linux/drivers/net/ethernet/intel/e1000/e1000_ethtool.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3 * Intel PRO/1000 Linux driver
   4 * Copyright(c) 1999 - 2006 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * The full GNU General Public License is included in this distribution in
  16 * the file called "COPYING".
  17 *
  18 * Contact Information:
  19 * Linux NICS <linux.nics@intel.com>
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 *
  23 ******************************************************************************/
  24
  25/* ethtool support for e1000 */
  26
  27#include "e1000.h"
  28#include <linux/jiffies.h>
  29#include <linux/uaccess.h>
  30
  31enum {NETDEV_STATS, E1000_STATS};
  32
  33struct e1000_stats {
  34        char stat_string[ETH_GSTRING_LEN];
  35        int type;
  36        int sizeof_stat;
  37        int stat_offset;
  38};
  39
  40#define E1000_STAT(m)           E1000_STATS, \
  41                                sizeof(((struct e1000_adapter *)0)->m), \
  42                                offsetof(struct e1000_adapter, m)
  43#define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
  44                                sizeof(((struct net_device *)0)->m), \
  45                                offsetof(struct net_device, m)
  46
  47static const struct e1000_stats e1000_gstrings_stats[] = {
  48        { "rx_packets", E1000_STAT(stats.gprc) },
  49        { "tx_packets", E1000_STAT(stats.gptc) },
  50        { "rx_bytes", E1000_STAT(stats.gorcl) },
  51        { "tx_bytes", E1000_STAT(stats.gotcl) },
  52        { "rx_broadcast", E1000_STAT(stats.bprc) },
  53        { "tx_broadcast", E1000_STAT(stats.bptc) },
  54        { "rx_multicast", E1000_STAT(stats.mprc) },
  55        { "tx_multicast", E1000_STAT(stats.mptc) },
  56        { "rx_errors", E1000_STAT(stats.rxerrc) },
  57        { "tx_errors", E1000_STAT(stats.txerrc) },
  58        { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  59        { "multicast", E1000_STAT(stats.mprc) },
  60        { "collisions", E1000_STAT(stats.colc) },
  61        { "rx_length_errors", E1000_STAT(stats.rlerrc) },
  62        { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  63        { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  64        { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  65        { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  66        { "rx_missed_errors", E1000_STAT(stats.mpc) },
  67        { "tx_aborted_errors", E1000_STAT(stats.ecol) },
  68        { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  69        { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  70        { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  71        { "tx_window_errors", E1000_STAT(stats.latecol) },
  72        { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  73        { "tx_deferred_ok", E1000_STAT(stats.dc) },
  74        { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  75        { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  76        { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  77        { "tx_restart_queue", E1000_STAT(restart_queue) },
  78        { "rx_long_length_errors", E1000_STAT(stats.roc) },
  79        { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  80        { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  81        { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  82        { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  83        { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  84        { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  85        { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  86        { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  87        { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  88        { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  89        { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  90        { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  91        { "tx_smbus", E1000_STAT(stats.mgptc) },
  92        { "rx_smbus", E1000_STAT(stats.mgprc) },
  93        { "dropped_smbus", E1000_STAT(stats.mgpdc) },
  94};
  95
  96#define E1000_QUEUE_STATS_LEN 0
  97#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
  98#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  99static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 100        "Register test  (offline)", "Eeprom test    (offline)",
 101        "Interrupt test (offline)", "Loopback test  (offline)",
 102        "Link test   (on/offline)"
 103};
 104
 105#define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
 106
 107static int e1000_get_link_ksettings(struct net_device *netdev,
 108                                    struct ethtool_link_ksettings *cmd)
 109{
 110        struct e1000_adapter *adapter = netdev_priv(netdev);
 111        struct e1000_hw *hw = &adapter->hw;
 112        u32 supported, advertising;
 113
 114        if (hw->media_type == e1000_media_type_copper) {
 115                supported = (SUPPORTED_10baseT_Half |
 116                             SUPPORTED_10baseT_Full |
 117                             SUPPORTED_100baseT_Half |
 118                             SUPPORTED_100baseT_Full |
 119                             SUPPORTED_1000baseT_Full|
 120                             SUPPORTED_Autoneg |
 121                             SUPPORTED_TP);
 122                advertising = ADVERTISED_TP;
 123
 124                if (hw->autoneg == 1) {
 125                        advertising |= ADVERTISED_Autoneg;
 126                        /* the e1000 autoneg seems to match ethtool nicely */
 127                        advertising |= hw->autoneg_advertised;
