linux/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c
<<
>>
Prefs
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
  38#include <linux/of.h>
  39#include <linux/of_mdio.h>
  40#include <linux/of_platform.h>
  41#include <linux/of_gpio.h>
  42#include <linux/of_net.h>
  43
  44#include <linux/vmalloc.h>
  45#include <asm/pgtable.h>
  46#include <asm/irq.h>
  47#include <linux/uaccess.h>
  48
  49#include "fs_enet.h"
  50
  51/*************************************************/
  52
  53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  54MODULE_DESCRIPTION("Freescale Ethernet Driver");
  55MODULE_LICENSE("GPL");
  56MODULE_VERSION(DRV_MODULE_VERSION);
  57
  58static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  59module_param(fs_enet_debug, int, 0);
  60MODULE_PARM_DESC(fs_enet_debug,
  61                 "Freescale bitmapped debugging message enable value");
  62
  63#define RX_RING_SIZE    32
  64#define TX_RING_SIZE    64
  65
  66#ifdef CONFIG_NET_POLL_CONTROLLER
  67static void fs_enet_netpoll(struct net_device *dev);
  68#endif
  69
  70static void fs_set_multicast_list(struct net_device *dev)
  71{
  72        struct fs_enet_private *fep = netdev_priv(dev);
  73
  74        (*fep->ops->set_multicast_list)(dev);
  75}
  76
  77static void skb_align(struct sk_buff *skb, int align)
  78{
  79        int off = ((unsigned long)skb->data) & (align - 1);
  80
  81        if (off)
  82                skb_reserve(skb, align - off);
  83}
  84
  85/* NAPI function */
  86static int fs_enet_napi(struct napi_struct *napi, int budget)
  87{
  88        struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  89        struct net_device *dev = fep->ndev;
  90        const struct fs_platform_info *fpi = fep->fpi;
  91        cbd_t __iomem *bdp;
  92        struct sk_buff *skb, *skbn;
  93        int received = 0;
  94        u16 pkt_len, sc;
  95        int curidx;
  96        int dirtyidx, do_wake, do_restart;
  97        int tx_left = TX_RING_SIZE;
  98
  99        spin_lock(&fep->tx_lock);
 100        bdp = fep->dirty_tx;
 101
 102        /* clear status bits for napi*/
 103        (*fep->ops->napi_clear_event)(dev);
 104
 105        do_wake = do_restart = 0;
 106        while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 107                dirtyidx = bdp - fep->tx_bd_base;
 108
 109                if (fep->tx_free == fep->tx_ring)
 110                        break;
 111
 112                skb = fep->tx_skbuff[dirtyidx];
 113
 114                /*
 115                 * Check for errors.
 116                 */
 117                if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 118                          BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 119
 120                        if (sc & BD_ENET_TX_HB) /* No heartbeat */
 121                                dev->stats.tx_heartbeat_errors++;
 122                        if (sc & BD_ENET_TX_LC) /* Late collision */
 123                                dev->stats.tx_window_errors++;
 124                        if (sc & BD_ENET_TX_RL) /* Retrans limit */
 125                                dev->stats.tx_aborted_errors++;
 126                        if (sc & BD_ENET_TX_UN) /* Underrun */
 127                                dev->stats.tx_fifo_errors++;
 128                        if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
 129                                dev->stats.tx_carrier_errors++;
 130
 131                        if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 132                                dev->stats.tx_errors++;
 133                                do_restart = 1;
 134                        }
 135                } else
 136                        dev->stats.tx_packets++;
 137
 138                if (sc & BD_ENET_TX_READY) {
 139                        dev_warn(fep->dev,
 140                                 "HEY! Enet xmit interrupt and TX_READY.\n");
 141                }
 142
 143                /*
 144                 * Deferred means some collisions occurred during transmit,
 145                 * but we eventually sent the packet OK.
 146                 */
 147                if (sc & BD_ENET_TX_DEF)
 148                        dev->stats.collisions++;
 149
 150                /* unmap */
 151                if (fep->mapped_as_page[dirtyidx])
 152                        dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 153                                       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 154                else
 155                        dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 156                                         CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 157
 158                /*
 159                 * Free the sk buffer associated with this last transmit.
 160                 */
 161                if (skb) {
 162                        dev_kfree_skb(skb);
 163                        fep->tx_skbuff[dirtyidx] = NULL;
 164                }
 165
 166                /*
 167                 * Update pointer to next buffer descriptor to be transmitted.
