linux/drivers/net/ethernet/intel/e100.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3
   4  Intel PRO/100 Linux driver
   5  Copyright(c) 1999 - 2006 Intel Corporation.
   6
   7  This program is free software; you can redistribute it and/or modify it
   8  under the terms and conditions of the GNU General Public License,
   9  version 2, as published by the Free Software Foundation.
  10
  11  This program is distributed in the hope it will be useful, but WITHOUT
  12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14  more details.
  15
  16  You should have received a copy of the GNU General Public License along with
  17  this program; if not, write to the Free Software Foundation, Inc.,
  18  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  19
  20  The full GNU General Public License is included in this distribution in
  21  the file called "COPYING".
  22
  23  Contact Information:
  24  Linux NICS <linux.nics@intel.com>
  25  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  26  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  27
  28*******************************************************************************/
  29
  30/*
  31 *      e100.c: Intel(R) PRO/100 ethernet driver
  32 *
  33 *      (Re)written 2003 by scott.feldman@intel.com.  Based loosely on
  34 *      original e100 driver, but better described as a munging of
  35 *      e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  36 *
  37 *      References:
  38 *              Intel 8255x 10/100 Mbps Ethernet Controller Family,
  39 *              Open Source Software Developers Manual,
  40 *              http://sourceforge.net/projects/e1000
  41 *
  42 *
  43 *                            Theory of Operation
  44 *
  45 *      I.   General
  46 *
  47 *      The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  48 *      controller family, which includes the 82557, 82558, 82559, 82550,
  49 *      82551, and 82562 devices.  82558 and greater controllers
  50 *      integrate the Intel 82555 PHY.  The controllers are used in
  51 *      server and client network interface cards, as well as in
  52 *      LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  53 *      configurations.  8255x supports a 32-bit linear addressing
  54 *      mode and operates at 33Mhz PCI clock rate.
  55 *
  56 *      II.  Driver Operation
  57 *
  58 *      Memory-mapped mode is used exclusively to access the device's
  59 *      shared-memory structure, the Control/Status Registers (CSR). All
  60 *      setup, configuration, and control of the device, including queuing
  61 *      of Tx, Rx, and configuration commands is through the CSR.
  62 *      cmd_lock serializes accesses to the CSR command register.  cb_lock
  63 *      protects the shared Command Block List (CBL).
  64 *
  65 *      8255x is highly MII-compliant and all access to the PHY go
  66 *      through the Management Data Interface (MDI).  Consequently, the
  67 *      driver leverages the mii.c library shared with other MII-compliant
  68 *      devices.
  69 *
  70 *      Big- and Little-Endian byte order as well as 32- and 64-bit
  71 *      archs are supported.  Weak-ordered memory and non-cache-coherent
  72 *      archs are supported.
  73 *
  74 *      III. Transmit
  75 *
  76 *      A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  77 *      together in a fixed-size ring (CBL) thus forming the flexible mode
  78 *      memory structure.  A TCB marked with the suspend-bit indicates
  79 *      the end of the ring.  The last TCB processed suspends the
  80 *      controller, and the controller can be restarted by issue a CU
  81 *      resume command to continue from the suspend point, or a CU start
  82 *      command to start at a given position in the ring.
  83 *
  84 *      Non-Tx commands (config, multicast setup, etc) are linked
  85 *      into the CBL ring along with Tx commands.  The common structure
  86 *      used for both Tx and non-Tx commands is the Command Block (CB).
  87 *
  88 *      cb_to_use is the next CB to use for queuing a command; cb_to_clean
  89 *      is the next CB to check for completion; cb_to_send is the first
  90 *      CB to start on in case of a previous failure to resume.  CB clean
  91 *      up happens in interrupt context in response to a CU interrupt.
  92 *      cbs_avail keeps track of number of free CB resources available.
  93 *
  94 *      Hardware padding of short packets to minimum packet size is
  95 *      enabled.  82557 pads with 7Eh, while the later controllers pad
  96 *      with 00h.
  97 *
  98 *      IV.  Receive
  99 *
 100 *      The Receive Frame Area (RFA) comprises a ring of Receive Frame
 101 *      Descriptors (RFD) + data buffer, thus forming the simplified mode
 102 *      memory structure.  Rx skbs are allocated to contain both the RFD
 103 *      and the data buffer, but the RFD is pulled off before the skb is
 104 *      indicated.  The data buffer is aligned such that encapsulated
 105 *      protocol headers are u32-aligned.  Since the RFD is part of the
 106 *      mapped shared memory, and completion status is contained within
 107 *      the RFD, the RFD must be dma_sync'ed to maintain a consistent
 108 *      view from software and hardware.
 109 *
 110 *      In order to keep updates to the RFD link field from colliding with
 111 *      hardware writes to mark packets complete, we use the feature that
 112 *      hardware will not write to a size 0 descriptor and mark the previous
 113 *      packet as end-of-list (EL).   After updating the link, we remove EL
 114 *      and only then restore the size such that hardware may use the
 115 *      previous-to-end RFD.
 116 *
 117 *      Under typical operation, the  receive unit (RU) is start once,
 118 *      and the controller happily fills RFDs as frames arrive.  If
 119 *      replacement RFDs cannot be allocated, or the RU goes non-active,
 120 *      the RU must be restarted.  Frame arrival generates an interrupt,
 121 *      and Rx indication and re-allocation happen in the same context,
 122 *      therefore no locking is required.  A software-generated interrupt
 123 *      is generated from the watchdog to recover from a failed allocation
 124 *      scenario where all Rx resources have been indicated and none re-
 125 *      placed.
 126 *
 127 *      V.   Miscellaneous
 128 *
 129 *      VLAN offloading of tagging, stripping and filtering is not
 130 *      supported, but driver will accommodate the extra 4-byte VLAN tag
 131 *      for processing by upper layers.  Tx/Rx Checksum offloading is not
 132 *      supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 133 *      not supported (hardware limitation).
 134 *
 135 *      MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 136 *
 137 *      Thanks to JC (jchapman@katalix.com) for helping with
 138 *      testing/troubleshooting the development driver.
 139 *
 140 *      TODO:
 141 *      o several entry points race with dev->close
 142 *      o check for tx-no-resources/stop Q races with tx clean/wake Q
 143 *
 144 *      FIXES:
 145 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 146 *      - Stratus87247: protect MDI control register manipulations
 147 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 148 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 149 */
 150
 151#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 152
 153#include <linux/hardirq.h>
 154#include <linux/interrupt.h>
 155#include <linux/module.h>
 156#include <linux/moduleparam.h>
 157#include <linux/kernel.h>
 158#include <linux/types.h>
 159#include <linux/sched.h>
 160#include <linux/slab.h>
 161#include <linux/delay.h>
 162#include <linux/init.h>
 163#include <linux/pci.h>
 164#include <linux/dma-mapping.h>
 165#include <linux/dmapool.h>
 166#include <linux/netdevice.h>
 167#include <linux/etherdevice.h>
 168#include <linux/mii.h>
 169#include <linux/if_vlan.h>
 170#include <linux/skbuff.h>
 171#include <linux/ethtool.h>
 172#include <linux/string.h>
 173#include <linux/firmware.h>
 174#include <linux/rtnetlink.h>
 175#include <asm/unaligned.h>
 176
 177
 178#define DRV_NAME                "e100"
 179#define DRV_EXT                 "-NAPI"
 180#define DRV_VERSION             "3.5.24-k2"DRV_EXT
 181#define DRV_DESCRIPTION         "Intel(R) PRO/100 Network Driver"
 182#define DRV_COPYRIGHT           "Copyright(c) 1999-2006 Intel Corporation"
 183
 184#define E100_WATCHDOG_PERIOD    (2 * HZ)
 185#define E100_NAPI_WEIGHT        16
 186
 187#define FIRMWARE_D101M          "e100/d101m_ucode.bin"
 188#define FIRMWARE_D101S          "e100/d101s_ucode.bin"
 189#define FIRMWARE_D102E          "e100/d102e_ucode.bin"
 190
 191MODULE_DESCRIPTION(DRV_DESCRIPTION);
 192MODULE_AUTHOR(DRV_COPYRIGHT);
 193MODULE_LICENSE("GPL");
 194MODULE_VERSION(DRV_VERSION);
 195MODULE_FIRMWARE(FIRMWARE_D101M);
 196MODULE_FIRMWARE(FIRMWARE_D101S);
 197MODULE_FIRMWARE(FIRMWARE_D102E);
 198
 199static int debug = 3;
 200static int eeprom_bad_csum_allow = 0;
 201static int use_io = 0;
 202module_param(debug, int, 0);
 203module_param(eeprom_bad_csum_allow, int, 0);
 204module_param(use_io, int, 0);
 205MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 206MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 207MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 208
 209#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 210        PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 211        PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 212static const struct pci_device_id e100_id_table[] = {
 213        INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 214        INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 215        INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 216        INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 217        INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 218        INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 219        INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 220        INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 221        INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 222        INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 223        INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 224        INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 225        INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 226        INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 227        INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 228        INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 229        INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 230        INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 231        INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 232        INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 233        INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 234        INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 235        INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 236        INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 237        INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 238        INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 239        INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 240        INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 241        INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 242        INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 243        INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 244        INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 245        INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 246        INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 247        INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 248        INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 249        INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 250        INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 251        INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 252        INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 253        INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 254        INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 255        { 0, }
 256};
 257MODULE_DEVICE_TABLE(pci, e100_id_table);
 258
 259enum mac {
 260        mac_82557_D100_A  = 0,
 261        mac_82557_D100_B  = 1,
 262        mac_82557_D100_C  = 2,
 263        mac_82558_D101_A4 = 4,
 264        mac_82558_D101_B0 = 5,
 265        mac_82559_D101M   = 8,
 266        mac_82559_D101S   = 9,
 267        mac_82550_D102    = 12,
 268        mac_82550_D102_C  = 13,
 269        mac_82551_E       = 14,
 270        mac_82551_F       = 15,
 271        mac_82551_10      = 16,
 272        mac_unknown       = 0xFF,
 273};
 274
 275enum phy {
 276        phy_100a     = 0x000003E0,
 277        phy_100c     = 0x035002A8,
 278        phy_82555_tx = 0x015002A8,
 279        phy_nsc_tx   = 0x5C002000,
 280        phy_82562_et = 0x033002A8,
 281        phy_82562_em = 0x032002A8,
 282        phy_82562_ek = 0x031002A8,
 283        phy_82562_eh = 0x017002A8,
 284        phy_82552_v  = 0xd061004d,
 285        phy_unknown  = 0xFFFFFFFF,
 286};
 287
 288/* CSR (Control/Status Registers) */
 289struct csr {
 290        struct {
 291                u8 status;
 292                u8 stat_ack;
 293                u8 cmd_lo;
 294                u8 cmd_hi;
 295                u32 gen_ptr;
 296        } scb;
 297        u32 port;
 298        u16 flash_ctrl;
 299        u8 eeprom_ctrl_lo;
 300        u8 eeprom_ctrl_hi;
