linux/drivers/net/ethernet/freescale/fec_ptp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
   4 *
   5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/ptrace.h>
  14#include <linux/errno.h>
  15#include <linux/ioport.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/netdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/skbuff.h>
  23#include <linux/spinlock.h>
  24#include <linux/workqueue.h>
  25#include <linux/bitops.h>
  26#include <linux/io.h>
  27#include <linux/irq.h>
  28#include <linux/clk.h>
  29#include <linux/platform_device.h>
  30#include <linux/phy.h>
  31#include <linux/fec.h>
  32#include <linux/of.h>
  33#include <linux/of_device.h>
  34#include <linux/of_gpio.h>
  35#include <linux/of_net.h>
  36
  37#include "fec.h"
  38
  39/* FEC 1588 register bits */
  40#define FEC_T_CTRL_SLAVE                0x00002000
  41#define FEC_T_CTRL_CAPTURE              0x00000800
  42#define FEC_T_CTRL_RESTART              0x00000200
  43#define FEC_T_CTRL_PERIOD_RST           0x00000030
  44#define FEC_T_CTRL_PERIOD_EN            0x00000010
  45#define FEC_T_CTRL_ENABLE               0x00000001
  46
  47#define FEC_T_INC_MASK                  0x0000007f
  48#define FEC_T_INC_OFFSET                0
  49#define FEC_T_INC_CORR_MASK             0x00007f00
  50#define FEC_T_INC_CORR_OFFSET           8
  51
  52#define FEC_T_CTRL_PINPER               0x00000080
  53#define FEC_T_TF0_MASK                  0x00000001
  54#define FEC_T_TF0_OFFSET                0
  55#define FEC_T_TF1_MASK                  0x00000002
  56#define FEC_T_TF1_OFFSET                1
  57#define FEC_T_TF2_MASK                  0x00000004
  58#define FEC_T_TF2_OFFSET                2
  59#define FEC_T_TF3_MASK                  0x00000008
  60#define FEC_T_TF3_OFFSET                3
  61#define FEC_T_TDRE_MASK                 0x00000001
  62#define FEC_T_TDRE_OFFSET               0
  63#define FEC_T_TMODE_MASK                0x0000003C
  64#define FEC_T_TMODE_OFFSET              2
  65#define FEC_T_TIE_MASK                  0x00000040
  66#define FEC_T_TIE_OFFSET                6
  67#define FEC_T_TF_MASK                   0x00000080
  68#define FEC_T_TF_OFFSET                 7
  69
  70#define FEC_ATIME_CTRL          0x400
  71#define FEC_ATIME               0x404
  72#define FEC_ATIME_EVT_OFFSET    0x408
  73#define FEC_ATIME_EVT_PERIOD    0x40c
  74#define FEC_ATIME_CORR          0x410
  75#define FEC_ATIME_INC           0x414
  76#define FEC_TS_TIMESTAMP        0x418
  77
  78#define FEC_TGSR                0x604
  79#define FEC_TCSR(n)             (0x608 + n * 0x08)
  80#define FEC_TCCR(n)             (0x60C + n * 0x08)
  81#define MAX_TIMER_CHANNEL       3
  82#define FEC_TMODE_TOGGLE        0x05
  83#define FEC_HIGH_PULSE          0x0F
  84
  85#define FEC_CC_MULT     (1 << 31)
  86#define FEC_COUNTER_PERIOD      (1 << 31)
  87#define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
  88#define FEC_CHANNLE_0           0
  89#define DEFAULT_PPS_CHANNEL     FEC_CHANNLE_0
  90
  91/**
  92 * fec_ptp_enable_pps
  93 * @fep: the fec_enet_private structure handle
  94 * @enable: enable the channel pps output
  95 *
  96 * This function enble the PPS ouput on the timer channel.
  97 */
  98static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
  99{
 100        unsigned long flags;
 101        u32 val, tempval;
 102        int inc;
 103        struct timespec64 ts;
 104        u64 ns;
 105        val = 0;
 106
 107        if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
 108                dev_err(&fep->pdev->dev, "No ptp stack is running\n");
 109                return -EINVAL;
 110        }
 111
 112        if (fep->pps_enable == enable)
 113                return 0;
 114
 115        fep->pps_channel = DEFAULT_PPS_CHANNEL;
 116        fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
 117        inc = fep->ptp_inc;
 118
 119        spin_lock_irqsave(&fep->tmreg_lock, flags);
 120
 121        if (enable) {
 122                /* clear capture or output compare interrupt status if have.