 168                 */
 169                if ((sc & BD_ENET_TX_WRAP) == 0)
 170                        bdp++;
 171                else
 172                        bdp = fep->tx_bd_base;
 173
 174                /*
 175                 * Since we have freed up a buffer, the ring is no longer
 176                 * full.
 177                 */
 178                if (++fep->tx_free == MAX_SKB_FRAGS)
 179                        do_wake = 1;
 180                tx_left--;
 181        }
 182
 183        fep->dirty_tx = bdp;
 184
 185        if (do_restart)
 186                (*fep->ops->tx_restart)(dev);
 187
 188        spin_unlock(&fep->tx_lock);
 189
 190        if (do_wake)
 191                netif_wake_queue(dev);
 192
 193        /*
 194         * First, grab all of the stats for the incoming packet.
 195         * These get messed up if we get called due to a busy condition.
 196         */
 197        bdp = fep->cur_rx;
 198
 199        while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 200               received < budget) {
 201                curidx = bdp - fep->rx_bd_base;
 202
 203                /*
 204                 * Since we have allocated space to hold a complete frame,
 205                 * the last indicator should be set.
 206                 */
 207                if ((sc & BD_ENET_RX_LAST) == 0)
 208                        dev_warn(fep->dev, "rcv is not +last\n");
 209
 210                /*
 211                 * Check for errors.
 212                 */
 213                if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 214                          BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 215                        dev->stats.rx_errors++;
 216                        /* Frame too long or too short. */
 217                        if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 218                                dev->stats.rx_length_errors++;
 219                        /* Frame alignment */
 220                        if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 221                                dev->stats.rx_frame_errors++;
 222                        /* CRC Error */
 223                        if (sc & BD_ENET_RX_CR)
 224                                dev->stats.rx_crc_errors++;
 225                        /* FIFO overrun */
 226                        if (sc & BD_ENET_RX_OV)
 227                                dev->stats.rx_crc_errors++;
 228
 229                        skbn = fep->rx_skbuff[curidx];
 230                } else {
 231                        skb = fep->rx_skbuff[curidx];
 232
 233                        /*
 234                         * Process the incoming frame.
 235                         */
 236                        dev->stats.rx_packets++;
 237                        pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
 238                        dev->stats.rx_bytes += pkt_len + 4;
 239
 240                        if (pkt_len <= fpi->rx_copybreak) {
 241                                /* +2 to make IP header L1 cache aligned */
 242                                skbn = netdev_alloc_skb(dev, pkt_len + 2);
 243                                if (skbn != NULL) {
 244                                        skb_reserve(skbn, 2);   /* align IP header */
 245                                        skb_copy_from_linear_data(skb,
 246                                                      skbn->data, pkt_len);
 247                                        swap(skb, skbn);
 248                                        dma_sync_single_for_cpu(fep->dev,
 249                                                CBDR_BUFADDR(bdp),
 250                                                L1_CACHE_ALIGN(pkt_len),
 251                                                DMA_FROM_DEVICE);
 252                                }
 253                        } else {
 254                                skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 255
 256                                if (skbn) {
 257                                        dma_addr_t dma;
 258
 259                                        skb_align(skbn, ENET_RX_ALIGN);
 260
 261                                        dma_unmap_single(fep->dev,
 262                                                CBDR_BUFADDR(bdp),
 263                                                L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 264                                                DMA_FROM_DEVICE);
 265
 266                                        dma = dma_map_single(fep->dev,
 267                                                skbn->data,
 268                                                L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 269                                                DMA_FROM_DEVICE);
 270                                        CBDW_BUFADDR(bdp, dma);
 271                                }
 272                        }
 273
 274                        if (skbn != NULL) {
 275                                skb_put(skb, pkt_len);  /* Make room */
 276                                skb->protocol = eth_type_trans(skb, dev);
 277                                received++;
 278                                netif_receive_skb(skb);
 279                        } else {
 280                                dev->stats.rx_dropped++;
 281                                skbn = skb;
 282                        }
 283                }
 284
 285                fep->rx_skbuff[curidx] = skbn;
 286                CBDW_DATLEN(bdp, 0);
 287                CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 288
 289                /*
 290                 * Update BD pointer to next entry.
 291                 */
 292                if ((sc & BD_ENET_RX_WRAP) == 0)
 293                        bdp++;
 294                else
 295                        bdp = fep->rx_bd_base;
 296
 297                (*fep->ops->rx_bd_done)(dev);
 298        }
 299
 300        fep->cur_rx = bdp;
 301
 302        if (received < budget && tx_left) {
 303                /* done */
 304                napi_complete_done(napi, received);
 305                (*fep->ops->napi_enable)(dev);
 306
 307                return received;
 308        }
 309
 310        return budget;
 311}
 312
 313/*
 314 * The interrupt handler.