 301        u32 mdi_ctrl;
 302        u32 rx_dma_count;
 303};
 304
 305enum scb_status {
 306        rus_no_res       = 0x08,
 307        rus_ready        = 0x10,
 308        rus_mask         = 0x3C,
 309};
 310
 311enum ru_state  {
 312        RU_SUSPENDED = 0,
 313        RU_RUNNING       = 1,
 314        RU_UNINITIALIZED = -1,
 315};
 316
 317enum scb_stat_ack {
 318        stat_ack_not_ours    = 0x00,
 319        stat_ack_sw_gen      = 0x04,
 320        stat_ack_rnr         = 0x10,
 321        stat_ack_cu_idle     = 0x20,
 322        stat_ack_frame_rx    = 0x40,
 323        stat_ack_cu_cmd_done = 0x80,
 324        stat_ack_not_present = 0xFF,
 325        stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 326        stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 327};
 328
 329enum scb_cmd_hi {
 330        irq_mask_none = 0x00,
 331        irq_mask_all  = 0x01,
 332        irq_sw_gen    = 0x02,
 333};
 334
 335enum scb_cmd_lo {
 336        cuc_nop        = 0x00,
 337        ruc_start      = 0x01,
 338        ruc_load_base  = 0x06,
 339        cuc_start      = 0x10,
 340        cuc_resume     = 0x20,
 341        cuc_dump_addr  = 0x40,
 342        cuc_dump_stats = 0x50,
 343        cuc_load_base  = 0x60,
 344        cuc_dump_reset = 0x70,
 345};
 346
 347enum cuc_dump {
 348        cuc_dump_complete       = 0x0000A005,
 349        cuc_dump_reset_complete = 0x0000A007,
 350};
 351
 352enum port {
 353        software_reset  = 0x0000,
 354        selftest        = 0x0001,
 355        selective_reset = 0x0002,
 356};
 357
 358enum eeprom_ctrl_lo {
 359        eesk = 0x01,
 360        eecs = 0x02,
 361        eedi = 0x04,
 362        eedo = 0x08,
 363};
 364
 365enum mdi_ctrl {
 366        mdi_write = 0x04000000,
 367        mdi_read  = 0x08000000,
 368        mdi_ready = 0x10000000,
 369};
 370
 371enum eeprom_op {
 372        op_write = 0x05,
 373        op_read  = 0x06,
 374        op_ewds  = 0x10,
 375        op_ewen  = 0x13,
 376};
 377
 378enum eeprom_offsets {
 379        eeprom_cnfg_mdix  = 0x03,
 380        eeprom_phy_iface  = 0x06,
 381        eeprom_id         = 0x0A,
 382        eeprom_config_asf = 0x0D,
 383        eeprom_smbus_addr = 0x90,
 384};
 385
 386enum eeprom_cnfg_mdix {
 387        eeprom_mdix_enabled = 0x0080,
 388};
 389
 390enum eeprom_phy_iface {
 391        NoSuchPhy = 0,
 392        I82553AB,
 393        I82553C,
 394        I82503,
 395        DP83840,
 396        S80C240,
 397        S80C24,
 398        I82555,
 399        DP83840A = 10,
 400};
 401
 402enum eeprom_id {
 403        eeprom_id_wol = 0x0020,
 404};
 405
 406enum eeprom_config_asf {
 407        eeprom_asf = 0x8000,
 408        eeprom_gcl = 0x4000,
 409};
 410
 411enum cb_status {
 412        cb_complete = 0x8000,
 413        cb_ok       = 0x2000,
 414};
 415
 416/**
 417 * cb_command - Command Block flags
 418 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
 419 */
 420enum cb_command {
 421        cb_nop    = 0x0000,
 422        cb_iaaddr = 0x0001,
 423        cb_config = 0x0002,
 424        cb_multi  = 0x0003,
 425        cb_tx     = 0x0004,
 426        cb_ucode  = 0x0005,
 427        cb_dump   = 0x0006,
 428        cb_tx_sf  = 0x0008,
 429        cb_tx_nc  = 0x0010,
 430        cb_cid    = 0x1f00,
 431        cb_i      = 0x2000,
 432        cb_s      = 0x4000,
 433        cb_el     = 0x8000,
 434};
 435
 436struct rfd {
 437        __le16 status;
 438        __le16 command;
 439        __le32 link;
 440        __le32 rbd;
 441        __le16 actual_size;
 442        __le16 size;
 443};
 444
 445struct rx {
 446        struct rx *next, *prev;
 447        struct sk_buff *skb;
 448        dma_addr_t dma_addr;
 449};
 450
 451#if defined(__BIG_ENDIAN_BITFIELD)
 452#define X(a,b)  b,a
 453#else
 454#define X(a,b)  a,b
 455#endif
 456struct config {
 457/*0*/   u8 X(byte_count:6, pad0:2);
 458/*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 459/*2*/   u8 adaptive_ifs;
 460/*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 461           term_write_cache_line:1), pad3:4);
 462/*4*/   u8 X(rx_dma_max_count:7, pad4:1);
 463/*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 464/*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 465           tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 466           rx_save_overruns : 1), rx_save_bad_frames : 1);
 467/*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 468           pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 469           tx_dynamic_tbd:1);
 470/*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 471/*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 472           link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 473/*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 474           loopback:2);
 475/*11*/  u8 X(linear_priority:3, pad11:5);
 476/*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 477/*13*/  u8 ip_addr_lo;
 478/*14*/  u8 ip_addr_hi;
 479/*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 480           wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 481           pad15_2:1), crs_or_cdt:1);
 482/*16*/  u8 fc_delay_lo;
 483/*17*/  u8 fc_delay_hi;
 484/*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 485           rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 486/*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 487           fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 488           full_duplex_force:1), full_duplex_pin:1);
 489/*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 490/*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 491/*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 492        u8 pad_d102[9];
 493};
 494
 495#define E100_MAX_MULTICAST_ADDRS        64
 496struct multi {
 497        __le16 count;
 498        u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 499};
 500
 501/* Important: keep total struct u32-aligned */
 502#define UCODE_SIZE                      134
 503struct cb {
 504        __le16 status;
 505        __le16 command;
 506        __le32 link;
 507        union {
 508                u8 iaaddr[ETH_ALEN];
 509                __le32 ucode[UCODE_SIZE];
 510                struct config config;
 511                struct multi multi;
 512                struct {
 513                        u32 tbd_array;
 514                        u16 tcb_byte_count;
 515                        u8 threshold;
 516                        u8 tbd_count;
 517                        struct {
 518                                __le32 buf_addr;
 519                                __le16 size;
 520                                u16 eol;
 521                        } tbd;
 522                } tcb;
 523                __le32 dump_buffer_addr;
 524        } u;
 525        struct cb *next, *prev;
 526        dma_addr_t dma_addr;
 527        struct sk_buff *skb;
 528};
 529
 530enum loopback {
 531        lb_none = 0, lb_mac = 1, lb_phy = 3,
 532};
 533
 534struct stats {
 535        __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 536                tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 537                tx_multiple_collisions, tx_total_collisions;
 538        __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 539                rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 540                rx_short_frame_errors;
 541        __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 542        __le16 xmt_tco_frames, rcv_tco_frames;
 543        __le32 complete;
 544};
 545
 546struct mem {
 547        struct {
 548                u32 signature;
 549                u32 result;
 550        } selftest;
 551        struct stats stats;
 552        u8 dump_buf[596];
 553};
 554
 555struct param_range {
 556        u32 min;
 557        u32 max;
 558        u32 count;
 559};
 560
 561struct params {
 562        struct param_range rfds;
 563        struct param_range cbs;
 564};
 565
 566struct nic {
 567        /* Begin: frequently used values: keep adjacent for cache effect */
 568        u32 msg_enable                          ____cacheline_aligned;
 569        struct net_device *netdev;
 570        struct pci_dev *pdev;
 571        u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 572
 573        struct rx *rxs                          ____cacheline_aligned;
 574        struct rx *rx_to_use;
 575        struct rx *rx_to_clean;
 576        struct rfd blank_rfd;
 577        enum ru_state ru_running;
 578
 579        spinlock_t cb_lock                      ____cacheline_aligned;
 580        spinlock_t cmd_lock;
 581        struct csr __iomem *csr;
 582        enum scb_cmd_lo cuc_cmd;
 583        unsigned int cbs_avail;
 584        struct napi_struct napi;
 585        struct cb *cbs;
 586        struct cb *cb_to_use;
 587        struct cb *cb_to_send;
 588        struct cb *cb_to_clean;
 589        __le16 tx_command;
 590        /* End: frequently used values: keep adjacent for cache effect */
 591
 592        enum {
 593                ich                = (1 << 0),
 594                promiscuous        = (1 << 1),
 595                multicast_all      = (1 << 2),
 596                wol_magic          = (1 << 3),
 597                ich_10h_workaround = (1 << 4),
 598        } flags                                 ____cacheline_aligned;
 599
 600        enum mac mac;
 601        enum phy phy;
 602        struct params params;
 603        struct timer_list watchdog;
 604        struct mii_if_info mii;
 605        struct work_struct tx_timeout_task;
 606        enum loopback loopback;
 607
 608        struct mem *mem;
 609        dma_addr_t dma_addr;
 610
 611        struct dma_pool *cbs_pool;
 612        dma_addr_t cbs_dma_addr;
 613        u8 adaptive_ifs;
 614        u8 tx_threshold;
 615        u32 tx_frames;
 616        u32 tx_collisions;
 617        u32 tx_deferred;
 618        u32 tx_single_collisions;
 619        u32 tx_multiple_collisions;
 620        u32 tx_fc_pause;
 621        u32 tx_tco_frames;
 622
 623        u32 rx_fc_pause;
 624        u32 rx_fc_unsupported;
 625        u32 rx_tco_frames;
 626        u32 rx_short_frame_errors;
 627        u32 rx_over_length_errors;
 628
 629        u16 eeprom_wc;
 630        __le16 eeprom[256];
 631        spinlock_t mdio_lock;
 632        const struct firmware *fw;
 633};
 634
 635static inline void e100_write_flush(struct nic *nic)
 636{
 637        /* Flush previous PCI writes through intermediate bridges
 638         * by doing a benign read */
 639        (void)ioread8(&nic->csr->scb.status);
 640}
 641
 642static void e100_enable_irq(struct nic *nic)
 643{
 644        unsigned long flags;
 645
 646        spin_lock_irqsave(&nic->cmd_lock, flags);
 647        iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 648        e100_write_flush(nic);
 649        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 650}
 651
 652static void e100_disable_irq(struct nic *nic)
 653{
 654        unsigned long flags;
 655
 656        spin_lock_irqsave(&nic->cmd_lock, flags);
 657        iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 658        e100_write_flush(nic);
 659        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 660}
 661
 662static void e100_hw_reset(struct nic *nic)
 663{
 664        /* Put CU and RU into idle with a selective reset to get
 665         * device off of PCI bus */
 666        iowrite32(selective_reset, &nic->csr->port);
 667        e100_write_flush(nic); udelay(20);
 668
 669        /* Now fully reset device */
 670        iowrite32(software_reset, &nic->csr->port);
 671        e100_write_flush(nic); udelay(20);
 672
 673        /* Mask off our interrupt line - it's unmasked after reset */
 674        e100_disable_irq(nic);
 675}
 676
 677static int e100_self_test(struct nic *nic)
 678{
 679        u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 680
 681        /* Passing the self-test is a pretty good indication
 682         * that the device can DMA to/from host memory */
 683
 684        nic->mem->selftest.signature = 0;
 685        nic->mem->selftest.result = 0xFFFFFFFF;
 686
 687        iowrite32(selftest | dma_addr, &nic->csr->port);
 688        e100_write_flush(nic);
 689        /* Wait 10 msec for self-test to complete */
 690        msleep(10);
 691
 692        /* Interrupts are enabled after self-test */
 693        e100_disable_irq(nic);
 694
 695        /* Check results of self-test */
 696        if (nic->mem->selftest.result != 0) {
 697                netif_err(nic, hw, nic->netdev,
 698                          "Self-test failed: result=0x%08X\n",
 699                          nic->mem->selftest.result);
 700                return -ETIMEDOUT;
 701        }
 702        if (nic->mem->selftest.signature == 0) {
 703                netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 704                return -ETIMEDOUT;
 705        }
 706
 707        return 0;
 708}
 709
 710static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 711{
 712        u32 cmd_addr_data[3];
 713        u8 ctrl;
 714        int i, j;
 715
 716        /* Three cmds: write/erase enable, write data, write/erase disable */
 717        cmd_addr_data[0] = op_ewen << (addr_len - 2);
 718        cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 719                le16_to_cpu(data);
 720        cmd_addr_data[2] = op_ewds << (addr_len - 2);
 721
 722        /* Bit-bang cmds to write word to eeprom */
 723        for (j = 0; j < 3; j++) {
 724
 725                /* Chip select */
 726                iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 727                e100_write_flush(nic); udelay(4);
 728
 729                for (i = 31; i >= 0; i--) {
 730                        ctrl = (cmd_addr_data[j] & (1 << i)) ?