 123                 */
 124                writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
 125
 126                /* It is recommended to double check the TMODE field in the
 127                 * TCSR register to be cleared before the first compare counter
 128                 * is written into TCCR register. Just add a double check.
 129                 */
 130                val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 131                do {
 132                        val &= ~(FEC_T_TMODE_MASK);
 133                        writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
 134                        val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 135                } while (val & FEC_T_TMODE_MASK);
 136
 137                /* Dummy read counter to update the counter */
 138                timecounter_read(&fep->tc);
 139                /* We want to find the first compare event in the next
 140                 * second point. So we need to know what the ptp time
 141                 * is now and how many nanoseconds is ahead to get next second.
 142                 * The remaining nanosecond ahead before the next second would be
 143                 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
 144                 * to current timer would be next second.
 145                 */
 146                tempval = readl(fep->hwp + FEC_ATIME_CTRL);
 147                tempval |= FEC_T_CTRL_CAPTURE;
 148                writel(tempval, fep->hwp + FEC_ATIME_CTRL);
 149
 150                tempval = readl(fep->hwp + FEC_ATIME);
 151                /* Convert the ptp local counter to 1588 timestamp */
 152                ns = timecounter_cyc2time(&fep->tc, tempval);
 153                ts = ns_to_timespec64(ns);
 154
 155                /* The tempval is  less than 3 seconds, and  so val is less than
 156                 * 4 seconds. No overflow for 32bit calculation.
 157                 */
 158                val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
 159
 160                /* Need to consider the situation that the current time is
 161                 * very close to the second point, which means NSEC_PER_SEC
 162                 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
 163                 * is still running when we calculate the first compare event, it is
 164                 * possible that the remaining nanoseonds run out before the compare
 165                 * counter is calculated and written into TCCR register. To avoid
 166                 * this possibility, we will set the compare event to be the next
 167                 * of next second. The current setting is 31-bit timer and wrap
 168                 * around over 2 seconds. So it is okay to set the next of next
 169                 * seond for the timer.
 170                 */
 171                val += NSEC_PER_SEC;
 172
 173                /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
 174                 * ptp counter, which maybe cause 32-bit wrap. Since the
 175                 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
 176                 * We can ensure the wrap will not cause issue. If the offset
 177                 * is bigger than fep->cc.mask would be a error.
 178                 */
 179                val &= fep->cc.mask;
 180                writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
 181
 182                /* Calculate the second the compare event timestamp */
 183                fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
 184
 185                /* * Enable compare event when overflow */
 186                val = readl(fep->hwp + FEC_ATIME_CTRL);
 187                val |= FEC_T_CTRL_PINPER;
 188                writel(val, fep->hwp + FEC_ATIME_CTRL);
 189
 190                /* Compare channel setting. */
 191                val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 192                val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
 193                val &= ~(1 << FEC_T_TDRE_OFFSET);
 194                val &= ~(FEC_T_TMODE_MASK);
 195                val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
 196                writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
 197
 198                /* Write the second compare event timestamp and calculate
 199                 * the third timestamp. Refer the TCCR register detail in the spec.
 200                 */
 201                writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
 202                fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
 203        } else {
 204                writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
 205        }
 206
 207        fep->pps_enable = enable;
 208        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 209
 210        return 0;
 211}
 212
 213/**
 214 * fec_ptp_read - read raw cycle counter (to be used by time counter)
 215 * @cc: the cyclecounter structure
 216 *
 217 * this function reads the cyclecounter registers and is called by the
 218 * cyclecounter structure used to construct a ns counter from the
 219 * arbitrary fixed point registers
 220 */
 221static u64 fec_ptp_read(const struct cyclecounter *cc)
 222{
 223        struct fec_enet_private *fep =
 224                container_of(cc, struct fec_enet_private, cc);
 225        const struct platform_device_id *id_entry =
 226                platform_get_device_id(fep->pdev);
 227        u32 tempval;
 228
 229        tempval = readl(fep->hwp + FEC_ATIME_CTRL);
 230        tempval |= FEC_T_CTRL_CAPTURE;
 231        writel(tempval, fep->hwp + FEC_ATIME_CTRL);
 232
 233        if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
 234                udelay(1);
 235
 236        return readl(fep->hwp + FEC_ATIME);
 237}
 238
 239/**
 240 * fec_ptp_start_cyclecounter - create the cycle counter from hw
 241 * @ndev: network device
 242 *
 243 * this function initializes the timecounter and cyclecounter
 244 * structures for use in generated a ns counter from the arbitrary
 245 * fixed point cycles registers in the hardware.