 315 * This is called from the MPC core interrupt.
 316 */
 317static irqreturn_t
 318fs_enet_interrupt(int irq, void *dev_id)
 319{
 320        struct net_device *dev = dev_id;
 321        struct fs_enet_private *fep;
 322        const struct fs_platform_info *fpi;
 323        u32 int_events;
 324        u32 int_clr_events;
 325        int nr, napi_ok;
 326        int handled;
 327
 328        fep = netdev_priv(dev);
 329        fpi = fep->fpi;
 330
 331        nr = 0;
 332        while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 333                nr++;
 334
 335                int_clr_events = int_events;
 336                int_clr_events &= ~fep->ev_napi;
 337
 338                (*fep->ops->clear_int_events)(dev, int_clr_events);
 339
 340                if (int_events & fep->ev_err)
 341                        (*fep->ops->ev_error)(dev, int_events);
 342
 343                if (int_events & fep->ev) {
 344                        napi_ok = napi_schedule_prep(&fep->napi);
 345
 346                        (*fep->ops->napi_disable)(dev);
 347                        (*fep->ops->clear_int_events)(dev, fep->ev_napi);
 348
 349                        /* NOTE: it is possible for FCCs in NAPI mode    */
 350                        /* to submit a spurious interrupt while in poll  */
 351                        if (napi_ok)
 352                                __napi_schedule(&fep->napi);
 353                }
 354
 355        }
 356
 357        handled = nr > 0;
 358        return IRQ_RETVAL(handled);
 359}
 360
 361void fs_init_bds(struct net_device *dev)
 362{
 363        struct fs_enet_private *fep = netdev_priv(dev);
 364        cbd_t __iomem *bdp;
 365        struct sk_buff *skb;
 366        int i;
 367
 368        fs_cleanup_bds(dev);
 369
 370        fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 371        fep->tx_free = fep->tx_ring;
 372        fep->cur_rx = fep->rx_bd_base;
 373
 374        /*
 375         * Initialize the receive buffer descriptors.
 376         */
 377        for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 378                skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 379                if (skb == NULL)
 380                        break;
 381
 382                skb_align(skb, ENET_RX_ALIGN);
 383                fep->rx_skbuff[i] = skb;
 384                CBDW_BUFADDR(bdp,
 385                        dma_map_single(fep->dev, skb->data,
 386                                L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 387                                DMA_FROM_DEVICE));
 388                CBDW_DATLEN(bdp, 0);    /* zero */
 389                CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 390                        ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 391        }
 392        /*
 393         * if we failed, fillup remainder
 394         */
 395        for (; i < fep->rx_ring; i++, bdp++) {
 396                fep->rx_skbuff[i] = NULL;
 397                CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 398        }
 399
 400        /*
 401         * ...and the same for transmit.
 402         */
 403        for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 404                fep->tx_skbuff[i] = NULL;
 405                CBDW_BUFADDR(bdp, 0);
 406                CBDW_DATLEN(bdp, 0);
 407                CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 408        }
 409}
 410
 411void fs_cleanup_bds(struct net_device *dev)
 412{
 413        struct fs_enet_private *fep = netdev_priv(dev);
 414        struct sk_buff *skb;
 415        cbd_t __iomem *bdp;
 416        int i;
 417
 418        /*
 419         * Reset SKB transmit buffers.