 731                                eecs | eedi : eecs;
 732                        iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 733                        e100_write_flush(nic); udelay(4);
 734
 735                        iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 736                        e100_write_flush(nic); udelay(4);
 737                }
 738                /* Wait 10 msec for cmd to complete */
 739                msleep(10);
 740
 741                /* Chip deselect */
 742                iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 743                e100_write_flush(nic); udelay(4);
 744        }
 745};
 746
 747/* General technique stolen from the eepro100 driver - very clever */
 748static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 749{
 750        u32 cmd_addr_data;
 751        u16 data = 0;
 752        u8 ctrl;
 753        int i;
 754
 755        cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 756
 757        /* Chip select */
 758        iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 759        e100_write_flush(nic); udelay(4);
 760
 761        /* Bit-bang to read word from eeprom */
 762        for (i = 31; i >= 0; i--) {
 763                ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 764                iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 765                e100_write_flush(nic); udelay(4);
 766
 767                iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 768                e100_write_flush(nic); udelay(4);
 769
 770                /* Eeprom drives a dummy zero to EEDO after receiving
 771                 * complete address.  Use this to adjust addr_len. */
 772                ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 773                if (!(ctrl & eedo) && i > 16) {
 774                        *addr_len -= (i - 16);
 775                        i = 17;
 776                }
 777
 778                data = (data << 1) | (ctrl & eedo ? 1 : 0);
 779        }
 780
 781        /* Chip deselect */
 782        iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 783        e100_write_flush(nic); udelay(4);
 784
 785        return cpu_to_le16(data);
 786};
 787
 788/* Load entire EEPROM image into driver cache and validate checksum */
 789static int e100_eeprom_load(struct nic *nic)
 790{
 791        u16 addr, addr_len = 8, checksum = 0;
 792
 793        /* Try reading with an 8-bit addr len to discover actual addr len */
 794        e100_eeprom_read(nic, &addr_len, 0);
 795        nic->eeprom_wc = 1 << addr_len;
 796
 797        for (addr = 0; addr < nic->eeprom_wc; addr++) {
 798                nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 799                if (addr < nic->eeprom_wc - 1)
 800                        checksum += le16_to_cpu(nic->eeprom[addr]);
 801        }
 802
 803        /* The checksum, stored in the last word, is calculated such that
 804         * the sum of words should be 0xBABA */
 805        if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 806                netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 807                if (!eeprom_bad_csum_allow)
 808                        return -EAGAIN;
 809        }
 810
 811        return 0;
 812}
 813
 814/* Save (portion of) driver EEPROM cache to device and update checksum */
 815static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 816{
 817        u16 addr, addr_len = 8, checksum = 0;
 818
 819        /* Try reading with an 8-bit addr len to discover actual addr len */
 820        e100_eeprom_read(nic, &addr_len, 0);
 821        nic->eeprom_wc = 1 << addr_len;
 822
 823        if (start + count >= nic->eeprom_wc)
 824                return -EINVAL;
 825
 826        for (addr = start; addr < start + count; addr++)
 827                e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 828
 829        /* The checksum, stored in the last word, is calculated such that
 830         * the sum of words should be 0xBABA */
 831        for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 832                checksum += le16_to_cpu(nic->eeprom[addr]);
 833        nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 834        e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 835                nic->eeprom[nic->eeprom_wc - 1]);
 836
 837        return 0;
 838}
 839
 840#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 841#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 842static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 843{
 844        unsigned long flags;
 845        unsigned int i;
 846        int err = 0;
 847
 848        spin_lock_irqsave(&nic->cmd_lock, flags);
 849
 850        /* Previous command is accepted when SCB clears */
 851        for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 852                if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 853                        break;
 854                cpu_relax();
 855                if (unlikely(i > E100_WAIT_SCB_FAST))
 856                        udelay(5);
 857        }
 858        if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 859                err = -EAGAIN;
 860                goto err_unlock;
 861        }
 862
 863        if (unlikely(cmd != cuc_resume))
 864                iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 865        iowrite8(cmd, &nic->csr->scb.cmd_lo);
 866
 867err_unlock:
 868        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 869
 870        return err;
 871}
 872
 873static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 874        int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 875{
 876        struct cb *cb;
 877        unsigned long flags;
 878        int err;
 879
 880        spin_lock_irqsave(&nic->cb_lock, flags);
 881
 882        if (unlikely(!nic->cbs_avail)) {
 883                err = -ENOMEM;
 884                goto err_unlock;
 885        }
 886
 887        cb = nic->cb_to_use;
 888        nic->cb_to_use = cb->next;
 889        nic->cbs_avail--;
 890        cb->skb = skb;
 891
 892        err = cb_prepare(nic, cb, skb);
 893        if (err)
 894                goto err_unlock;
 895
 896        if (unlikely(!nic->cbs_avail))
 897                err = -ENOSPC;
 898
 899
 900        /* Order is important otherwise we'll be in a race with h/w:
 901         * set S-bit in current first, then clear S-bit in previous. */
 902        cb->command |= cpu_to_le16(cb_s);
 903        dma_wmb();
 904        cb->prev->command &= cpu_to_le16(~cb_s);
 905
 906        while (nic->cb_to_send != nic->cb_to_use) {
 907                if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 908                        nic->cb_to_send->dma_addr))) {
 909                        /* Ok, here's where things get sticky.  It's
 910                         * possible that we can't schedule the command
 911                         * because the controller is too busy, so
 912                         * let's just queue the command and try again
 913                         * when another command is scheduled. */
 914                        if (err == -ENOSPC) {
 915                                //request a reset
 916                                schedule_work(&nic->tx_timeout_task);
 917                        }
 918                        break;
 919                } else {
 920                        nic->cuc_cmd = cuc_resume;
 921                        nic->cb_to_send = nic->cb_to_send->next;
 922                }
 923        }
 924
 925err_unlock:
 926        spin_unlock_irqrestore(&nic->cb_lock, flags);
 927
 928        return err;
 929}
 930
 931static int mdio_read(struct net_device *netdev, int addr, int reg)
 932{
 933        struct nic *nic = netdev_priv(netdev);
 934        return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 935}
 936
 937static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 938{
 939        struct nic *nic = netdev_priv(netdev);
 940
 941        nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 942}
 943
 944/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 945static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 946{
 947        u32 data_out = 0;
 948        unsigned int i;
 949        unsigned long flags;
 950
 951
 952        /*
 953         * Stratus87247: we shouldn't be writing the MDI control
 954         * register until the Ready bit shows True.  Also, since
 955         * manipulation of the MDI control registers is a multi-step
 956         * procedure it should be done under lock.
 957         */
 958        spin_lock_irqsave(&nic->mdio_lock, flags);
 959        for (i = 100; i; --i) {
 960                if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 961                        break;
 962                udelay(20);
 963        }
 964        if (unlikely(!i)) {
 965                netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 966                spin_unlock_irqrestore(&nic->mdio_lock, flags);
 967                return 0;               /* No way to indicate timeout error */
 968        }
 969        iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 970
 971        for (i = 0; i < 100; i++) {
 972                udelay(20);
 973                if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 974                        break;
 975        }
 976        spin_unlock_irqrestore(&nic->mdio_lock, flags);
 977        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 978                     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 979                     dir == mdi_read ? "READ" : "WRITE",
 980                     addr, reg, data, data_out);
 981        return (u16)data_out;
 982}
 983
 984/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 985static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 986                                 u32 addr,
 987                                 u32 dir,
 988                                 u32 reg,
 989                                 u16 data)
 990{
 991        if ((reg == MII_BMCR) && (dir == mdi_write)) {
 992                if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 993                        u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 994                                                        MII_ADVERTISE);
 995
 996                        /*
 997                         * Workaround Si issue where sometimes the part will not
 998                         * autoneg to 100Mbps even when advertised.
 999                         */
1000                        if (advert & ADVERTISE_100FULL)
1001                                data |= BMCR_SPEED100 | BMCR_FULLDPLX;
1002                        else if (advert & ADVERTISE_100HALF)
1003                                data |= BMCR_SPEED100;
1004                }
1005        }
1006        return mdio_ctrl_hw(nic, addr, dir, reg, data);
1007}
1008
1009/* Fully software-emulated mdio_ctrl() function for cards without
1010 * MII-compliant PHYs.
1011 * For now, this is mainly geared towards 80c24 support; in case of further
1012 * requirements for other types (i82503, ...?) either extend this mechanism
1013 * or split it, whichever is cleaner.
1014 */
1015static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1016                                      u32 addr,
1017                                      u32 dir,
1018                                      u32 reg,
1019                                      u16 data)
1020{
1021        /* might need to allocate a netdev_priv'ed register array eventually
1022         * to be able to record state changes, but for now
1023         * some fully hardcoded register handling ought to be ok I guess. */
1024
1025        if (dir == mdi_read) {
1026                switch (reg) {
1027                case MII_BMCR:
1028                        /* Auto-negotiation, right? */
1029                        return  BMCR_ANENABLE |
1030                                BMCR_FULLDPLX;
1031                case MII_BMSR:
1032                        return  BMSR_LSTATUS /* for mii_link_ok() */ |
1033                                BMSR_ANEGCAPABLE |
1034                                BMSR_10FULL;
1035                case MII_ADVERTISE:
1036                        /* 80c24 is a "combo card" PHY, right? */
1037                        return  ADVERTISE_10HALF |
1038                                ADVERTISE_10FULL;
1039                default:
1040                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1041                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1042                                     dir == mdi_read ? "READ" : "WRITE",
1043                                     addr, reg, data);
1044                        return 0xFFFF;
1045                }
1046        } else {
1047                switch (reg) {
1048                default:
1049                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1050                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1051                                     dir == mdi_read ? "READ" : "WRITE",
1052                                     addr, reg, data);
1053                        return 0xFFFF;
1054                }
1055        }
1056}
1057static inline int e100_phy_supports_mii(struct nic *nic)
1058{
1059        /* for now, just check it by comparing whether we
1060           are using MII software emulation.
1061        */
1062        return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1063}
1064
1065static void e100_get_defaults(struct nic *nic)
1066{
1067        struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1068        struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1069
1070        /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1071        nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1072        if (nic->mac == mac_unknown)
1073                nic->mac = mac_82557_D100_A;
1074
1075        nic->params.rfds = rfds;
1076        nic->params.cbs = cbs;
1077
1078        /* Quadwords to DMA into FIFO before starting frame transmit */
1079        nic->tx_threshold = 0xE0;
1080
1081        /* no interrupt for every tx completion, delay = 256us if not 557 */
1082        nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1083                ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1084
1085        /* Template for a freshly allocated RFD */
1086        nic->blank_rfd.command = 0;
1087        nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1088        nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1089
1090        /* MII setup */
1091        nic->mii.phy_id_mask = 0x1F;
1092        nic->mii.reg_num_mask = 0x1F;
1093        nic->mii.dev = nic->netdev;
1094        nic->mii.mdio_read = mdio_read;
1095        nic->mii.mdio_write = mdio_write;
1096}
1097
1098static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1099{
1100        struct config *config = &cb->u.config;
1101        u8 *c = (u8 *)config;
1102        struct net_device *netdev = nic->netdev;
1103
1104        cb->command = cpu_to_le16(cb_config);
1105
1106        memset(config, 0, sizeof(struct config));
1107
1108        config->byte_count = 0x16;              /* bytes in this struct */
1109        config->rx_fifo_limit = 0x8;            /* bytes in FIFO before DMA */
1110        config->direct_rx_dma = 0x1;            /* reserved */
1111        config->standard_tcb = 0x1;             /* 1=standard, 0=extended */
1112        config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
1113        config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
1114        config->tx_underrun_retry = 0x3;        /* # of underrun retries */
1115        if (e100_phy_supports_mii(nic))
1116                config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1117        config->pad10 = 0x6;
1118        config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1119        config->preamble_length = 0x2;          /* 0=1, 1=3, 2=7, 3=15 bytes */
1120        config->ifs = 0x6;                      /* x16 = inter frame spacing */
1121        config->ip_addr_hi = 0xF2;              /* ARP IP filter - not used */
1122        config->pad15_1 = 0x1;
1123        config->pad15_2 = 0x1;
1124        config->crs_or_cdt = 0x0;               /* 0=CRS only, 1=CRS or CDT */
1125        config->fc_delay_hi = 0x40;             /* time delay for fc frame */
1126        config->tx_padding = 0x1;               /* 1=pad short frames */
1127        config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
1128        config->pad18 = 0x1;
1129        config->full_duplex_pin = 0x1;          /* 1=examine FDX# pin */
1130        config->pad20_1 = 0x1F;
1131        config->fc_priority_location = 0x1;     /* 1=byte#31, 0=byte#19 */
1132        config->pad21_1 = 0x5;
1133
1134        config->adaptive_ifs = nic->adaptive_ifs;
1135        config->loopback = nic->loopback;
1136
1137        if (nic->mii.force_media && nic->mii.full_duplex)
1138                config->full_duplex_force = 0x1;        /* 1=force, 0=auto */
1139
1140        if (nic->flags & promiscuous || nic->loopback) {
1141                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1142                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1143                config->promiscuous_mode = 0x1;         /* 1=on, 0=off */
1144        }
1145
1146        if (unlikely(netdev->features & NETIF_F_RXFCS))
1147                config->rx_crc_transfer = 0x1;  /* 1=save, 0=discard */
1148
1149        if (nic->flags & multicast_all)
1150                config->multicast_all = 0x1;            /* 1=accept, 0=no */
1151
1152        /* disable WoL when up */
1153        if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1154                config->magic_packet_disable = 0x1;     /* 1=off, 0=on */
1155
1156        if (nic->mac >= mac_82558_D101_A4) {
1157                config->fc_disable = 0x1;       /* 1=Tx fc off, 0=Tx fc on */
1158                config->mwi_enable = 0x1;       /* 1=enable, 0=disable */
1159                config->standard_tcb = 0x0;     /* 1=standard, 0=extended */
1160                config->rx_long_ok = 0x1;       /* 1=VLANs ok, 0=standard */
1161                if (nic->mac >= mac_82559_D101M) {
1162                        config->tno_intr = 0x1;         /* TCO stats enable */
1163                        /* Enable TCO in extended config */
1164                        if (nic->mac >= mac_82551_10) {
1165                                config->byte_count = 0x20; /* extended bytes */
1166                                config->rx_d102_mode = 0x1; /* GMRC for TCO */
1167                        }
1168                } else {
1169                        config->standard_stat_counter = 0x0;
1170                }
1171        }
1172
1173        if (netdev->features & NETIF_F_RXALL) {
1174                config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1175                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1176                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1177        }
1178
1179        netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1180                     c + 0);
1181        netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1182                     c + 8);
1183        netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1184                     c + 16);
1185        return 0;
1186}
1187
1188/*************************************************************************
1189*  CPUSaver parameters
1190*
1191*  All CPUSaver parameters are 16-bit literals that are part of a
1192*  "move immediate value" instruction.  By changing the value of
1193*  the literal in the instruction before the code is loaded, the
1194*  driver can change the algorithm.