 246 */
 247void fec_ptp_start_cyclecounter(struct net_device *ndev)
 248{
 249        struct fec_enet_private *fep = netdev_priv(ndev);
 250        unsigned long flags;
 251        int inc;
 252
 253        inc = 1000000000 / fep->cycle_speed;
 254
 255        /* grab the ptp lock */
 256        spin_lock_irqsave(&fep->tmreg_lock, flags);
 257
 258        /* 1ns counter */
 259        writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
 260
 261        /* use 31-bit timer counter */
 262        writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
 263
 264        writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
 265                fep->hwp + FEC_ATIME_CTRL);
 266
 267        memset(&fep->cc, 0, sizeof(fep->cc));
 268        fep->cc.read = fec_ptp_read;
 269        fep->cc.mask = CLOCKSOURCE_MASK(31);
 270        fep->cc.shift = 31;
 271        fep->cc.mult = FEC_CC_MULT;
 272
 273        /* reset the ns time counter */
 274        timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
 275
 276        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 277}
 278
 279/**
 280 * fec_ptp_adjfreq - adjust ptp cycle frequency
 281 * @ptp: the ptp clock structure
 282 * @ppb: parts per billion adjustment from base
 283 *
 284 * Adjust the frequency of the ptp cycle counter by the
 285 * indicated ppb from the base frequency.
 286 *
 287 * Because ENET hardware frequency adjust is complex,
 288 * using software method to do that.
 289 */
 290static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
 291{
 292        unsigned long flags;
 293        int neg_adj = 0;
 294        u32 i, tmp;
 295        u32 corr_inc, corr_period;
 296        u32 corr_ns;
 297        u64 lhs, rhs;
 298
 299        struct fec_enet_private *fep =
 300            container_of(ptp, struct fec_enet_private, ptp_caps);
 301
 302        if (ppb == 0)
 303                return 0;
 304
 305        if (ppb < 0) {
 306                ppb = -ppb;
 307                neg_adj = 1;
 308        }
 309
 310        /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
 311         * Try to find the corr_inc  between 1 to fep->ptp_inc to
 312         * meet adjustment requirement.
 313         */
 314        lhs = NSEC_PER_SEC;
 315        rhs = (u64)ppb * (u64)fep->ptp_inc;
 316        for (i = 1; i <= fep->ptp_inc; i++) {
 317                if (lhs >= rhs) {
 318                        corr_inc = i;
 319                        corr_period = div_u64(lhs, rhs);
 320                        break;
 321                }
 322                lhs += NSEC_PER_SEC;
 323        }
 324        /* Not found? Set it to high value - double speed
 325         * correct in every clock step.
 326         */
 327        if (i > fep->ptp_inc) {
 328                corr_inc = fep->ptp_inc;
 329                corr_period = 1;
 330        }
 331
 332        if (neg_adj)
 333                corr_ns = fep->ptp_inc - corr_inc;
 334        else
 335                corr_ns = fep->ptp_inc + corr_inc;
 336
 337        spin_lock_irqsave(&fep->tmreg_lock, flags);
 338
 339        tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
 340        tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
 341        writel(tmp, fep->hwp + FEC_ATIME_INC);
 342        corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
 343        writel(corr_period, fep->hwp + FEC_ATIME_CORR);
 344        /* dummy read to update the timer. */
 345        timecounter_read(&fep->tc);
 346
 347        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 348
 349        return 0;
 350}
 351
 352/**
 353 * fec_ptp_adjtime
 354 * @ptp: the ptp clock structure
 355 * @delta: offset to adjust the cycle counter by
 356 *
 357 * adjust the timer by resetting the timecounter structure.
 358 */
 359static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 360{
 361        struct fec_enet_private *fep =
 362            container_of(ptp, struct fec_enet_private, ptp_caps);
 363        unsigned long flags;
 364
 365        spin_lock_irqsave(&fep->tmreg_lock, flags);
 366        timecounter_adjtime(&fep->tc, delta);
 367        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 368
 369        return 0;
 370}
 371
 372/**
 373 * fec_ptp_gettime
 374 * @ptp: the ptp clock structure
 375 * @ts: timespec structure to hold the current time value
 376 *
 377 * read the timecounter and return the correct value on ns,
 378 * after converting it into a struct timespec.