 128                }
 129
 130                cmd->base.port = PORT_TP;
 131                cmd->base.phy_address = hw->phy_addr;
 132        } else {
 133                supported   = (SUPPORTED_1000baseT_Full |
 134                               SUPPORTED_FIBRE |
 135                               SUPPORTED_Autoneg);
 136
 137                advertising = (ADVERTISED_1000baseT_Full |
 138                               ADVERTISED_FIBRE |
 139                               ADVERTISED_Autoneg);
 140
 141                cmd->base.port = PORT_FIBRE;
 142        }
 143
 144        if (er32(STATUS) & E1000_STATUS_LU) {
 145                e1000_get_speed_and_duplex(hw, &adapter->link_speed,
 146                                           &adapter->link_duplex);
 147                cmd->base.speed = adapter->link_speed;
 148
 149                /* unfortunately FULL_DUPLEX != DUPLEX_FULL
 150                 * and HALF_DUPLEX != DUPLEX_HALF
 151                 */
 152                if (adapter->link_duplex == FULL_DUPLEX)
 153                        cmd->base.duplex = DUPLEX_FULL;
 154                else
 155                        cmd->base.duplex = DUPLEX_HALF;
 156        } else {
 157                cmd->base.speed = SPEED_UNKNOWN;
 158                cmd->base.duplex = DUPLEX_UNKNOWN;
 159        }
 160
 161        cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
 162                         hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 163
 164        /* MDI-X => 1; MDI => 0 */
 165        if ((hw->media_type == e1000_media_type_copper) &&
 166            netif_carrier_ok(netdev))
 167                cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
 168                                     ETH_TP_MDI_X : ETH_TP_MDI);
 169        else
 170                cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 171
 172        if (hw->mdix == AUTO_ALL_MODES)
 173                cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 174        else
 175                cmd->base.eth_tp_mdix_ctrl = hw->mdix;
 176
 177        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 178                                                supported);
 179        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 180                                                advertising);
 181
 182        return 0;
 183}
 184
 185static int e1000_set_link_ksettings(struct net_device *netdev,
 186                                    const struct ethtool_link_ksettings *cmd)
 187{
 188        struct e1000_adapter *adapter = netdev_priv(netdev);
 189        struct e1000_hw *hw = &adapter->hw;
 190        u32 advertising;
 191
 192        ethtool_convert_link_mode_to_legacy_u32(&advertising,
 193                                                cmd->link_modes.advertising);
 194
 195        /* MDI setting is only allowed when autoneg enabled because
 196         * some hardware doesn't allow MDI setting when speed or
 197         * duplex is forced.
 198         */
 199        if (cmd->base.eth_tp_mdix_ctrl) {
 200                if (hw->media_type != e1000_media_type_copper)
 201                        return -EOPNOTSUPP;
 202
 203                if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 204                    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 205                        e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 206                        return -EINVAL;
 207                }
 208        }
 209
 210        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 211                msleep(1);
 212
 213        if (cmd->base.autoneg == AUTONEG_ENABLE) {
 214                hw->autoneg = 1;
 215                if (hw->media_type == e1000_media_type_fiber)
 216                        hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
 217                                                 ADVERTISED_FIBRE |
 218                                                 ADVERTISED_Autoneg;
 219                else
 220                        hw->autoneg_advertised = advertising |
 221                                                 ADVERTISED_TP |
 222                                                 ADVERTISED_Autoneg;
 223        } else {
 224                u32 speed = cmd->base.speed;
 225                /* calling this overrides forced MDI setting */
 226                if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 227                        clear_bit(__E1000_RESETTING, &adapter->flags);
 228                        return -EINVAL;
 229                }
 230        }
 231
 232        /* MDI-X => 2; MDI => 1; Auto => 3 */
 233        if (cmd->base.eth_tp_mdix_ctrl) {
 234                if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 235                        hw->mdix = AUTO_ALL_MODES;
 236                else
 237                        hw->mdix = cmd->base.eth_tp_mdix_ctrl;
 238        }
 239
 240        /* reset the link */
 241
 242        if (netif_running(adapter->netdev)) {
 243                e1000_down(adapter);
 244                e1000_up(adapter);
 245        } else {
 246                e1000_reset(adapter);
 247        }
 248        clear_bit(__E1000_RESETTING, &adapter->flags);
 249        return 0;
 250}
 251
 252static u32 e1000_get_link(struct net_device *netdev)
 253{
 254        struct e1000_adapter *adapter = netdev_priv(netdev);
 255
 256        /* If the link is not reported up to netdev, interrupts are disabled,
 257         * and so the physical link state may have changed since we last
 258         * looked. Set get_link_status to make sure that the true link
 259         * state is interrogated, rather than pulling a cached and possibly
 260         * stale link state from the driver.