 420         */
 421        for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 422                if ((skb = fep->tx_skbuff[i]) == NULL)
 423                        continue;
 424
 425                /* unmap */
 426                dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 427                                skb->len, DMA_TO_DEVICE);
 428
 429                fep->tx_skbuff[i] = NULL;
 430                dev_kfree_skb(skb);
 431        }
 432
 433        /*
 434         * Reset SKB receive buffers
 435         */
 436        for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 437                if ((skb = fep->rx_skbuff[i]) == NULL)
 438                        continue;
 439
 440                /* unmap */
 441                dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 442                        L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 443                        DMA_FROM_DEVICE);
 444
 445                fep->rx_skbuff[i] = NULL;
 446
 447                dev_kfree_skb(skb);
 448        }
 449}
 450
 451/**********************************************************************************/
 452
 453#ifdef CONFIG_FS_ENET_MPC5121_FEC
 454/*
 455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 456 */
 457static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 458                                               struct sk_buff *skb)
 459{
 460        struct sk_buff *new_skb;
 461
 462        if (skb_linearize(skb))
 463                return NULL;
 464
 465        /* Alloc new skb */
 466        new_skb = netdev_alloc_skb(dev, skb->len + 4);
 467        if (!new_skb)
 468                return NULL;
 469
 470        /* Make sure new skb is properly aligned */
 471        skb_align(new_skb, 4);
 472
 473        /* Copy data to new skb ... */
 474        skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 475        skb_put(new_skb, skb->len);
 476
 477        /* ... and free an old one */
 478        dev_kfree_skb_any(skb);
 479
 480        return new_skb;
 481}
 482#endif
 483
 484static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 485{
 486        struct fs_enet_private *fep = netdev_priv(dev);
 487        cbd_t __iomem *bdp;
 488        int curidx;
 489        u16 sc;
 490        int nr_frags;
 491        skb_frag_t *frag;
 492        int len;
 493#ifdef CONFIG_FS_ENET_MPC5121_FEC
 494        int is_aligned = 1;
 495        int i;
 496
 497        if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 498                is_aligned = 0;
 499        } else {
 500                nr_frags = skb_shinfo(skb)->nr_frags;
 501                frag = skb_shinfo(skb)->frags;
 502                for (i = 0; i < nr_frags; i++, frag++) {
 503                        if (!IS_ALIGNED(frag->page_offset, 4)) {
 504                                is_aligned = 0;
 505                                break;
 506                        }
 507                }
 508        }
 509
 510        if (!is_aligned) {
 511                skb = tx_skb_align_workaround(dev, skb);
 512                if (!skb) {
 513                        /*
 514                         * We have lost packet due to memory allocation error
 515                         * in tx_skb_align_workaround(). Hopefully original
 516                         * skb is still valid, so try transmit it later.
 517                         */
 518                        return NETDEV_TX_BUSY;
 519                }
 520        }
 521#endif
 522
 523        spin_lock(&fep->tx_lock);
 524
 525        /*
 526         * Fill in a Tx ring entry
 527         */
 528        bdp = fep->cur_tx;
 529
 530        nr_frags = skb_shinfo(skb)->nr_frags;
 531        if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 532                netif_stop_queue(dev);
 533                spin_unlock(&fep->tx_lock);
 534
 535                /*
 536                 * Ooops.  All transmit buffers are full.  Bail out.
 537                 * This should not happen, since the tx queue should be stopped.
 538                 */
 539                dev_warn(fep->dev, "tx queue full!.\n");
 540                return NETDEV_TX_BUSY;
 541        }
 542
 543        curidx = bdp - fep->tx_bd_base;
 544
 545        len = skb->len;
 546        dev->stats.tx_bytes += len;
 547        if (nr_frags)
 548                len -= skb->data_len;
 549        fep->tx_free -= nr_frags + 1;
 550        /*
 551         * Push the data cache so the CPM does not get stale memory data.
 552         */
 553        CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 554                                skb->data, len, DMA_TO_DEVICE));
 555        CBDW_DATLEN(bdp, len);
 556
 557        fep->mapped_as_page[curidx] = 0;
 558        frag = skb_shinfo(skb)->frags;
 559        while (nr_frags) {
 560                CBDC_SC(bdp,
 561                        BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 562                        BD_ENET_TX_TC);
 563                CBDS_SC(bdp, BD_ENET_TX_READY);
 564
