
3524        priv->pdev = pdev;
3525        if (of_id)
3526                priv->version = (enum bcmgenet_version)of_id->data;
3527        else
3528                priv->version = pd->genet_version;
3529
3530        priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3531        if (IS_ERR(priv->clk)) {
3532                dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3533                priv->clk = NULL;
3534        }
3535
3536        clk_prepare_enable(priv->clk);
3537
3538        bcmgenet_set_hw_params(priv);
3539
3540        /* Mii wait queue */
3541        init_waitqueue_head(&priv->wq);
3542        /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3543        priv->rx_buf_len = RX_BUF_LENGTH;
3544        INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3545
3546        priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3547        if (IS_ERR(priv->clk_wol)) {
3548                dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3549                priv->clk_wol = NULL;
3550        }
3551
3552        priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3553        if (IS_ERR(priv->clk_eee)) {
3554                dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3555                priv->clk_eee = NULL;
3556        }
3557
3558        /* If this is an internal GPHY, power it on now, before UniMAC is
3559         * brought out of reset as absolutely no UniMAC activity is allowed
3560         */
3561        if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3562            !strcasecmp(phy_mode_str, "internal"))
3563                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3564
3565        reset_umac(priv);
3566
3567        err = bcmgenet_mii_init(dev);
3568        if (err)
3569                goto err_clk_disable;
3570
3571        /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3572         * just the ring 16 descriptor based TX
3573         */
3574        netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3575        netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3576
3577        /* Set default coalescing parameters */
3578        for (i = 0; i < priv->hw_params->rx_queues; i++)
3579                priv->rx_rings[i].rx_max_coalesced_frames = 1;
3580        priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3581
3582        /* libphy will determine the link state */
3583        netif_carrier_off(dev);
3584
3585        /* Turn off the main clock, WOL clock is handled separately */
3586        clk_disable_unprepare(priv->clk);
3587
3588        err = register_netdev(dev);
3589        if (err)
3590                goto err;
3591
3592        return err;
3593
3594err_clk_disable:
3595        clk_disable_unprepare(priv->clk);
3596err:
3597        free_netdev(dev);
3598        return err;
3599}
3600
3601static int bcmgenet_remove(struct platform_device *pdev)
3602{
3603        struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3604
3605        dev_set_drvdata(&pdev->dev, NULL);
3606        unregister_netdev(priv->dev);
3607        bcmgenet_mii_exit(priv->dev);
3608        free_netdev(priv->dev);
3609
3610        return 0;
3611}
3612
3613#ifdef CONFIG_PM_SLEEP
3614static int bcmgenet_suspend(struct device *d)
3615{
3616        struct net_device *dev = dev_get_drvdata(d);
3617        struct bcmgenet_priv *priv = netdev_priv(dev);
3618        int ret = 0;
3619
3620        if (!netif_running(dev))
3621                return 0;
3622
3623        bcmgenet_netif_stop(dev);
3624
3625        if (!device_may_wakeup(d))
3626                phy_suspend(dev->phydev);
3627
3628        netif_device_detach(dev);
3629
3630        /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3631        if (device_may_wakeup(d) && priv->wolopts) {
3632                ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3633                clk_prepare_enable(priv->clk_wol);
3634        } else if (priv->internal_phy) {
3635                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3636        }
3637
3638        /* Turn off the clocks */
3639        clk_disable_unprepare(priv->clk);
3640
3641        return ret;
3642}
3643
3644static int bcmgenet_resume(struct device *d)
3645{
3646        struct net_device *dev = dev_get_drvdata(d);
3647        struct bcmgenet_priv *priv = netdev_priv(dev);
3648        unsigned long dma_ctrl;
3649        int ret;
3650        u32 reg;
3651
3652        if (!netif_running(dev))
3653                return 0;
3654
3655        /* Turn on the clock */
3656        ret = clk_prepare_enable(priv->clk);
3657        if (ret)
3658                return ret;
3659
3660        /* If this is an internal GPHY, power it back on now, before UniMAC is
3661         * brought out of reset as absolutely no UniMAC activity is allowed
3662         */
3663        if (priv->internal_phy)
3664                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3665
3666        bcmgenet_umac_reset(priv);
3667
3668        init_umac(priv);
3669
3670        /* From WOL-enabled suspend, switch to regular clock */
3671        if (priv->wolopts)
3672                clk_disable_unprepare(priv->clk_wol);
3673
3674        phy_init_hw(dev->phydev);
3675
3676        /* Speed settings must be restored */
3677        bcmgenet_mii_config(priv->dev, false);
3678
3679        bcmgenet_set_hw_addr(priv, dev->dev_addr);
3680
3681        if (priv->internal_phy) {
3682                reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3683                reg |= EXT_ENERGY_DET_MASK;
3684                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3685        }
3686
3687        if (priv->wolopts)
3688                bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3689
3690        /* Disable RX/TX DMA and flush TX queues */
3691        dma_ctrl = bcmgenet_dma_disable(priv);
3692
3693        /* Reinitialize TDMA and RDMA and SW housekeeping */
3694        ret = bcmgenet_init_dma(priv);
3695        if (ret) {
3696                netdev_err(dev, "failed to initialize DMA\n");
3697                goto out_clk_disable;
3698        }
3699
3700        /* Always enable ring 16 - descriptor ring */
3701        bcmgenet_enable_dma(priv, dma_ctrl);
3702
3703        netif_device_attach(dev);
3704
3705        if (!device_may_wakeup(d))
3706                phy_resume(dev->phydev);
3707
3708        if (priv->eee.eee_enabled)
3709                bcmgenet_eee_enable_set(dev, true);
3710
3711        bcmgenet_netif_start(dev);
3712
3713        return 0;
3714
3715out_clk_disable:
3716        if (priv->internal_phy)
3717                bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3718        clk_disable_unprepare(priv->clk);
3719        return ret;
3720}
3721#endif /* CONFIG_PM_SLEEP */
3722
3723static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3724
3725static struct platform_driver bcmgenet_driver = {
3726        .probe  = bcmgenet_probe,
3727        .remove = bcmgenet_remove,
3728        .driver = {
3729                .name   = "bcmgenet",
3730                .of_match_table = bcmgenet_match,
3731                .pm     = &bcmgenet_pm_ops,
3732        },
3733};
3734module_platform_driver(bcmgenet_driver);
3735
3736MODULE_AUTHOR("Broadcom Corporation");
3737MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3738MODULE_ALIAS("platform:bcmgenet");
3739MODULE_LICENSE("GPL");
3740