 261         */
 262        if (!netif_carrier_ok(netdev))
 263                adapter->hw.get_link_status = 1;
 264
 265        return e1000_has_link(adapter);
 266}
 267
 268static void e1000_get_pauseparam(struct net_device *netdev,
 269                                 struct ethtool_pauseparam *pause)
 270{
 271        struct e1000_adapter *adapter = netdev_priv(netdev);
 272        struct e1000_hw *hw = &adapter->hw;
 273
 274        pause->autoneg =
 275                (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 276
 277        if (hw->fc == E1000_FC_RX_PAUSE) {
 278                pause->rx_pause = 1;
 279        } else if (hw->fc == E1000_FC_TX_PAUSE) {
 280                pause->tx_pause = 1;
 281        } else if (hw->fc == E1000_FC_FULL) {
 282                pause->rx_pause = 1;
 283                pause->tx_pause = 1;
 284        }
 285}
 286
 287static int e1000_set_pauseparam(struct net_device *netdev,
 288                                struct ethtool_pauseparam *pause)
 289{
 290        struct e1000_adapter *adapter = netdev_priv(netdev);
 291        struct e1000_hw *hw = &adapter->hw;
 292        int retval = 0;
 293
 294        adapter->fc_autoneg = pause->autoneg;
 295
 296        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 297                msleep(1);
 298
 299        if (pause->rx_pause && pause->tx_pause)
 300                hw->fc = E1000_FC_FULL;
 301        else if (pause->rx_pause && !pause->tx_pause)
 302                hw->fc = E1000_FC_RX_PAUSE;
 303        else if (!pause->rx_pause && pause->tx_pause)
 304                hw->fc = E1000_FC_TX_PAUSE;
 305        else if (!pause->rx_pause && !pause->tx_pause)
 306                hw->fc = E1000_FC_NONE;
 307
 308        hw->original_fc = hw->fc;
 309
 310        if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 311                if (netif_running(adapter->netdev)) {
 312                        e1000_down(adapter);
 313                        e1000_up(adapter);
 314                } else {
 315                        e1000_reset(adapter);
 316                }
 317        } else
 318                retval = ((hw->media_type == e1000_media_type_fiber) ?
 319                          e1000_setup_link(hw) : e1000_force_mac_fc(hw));
 320
 321        clear_bit(__E1000_RESETTING, &adapter->flags);
 322        return retval;
 323}
 324
 325static u32 e1000_get_msglevel(struct net_device *netdev)
 326{
 327        struct e1000_adapter *adapter = netdev_priv(netdev);
 328
 329        return adapter->msg_enable;
 330}
 331
 332static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 333{
 334        struct e1000_adapter *adapter = netdev_priv(netdev);
 335
 336        adapter->msg_enable = data;
 337}
 338
 339static int e1000_get_regs_len(struct net_device *netdev)
 340{
 341#define E1000_REGS_LEN 32
 342        return E1000_REGS_LEN * sizeof(u32);
 343}
 344
 345static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 346                           void *p)
 347{
 348        struct e1000_adapter *adapter = netdev_priv(netdev);
 349        struct e1000_hw *hw = &adapter->hw;
 350        u32 *regs_buff = p;
 351        u16 phy_data;
 352
 353        memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 354
 355        regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 356
 357        regs_buff[0]  = er32(CTRL);
 358        regs_buff[1]  = er32(STATUS);
 359
 360        regs_buff[2]  = er32(RCTL);
 361        regs_buff[3]  = er32(RDLEN);
 362        regs_buff[4]  = er32(RDH);
 363        regs_buff[5]  = er32(RDT);
 364        regs_buff[6]  = er32(RDTR);
 365
 366        regs_buff[7]  = er32(TCTL);
 367        regs_buff[8]  = er32(TDLEN);
 368        regs_buff[9]  = er32(TDH);
 369        regs_buff[10] = er32(TDT);
 370        regs_buff[11] = er32(TIDV);
 371
 372        regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
 373        if (hw->phy_type == e1000_phy_igp) {
 374                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 375                                    IGP01E1000_PHY_AGC_A);
 376                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
 377                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 378                regs_buff[13] = (u32)phy_data; /* cable length */
 379                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 380                                    IGP01E1000_PHY_AGC_B);
 381                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
 382                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 383                regs_buff[14] = (u32)phy_data; /* cable length */
 384                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 385                                    IGP01E1000_PHY_AGC_C);
 386                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
 387                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 388                regs_buff[15] = (u32)phy_data; /* cable length */