1195*
1196*  INTDELAY - This loads the dead-man timer with its initial value.
1197*    When this timer expires the interrupt is asserted, and the
1198*    timer is reset each time a new packet is received.  (see
1199*    BUNDLEMAX below to set the limit on number of chained packets)
1200*    The current default is 0x600 or 1536.  Experiments show that
1201*    the value should probably stay within the 0x200 - 0x1000.
1202*
1203*  BUNDLEMAX -
1204*    This sets the maximum number of frames that will be bundled.  In
1205*    some situations, such as the TCP windowing algorithm, it may be
1206*    better to limit the growth of the bundle size than let it go as
1207*    high as it can, because that could cause too much added latency.
1208*    The default is six, because this is the number of packets in the
1209*    default TCP window size.  A value of 1 would make CPUSaver indicate
1210*    an interrupt for every frame received.  If you do not want to put
1211*    a limit on the bundle size, set this value to xFFFF.
1212*
1213*  BUNDLESMALL -
1214*    This contains a bit-mask describing the minimum size frame that
1215*    will be bundled.  The default masks the lower 7 bits, which means
1216*    that any frame less than 128 bytes in length will not be bundled,
1217*    but will instead immediately generate an interrupt.  This does
1218*    not affect the current bundle in any way.  Any frame that is 128
1219*    bytes or large will be bundled normally.  This feature is meant
1220*    to provide immediate indication of ACK frames in a TCP environment.
1221*    Customers were seeing poor performance when a machine with CPUSaver
1222*    enabled was sending but not receiving.  The delay introduced when
1223*    the ACKs were received was enough to reduce total throughput, because
1224*    the sender would sit idle until the ACK was finally seen.
1225*
1226*    The current default is 0xFF80, which masks out the lower 7 bits.
1227*    This means that any frame which is x7F (127) bytes or smaller
1228*    will cause an immediate interrupt.  Because this value must be a
1229*    bit mask, there are only a few valid values that can be used.  To
1230*    turn this feature off, the driver can write the value xFFFF to the
1231*    lower word of this instruction (in the same way that the other
1232*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1233*    cause an interrupt to be generated for every frame, because all
1234*    standard Ethernet frames are <= 2047 bytes in length.
1235*************************************************************************/
1236
1237/* if you wish to disable the ucode functionality, while maintaining the
1238 * workarounds it provides, set the following defines to:
1239 * BUNDLESMALL 0
1240 * BUNDLEMAX 1
1241 * INTDELAY 1
1242 */
1243#define BUNDLESMALL 1
1244#define BUNDLEMAX (u16)6
1245#define INTDELAY (u16)1536 /* 0x600 */
1246
1247/* Initialize firmware */
1248static const struct firmware *e100_request_firmware(struct nic *nic)
1249{
1250        const char *fw_name;
1251        const struct firmware *fw = nic->fw;
1252        u8 timer, bundle, min_size;
1253        int err = 0;
1254        bool required = false;
1255
1256        /* do not load u-code for ICH devices */
1257        if (nic->flags & ich)
1258                return NULL;
1259
1260        /* Search for ucode match against h/w revision
1261         *
1262         * Based on comments in the source code for the FreeBSD fxp
1263         * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1264         *
1265         *    "fixes for bugs in the B-step hardware (specifically, bugs
1266         *     with Inline Receive)."
1267         *
1268         * So we must fail if it cannot be loaded.
1269         *
1270         * The other microcode files are only required for the optional
1271         * CPUSaver feature.  Nice to have, but no reason to fail.
1272         */
1273        if (nic->mac == mac_82559_D101M) {
1274                fw_name = FIRMWARE_D101M;
1275        } else if (nic->mac == mac_82559_D101S) {
1276                fw_name = FIRMWARE_D101S;
1277        } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1278                fw_name = FIRMWARE_D102E;
1279                required = true;
1280        } else { /* No ucode on other devices */
1281                return NULL;
1282        }
1283
1284        /* If the firmware has not previously been loaded, request a pointer
1285         * to it. If it was previously loaded, we are reinitializing the
1286         * adapter, possibly in a resume from hibernate, in which case
1287         * request_firmware() cannot be used.
1288         */
1289        if (!fw)
1290                err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1291
1292        if (err) {
1293                if (required) {
1294                        netif_err(nic, probe, nic->netdev,
1295                                  "Failed to load firmware \"%s\": %d\n",
1296                                  fw_name, err);
1297                        return ERR_PTR(err);
1298                } else {
1299                        netif_info(nic, probe, nic->netdev,
1300                                   "CPUSaver disabled. Needs \"%s\": %d\n",
1301                                   fw_name, err);
1302                        return NULL;
1303                }
1304        }
1305
1306        /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1307           indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1308        if (fw->size != UCODE_SIZE * 4 + 3) {
1309                netif_err(nic, probe, nic->netdev,
1310                          "Firmware \"%s\" has wrong size %zu\n",
1311                          fw_name, fw->size);
1312                release_firmware(fw);
1313                return ERR_PTR(-EINVAL);
1314        }
1315
1316        /* Read timer, bundle and min_size from end of firmware blob */
1317        timer = fw->data[UCODE_SIZE * 4];
1318        bundle = fw->data[UCODE_SIZE * 4 + 1];
1319        min_size = fw->data[UCODE_SIZE * 4 + 2];
1320
1321        if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1322            min_size >= UCODE_SIZE) {
1323                netif_err(nic, probe, nic->netdev,
1324                          "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1325                          fw_name, timer, bundle, min_size);
1326                release_firmware(fw);
1327                return ERR_PTR(-EINVAL);
1328        }
1329
1330        /* OK, firmware is validated and ready to use. Save a pointer
1331         * to it in the nic */
1332        nic->fw = fw;
1333        return fw;
1334}
1335
1336static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1337                             struct sk_buff *skb)
1338{
1339        const struct firmware *fw = (void *)skb;
1340        u8 timer, bundle, min_size;
1341
1342        /* It's not a real skb; we just abused the fact that e100_exec_cb
1343           will pass it through to here... */
1344        cb->skb = NULL;
1345
1346        /* firmware is stored as little endian already */
1347        memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1348
1349        /* Read timer, bundle and min_size from end of firmware blob */
1350        timer = fw->data[UCODE_SIZE * 4];
1351        bundle = fw->data[UCODE_SIZE * 4 + 1];
1352        min_size = fw->data[UCODE_SIZE * 4 + 2];
1353
1354        /* Insert user-tunable settings in cb->u.ucode */
1355        cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1356        cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1357        cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1358        cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1359        cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1360        cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1361
1362        cb->command = cpu_to_le16(cb_ucode | cb_el);
1363        return 0;
1364}
1365
1366static inline int e100_load_ucode_wait(struct nic *nic)
1367{
1368        const struct firmware *fw;
1369        int err = 0, counter = 50;
1370        struct cb *cb = nic->cb_to_clean;
1371
1372        fw = e100_request_firmware(nic);
1373        /* If it's NULL, then no ucode is required */
1374        if (!fw || IS_ERR(fw))
1375                return PTR_ERR(fw);
1376
1377        if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1378                netif_err(nic, probe, nic->netdev,
1379                          "ucode cmd failed with error %d\n", err);
1380
1381        /* must restart cuc */
1382        nic->cuc_cmd = cuc_start;
1383
1384        /* wait for completion */
1385        e100_write_flush(nic);
1386        udelay(10);
1387
1388        /* wait for possibly (ouch) 500ms */
1389        while (!(cb->status & cpu_to_le16(cb_complete))) {
1390                msleep(10);
1391                if (!--counter) break;
1392        }
1393
1394        /* ack any interrupts, something could have been set */
1395        iowrite8(~0, &nic->csr->scb.stat_ack);
1396
1397        /* if the command failed, or is not OK, notify and return */
1398        if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1399                netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1400                err = -EPERM;
1401        }
1402
1403        return err;
1404}
1405
1406static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1407        struct sk_buff *skb)
1408{
1409        cb->command = cpu_to_le16(cb_iaaddr);
1410        memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1411        return 0;
1412}
1413
1414static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1415{
1416        cb->command = cpu_to_le16(cb_dump);
1417        cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1418                offsetof(struct mem, dump_buf));
1419        return 0;
1420}
1421
1422static int e100_phy_check_without_mii(struct nic *nic)
1423{
1424        u8 phy_type;
1425        int without_mii;
1426
1427        phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1428
1429        switch (phy_type) {
1430        case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1431        case I82503: /* Non-MII PHY; UNTESTED! */
1432        case S80C24: /* Non-MII PHY; tested and working */
1433                /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1434                 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1435                 * doesn't have a programming interface of any sort.  The
1436                 * media is sensed automatically based on how the link partner
1437                 * is configured.  This is, in essence, manual configuration.
1438                 */
1439                netif_info(nic, probe, nic->netdev,
1440                           "found MII-less i82503 or 80c24 or other PHY\n");
1441
1442                nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1443                nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1444
1445                /* these might be needed for certain MII-less cards...
1446                 * nic->flags |= ich;
1447                 * nic->flags |= ich_10h_workaround; */
1448
1449                without_mii = 1;
1450                break;
1451        default:
1452                without_mii = 0;
1453                break;
1454        }
1455        return without_mii;
1456}
1457
1458#define NCONFIG_AUTO_SWITCH     0x0080
1459#define MII_NSC_CONG            MII_RESV1
1460#define NSC_CONG_ENABLE         0x0100
1461#define NSC_CONG_TXREADY        0x0400
1462#define ADVERTISE_FC_SUPPORTED  0x0400
1463static int e100_phy_init(struct nic *nic)
1464{
1465        struct net_device *netdev = nic->netdev;
1466        u32 addr;
1467        u16 bmcr, stat, id_lo, id_hi, cong;
1468
1469        /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1470        for (addr = 0; addr < 32; addr++) {
1471                nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1472                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1473                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1474                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1475                if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1476                        break;
1477        }
1478        if (addr == 32) {
1479                /* uhoh, no PHY detected: check whether we seem to be some
1480                 * weird, rare variant which is *known* to not have any MII.
1481                 * But do this AFTER MII checking only, since this does
1482                 * lookup of EEPROM values which may easily be unreliable. */
1483                if (e100_phy_check_without_mii(nic))
1484                        return 0; /* simply return and hope for the best */
1485                else {
1486                        /* for unknown cases log a fatal error */
1487                        netif_err(nic, hw, nic->netdev,
1488                                  "Failed to locate any known PHY, aborting\n");
1489                        return -EAGAIN;
1490                }
1491        } else
1492                netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1493                             "phy_addr = %d\n", nic->mii.phy_id);
1494
1495        /* Get phy ID */
1496        id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1497        id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1498        nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1499        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1500                     "phy ID = 0x%08X\n", nic->phy);
1501
1502        /* Select the phy and isolate the rest */
1503        for (addr = 0; addr < 32; addr++) {
1504                if (addr != nic->mii.phy_id) {
1505                        mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1506                } else if (nic->phy != phy_82552_v) {
1507                        bmcr = mdio_read(netdev, addr, MII_BMCR);
1508                        mdio_write(netdev, addr, MII_BMCR,
1509                                bmcr & ~BMCR_ISOLATE);
1510                }
1511        }
1512        /*
1513         * Workaround for 82552:
1514         * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1515         * other phy_id's) using bmcr value from addr discovery loop above.