 565                if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 566                        bdp++, curidx++;
 567                else
 568                        bdp = fep->tx_bd_base, curidx = 0;
 569
 570                len = skb_frag_size(frag);
 571                CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 572                                                   DMA_TO_DEVICE));
 573                CBDW_DATLEN(bdp, len);
 574
 575                fep->tx_skbuff[curidx] = NULL;
 576                fep->mapped_as_page[curidx] = 1;
 577
 578                frag++;
 579                nr_frags--;
 580        }
 581
 582        /* Trigger transmission start */
 583        sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 584             BD_ENET_TX_LAST | BD_ENET_TX_TC;
 585
 586        /* note that while FEC does not have this bit
 587         * it marks it as available for software use
 588         * yay for hw reuse :) */
 589        if (skb->len <= 60)
 590                sc |= BD_ENET_TX_PAD;
 591        CBDC_SC(bdp, BD_ENET_TX_STATS);
 592        CBDS_SC(bdp, sc);
 593
 594        /* Save skb pointer. */
 595        fep->tx_skbuff[curidx] = skb;
 596
 597        /* If this was the last BD in the ring, start at the beginning again. */
 598        if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 599                bdp++;
 600        else
 601                bdp = fep->tx_bd_base;
 602        fep->cur_tx = bdp;
 603
 604        if (fep->tx_free < MAX_SKB_FRAGS)
 605                netif_stop_queue(dev);
 606
 607        skb_tx_timestamp(skb);
 608
 609        (*fep->ops->tx_kickstart)(dev);
 610
 611        spin_unlock(&fep->tx_lock);
 612
 613        return NETDEV_TX_OK;
 614}
 615
 616static void fs_timeout_work(struct work_struct *work)
 617{
 618        struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 619                                                   timeout_work);
 620        struct net_device *dev = fep->ndev;
 621        unsigned long flags;
 622        int wake = 0;
 623
 624        dev->stats.tx_errors++;
 625
 626        spin_lock_irqsave(&fep->lock, flags);
 627
 628        if (dev->flags & IFF_UP) {
 629                phy_stop(dev->phydev);
 630                (*fep->ops->stop)(dev);
 631                (*fep->ops->restart)(dev);
 632        }
 633
 634        phy_start(dev->phydev);
 635        wake = fep->tx_free >= MAX_SKB_FRAGS &&
 636               !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 637        spin_unlock_irqrestore(&fep->lock, flags);
 638
 639        if (wake)
 640                netif_wake_queue(dev);
 641}
 642
 643static void fs_timeout(struct net_device *dev)
 644{
 645        struct fs_enet_private *fep = netdev_priv(dev);
 646
 647        schedule_work(&fep->timeout_work);
 648}
 649
 650/*-----------------------------------------------------------------------------
 651 *  generic link-change handler - should be sufficient for most cases
 652 *-----------------------------------------------------------------------------*/
 653static void generic_adjust_link(struct  net_device *dev)
 654{
 655        struct fs_enet_private *fep = netdev_priv(dev);
 656        struct phy_device *phydev = dev->phydev;
 657        int new_state = 0;
 658
 659        if (phydev->link) {
 660                /* adjust to duplex mode */
 661                if (phydev->duplex != fep->oldduplex) {
 662                        new_state = 1;
 663                        fep->oldduplex = phydev->duplex;
 664                }
 665
 666                if (phydev->speed != fep->oldspeed) {
 667                        new_state = 1;
 668                        fep->oldspeed = phydev->speed;
 669                }
 670
 671                if (!fep->oldlink) {
 672                        new_state = 1;
 673                        fep->oldlink = 1;
 674                }
 675
 676                if (new_state)
 677                        fep->ops->restart(dev);
 678        } else if (fep->oldlink) {
 679                new_state = 1;
 680                fep->oldlink = 0;
 681                fep->oldspeed = 0;
 682                fep->oldduplex = -1;
 683        }
 684
 685        if (new_state && netif_msg_link(fep))
 686                phy_print_status(phydev);
 687}
 688
 689
 690static void fs_adjust_link(struct net_device *dev)
 691{
 692        struct fs_enet_private *fep = netdev_priv(dev);
 693        unsigned long flags;
 694
 695        spin_lock_irqsave(&fep->lock, flags);
 696
 697        if(fep->ops->adjust_link)
 698                fep->ops->adjust_link(dev);
 699        else
 700                generic_adjust_link(dev);
 701
 702        spin_unlock_irqrestore(&fep->lock, flags);
 703}
 704
 705static int fs_init_phy(struct net_device *dev)
 706{
 707        struct fs_enet_private *fep = netdev_priv(dev);
 708        struct phy_device *phydev;
 709        phy_interface_t iface;
 710
 711        fep->oldlink = 0;
 712        fep->oldspeed = 0;
 713        fep->oldduplex = -1;
 714
 715        iface = fep->fpi->use_rmii ?