 389                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 390                                    IGP01E1000_PHY_AGC_D);
 391                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
 392                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 393                regs_buff[16] = (u32)phy_data; /* cable length */
 394                regs_buff[17] = 0; /* extended 10bt distance (not needed) */
 395                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 396                e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
 397                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 398                regs_buff[18] = (u32)phy_data; /* cable polarity */
 399                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 400                                    IGP01E1000_PHY_PCS_INIT_REG);
 401                e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
 402                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 403                regs_buff[19] = (u32)phy_data; /* cable polarity */
 404                regs_buff[20] = 0; /* polarity correction enabled (always) */
 405                regs_buff[22] = 0; /* phy receive errors (unavailable) */
 406                regs_buff[23] = regs_buff[18]; /* mdix mode */
 407                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 408        } else {
 409                e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 410                regs_buff[13] = (u32)phy_data; /* cable length */
 411                regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 412                regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 413                regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 414                e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 415                regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 416                regs_buff[18] = regs_buff[13]; /* cable polarity */
 417                regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 418                regs_buff[20] = regs_buff[17]; /* polarity correction */
 419                /* phy receive errors */
 420                regs_buff[22] = adapter->phy_stats.receive_errors;
 421                regs_buff[23] = regs_buff[13]; /* mdix mode */
 422        }
 423        regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
 424        e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
 425        regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 426        regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 427        if (hw->mac_type >= e1000_82540 &&
 428            hw->media_type == e1000_media_type_copper) {
 429                regs_buff[26] = er32(MANC);
 430        }
 431}
 432
 433static int e1000_get_eeprom_len(struct net_device *netdev)
 434{
 435        struct e1000_adapter *adapter = netdev_priv(netdev);
 436        struct e1000_hw *hw = &adapter->hw;
 437
 438        return hw->eeprom.word_size * 2;
 439}
 440
 441static int e1000_get_eeprom(struct net_device *netdev,
 442                            struct ethtool_eeprom *eeprom, u8 *bytes)
 443{
 444        struct e1000_adapter *adapter = netdev_priv(netdev);
 445        struct e1000_hw *hw = &adapter->hw;
 446        u16 *eeprom_buff;
 447        int first_word, last_word;
 448        int ret_val = 0;
 449        u16 i;
 450
 451        if (eeprom->len == 0)
 452                return -EINVAL;
 453
 454        eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 455
 456        first_word = eeprom->offset >> 1;
 457        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 458
 459        eeprom_buff = kmalloc(sizeof(u16) *
 460                        (last_word - first_word + 1), GFP_KERNEL);
 461        if (!eeprom_buff)
 462                return -ENOMEM;
 463
 464        if (hw->eeprom.type == e1000_eeprom_spi)
 465                ret_val = e1000_read_eeprom(hw, first_word,
 466                                            last_word - first_word + 1,
 467                                            eeprom_buff);
 468        else {
 469                for (i = 0; i < last_word - first_word + 1; i++) {
 470                        ret_val = e1000_read_eeprom(hw, first_word + i, 1,
 471                                                    &eeprom_buff[i]);
 472                        if (ret_val)
 473                                break;
 474                }
 475        }
 476
 477        /* Device's eeprom is always little-endian, word addressable */
 478        for (i = 0; i < last_word - first_word + 1; i++)
 479                le16_to_cpus(&eeprom_buff[i]);
 480
 481        memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 482               eeprom->len);
 483        kfree(eeprom_buff);
 484
 485        return ret_val;
 486}
 487
 488static int e1000_set_eeprom(struct net_device *netdev,
 489                            struct ethtool_eeprom *eeprom, u8 *bytes)
 490{
 491        struct e1000_adapter *adapter = netdev_priv(netdev);
 492        struct e1000_hw *hw = &adapter->hw;