1516         */
1517        if (nic->phy == phy_82552_v)
1518                mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1519                        bmcr & ~BMCR_ISOLATE);
1520
1521        /* Handle National tx phys */
1522#define NCS_PHY_MODEL_MASK      0xFFF0FFFF
1523        if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1524                /* Disable congestion control */
1525                cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1526                cong |= NSC_CONG_TXREADY;
1527                cong &= ~NSC_CONG_ENABLE;
1528                mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1529        }
1530
1531        if (nic->phy == phy_82552_v) {
1532                u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1533
1534                /* assign special tweaked mdio_ctrl() function */
1535                nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1536
1537                /* Workaround Si not advertising flow-control during autoneg */
1538                advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1539                mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1540
1541                /* Reset for the above changes to take effect */
1542                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1543                bmcr |= BMCR_RESET;
1544                mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1545        } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1546           (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1547                (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1548                /* enable/disable MDI/MDI-X auto-switching. */
1549                mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1550                                nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1551        }
1552
1553        return 0;
1554}
1555
1556static int e100_hw_init(struct nic *nic)
1557{
1558        int err = 0;
1559
1560        e100_hw_reset(nic);
1561
1562        netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1563        if (!in_interrupt() && (err = e100_self_test(nic)))
1564                return err;
1565
1566        if ((err = e100_phy_init(nic)))
1567                return err;
1568        if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1569                return err;
1570        if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1571                return err;
1572        if ((err = e100_load_ucode_wait(nic)))
1573                return err;
1574        if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1575                return err;
1576        if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1577                return err;
1578        if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1579                nic->dma_addr + offsetof(struct mem, stats))))
1580                return err;
1581        if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1582                return err;
1583
1584        e100_disable_irq(nic);
1585
1586        return 0;
1587}
1588
1589static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1590{
1591        struct net_device *netdev = nic->netdev;
1592        struct netdev_hw_addr *ha;
1593        u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1594
1595        cb->command = cpu_to_le16(cb_multi);
1596        cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1597        i = 0;
1598        netdev_for_each_mc_addr(ha, netdev) {
1599                if (i == count)
1600                        break;
1601                memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1602                        ETH_ALEN);
1603        }
1604        return 0;
1605}
1606
1607static void e100_set_multicast_list(struct net_device *netdev)
1608{
1609        struct nic *nic = netdev_priv(netdev);
1610
1611        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1612                     "mc_count=%d, flags=0x%04X\n",
1613                     netdev_mc_count(netdev), netdev->flags);
1614
1615        if (netdev->flags & IFF_PROMISC)
1616                nic->flags |= promiscuous;
1617        else
1618                nic->flags &= ~promiscuous;
1619
1620        if (netdev->flags & IFF_ALLMULTI ||
1621                netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1622                nic->flags |= multicast_all;
1623        else
1624                nic->flags &= ~multicast_all;
1625
1626        e100_exec_cb(nic, NULL, e100_configure);
1627        e100_exec_cb(nic, NULL, e100_multi);
1628}
1629
1630static void e100_update_stats(struct nic *nic)
1631{
1632        struct net_device *dev = nic->netdev;
1633        struct net_device_stats *ns = &dev->stats;
1634        struct stats *s = &nic->mem->stats;
1635        __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1636                (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1637                &s->complete;
1638
1639        /* Device's stats reporting may take several microseconds to
1640         * complete, so we're always waiting for results of the
1641         * previous command. */
1642
1643        if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1644                *complete = 0;
1645                nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1646                nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1647                ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1648                ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1649                ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1650                ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1651                ns->collisions += nic->tx_collisions;
1652                ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1653                        le32_to_cpu(s->tx_lost_crs);
1654                nic->rx_short_frame_errors +=
1655                        le32_to_cpu(s->rx_short_frame_errors);
1656                ns->rx_length_errors = nic->rx_short_frame_errors +
1657                        nic->rx_over_length_errors;
1658                ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1659                ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1660                ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1661                ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1662                ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1663                ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1664                        le32_to_cpu(s->rx_alignment_errors) +
1665                        le32_to_cpu(s->rx_short_frame_errors) +
1666                        le32_to_cpu(s->rx_cdt_errors);
1667                nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1668                nic->tx_single_collisions +=
1669                        le32_to_cpu(s->tx_single_collisions);
1670                nic->tx_multiple_collisions +=
1671                        le32_to_cpu(s->tx_multiple_collisions);
1672                if (nic->mac >= mac_82558_D101_A4) {
1673                        nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1674                        nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1675                        nic->rx_fc_unsupported +=
1676                                le32_to_cpu(s->fc_rcv_unsupported);
1677                        if (nic->mac >= mac_82559_D101M) {
1678                                nic->tx_tco_frames +=
1679                                        le16_to_cpu(s->xmt_tco_frames);
1680                                nic->rx_tco_frames +=
1681                                        le16_to_cpu(s->rcv_tco_frames);
1682                        }
1683                }
1684        }
1685
1686
1687        if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1688                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1689                             "exec cuc_dump_reset failed\n");
1690}
1691
1692static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1693{
1694        /* Adjust inter-frame-spacing (IFS) between two transmits if
1695         * we're getting collisions on a half-duplex connection. */
1696
1697        if (duplex == DUPLEX_HALF) {
1698                u32 prev = nic->adaptive_ifs;
1699                u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1700
1701                if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1702                   (nic->tx_frames > min_frames)) {
1703                        if (nic->adaptive_ifs < 60)
1704                                nic->adaptive_ifs += 5;
1705                } else if (nic->tx_frames < min_frames) {
1706                        if (nic->adaptive_ifs >= 5)
1707                                nic->adaptive_ifs -= 5;
1708                }
1709                if (nic->adaptive_ifs != prev)
1710                        e100_exec_cb(nic, NULL, e100_configure);
1711        }
1712}
1713
1714static void e100_watchdog(struct timer_list *t)
1715{
1716        struct nic *nic = from_timer(nic, t, watchdog);
1717        struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1718        u32 speed;
1719
1720        netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1721                     "right now = %ld\n", jiffies);
1722
1723        /* mii library handles link maintenance tasks */
1724
1725        mii_ethtool_gset(&nic->mii, &cmd);
1726        speed = ethtool_cmd_speed(&cmd);
1727
1728        if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1729                netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1730                            speed == SPEED_100 ? 100 : 10,
1731                            cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1732        } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1733                netdev_info(nic->netdev, "NIC Link is Down\n");
1734        }
1735
1736        mii_check_link(&nic->mii);
1737
1738        /* Software generated interrupt to recover from (rare) Rx
1739         * allocation failure.
1740         * Unfortunately have to use a spinlock to not re-enable interrupts
1741         * accidentally, due to hardware that shares a register between the
1742         * interrupt mask bit and the SW Interrupt generation bit */
1743        spin_lock_irq(&nic->cmd_lock);
1744        iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1745        e100_write_flush(nic);
1746        spin_unlock_irq(&nic->cmd_lock);
1747
1748        e100_update_stats(nic);
1749        e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1750
1751        if (nic->mac <= mac_82557_D100_C)
1752                /* Issue a multicast command to workaround a 557 lock up */
1753                e100_set_multicast_list(nic->netdev);
1754
1755        if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1756                /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1757                nic->flags |= ich_10h_workaround;
1758        else
1759                nic->flags &= ~ich_10h_workaround;
1760
1761        mod_timer(&nic->watchdog,
1762                  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1763}
1764
1765static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1766        struct sk_buff *skb)
1767{
1768        dma_addr_t dma_addr;
1769        cb->command = nic->tx_command;
1770
1771        dma_addr = pci_map_single(nic->pdev,
1772                                  skb->data, skb->len, PCI_DMA_TODEVICE);
1773        /* If we can't map the skb, have the upper layer try later */
1774        if (pci_dma_mapping_error(nic->pdev, dma_addr)) {
1775                dev_kfree_skb_any(skb);
1776                skb = NULL;
1777                return -ENOMEM;
1778        }
1779
1780        /*
1781         * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1782         * testing, ie sending frames with bad CRC.
1783         */
1784        if (unlikely(skb->no_fcs))
1785                cb->command |= cpu_to_le16(cb_tx_nc);
1786        else
1787                cb->command &= ~cpu_to_le16(cb_tx_nc);
1788
1789        /* interrupt every 16 packets regardless of delay */
1790        if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1791                cb->command |= cpu_to_le16(cb_i);
1792        cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1793        cb->u.tcb.tcb_byte_count = 0;
1794        cb->u.tcb.threshold = nic->tx_threshold;
1795        cb->u.tcb.tbd_count = 1;
1796        cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1797        cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1798        skb_tx_timestamp(skb);
1799        return 0;
1800}
1801
1802static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1803                                   struct net_device *netdev)
1804{
1805        struct nic *nic = netdev_priv(netdev);
1806        int err;
1807
1808        if (nic->flags & ich_10h_workaround) {
1809                /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1810                   Issue a NOP command followed by a 1us delay before
1811                   issuing the Tx command. */
1812                if (e100_exec_cmd(nic, cuc_nop, 0))
1813                        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1814                                     "exec cuc_nop failed\n");
1815                udelay(1);
1816        }
1817
1818        err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1819
1820        switch (err) {
1821        case -ENOSPC:
1822                /* We queued the skb, but now we're out of space. */
1823                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1824                             "No space for CB\n");
1825                netif_stop_queue(netdev);
1826                break;
1827        case -ENOMEM:
1828                /* This is a hard error - log it. */
1829                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1830                             "Out of Tx resources, returning skb\n");
1831                netif_stop_queue(netdev);
1832                return NETDEV_TX_BUSY;
1833        }
1834
1835        return NETDEV_TX_OK;
1836}
1837
1838static int e100_tx_clean(struct nic *nic)
1839{
1840        struct net_device *dev = nic->netdev;
1841        struct cb *cb;
1842        int tx_cleaned = 0;
1843
1844        spin_lock(&nic->cb_lock);
1845
1846        /* Clean CBs marked complete */
1847        for (cb = nic->cb_to_clean;
1848            cb->status & cpu_to_le16(cb_complete);
1849            cb = nic->cb_to_clean = cb->next) {
1850                dma_rmb(); /* read skb after status */
1851                netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1852                             "cb[%d]->status = 0x%04X\n",
1853                             (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1854                             cb->status);
1855
1856                if (likely(cb->skb != NULL)) {
1857                        dev->stats.tx_packets++;
1858                        dev->stats.tx_bytes += cb->skb->len;
1859
1860                        pci_unmap_single(nic->pdev,
1861                                le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1862                                le16_to_cpu(cb->u.tcb.tbd.size),
1863                                PCI_DMA_TODEVICE);
1864                        dev_kfree_skb_any(cb->skb);
1865                        cb->skb = NULL;
1866                        tx_cleaned = 1;
1867                }
1868                cb->status = 0;
1869                nic->cbs_avail++;
1870        }
1871
1872        spin_unlock(&nic->cb_lock);
1873
1874        /* Recover from running out of Tx resources in xmit_frame */
1875        if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1876                netif_wake_queue(nic->netdev);
1877
1878        return tx_cleaned;
1879}
1880
1881static void e100_clean_cbs(struct nic *nic)
1882{
1883        if (nic->cbs) {
1884                while (nic->cbs_avail != nic->params.cbs.count) {
1885                        struct cb *cb = nic->cb_to_clean;
1886                        if (cb->skb) {
1887                                pci_unmap_single(nic->pdev,
1888                                        le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1889                                        le16_to_cpu(cb->u.tcb.tbd.size),
1890                                        PCI_DMA_TODEVICE);
1891                                dev_kfree_skb(cb->skb);
1892                        }
1893                        nic->cb_to_clean = nic->cb_to_clean->next;
1894                        nic->cbs_avail++;
1895                }
1896                dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1897                nic->cbs = NULL;
1898                nic->cbs_avail = 0;
1899        }
1900        nic->cuc_cmd = cuc_start;
1901        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1902                nic->cbs;
1903}
1904
1905static int e100_alloc_cbs(struct nic *nic)
1906{
1907        struct cb *cb;
1908        unsigned int i, count = nic->params.cbs.count;
1909
1910        nic->cuc_cmd = cuc_start;
1911        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1912        nic->cbs_avail = 0;
1913
1914        nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1915                                   &nic->cbs_dma_addr);
1916        if (!nic->cbs)
1917                return -ENOMEM;
1918
1919        for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1920                cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1921                cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1922
1923                cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1924                cb->link = cpu_to_le32(nic->cbs_dma_addr +
1925                        ((i+1) % count) * sizeof(struct cb));
1926        }
1927
1928        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1929        nic->cbs_avail = count;
1930
1931        return 0;
1932}
1933
1934static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1935{
1936        if (!nic->rxs) return;
1937        if (RU_SUSPENDED != nic->ru_running) return;
1938
1939        /* handle init time starts */
1940        if (!rx) rx = nic->rxs;
1941
1942        /* (Re)start RU if suspended or idle and RFA is non-NULL */
1943        if (rx->skb) {
1944                e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1945                nic->ru_running = RU_RUNNING;
1946        }
1947}
1948
1949#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1950static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1951{
1952        if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1953                return -ENOMEM;
1954
1955        /* Init, and map the RFD. */
1956        skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1957        rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1958                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1959
1960        if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1961                dev_kfree_skb_any(rx->skb);
1962                rx->skb = NULL;
1963                rx->dma_addr = 0;
1964                return -ENOMEM;
1965        }
1966
1967        /* Link the RFD to end of RFA by linking previous RFD to
1968         * this one.  We are safe to touch the previous RFD because
1969         * it is protected by the before last buffer's el bit being set */
1970        if (rx->prev->skb) {
1971                struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1972                put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1973                pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1974                        sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1975        }
1976
1977        return 0;
1978}
1979
1980static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1981        unsigned int *work_done, unsigned int work_to_do)
1982{
1983        struct net_device *dev = nic->netdev;
1984        struct sk_buff *skb = rx->skb;
1985        struct rfd *rfd = (struct rfd *)skb->data;
1986        u16 rfd_status, actual_size;
1987        u16 fcs_pad = 0;
1988
1989        if (unlikely(work_done && *work_done >= work_to_do))
1990                return -EAGAIN;
1991
1992        /* Need to sync before taking a peek at cb_complete bit */
1993        pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1994                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1995        rfd_status = le16_to_cpu(rfd->status);
1996
1997        netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1998                     "status=0x%04X\n", rfd_status);
1999        dma_rmb(); /* read size after status bit */
2000
2001        /* If data isn't ready, nothing to indicate */
2002        if (unlikely(!(rfd_status & cb_complete))) {
2003                /* If the next buffer has the el bit, but we think the receiver
2004                 * is still running, check to see if it really stopped while
2005                 * we had interrupts off.