 379 */
 380static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
 381{
 382        struct fec_enet_private *adapter =
 383            container_of(ptp, struct fec_enet_private, ptp_caps);
 384        u64 ns;
 385        unsigned long flags;
 386
 387        spin_lock_irqsave(&adapter->tmreg_lock, flags);
 388        ns = timecounter_read(&adapter->tc);
 389        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 390
 391        *ts = ns_to_timespec64(ns);
 392
 393        return 0;
 394}
 395
 396/**
 397 * fec_ptp_settime
 398 * @ptp: the ptp clock structure
 399 * @ts: the timespec containing the new time for the cycle counter
 400 *
 401 * reset the timecounter to use a new base value instead of the kernel
 402 * wall timer value.
 403 */
 404static int fec_ptp_settime(struct ptp_clock_info *ptp,
 405                           const struct timespec64 *ts)
 406{
 407        struct fec_enet_private *fep =
 408            container_of(ptp, struct fec_enet_private, ptp_caps);
 409
 410        u64 ns;
 411        unsigned long flags;
 412        u32 counter;
 413
 414        mutex_lock(&fep->ptp_clk_mutex);
 415        /* Check the ptp clock */
 416        if (!fep->ptp_clk_on) {
 417                mutex_unlock(&fep->ptp_clk_mutex);
 418                return -EINVAL;
 419        }
 420
 421        ns = timespec64_to_ns(ts);
 422        /* Get the timer value based on timestamp.
 423         * Update the counter with the masked value.
 424         */
 425        counter = ns & fep->cc.mask;
 426
 427        spin_lock_irqsave(&fep->tmreg_lock, flags);
 428        writel(counter, fep->hwp + FEC_ATIME);
 429        timecounter_init(&fep->tc, &fep->cc, ns);
 430        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 431        mutex_unlock(&fep->ptp_clk_mutex);
 432        return 0;
 433}
 434
 435/**
 436 * fec_ptp_enable
 437 * @ptp: the ptp clock structure
 438 * @rq: the requested feature to change
 439 * @on: whether to enable or disable the feature
 440 *
 441 */
 442static int fec_ptp_enable(struct ptp_clock_info *ptp,
 443                          struct ptp_clock_request *rq, int on)
 444{
 445        struct fec_enet_private *fep =
 446            container_of(ptp, struct fec_enet_private, ptp_caps);
 447        int ret = 0;
 448
 449        if (rq->type == PTP_CLK_REQ_PPS) {
 450                ret = fec_ptp_enable_pps(fep, on);
 451
 452                return ret;
 453        }
 454        return -EOPNOTSUPP;
 455}
 456
 457/**
 458 * fec_ptp_hwtstamp_ioctl - control hardware time stamping
 459 * @ndev: pointer to net_device
 460 * @ifreq: ioctl data
 461 * @cmd: particular ioctl requested
 462 */
 463int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
 464{
 465        struct fec_enet_private *fep = netdev_priv(ndev);
 466
 467        struct hwtstamp_config config;
 468
 469        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 470                return -EFAULT;
 471
 472        /* reserved for future extensions */
 473        if (config.flags)
 474                return -EINVAL;
 475
 476        switch (config.tx_type) {
 477        case HWTSTAMP_TX_OFF:
 478                fep->hwts_tx_en = 0;
 479                break;
 480        case HWTSTAMP_TX_ON:
 481                fep->hwts_tx_en = 1;
 482                break;
 483        default:
 484                return -ERANGE;
 485        }
 486
 487        switch (config.rx_filter) {
 488        case HWTSTAMP_FILTER_NONE:
 489                if (fep->hwts_rx_en)
 490                        fep->hwts_rx_en = 0;
 491                config.rx_filter = HWTSTAMP_FILTER_NONE;
 492                break;
 493
 494        default:
 495                fep->hwts_rx_en = 1;
 496                config.rx_filter = HWTSTAMP_FILTER_ALL;
 497                break;
 498        }
 499
 500        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 501            -EFAULT : 0;
 502}
 503
 504int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
 505{
 506        struct fec_enet_private *fep = netdev_priv(ndev);
 507        struct hwtstamp_config config;
 508
 509        config.flags = 0;
 510        config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 511        config.rx_filter = (fep->hwts_rx_en ?