 493        u16 *eeprom_buff;
 494        void *ptr;
 495        int max_len, first_word, last_word, ret_val = 0;
 496        u16 i;
 497
 498        if (eeprom->len == 0)
 499                return -EOPNOTSUPP;
 500
 501        if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 502                return -EFAULT;
 503
 504        max_len = hw->eeprom.word_size * 2;
 505
 506        first_word = eeprom->offset >> 1;
 507        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 508        eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 509        if (!eeprom_buff)
 510                return -ENOMEM;
 511
 512        ptr = (void *)eeprom_buff;
 513
 514        if (eeprom->offset & 1) {
 515                /* need read/modify/write of first changed EEPROM word
 516                 * only the second byte of the word is being modified
 517                 */
 518                ret_val = e1000_read_eeprom(hw, first_word, 1,
 519                                            &eeprom_buff[0]);
 520                ptr++;
 521        }
 522        if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 523                /* need read/modify/write of last changed EEPROM word
 524                 * only the first byte of the word is being modified
 525                 */
 526                ret_val = e1000_read_eeprom(hw, last_word, 1,
 527                                            &eeprom_buff[last_word - first_word]);
 528        }
 529
 530        /* Device's eeprom is always little-endian, word addressable */
 531        for (i = 0; i < last_word - first_word + 1; i++)
 532                le16_to_cpus(&eeprom_buff[i]);
 533
 534        memcpy(ptr, bytes, eeprom->len);
 535
 536        for (i = 0; i < last_word - first_word + 1; i++)
 537                eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 538
 539        ret_val = e1000_write_eeprom(hw, first_word,
 540                                     last_word - first_word + 1, eeprom_buff);
 541
 542        /* Update the checksum over the first part of the EEPROM if needed */
 543        if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 544                e1000_update_eeprom_checksum(hw);
 545
 546        kfree(eeprom_buff);
 547        return ret_val;
 548}
 549
 550static void e1000_get_drvinfo(struct net_device *netdev,
 551                              struct ethtool_drvinfo *drvinfo)
 552{
 553        struct e1000_adapter *adapter = netdev_priv(netdev);
 554
 555        strlcpy(drvinfo->driver,  e1000_driver_name,
 556                sizeof(drvinfo->driver));
 557        strlcpy(drvinfo->version, e1000_driver_version,
 558                sizeof(drvinfo->version));
 559
 560        strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 561                sizeof(drvinfo->bus_info));
 562}
 563
 564static void e1000_get_ringparam(struct net_device *netdev,
 565                                struct ethtool_ringparam *ring)
 566{
 567        struct e1000_adapter *adapter = netdev_priv(netdev);
 568        struct e1000_hw *hw = &adapter->hw;
 569        e1000_mac_type mac_type = hw->mac_type;
 570        struct e1000_tx_ring *txdr = adapter->tx_ring;
 571        struct e1000_rx_ring *rxdr = adapter->rx_ring;
 572
 573        ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
 574                E1000_MAX_82544_RXD;
 575        ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
 576                E1000_MAX_82544_TXD;
 577        ring->rx_pending = rxdr->count;
 578        ring->tx_pending = txdr->count;
 579}
 580
 581static int e1000_set_ringparam(struct net_device *netdev,
 582                               struct ethtool_ringparam *ring)
 583{
 584        struct e1000_adapter *adapter = netdev_priv(netdev);
 585        struct e1000_hw *hw = &adapter->hw;
 586        e1000_mac_type mac_type = hw->mac_type;
 587        struct e1000_tx_ring *txdr, *tx_old;
 588        struct e1000_rx_ring *rxdr, *rx_old;
 589        int i, err;
 590
 591        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 592                return -EINVAL;
 593
 594        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 595                msleep(1);
 596
 597        if (netif_running(adapter->netdev))
 598                e1000_down(adapter);
 599
 600        tx_old = adapter->tx_ring;
 601        rx_old = adapter->rx_ring;
 602
 603        err = -ENOMEM;
 604        txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
 605                       GFP_KERNEL);
 606        if (!txdr)
 607                goto err_alloc_tx;
 608
 609        rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
 610                       GFP_KERNEL);
 611        if (!rxdr)
 612                goto err_alloc_rx;
 613
 614        adapter->tx_ring = txdr;
 615        adapter->rx_ring = rxdr;
 616
 617        rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
 618        rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
 619                          E1000_MAX_RXD : E1000_MAX_82544_RXD));