2006                 * This allows for a fast restart without re-enabling
2007                 * interrupts */
2008                if ((le16_to_cpu(rfd->command) & cb_el) &&
2009                    (RU_RUNNING == nic->ru_running))
2010
2011                        if (ioread8(&nic->csr->scb.status) & rus_no_res)
2012                                nic->ru_running = RU_SUSPENDED;
2013                pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2014                                               sizeof(struct rfd),
2015                                               PCI_DMA_FROMDEVICE);
2016                return -ENODATA;
2017        }
2018
2019        /* Get actual data size */
2020        if (unlikely(dev->features & NETIF_F_RXFCS))
2021                fcs_pad = 4;
2022        actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
2023        if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
2024                actual_size = RFD_BUF_LEN - sizeof(struct rfd);
2025
2026        /* Get data */
2027        pci_unmap_single(nic->pdev, rx->dma_addr,
2028                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2029
2030        /* If this buffer has the el bit, but we think the receiver
2031         * is still running, check to see if it really stopped while
2032         * we had interrupts off.
2033         * This allows for a fast restart without re-enabling interrupts.
2034         * This can happen when the RU sees the size change but also sees
2035         * the el bit set. */
2036        if ((le16_to_cpu(rfd->command) & cb_el) &&
2037            (RU_RUNNING == nic->ru_running)) {
2038
2039            if (ioread8(&nic->csr->scb.status) & rus_no_res)
2040                nic->ru_running = RU_SUSPENDED;
2041        }
2042
2043        /* Pull off the RFD and put the actual data (minus eth hdr) */
2044        skb_reserve(skb, sizeof(struct rfd));
2045        skb_put(skb, actual_size);
2046        skb->protocol = eth_type_trans(skb, nic->netdev);
2047
2048        /* If we are receiving all frames, then don't bother
2049         * checking for errors.
2050         */
2051        if (unlikely(dev->features & NETIF_F_RXALL)) {
2052                if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2053                        /* Received oversized frame, but keep it. */
2054                        nic->rx_over_length_errors++;
2055                goto process_skb;
2056        }
2057
2058        if (unlikely(!(rfd_status & cb_ok))) {
2059                /* Don't indicate if hardware indicates errors */
2060                dev_kfree_skb_any(skb);
2061        } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2062                /* Don't indicate oversized frames */
2063                nic->rx_over_length_errors++;
2064                dev_kfree_skb_any(skb);
2065        } else {
2066process_skb:
2067                dev->stats.rx_packets++;
2068                dev->stats.rx_bytes += (actual_size - fcs_pad);
2069                netif_receive_skb(skb);
2070                if (work_done)
2071                        (*work_done)++;
2072        }
2073
2074        rx->skb = NULL;
2075
2076        return 0;
2077}
2078
2079static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2080        unsigned int work_to_do)
2081{
2082        struct rx *rx;
2083        int restart_required = 0, err = 0;
2084        struct rx *old_before_last_rx, *new_before_last_rx;
2085        struct rfd *old_before_last_rfd, *new_before_last_rfd;
2086
2087        /* Indicate newly arrived packets */
2088        for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2089                err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2090                /* Hit quota or no more to clean */
2091                if (-EAGAIN == err || -ENODATA == err)
2092                        break;
2093        }
2094
2095
2096        /* On EAGAIN, hit quota so have more work to do, restart once
2097         * cleanup is complete.
2098         * Else, are we already rnr? then pay attention!!! this ensures that
2099         * the state machine progression never allows a start with a
2100         * partially cleaned list, avoiding a race between hardware
2101         * and rx_to_clean when in NAPI mode */
2102        if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2103                restart_required = 1;
2104
2105        old_before_last_rx = nic->rx_to_use->prev->prev;
2106        old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2107
2108        /* Alloc new skbs to refill list */
2109        for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2110                if (unlikely(e100_rx_alloc_skb(nic, rx)))
2111                        break; /* Better luck next time (see watchdog) */
2112        }
2113
2114        new_before_last_rx = nic->rx_to_use->prev->prev;
2115        if (new_before_last_rx != old_before_last_rx) {
2116                /* Set the el-bit on the buffer that is before the last buffer.
2117                 * This lets us update the next pointer on the last buffer
2118                 * without worrying about hardware touching it.
2119                 * We set the size to 0 to prevent hardware from touching this
2120                 * buffer.
2121                 * When the hardware hits the before last buffer with el-bit
2122                 * and size of 0, it will RNR interrupt, the RUS will go into
2123                 * the No Resources state.  It will not complete nor write to
2124                 * this buffer. */
2125                new_before_last_rfd =
2126                        (struct rfd *)new_before_last_rx->skb->data;
2127                new_before_last_rfd->size = 0;
2128                new_before_last_rfd->command |= cpu_to_le16(cb_el);
2129                pci_dma_sync_single_for_device(nic->pdev,
2130                        new_before_last_rx->dma_addr, sizeof(struct rfd),
2131                        PCI_DMA_BIDIRECTIONAL);
2132
2133                /* Now that we have a new stopping point, we can clear the old
2134                 * stopping point.  We must sync twice to get the proper
2135                 * ordering on the hardware side of things. */
2136                old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2137                pci_dma_sync_single_for_device(nic->pdev,
2138                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2139                        PCI_DMA_BIDIRECTIONAL);
2140                old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2141                                                        + ETH_FCS_LEN);
2142                pci_dma_sync_single_for_device(nic->pdev,
2143                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2144                        PCI_DMA_BIDIRECTIONAL);
2145        }
2146
2147        if (restart_required) {
2148                // ack the rnr?
2149                iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2150                e100_start_receiver(nic, nic->rx_to_clean);
2151                if (work_done)
2152                        (*work_done)++;
2153        }
2154}
2155
2156static void e100_rx_clean_list(struct nic *nic)
2157{
2158        struct rx *rx;
2159        unsigned int i, count = nic->params.rfds.count;
2160
2161        nic->ru_running = RU_UNINITIALIZED;
2162
2163        if (nic->rxs) {
2164                for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165                        if (rx->skb) {
2166                                pci_unmap_single(nic->pdev, rx->dma_addr,
2167                                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2168                                dev_kfree_skb(rx->skb);
2169                        }
2170                }
2171                kfree(nic->rxs);
2172                nic->rxs = NULL;
2173        }
2174
2175        nic->rx_to_use = nic->rx_to_clean = NULL;
2176}
2177
2178static int e100_rx_alloc_list(struct nic *nic)
2179{
2180        struct rx *rx;
2181        unsigned int i, count = nic->params.rfds.count;
2182        struct rfd *before_last;
2183
2184        nic->rx_to_use = nic->rx_to_clean = NULL;
2185        nic->ru_running = RU_UNINITIALIZED;
2186
2187        if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2188                return -ENOMEM;
2189
2190        for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2191                rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2192                rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2193                if (e100_rx_alloc_skb(nic, rx)) {
2194                        e100_rx_clean_list(nic);
2195                        return -ENOMEM;
2196                }
2197        }
2198        /* Set the el-bit on the buffer that is before the last buffer.
2199         * This lets us update the next pointer on the last buffer without
2200         * worrying about hardware touching it.
2201         * We set the size to 0 to prevent hardware from touching this buffer.
2202         * When the hardware hits the before last buffer with el-bit and size
2203         * of 0, it will RNR interrupt, the RU will go into the No Resources
2204         * state.  It will not complete nor write to this buffer. */
2205        rx = nic->rxs->prev->prev;
2206        before_last = (struct rfd *)rx->skb->data;
2207        before_last->command |= cpu_to_le16(cb_el);
2208        before_last->size = 0;
2209        pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2210                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2211
2212        nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2213        nic->ru_running = RU_SUSPENDED;
2214
2215        return 0;
2216}
2217
2218static irqreturn_t e100_intr(int irq, void *dev_id)
2219{
2220        struct net_device *netdev = dev_id;
2221        struct nic *nic = netdev_priv(netdev);
2222        u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2223
2224        netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2225                     "stat_ack = 0x%02X\n", stat_ack);
2226
2227        if (stat_ack == stat_ack_not_ours ||    /* Not our interrupt */
2228           stat_ack == stat_ack_not_present)    /* Hardware is ejected */
2229                return IRQ_NONE;
2230
2231        /* Ack interrupt(s) */
2232        iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2233
2234        /* We hit Receive No Resource (RNR); restart RU after cleaning */
2235        if (stat_ack & stat_ack_rnr)
2236                nic->ru_running = RU_SUSPENDED;
2237
2238        if (likely(napi_schedule_prep(&nic->napi))) {
2239                e100_disable_irq(nic);
2240                __napi_schedule(&nic->napi);
2241        }
2242
2243        return IRQ_HANDLED;
2244}
2245
2246static int e100_poll(struct napi_struct *napi, int budget)
2247{
2248        struct nic *nic = container_of(napi, struct nic, napi);
2249        unsigned int work_done = 0;
2250
2251        e100_rx_clean(nic, &work_done, budget);
2252        e100_tx_clean(nic);
2253
2254        /* If budget not fully consumed, exit the polling mode */
2255        if (work_done < budget) {
2256                napi_complete_done(napi, work_done);
2257                e100_enable_irq(nic);
2258        }
2259
2260        return work_done;
2261}
2262
2263#ifdef CONFIG_NET_POLL_CONTROLLER
2264static void e100_netpoll(struct net_device *netdev)
2265{
2266        struct nic *nic = netdev_priv(netdev);
2267
2268        e100_disable_irq(nic);
2269        e100_intr(nic->pdev->irq, netdev);
2270        e100_tx_clean(nic);
2271        e100_enable_irq(nic);
2272}
2273#endif
2274
2275static int e100_set_mac_address(struct net_device *netdev, void *p)
2276{
2277        struct nic *nic = netdev_priv(netdev);
2278        struct sockaddr *addr = p;
2279
2280        if (!is_valid_ether_addr(addr->sa_data))
2281                return -EADDRNOTAVAIL;
2282
2283        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2284        e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2285
2286        return 0;
2287}
2288
2289static int e100_asf(struct nic *nic)
2290{
2291        /* ASF can be enabled from eeprom */
2292        return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2293           (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2294           !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2295           ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2296}
2297
2298static int e100_up(struct nic *nic)
2299{
2300        int err;
2301
2302        if ((err = e100_rx_alloc_list(nic)))
2303                return err;
2304        if ((err = e100_alloc_cbs(nic)))
2305                goto err_rx_clean_list;
2306        if ((err = e100_hw_init(nic)))
2307                goto err_clean_cbs;
2308        e100_set_multicast_list(nic->netdev);
2309        e100_start_receiver(nic, NULL);
2310        mod_timer(&nic->watchdog, jiffies);
2311        if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2312                nic->netdev->name, nic->netdev)))
2313                goto err_no_irq;
2314        netif_wake_queue(nic->netdev);
2315        napi_enable(&nic->napi);
2316        /* enable ints _after_ enabling poll, preventing a race between
2317         * disable ints+schedule */
2318        e100_enable_irq(nic);
2319        return 0;
2320
2321err_no_irq:
2322        del_timer_sync(&nic->watchdog);
2323err_clean_cbs:
2324        e100_clean_cbs(nic);
2325err_rx_clean_list:
2326        e100_rx_clean_list(nic);
2327        return err;
2328}
2329
2330static void e100_down(struct nic *nic)
2331{
2332        /* wait here for poll to complete */
2333        napi_disable(&nic->napi);
2334        netif_stop_queue(nic->netdev);
2335        e100_hw_reset(nic);
2336        free_irq(nic->pdev->irq, nic->netdev);
2337        del_timer_sync(&nic->watchdog);
2338        netif_carrier_off(nic->netdev);
2339        e100_clean_cbs(nic);
2340        e100_rx_clean_list(nic);
2341}
2342
2343static void e100_tx_timeout(struct net_device *netdev)
2344{
2345        struct nic *nic = netdev_priv(netdev);
2346
2347        /* Reset outside of interrupt context, to avoid request_irq
2348         * in interrupt context */
2349        schedule_work(&nic->tx_timeout_task);
2350}
2351
2352static void e100_tx_timeout_task(struct work_struct *work)
2353{
2354        struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2355        struct net_device *netdev = nic->netdev;
2356
2357        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2358                     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2359
2360        rtnl_lock();
2361        if (netif_running(netdev)) {
2362                e100_down(netdev_priv(netdev));
2363                e100_up(netdev_priv(netdev));
2364        }
2365        rtnl_unlock();
2366}
2367
2368static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2369{
2370        int err;
2371        struct sk_buff *skb;
2372