 716                PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 717
 718        phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 719                                iface);
 720        if (!phydev) {
 721                dev_err(&dev->dev, "Could not attach to PHY\n");
 722                return -ENODEV;
 723        }
 724
 725        return 0;
 726}
 727
 728static int fs_enet_open(struct net_device *dev)
 729{
 730        struct fs_enet_private *fep = netdev_priv(dev);
 731        int r;
 732        int err;
 733
 734        /* to initialize the fep->cur_rx,... */
 735        /* not doing this, will cause a crash in fs_enet_napi */
 736        fs_init_bds(fep->ndev);
 737
 738        napi_enable(&fep->napi);
 739
 740        /* Install our interrupt handler. */
 741        r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 742                        "fs_enet-mac", dev);
 743        if (r != 0) {
 744                dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 745                napi_disable(&fep->napi);
 746                return -EINVAL;
 747        }
 748
 749        err = fs_init_phy(dev);
 750        if (err) {
 751                free_irq(fep->interrupt, dev);
 752                napi_disable(&fep->napi);
 753                return err;
 754        }
 755        phy_start(dev->phydev);
 756
 757        netif_start_queue(dev);
 758
 759        return 0;
 760}
 761
 762static int fs_enet_close(struct net_device *dev)
 763{
 764        struct fs_enet_private *fep = netdev_priv(dev);
 765        unsigned long flags;
 766
 767        netif_stop_queue(dev);
 768        netif_carrier_off(dev);
 769        napi_disable(&fep->napi);
 770        cancel_work_sync(&fep->timeout_work);
 771        phy_stop(dev->phydev);
 772
 773        spin_lock_irqsave(&fep->lock, flags);
 774        spin_lock(&fep->tx_lock);
 775        (*fep->ops->stop)(dev);
 776        spin_unlock(&fep->tx_lock);
 777        spin_unlock_irqrestore(&fep->lock, flags);
 778
 779        /* release any irqs */
 780        phy_disconnect(dev->phydev);
 781        free_irq(fep->interrupt, dev);
 782
 783        return 0;
 784}
 785
 786/*************************************************************************/
 787
 788static void fs_get_drvinfo(struct net_device *dev,
 789                            struct ethtool_drvinfo *info)
 790{
 791        strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 792        strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
 793}
 794
 795static int fs_get_regs_len(struct net_device *dev)
 796{
 797        struct fs_enet_private *fep = netdev_priv(dev);
 798
 799        return (*fep->ops->get_regs_len)(dev);
 800}
 801
 802static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 803                         void *p)
 804{
 805        struct fs_enet_private *fep = netdev_priv(dev);
 806        unsigned long flags;
 807        int r, len;
 808
 809        len = regs->len;
 810
 811        spin_lock_irqsave(&fep->lock, flags);
 812        r = (*fep->ops->get_regs)(dev, p, &len);
 813        spin_unlock_irqrestore(&fep->lock, flags);
 814
 815        if (r == 0)
 816                regs->version = 0;
 817}
 818
 819static u32 fs_get_msglevel(struct net_device *dev)
 820{
 821        struct fs_enet_private *fep = netdev_priv(dev);
 822        return fep->msg_enable;
 823}
 824
 825static void fs_set_msglevel(struct net_device *dev, u32 value)
 826{
 827        struct fs_enet_private *fep = netdev_priv(dev);
 828        fep->msg_enable = value;
 829}
 830
 831static int fs_get_tunable(struct net_device *dev,
 832                          const struct ethtool_tunable *tuna, void *data)
 833{
 834        struct fs_enet_private *fep = netdev_priv(dev);
 835        struct fs_platform_info *fpi = fep->fpi;
 836        int ret = 0;
 837
 838        switch (tuna->id) {
 839        case ETHTOOL_RX_COPYBREAK:
 840                *(u32 *)data = fpi->rx_copybreak;
 841                break;
 842        default:
 843                ret = -EINVAL;
 844                break;
 845        }
 846
 847        return ret;
 848}
 849
 850static int fs_set_tunable(struct net_device *dev,
 851                          const struct ethtool_tunable *tuna, const void *data)
 852{
 853        struct fs_enet_private *fep = netdev_priv(dev);
 854        struct fs_platform_info *fpi = fep->fpi;
 855        int ret = 0;
 856
 857        switch (tuna->id) {
 858        case ETHTOOL_RX_COPYBREAK:
 859                fpi->rx_copybreak = *(u32 *)data;
 860                break;
 861        default:
 862                ret = -EINVAL;
 863                break;
 864        }
 865
 866        return ret;
 867}
 868
 869static const struct ethtool_ops fs_ethtool_ops = {