 620        rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 621        txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
 622        txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
 623                          E1000_MAX_TXD : E1000_MAX_82544_TXD));
 624        txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 625
 626        for (i = 0; i < adapter->num_tx_queues; i++)
 627                txdr[i].count = txdr->count;
 628        for (i = 0; i < adapter->num_rx_queues; i++)
 629                rxdr[i].count = rxdr->count;
 630
 631        if (netif_running(adapter->netdev)) {
 632                /* Try to get new resources before deleting old */
 633                err = e1000_setup_all_rx_resources(adapter);
 634                if (err)
 635                        goto err_setup_rx;
 636                err = e1000_setup_all_tx_resources(adapter);
 637                if (err)
 638                        goto err_setup_tx;
 639
 640                /* save the new, restore the old in order to free it,
 641                 * then restore the new back again
 642                 */
 643
 644                adapter->rx_ring = rx_old;
 645                adapter->tx_ring = tx_old;
 646                e1000_free_all_rx_resources(adapter);
 647                e1000_free_all_tx_resources(adapter);
 648                kfree(tx_old);
 649                kfree(rx_old);
 650                adapter->rx_ring = rxdr;
 651                adapter->tx_ring = txdr;
 652                err = e1000_up(adapter);
 653                if (err)
 654                        goto err_setup;
 655        }
 656
 657        clear_bit(__E1000_RESETTING, &adapter->flags);
 658        return 0;
 659err_setup_tx:
 660        e1000_free_all_rx_resources(adapter);
 661err_setup_rx:
 662        adapter->rx_ring = rx_old;
 663        adapter->tx_ring = tx_old;
 664        kfree(rxdr);
 665err_alloc_rx:
 666        kfree(txdr);
 667err_alloc_tx:
 668        e1000_up(adapter);
 669err_setup:
 670        clear_bit(__E1000_RESETTING, &adapter->flags);
 671        return err;
 672}
 673
 674static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
 675                             u32 mask, u32 write)
 676{
 677        struct e1000_hw *hw = &adapter->hw;
 678        static const u32 test[] = {
 679                0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 680        };
 681        u8 __iomem *address = hw->hw_addr + reg;
 682        u32 read;
 683        int i;
 684
 685        for (i = 0; i < ARRAY_SIZE(test); i++) {
 686                writel(write & test[i], address);
 687                read = readl(address);
 688                if (read != (write & test[i] & mask)) {
 689                        e_err(drv, "pattern test reg %04X failed: "
 690                              "got 0x%08X expected 0x%08X\n",
 691                              reg, read, (write & test[i] & mask));
 692                        *data = reg;
 693                        return true;
 694                }
 695        }
 696        return false;
 697}
 698
 699static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
 700                              u32 mask, u32 write)
 701{
 702        struct e1000_hw *hw = &adapter->hw;
 703        u8 __iomem *address = hw->hw_addr + reg;
 704        u32 read;
 705
 706        writel(write & mask, address);
 707        read = readl(address);
 708        if ((read & mask) != (write & mask)) {
 709                e_err(drv, "set/check reg %04X test failed: "
 710                      "got 0x%08X expected 0x%08X\n",
 711                      reg, (read & mask), (write & mask));
 712                *data = reg;
 713                return true;
 714        }
 715        return false;
 716}
 717
 718#define REG_PATTERN_TEST(reg, mask, write)                           \
 719        do {                                                         \
 720                if (reg_pattern_test(adapter, data,                  \
 721                             (hw->mac_type >= e1000_82543)   \
 722                             ? E1000_##reg : E1000_82542_##reg,      \
 723                             mask, write))                           \
 724                        return 1;                                    \
 725        } while (0)
 726
 727#define REG_SET_AND_CHECK(reg, mask, write)                          \
 728        do {                                                         \
 729                if (reg_set_and_check(adapter, data,                 \
 730                              (hw->mac_type >= e1000_82543)  \
 731                              ? E1000_##reg : E1000_82542_##reg,     \
 732                              mask, write))                          \
 733                        return 1;                                    \
 734        } while (0)
 735
 736static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 737{
 738        u32 value, before, after;
 739        u32 i, toggle;
 740        struct e1000_hw *hw = &adapter->hw;
 741
 742        /* The status register is Read Only, so a write should fail.