2373        /* Use driver resources to perform internal MAC or PHY
2374         * loopback test.  A single packet is prepared and transmitted
2375         * in loopback mode, and the test passes if the received
2376         * packet compares byte-for-byte to the transmitted packet. */
2377
2378        if ((err = e100_rx_alloc_list(nic)))
2379                return err;
2380        if ((err = e100_alloc_cbs(nic)))
2381                goto err_clean_rx;
2382
2383        /* ICH PHY loopback is broken so do MAC loopback instead */
2384        if (nic->flags & ich && loopback_mode == lb_phy)
2385                loopback_mode = lb_mac;
2386
2387        nic->loopback = loopback_mode;
2388        if ((err = e100_hw_init(nic)))
2389                goto err_loopback_none;
2390
2391        if (loopback_mode == lb_phy)
2392                mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2393                        BMCR_LOOPBACK);
2394
2395        e100_start_receiver(nic, NULL);
2396
2397        if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2398                err = -ENOMEM;
2399                goto err_loopback_none;
2400        }
2401        skb_put(skb, ETH_DATA_LEN);
2402        memset(skb->data, 0xFF, ETH_DATA_LEN);
2403        e100_xmit_frame(skb, nic->netdev);
2404
2405        msleep(10);
2406
2407        pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2408                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2409
2410        if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2411           skb->data, ETH_DATA_LEN))
2412                err = -EAGAIN;
2413
2414err_loopback_none:
2415        mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2416        nic->loopback = lb_none;
2417        e100_clean_cbs(nic);
2418        e100_hw_reset(nic);
2419err_clean_rx:
2420        e100_rx_clean_list(nic);
2421        return err;
2422}
2423
2424#define MII_LED_CONTROL 0x1B
2425#define E100_82552_LED_OVERRIDE 0x19
2426#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2427#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2428
2429static int e100_get_link_ksettings(struct net_device *netdev,
2430                                   struct ethtool_link_ksettings *cmd)
2431{
2432        struct nic *nic = netdev_priv(netdev);
2433
2434        mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2435
2436        return 0;
2437}
2438
2439static int e100_set_link_ksettings(struct net_device *netdev,
2440                                   const struct ethtool_link_ksettings *cmd)
2441{
2442        struct nic *nic = netdev_priv(netdev);
2443        int err;
2444
2445        mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2446        err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2447        e100_exec_cb(nic, NULL, e100_configure);
2448
2449        return err;
2450}
2451
2452static void e100_get_drvinfo(struct net_device *netdev,
2453        struct ethtool_drvinfo *info)
2454{
2455        struct nic *nic = netdev_priv(netdev);
2456        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2457        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2458        strlcpy(info->bus_info, pci_name(nic->pdev),
2459                sizeof(info->bus_info));
2460}
2461
2462#define E100_PHY_REGS 0x1C
2463static int e100_get_regs_len(struct net_device *netdev)
2464{
2465        struct nic *nic = netdev_priv(netdev);
2466        return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2467}
2468
2469static void e100_get_regs(struct net_device *netdev,
2470        struct ethtool_regs *regs, void *p)
2471{
2472        struct nic *nic = netdev_priv(netdev);
2473        u32 *buff = p;
2474        int i;
2475
2476        regs->version = (1 << 24) | nic->pdev->revision;
2477        buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2478                ioread8(&nic->csr->scb.cmd_lo) << 16 |
2479                ioread16(&nic->csr->scb.status);
2480        for (i = E100_PHY_REGS; i >= 0; i--)
2481                buff[1 + E100_PHY_REGS - i] =
2482                        mdio_read(netdev, nic->mii.phy_id, i);
2483        memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2484        e100_exec_cb(nic, NULL, e100_dump);
2485        msleep(10);
2486        memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2487                sizeof(nic->mem->dump_buf));
2488}
2489
2490static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2491{
2492        struct nic *nic = netdev_priv(netdev);
2493        wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2494        wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2495}
2496
2497static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2498{
2499        struct nic *nic = netdev_priv(netdev);
2500
2501        if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2502            !device_can_wakeup(&nic->pdev->dev))
2503                return -EOPNOTSUPP;
2504
2505        if (wol->wolopts)
2506                nic->flags |= wol_magic;
2507        else
2508                nic->flags &= ~wol_magic;
2509
2510        device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2511
2512        e100_exec_cb(nic, NULL, e100_configure);
2513
2514        return 0;
2515}
2516
2517static u32 e100_get_msglevel(struct net_device *netdev)
2518{
2519        struct nic *nic = netdev_priv(netdev);
2520        return nic->msg_enable;
2521}
2522
2523static void e100_set_msglevel(struct net_device *netdev, u32 value)
2524{
2525        struct nic *nic = netdev_priv(netdev);
2526        nic->msg_enable = value;
2527}
2528
2529static int e100_nway_reset(struct net_device *netdev)
2530{
2531        struct nic *nic = netdev_priv(netdev);
2532        return mii_nway_restart(&nic->mii);
2533}
2534
2535static u32 e100_get_link(struct net_device *netdev)
2536{
2537        struct nic *nic = netdev_priv(netdev);
2538        return mii_link_ok(&nic->mii);
2539}
2540
2541static int e100_get_eeprom_len(struct net_device *netdev)
2542{
2543        struct nic *nic = netdev_priv(netdev);
2544        return nic->eeprom_wc << 1;
2545}
2546
2547#define E100_EEPROM_MAGIC       0x1234
2548static int e100_get_eeprom(struct net_device *netdev,
2549        struct ethtool_eeprom *eeprom, u8 *bytes)
2550{
2551        struct nic *nic = netdev_priv(netdev);
2552
2553        eeprom->magic = E100_EEPROM_MAGIC;
2554        memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2555
2556        return 0;
2557}
2558
2559static int e100_set_eeprom(struct net_device *netdev,
2560        struct ethtool_eeprom *eeprom, u8 *bytes)
2561{
2562        struct nic *nic = netdev_priv(netdev);
2563
2564        if (eeprom->magic != E100_EEPROM_MAGIC)
2565                return -EINVAL;
2566
2567        memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2568
2569        return e100_eeprom_save(nic, eeprom->offset >> 1,
2570                (eeprom->len >> 1) + 1);
2571}
2572
2573static void e100_get_ringparam(struct net_device *netdev,
2574        struct ethtool_ringparam *ring)
2575{
2576        struct nic *nic = netdev_priv(netdev);
2577        struct param_range *rfds = &nic->params.rfds;
2578        struct param_range *cbs = &nic->params.cbs;
2579
2580        ring->rx_max_pending = rfds->max;
2581        ring->tx_max_pending = cbs->max;
2582        ring->rx_pending = rfds->count;
2583        ring->tx_pending = cbs->count;
2584}
2585
2586static int e100_set_ringparam(struct net_device *netdev,
2587        struct ethtool_ringparam *ring)
2588{
2589        struct nic *nic = netdev_priv(netdev);
2590        struct param_range *rfds = &nic->params.rfds;
2591        struct param_range *cbs = &nic->params.cbs;
2592
2593        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2594                return -EINVAL;
2595
2596        if (netif_running(netdev))
2597                e100_down(nic);
2598        rfds->count = max(ring->rx_pending, rfds->min);
2599        rfds->count = min(rfds->count, rfds->max);
2600        cbs->count = max(ring->tx_pending, cbs->min);
2601        cbs->count = min(cbs->count, cbs->max);
2602        netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2603                   rfds->count, cbs->count);
2604        if (netif_running(netdev))
2605                e100_up(nic);
2606
2607        return 0;
2608}
2609
2610static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2611        "Link test     (on/offline)",
2612        "Eeprom test   (on/offline)",
2613        "Self test        (offline)",
2614        "Mac loopback     (offline)",
2615        "Phy loopback     (offline)",
2616};
2617#define E100_TEST_LEN   ARRAY_SIZE(e100_gstrings_test)
2618
2619static void e100_diag_test(struct net_device *netdev,
2620        struct ethtool_test *test, u64 *data)
2621{
2622        struct ethtool_cmd cmd;
2623        struct nic *nic = netdev_priv(netdev);
2624        int i, err;
2625
2626        memset(data, 0, E100_TEST_LEN * sizeof(u64));
2627        data[0] = !mii_link_ok(&nic->mii);
2628        data[1] = e100_eeprom_load(nic);
2629        if (test->flags & ETH_TEST_FL_OFFLINE) {
2630
2631                /* save speed, duplex & autoneg settings */
2632                err = mii_ethtool_gset(&nic->mii, &cmd);
2633
2634                if (netif_running(netdev))
2635                        e100_down(nic);
2636                data[2] = e100_self_test(nic);
2637                data[3] = e100_loopback_test(nic, lb_mac);
2638                data[4] = e100_loopback_test(nic, lb_phy);
2639
2640                /* restore speed, duplex & autoneg settings */
2641                err = mii_ethtool_sset(&nic->mii, &cmd);
2642
2643                if (netif_running(netdev))
2644                        e100_up(nic);
2645        }
2646        for (i = 0; i < E100_TEST_LEN; i++)
2647                test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2648
2649        msleep_interruptible(4 * 1000);
2650}
2651
2652static int e100_set_phys_id(struct net_device *netdev,
2653                            enum ethtool_phys_id_state state)
2654{
2655        struct nic *nic = netdev_priv(netdev);
2656        enum led_state {
2657                led_on     = 0x01,
2658                led_off    = 0x04,
2659                led_on_559 = 0x05,
2660                led_on_557 = 0x07,
2661        };
2662        u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2663                MII_LED_CONTROL;
2664        u16 leds = 0;
2665
2666        switch (state) {
2667        case ETHTOOL_ID_ACTIVE:
2668                return 2;
2669
2670        case ETHTOOL_ID_ON:
2671                leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2672                       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2673                break;
2674
2675        case ETHTOOL_ID_OFF:
2676                leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2677                break;
2678
2679        case ETHTOOL_ID_INACTIVE:
2680                break;
2681        }
2682
2683        mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2684        return 0;
2685}
2686
2687static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2688        "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2689        "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2690        "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2691        "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2692        "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2693        "tx_heartbeat_errors", "tx_window_errors",
2694        /* device-specific stats */
2695        "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2696        "tx_flow_control_pause", "rx_flow_control_pause",
2697        "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2698        "rx_short_frame_errors", "rx_over_length_errors",
2699};
2700#define E100_NET_STATS_LEN      21
2701#define E100_STATS_LEN  ARRAY_SIZE(e100_gstrings_stats)
2702
2703static int e100_get_sset_count(struct net_device *netdev, int sset)
2704{
2705        switch (sset) {
2706        case ETH_SS_TEST:
2707                return E100_TEST_LEN;
2708        case ETH_SS_STATS:
2709                return E100_STATS_LEN;
2710        default:
2711                return -EOPNOTSUPP;
2712        }
2713}
2714
2715static void e100_get_ethtool_stats(struct net_device *netdev,
2716        struct ethtool_stats *stats, u64 *data)
2717{
2718        struct nic *nic = netdev_priv(netdev);
2719        int i;
2720
2721        for (i = 0; i < E100_NET_STATS_LEN; i++)
2722                data[i] = ((unsigned long *)&netdev->stats)[i];
2723
2724        data[i++] = nic->tx_deferred;
2725        data[i++] = nic->tx_single_collisions;
2726        data[i++] = nic->tx_multiple_collisions;
2727        data[i++] = nic->tx_fc_pause;
2728        data[i++] = nic->rx_fc_pause;
2729        data[i++] = nic->rx_fc_unsupported;
2730        data[i++] = nic->tx_tco_frames;
2731        data[i++] = nic->rx_tco_frames;
2732        data[i++] = nic->rx_short_frame_errors;
2733        data[i++] = nic->rx_over_length_errors;
2734}
2735
2736static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2737{
2738        switch (stringset) {
2739        case ETH_SS_TEST:
2740                memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2741                break;
2742        case ETH_SS_STATS:
2743                memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2744                break;
2745        }
2746}
2747
2748static const struct ethtool_ops e100_ethtool_ops = {
2749        .get_drvinfo            = e100_get_drvinfo,
2750        .get_regs_len           = e100_get_regs_len,
2751        .get_regs               = e100_get_regs,
2752        .get_wol                = e100_get_wol,
2753        .set_wol                = e100_set_wol,
2754        .get_msglevel           = e100_get_msglevel,
2755        .set_msglevel           = e100_set_msglevel,
2756        .nway_reset             = e100_nway_reset,
2757        .get_link               = e100_get_link,
2758        .get_eeprom_len         = e100_get_eeprom_len,
2759        .get_eeprom             = e100_get_eeprom,
2760        .set_eeprom             = e100_set_eeprom,
2761        .get_ringparam          = e100_get_ringparam,
2762        .set_ringparam          = e100_set_ringparam,
2763        .self_test              = e100_diag_test,
2764        .get_strings            = e100_get_strings,
2765        .set_phys_id            = e100_set_phys_id,
2766        .get_ethtool_stats      = e100_get_ethtool_stats,
2767        .get_sset_count         = e100_get_sset_count,
2768        .get_ts_info            = ethtool_op_get_ts_info,
2769        .get_link_ksettings     = e100_get_link_ksettings,
2770        .set_link_ksettings     = e100_set_link_ksettings,
2771};
2772
2773static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2774{
2775        struct nic *nic = netdev_priv(netdev);
2776
2777        return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2778}