 512                            HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 513
 514        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 515                -EFAULT : 0;
 516}
 517
 518/**
 519 * fec_time_keep - call timecounter_read every second to avoid timer overrun
 520 *                 because ENET just support 32bit counter, will timeout in 4s
 521 */
 522static void fec_time_keep(struct work_struct *work)
 523{
 524        struct delayed_work *dwork = to_delayed_work(work);
 525        struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
 526        u64 ns;
 527        unsigned long flags;
 528
 529        mutex_lock(&fep->ptp_clk_mutex);
 530        if (fep->ptp_clk_on) {
 531                spin_lock_irqsave(&fep->tmreg_lock, flags);
 532                ns = timecounter_read(&fep->tc);
 533                spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 534        }
 535        mutex_unlock(&fep->ptp_clk_mutex);
 536
 537        schedule_delayed_work(&fep->time_keep, HZ);
 538}
 539
 540/* This function checks the pps event and reloads the timer compare counter. */
 541static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
 542{
 543        struct net_device *ndev = dev_id;
 544        struct fec_enet_private *fep = netdev_priv(ndev);
 545        u32 val;
 546        u8 channel = fep->pps_channel;
 547        struct ptp_clock_event event;
 548
 549        val = readl(fep->hwp + FEC_TCSR(channel));
 550        if (val & FEC_T_TF_MASK) {
 551                /* Write the next next compare(not the next according the spec)
 552                 * value to the register
 553                 */
 554                writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
 555                do {
 556                        writel(val, fep->hwp + FEC_TCSR(channel));
 557                } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
 558
 559                /* Update the counter; */
 560                fep->next_counter = (fep->next_counter + fep->reload_period) &
 561                                fep->cc.mask;
 562
 563                event.type = PTP_CLOCK_PPS;
 564                ptp_clock_event(fep->ptp_clock, &event);
 565                return IRQ_HANDLED;
 566        }
 567
 568        return IRQ_NONE;
 569}
 570
 571/**
 572 * fec_ptp_init
 573 * @ndev: The FEC network adapter
 574 *
 575 * This function performs the required steps for enabling ptp
 576 * support. If ptp support has already been loaded it simply calls the
 577 * cyclecounter init routine and exits.
 578 */
 579
 580void fec_ptp_init(struct platform_device *pdev, int irq_idx)
 581{
 582        struct net_device *ndev = platform_get_drvdata(pdev);
 583        struct fec_enet_private *fep = netdev_priv(ndev);
 584        int irq;
 585        int ret;
 586
 587        fep->ptp_caps.owner = THIS_MODULE;
 588        snprintf(fep->ptp_caps.name, 16, "fec ptp");
 589
 590        fep->ptp_caps.max_adj = 250000000;
 591        fep->ptp_caps.n_alarm = 0;
 592        fep->ptp_caps.n_ext_ts = 0;
 593        fep->ptp_caps.n_per_out = 0;
 594        fep->ptp_caps.n_pins = 0;
 595        fep->ptp_caps.pps = 1;
 596        fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
 597        fep->ptp_caps.adjtime = fec_ptp_adjtime;
 598        fep->ptp_caps.gettime64 = fec_ptp_gettime;
 599        fep->ptp_caps.settime64 = fec_ptp_settime;
 600        fep->ptp_caps.enable = fec_ptp_enable;
 601
 602        fep->cycle_speed = clk_get_rate(fep->clk_ptp);
 603        fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
 604
 605        spin_lock_init(&fep->tmreg_lock);
 606
 607        fec_ptp_start_cyclecounter(ndev);
 608
 609        INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
 610
 611        irq = platform_get_irq_byname(pdev, "pps");
 612        if (irq < 0)
 613                irq = platform_get_irq(pdev, irq_idx);
 614        /* Failure to get an irq is not fatal,
 615         * only the PTP_CLOCK_PPS clock events should stop
 616         */
 617        if (irq >= 0) {
 618                ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
 619                                       0, pdev->name, ndev);
 620                if (ret < 0)
 621                        dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
 622                                 ret);
 623        }
 624
 625        fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
 626        if (IS_ERR(fep->ptp_clock)) {
 627                fep->ptp_clock = NULL;
 628                pr_err("ptp_clock_register failed\n");
 629        }
 630
 631        schedule_delayed_work(&fep->time_keep, HZ);
 632}
 633
 634void fec_ptp_stop(struct platform_device *pdev)
 635{
 636        struct net_device *ndev = platform_get_drvdata(pdev);
 637        struct fec_enet_private *fep = netdev_priv(ndev);
 638
 639        cancel_delayed_work_sync(&fep->time_keep);
 640        if (fep->ptp_clock)
 641                ptp_clock_unregister(fep->ptp_clock);
 642}
 643