 743         * Some bits that get toggled are ignored.
 744         */
 745
 746        /* there are several bits on newer hardware that are r/w */
 747        toggle = 0xFFFFF833;
 748
 749        before = er32(STATUS);
 750        value = (er32(STATUS) & toggle);
 751        ew32(STATUS, toggle);
 752        after = er32(STATUS) & toggle;
 753        if (value != after) {
 754                e_err(drv, "failed STATUS register test got: "
 755                      "0x%08X expected: 0x%08X\n", after, value);
 756                *data = 1;
 757                return 1;
 758        }
 759        /* restore previous status */
 760        ew32(STATUS, before);
 761
 762        REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 763        REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
 764        REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
 765        REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 766
 767        REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 768        REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 769        REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
 770        REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
 771        REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
 772        REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
 773        REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
 774        REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 775        REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 776        REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 777
 778        REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 779
 780        before = 0x06DFB3FE;
 781        REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 782        REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 783
 784        if (hw->mac_type >= e1000_82543) {
 785                REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 786                REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 787                REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 788                REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 789                REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 790                value = E1000_RAR_ENTRIES;
 791                for (i = 0; i < value; i++) {
 792                        REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
 793                                         0x8003FFFF, 0xFFFFFFFF);
 794                }
 795        } else {
 796                REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
 797                REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
 798                REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
 799                REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
 800        }
 801
 802        value = E1000_MC_TBL_SIZE;
 803        for (i = 0; i < value; i++)
 804                REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 805
 806        *data = 0;
 807        return 0;
 808}
 809
 810static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 811{
 812        struct e1000_hw *hw = &adapter->hw;
 813        u16 temp;
 814        u16 checksum = 0;
 815        u16 i;
 816
 817        *data = 0;
 818        /* Read and add up the contents of the EEPROM */
 819        for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 820                if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
 821                        *data = 1;
 822                        break;
 823                }
 824                checksum += temp;
 825        }
 826
 827        /* If Checksum is not Correct return error else test passed */
 828        if ((checksum != (u16)EEPROM_SUM) && !(*data))
 829                *data = 2;
 830
 831        return *data;
 832}
 833
 834static irqreturn_t e1000_test_intr(int irq, void *data)
 835{
 836        struct net_device *netdev = (struct net_device *)data;
 837        struct e1000_adapter *adapter = netdev_priv(netdev);
 838        struct e1000_hw *hw = &adapter->hw;
 839
 840        adapter->test_icr |= er32(ICR);
 841
 842        return IRQ_HANDLED;
 843}
 844
 845static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 846{
 847        struct net_device *netdev = adapter->netdev;
 848        u32 mask, i = 0;
 849        bool shared_int = true;
 850        u32 irq = adapter->pdev->irq;
 851        struct e1000_hw *hw = &adapter->hw;
 852
 853        *data = 0;
 854
 855        /* NOTE: we don't test MSI interrupts here, yet
 856         * Hook up test interrupt handler just for this test
 857         */
 858        if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 859                         netdev))
 860                shared_int = false;
 861        else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 862                             netdev->name, netdev)) {
 863                *data = 1;
 864                return -1;
 865        }
 866        e_info(hw, "testing %s interrupt\n", (shared_int ?
 867               "shared" : "unshared"));
 868
 869        /* Disable all the interrupts */
 870        ew32(IMC, 0xFFFFFFFF);
 871        E1000_WRITE_FLUSH();
 872        msleep(10);
 873
 874        /* Test each interrupt */
 875        for (; i < 10; i++) {
 876                /* Interrupt to test */
 877                mask = 1 << i;
 878
 879                if (!shared_int) {
 880                        /* Disable the interrupt to be reported in
 881                         * the cause register and then force the same
 882                         * interrupt and see if one gets posted.  If
 883                         * an interrupt was posted to the bus, the
 884                         * test failed.