2779
2780static int e100_alloc(struct nic *nic)
2781{
2782        nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2783                &nic->dma_addr);
2784        return nic->mem ? 0 : -ENOMEM;
2785}
2786
2787static void e100_free(struct nic *nic)
2788{
2789        if (nic->mem) {
2790                pci_free_consistent(nic->pdev, sizeof(struct mem),
2791                        nic->mem, nic->dma_addr);
2792                nic->mem = NULL;
2793        }
2794}
2795
2796static int e100_open(struct net_device *netdev)
2797{
2798        struct nic *nic = netdev_priv(netdev);
2799        int err = 0;
2800
2801        netif_carrier_off(netdev);
2802        if ((err = e100_up(nic)))
2803                netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2804        return err;
2805}
2806
2807static int e100_close(struct net_device *netdev)
2808{
2809        e100_down(netdev_priv(netdev));
2810        return 0;
2811}
2812
2813static int e100_set_features(struct net_device *netdev,
2814                             netdev_features_t features)
2815{
2816        struct nic *nic = netdev_priv(netdev);
2817        netdev_features_t changed = features ^ netdev->features;
2818
2819        if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2820                return 0;
2821
2822        netdev->features = features;
2823        e100_exec_cb(nic, NULL, e100_configure);
2824        return 0;
2825}
2826
2827static const struct net_device_ops e100_netdev_ops = {
2828        .ndo_open               = e100_open,
2829        .ndo_stop               = e100_close,
2830        .ndo_start_xmit         = e100_xmit_frame,
2831        .ndo_validate_addr      = eth_validate_addr,
2832        .ndo_set_rx_mode        = e100_set_multicast_list,
2833        .ndo_set_mac_address    = e100_set_mac_address,
2834        .ndo_do_ioctl           = e100_do_ioctl,
2835        .ndo_tx_timeout         = e100_tx_timeout,
2836#ifdef CONFIG_NET_POLL_CONTROLLER
2837        .ndo_poll_controller    = e100_netpoll,
2838#endif
2839        .ndo_set_features       = e100_set_features,
2840};
2841
2842static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2843{
2844        struct net_device *netdev;
2845        struct nic *nic;
2846        int err;
2847
2848        if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2849                return -ENOMEM;
2850
2851        netdev->hw_features |= NETIF_F_RXFCS;
2852        netdev->priv_flags |= IFF_SUPP_NOFCS;
2853        netdev->hw_features |= NETIF_F_RXALL;
2854
2855        netdev->netdev_ops = &e100_netdev_ops;
2856        netdev->ethtool_ops = &e100_ethtool_ops;
2857        netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2858        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2859
2860        nic = netdev_priv(netdev);
2861        netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2862        nic->netdev = netdev;
2863        nic->pdev = pdev;
2864        nic->msg_enable = (1 << debug) - 1;
2865        nic->mdio_ctrl = mdio_ctrl_hw;
2866        pci_set_drvdata(pdev, netdev);
2867
2868        if ((err = pci_enable_device(pdev))) {
2869                netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2870                goto err_out_free_dev;
2871        }
2872
2873        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2874                netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2875                err = -ENODEV;
2876                goto err_out_disable_pdev;
2877        }
2878
2879        if ((err = pci_request_regions(pdev, DRV_NAME))) {
2880                netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2881                goto err_out_disable_pdev;
2882        }
2883
2884        if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2885                netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2886                goto err_out_free_res;
2887        }
2888
2889        SET_NETDEV_DEV(netdev, &pdev->dev);
2890
2891        if (use_io)
2892                netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2893
2894        nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2895        if (!nic->csr) {
2896                netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2897                err = -ENOMEM;
2898                goto err_out_free_res;
2899        }
2900
2901        if (ent->driver_data)
2902                nic->flags |= ich;
2903        else
2904                nic->flags &= ~ich;
2905
2906        e100_get_defaults(nic);
2907
2908        /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2909        if (nic->mac < mac_82558_D101_A4)
2910                netdev->features |= NETIF_F_VLAN_CHALLENGED;
2911
2912        /* locks must be initialized before calling hw_reset */
2913        spin_lock_init(&nic->cb_lock);
2914        spin_lock_init(&nic->cmd_lock);
2915        spin_lock_init(&nic->mdio_lock);
2916
2917        /* Reset the device before pci_set_master() in case device is in some
2918         * funky state and has an interrupt pending - hint: we don't have the
2919         * interrupt handler registered yet. */
2920        e100_hw_reset(nic);
2921
2922        pci_set_master(pdev);
2923
2924        timer_setup(&nic->watchdog, e100_watchdog, 0);
2925
2926        INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2927
2928        if ((err = e100_alloc(nic))) {
2929                netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2930                goto err_out_iounmap;
2931        }
2932
2933        if ((err = e100_eeprom_load(nic)))
2934                goto err_out_free;
2935
2936        e100_phy_init(nic);
2937
2938        memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2939        if (!is_valid_ether_addr(netdev->dev_addr)) {
2940                if (!eeprom_bad_csum_allow) {
2941                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2942                        err = -EAGAIN;
2943                        goto err_out_free;
2944                } else {
2945                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2946                }
2947        }
2948
2949        /* Wol magic packet can be enabled from eeprom */
2950        if ((nic->mac >= mac_82558_D101_A4) &&
2951           (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2952                nic->flags |= wol_magic;
2953                device_set_wakeup_enable(&pdev->dev, true);
2954        }
2955
2956        /* ack any pending wake events, disable PME */
2957        pci_pme_active(pdev, false);
2958
2959        strcpy(netdev->name, "eth%d");
2960        if ((err = register_netdev(netdev))) {
2961                netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2962                goto err_out_free;
2963        }
2964        nic->cbs_pool = dma_pool_create(netdev->name,
2965                           &nic->pdev->dev,
2966                           nic->params.cbs.max * sizeof(struct cb),
2967                           sizeof(u32),
2968                           0);
2969        if (!nic->cbs_pool) {
2970                netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2971                err = -ENOMEM;
2972                goto err_out_pool;
2973        }
2974        netif_info(nic, probe, nic->netdev,
2975                   "addr 0x%llx, irq %d, MAC addr %pM\n",
2976                   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2977                   pdev->irq, netdev->dev_addr);
2978
2979        return 0;
2980
2981err_out_pool:
2982        unregister_netdev(netdev);
2983err_out_free:
2984        e100_free(nic);
2985err_out_iounmap:
2986        pci_iounmap(pdev, nic->csr);
2987err_out_free_res:
2988        pci_release_regions(pdev);
2989err_out_disable_pdev:
2990        pci_disable_device(pdev);
2991err_out_free_dev:
2992        free_netdev(netdev);
2993        return err;
2994}
2995
2996static void e100_remove(struct pci_dev *pdev)
2997{
2998        struct net_device *netdev = pci_get_drvdata(pdev);
2999
3000        if (netdev) {
3001                struct nic *nic = netdev_priv(netdev);
3002                unregister_netdev(netdev);
3003                e100_free(nic);
3004                pci_iounmap(pdev, nic->csr);
3005                dma_pool_destroy(nic->cbs_pool);
3006                free_netdev(netdev);
3007                pci_release_regions(pdev);
3008                pci_disable_device(pdev);
3009        }
3010}
3011
3012#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
3013#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3014#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3015static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3016{
3017        struct net_device *netdev = pci_get_drvdata(pdev);
3018        struct nic *nic = netdev_priv(netdev);
3019
3020        if (netif_running(netdev))
3021                e100_down(nic);
3022        netif_device_detach(netdev);
3023
3024        pci_save_state(pdev);
3025
3026        if ((nic->flags & wol_magic) | e100_asf(nic)) {
3027                /* enable reverse auto-negotiation */
3028                if (nic->phy == phy_82552_v) {
3029                        u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3030                                                   E100_82552_SMARTSPEED);
3031
3032                        mdio_write(netdev, nic->mii.phy_id,
3033                                   E100_82552_SMARTSPEED, smartspeed |
3034                                   E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3035                }
3036                *enable_wake = true;
3037        } else {
3038                *enable_wake = false;
3039        }
3040
3041        pci_clear_master(pdev);
3042}
3043
3044static int __e100_power_off(struct pci_dev *pdev, bool wake)
3045{
3046        if (wake)
3047                return pci_prepare_to_sleep(pdev);
3048
3049        pci_wake_from_d3(pdev, false);
3050        pci_set_power_state(pdev, PCI_D3hot);
3051
3052        return 0;
3053}
3054
3055#ifdef CONFIG_PM
3056static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3057{
3058        bool wake;
3059        __e100_shutdown(pdev, &wake);
3060        return __e100_power_off(pdev, wake);
3061}
3062
3063static int e100_resume(struct pci_dev *pdev)
3064{
3065        struct net_device *netdev = pci_get_drvdata(pdev);
3066        struct nic *nic = netdev_priv(netdev);
3067
3068        pci_set_power_state(pdev, PCI_D0);
3069        pci_restore_state(pdev);
3070        /* ack any pending wake events, disable PME */
3071        pci_enable_wake(pdev, PCI_D0, 0);
3072
3073        /* disable reverse auto-negotiation */
3074        if (nic->phy == phy_82552_v) {
3075                u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3076                                           E100_82552_SMARTSPEED);
3077
3078                mdio_write(netdev, nic->mii.phy_id,
3079                           E100_82552_SMARTSPEED,
3080                           smartspeed & ~(E100_82552_REV_ANEG));
3081        }
3082
3083        netif_device_attach(netdev);
3084        if (netif_running(netdev))
3085                e100_up(nic);
3086
3087        return 0;
3088}
3089#endif /* CONFIG_PM */
3090
3091static void e100_shutdown(struct pci_dev *pdev)
3092{
3093        bool wake;
3094        __e100_shutdown(pdev, &wake);
3095        if (system_state == SYSTEM_POWER_OFF)
3096                __e100_power_off(pdev, wake);
3097}
3098
3099/* ------------------ PCI Error Recovery infrastructure  -------------- */
3100/**
3101 * e100_io_error_detected - called when PCI error is detected.
3102 * @pdev: Pointer to PCI device
3103 * @state: The current pci connection state
3104 */
3105static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3106{
3107        struct net_device *netdev = pci_get_drvdata(pdev);
3108        struct nic *nic = netdev_priv(netdev);
3109
3110        netif_device_detach(netdev);
3111
3112        if (state == pci_channel_io_perm_failure)
3113                return PCI_ERS_RESULT_DISCONNECT;
3114
3115        if (netif_running(netdev))
3116                e100_down(nic);
3117        pci_disable_device(pdev);
3118
3119        /* Request a slot reset. */
3120        return PCI_ERS_RESULT_NEED_RESET;
3121}
3122
3123/**
3124 * e100_io_slot_reset - called after the pci bus has been reset.
3125 * @pdev: Pointer to PCI device
3126 *
3127 * Restart the card from scratch.
3128 */
3129static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3130{
3131        struct net_device *netdev = pci_get_drvdata(pdev);
3132        struct nic *nic = netdev_priv(netdev);
3133
3134        if (pci_enable_device(pdev)) {
3135                pr_err("Cannot re-enable PCI device after reset\n");
3136                return PCI_ERS_RESULT_DISCONNECT;
3137        }
3138        pci_set_master(pdev);
3139
3140        /* Only one device per card can do a reset */
3141        if (0 != PCI_FUNC(pdev->devfn))
3142                return PCI_ERS_RESULT_RECOVERED;
3143        e100_hw_reset(nic);
3144        e100_phy_init(nic);
3145
3146        return PCI_ERS_RESULT_RECOVERED;
3147}
3148
3149/**
3150 * e100_io_resume - resume normal operations
3151 * @pdev: Pointer to PCI device
3152 *
3153 * Resume normal operations after an error recovery
3154 * sequence has been completed.
3155 */
3156static void e100_io_resume(struct pci_dev *pdev)
3157{
3158        struct net_device *netdev = pci_get_drvdata(pdev);
3159        struct nic *nic = netdev_priv(netdev);
3160
3161        /* ack any pending wake events, disable PME */
3162        pci_enable_wake(pdev, PCI_D0, 0);
3163
3164        netif_device_attach(netdev);
3165        if (netif_running(netdev)) {
3166                e100_open(netdev);
3167                mod_timer(&nic->watchdog, jiffies);
3168        }
3169}
3170
3171static const struct pci_error_handlers e100_err_handler = {
3172        .error_detected = e100_io_error_detected,
3173        .slot_reset = e100_io_slot_reset,
3174        .resume = e100_io_resume,
3175};
3176
3177static struct pci_driver e100_driver = {
3178        .name =         DRV_NAME,
3179        .id_table =     e100_id_table,
3180        .probe =        e100_probe,
3181        .remove =       e100_remove,
3182#ifdef CONFIG_PM
3183        /* Power Management hooks */
3184        .suspend =      e100_suspend,
3185        .resume =       e100_resume,
3186#endif
3187        .shutdown =     e100_shutdown,
3188        .err_handler = &e100_err_handler,
3189};
3190
3191static int __init e100_init_module(void)
3192{
3193        if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3194                pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3195                pr_info("%s\n", DRV_COPYRIGHT);
3196        }
3197        return pci_register_driver(&e100_driver);
3198}
3199
3200static void __exit e100_cleanup_module(void)
3201{
3202        pci_unregister_driver(&e100_driver);
3203}
3204
3205module_init(e100_init_module);
3206module_exit(e100_cleanup_module);
3207