 870        .get_drvinfo = fs_get_drvinfo,
 871        .get_regs_len = fs_get_regs_len,
 872        .nway_reset = phy_ethtool_nway_reset,
 873        .get_link = ethtool_op_get_link,
 874        .get_msglevel = fs_get_msglevel,
 875        .set_msglevel = fs_set_msglevel,
 876        .get_regs = fs_get_regs,
 877        .get_ts_info = ethtool_op_get_ts_info,
 878        .get_link_ksettings = phy_ethtool_get_link_ksettings,
 879        .set_link_ksettings = phy_ethtool_set_link_ksettings,
 880        .get_tunable = fs_get_tunable,
 881        .set_tunable = fs_set_tunable,
 882};
 883
 884static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 885{
 886        if (!netif_running(dev))
 887                return -EINVAL;
 888
 889        return phy_mii_ioctl(dev->phydev, rq, cmd);
 890}
 891
 892extern int fs_mii_connect(struct net_device *dev);
 893extern void fs_mii_disconnect(struct net_device *dev);
 894
 895/**************************************************************************************/
 896
 897#ifdef CONFIG_FS_ENET_HAS_FEC
 898#define IS_FEC(match) ((match)->data == &fs_fec_ops)
 899#else
 900#define IS_FEC(match) 0
 901#endif
 902
 903static const struct net_device_ops fs_enet_netdev_ops = {
 904        .ndo_open               = fs_enet_open,
 905        .ndo_stop               = fs_enet_close,
 906        .ndo_start_xmit         = fs_enet_start_xmit,
 907        .ndo_tx_timeout         = fs_timeout,
 908        .ndo_set_rx_mode        = fs_set_multicast_list,
 909        .ndo_do_ioctl           = fs_ioctl,
 910        .ndo_validate_addr      = eth_validate_addr,
 911        .ndo_set_mac_address    = eth_mac_addr,
 912#ifdef CONFIG_NET_POLL_CONTROLLER
 913        .ndo_poll_controller    = fs_enet_netpoll,
 914#endif
 915};
 916
 917static const struct of_device_id fs_enet_match[];
 918static int fs_enet_probe(struct platform_device *ofdev)
 919{
 920        const struct of_device_id *match;
 921        struct net_device *ndev;
 922        struct fs_enet_private *fep;
 923        struct fs_platform_info *fpi;
 924        const u32 *data;
 925        struct clk *clk;
 926        int err;
 927        const u8 *mac_addr;
 928        const char *phy_connection_type;
 929        int privsize, len, ret = -ENODEV;
 930
 931        match = of_match_device(fs_enet_match, &ofdev->dev);
 932        if (!match)
 933                return -EINVAL;
 934
 935        fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 936        if (!fpi)
 937                return -ENOMEM;
 938
 939        if (!IS_FEC(match)) {
 940                data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 941                if (!data || len != 4)
 942                        goto out_free_fpi;
 943
 944                fpi->cp_command = *data;
 945        }
 946
 947        fpi->rx_ring = RX_RING_SIZE;
 948        fpi->tx_ring = TX_RING_SIZE;
 949        fpi->rx_copybreak = 240;
 950        fpi->napi_weight = 17;
 951        fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 952        if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 953                err = of_phy_register_fixed_link(ofdev->dev.of_node);
 954                if (err)
 955                        goto out_free_fpi;
 956
 957                /* In the case of a fixed PHY, the DT node associated
 958                 * to the PHY is the Ethernet MAC DT node.
 959                 */
 960                fpi->phy_node = of_node_get(ofdev->dev.of_node);
 961        }
 962
 963        if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 964                phy_connection_type = of_get_property(ofdev->dev.of_node,
 965                                                "phy-connection-type", NULL);
 966                if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 967                        fpi->use_rmii = 1;
 968        }
 969
 970        /* make clock lookup non-fatal (the driver is shared among platforms),
 971         * but require enable to succeed when a clock was specified/found,
 972         * keep a reference to the clock upon successful acquisition
 973         */
 974        clk = devm_clk_get(&ofdev->dev, "per");
 975        if (!IS_ERR(clk)) {
 976                ret = clk_prepare_enable(clk);
 977                if (ret)
 978                        goto out_deregister_fixed_link;
 979
 980                fpi->clk_per = clk;
 981        }
 982
 983        privsize = sizeof(*fep) +
 984                   sizeof(struct sk_buff **) *
 985                     (fpi->rx_ring + fpi->tx_ring) +
 986                   sizeof(char) * fpi->tx_ring;
 987
 988        ndev = alloc_etherdev(privsize);
 989        if (!ndev) {
 990                ret = -ENOMEM;
 991                goto out_put;
 992        }
 993
 994        SET_NETDEV_DEV(ndev, &ofdev->dev);
 995        platform_set_drvdata(ofdev, ndev);
 996
 997        fep = netdev_priv(ndev);
 998        fep->dev = &ofdev->dev;
 999        fep->ndev = ndev;
1000        fep->fpi = fpi;
1001        fep->ops = match->data;
1002
1003        ret = fep->ops->setup_data(ndev);
1004        if (ret)
1005                goto out_free_dev;
1006
1007        fep->rx_skbuff = (struct sk_buff **)&fep[1];
1008        fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1009        fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1010                                       fpi->tx_ring);
1011
1012        spin_lock_init(&fep->lock);
1013        spin_lock_init(&fep->tx_lock);
1014
1015        mac_addr = of_get_mac_address(ofdev->dev.of_node);
1016        if (mac_addr)
1017                memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1018
1019        ret = fep->ops->allocate_bd(ndev);
1020        if (ret)
1021                goto out_cleanup_data;
1022
1023        fep->rx_bd_base = fep->ring_base;
1024        fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1025
1026        fep->tx_ring = fpi->tx_ring;
1027        fep->rx_ring = fpi->rx_ring;
1028
1029        ndev->netdev_ops = &fs_enet_netdev_ops;
1030        ndev->watchdog_timeo = 2 * HZ;
1031        INIT_WORK(&fep->timeout_work, fs_timeout_work);
1032        netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1033
1034        ndev->ethtool_ops = &fs_ethtool_ops;
1035
1036        netif_carrier_off(ndev);
1037
1038        ndev->features |= NETIF_F_SG;
1039
1040        ret = register_netdev(ndev);
1041        if (ret)
1042                goto out_free_bd;
1043
1044        pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1045
1046        return 0;
1047
1048out_free_bd:
1049        fep->ops->free_bd(ndev);
1050out_cleanup_data:
1051        fep->ops->cleanup_data(ndev);
1052out_free_dev:
1053        free_netdev(ndev);
1054out_put:
1055        if (fpi->clk_per)
1056                clk_disable_unprepare(fpi->clk_per);
1057out_deregister_fixed_link:
1058        of_node_put(fpi->phy_node);
1059        if (of_phy_is_fixed_link(ofdev->dev.of_node))
1060                of_phy_deregister_fixed_link(ofdev->dev.of_node);
1061out_free_fpi:
1062        kfree(fpi);
1063        return ret;
1064}
1065
1066static int fs_enet_remove(struct platform_device *ofdev)
1067{
1068        struct net_device *ndev = platform_get_drvdata(ofdev);
1069        struct fs_enet_private *fep = netdev_priv(ndev);
1070
1071        unregister_netdev(ndev);
1072
1073        fep->ops->free_bd(ndev);
1074        fep->ops->cleanup_data(ndev);
1075        dev_set_drvdata(fep->dev, NULL);
1076        of_node_put(fep->fpi->phy_node);
1077        if (fep->fpi->clk_per)
1078                clk_disable_unprepare(fep->fpi->clk_per);
1079        if (of_phy_is_fixed_link(ofdev->dev.of_node))
1080                of_phy_deregister_fixed_link(ofdev->dev.of_node);
1081        free_netdev(ndev);
1082        return 0;
1083}
1084
1085static const struct of_device_id fs_enet_match[] = {
1086#ifdef CONFIG_FS_ENET_HAS_SCC
1087        {
1088                .compatible = "fsl,cpm1-scc-enet",
1089                .data = (void *)&fs_scc_ops,
1090        },
1091        {
1092                .compatible = "fsl,cpm2-scc-enet",
1093                .data = (void *)&fs_scc_ops,
1094        },
1095#endif
1096#ifdef CONFIG_FS_ENET_HAS_FCC
1097        {
1098                .compatible = "fsl,cpm2-fcc-enet",
1099                .data = (void *)&fs_fcc_ops,
1100        },
1101#endif
1102#ifdef CONFIG_FS_ENET_HAS_FEC
1103#ifdef CONFIG_FS_ENET_MPC5121_FEC
1104        {
1105                .compatible = "fsl,mpc5121-fec",
1106                .data = (void *)&fs_fec_ops,
1107        },
1108        {
1109                .compatible = "fsl,mpc5125-fec",
1110                .data = (void *)&fs_fec_ops,
1111        },
1112#else
1113        {
1114                .compatible = "fsl,pq1-fec-enet",
1115                .data = (void *)&fs_fec_ops,
1116        },
1117#endif
1118#endif
1119        {}
1120};
1121MODULE_DEVICE_TABLE(of, fs_enet_match);
1122
1123static struct platform_driver fs_enet_driver = {
1124        .driver = {
1125                .name = "fs_enet",
1126                .of_match_table = fs_enet_match,
1127        },
1128        .probe = fs_enet_probe,
1129        .remove = fs_enet_remove,
1130};
1131
1132#ifdef CONFIG_NET_POLL_CONTROLLER
1133static void fs_enet_netpoll(struct net_device *dev)
1134{
1135       disable_irq(dev->irq);
1136       fs_enet_interrupt(dev->irq, dev);
1137       enable_irq(dev->irq);
1138}
1139#endif
1140
1141module_platform_driver(fs_enet_driver);
1142