 885                         */
 886                        adapter->test_icr = 0;
 887                        ew32(IMC, mask);
 888                        ew32(ICS, mask);
 889                        E1000_WRITE_FLUSH();
 890                        msleep(10);
 891
 892                        if (adapter->test_icr & mask) {
 893                                *data = 3;
 894                                break;
 895                        }
 896                }
 897
 898                /* Enable the interrupt to be reported in
 899                 * the cause register and then force the same
 900                 * interrupt and see if one gets posted.  If
 901                 * an interrupt was not posted to the bus, the
 902                 * test failed.
 903                 */
 904                adapter->test_icr = 0;
 905                ew32(IMS, mask);
 906                ew32(ICS, mask);
 907                E1000_WRITE_FLUSH();
 908                msleep(10);
 909
 910                if (!(adapter->test_icr & mask)) {
 911                        *data = 4;
 912                        break;
 913                }
 914
 915                if (!shared_int) {
 916                        /* Disable the other interrupts to be reported in
 917                         * the cause register and then force the other
 918                         * interrupts and see if any get posted.  If
 919                         * an interrupt was posted to the bus, the
 920                         * test failed.
 921                         */
 922                        adapter->test_icr = 0;
 923                        ew32(IMC, ~mask & 0x00007FFF);
 924                        ew32(ICS, ~mask & 0x00007FFF);
 925                        E1000_WRITE_FLUSH();
 926                        msleep(10);
 927
 928                        if (adapter->test_icr) {
 929                                *data = 5;
 930                                break;
 931                        }
 932                }
 933        }
 934
 935        /* Disable all the interrupts */
 936        ew32(IMC, 0xFFFFFFFF);
 937        E1000_WRITE_FLUSH();
 938        msleep(10);
 939
 940        /* Unhook test interrupt handler */
 941        free_irq(irq, netdev);
 942
 943        return *data;
 944}
 945
 946static void e1000_free_desc_rings(struct e1000_adapter *adapter)
 947{
 948        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 949        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 950        struct pci_dev *pdev = adapter->pdev;
 951        int i;
 952
 953        if (txdr->desc && txdr->buffer_info) {
 954                for (i = 0; i < txdr->count; i++) {
 955                        if (txdr->buffer_info[i].dma)
 956                                dma_unmap_single(&pdev->dev,
 957                                                 txdr->buffer_info[i].dma,
 958                                                 txdr->buffer_info[i].length,
 959                                                 DMA_TO_DEVICE);
 960                        if (txdr->buffer_info[i].skb)
 961                                dev_kfree_skb(txdr->buffer_info[i].skb);
 962                }
 963        }
 964
 965        if (rxdr->desc && rxdr->buffer_info) {
 966                for (i = 0; i < rxdr->count; i++) {
 967                        if (rxdr->buffer_info[i].dma)
 968                                dma_unmap_single(&pdev->dev,
 969                                                 rxdr->buffer_info[i].dma,
 970                                                 E1000_RXBUFFER_2048,
 971                                                 DMA_FROM_DEVICE);
 972                        kfree(rxdr->buffer_info[i].rxbuf.data);
 973                }
 974        }
 975
 976        if (txdr->desc) {
 977                dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 978                                  txdr->dma);
 979                txdr->desc = NULL;
 980        }
 981        if (rxdr->desc) {
 982                dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 983                                  rxdr->dma);
 984                rxdr->desc = NULL;
 985        }
 986
 987        kfree(txdr->buffer_info);
 988        txdr->buffer_info = NULL;
 989        kfree(rxdr->buffer_info);
 990        rxdr->buffer_info = NULL;
 991}
 992
 993static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
 994{
 995        struct e1000_hw *hw = &adapter->hw;
 996        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 997        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 998        struct pci_dev *pdev = adapter->pdev;
 999        u32 rctl;
1000        int i, ret_val;
1001
1002        /* Setup Tx descriptor ring and Tx buffers */
1003
1004        if (!txdr->count)
1005                txdr->count = E1000_DEFAULT_TXD;
1006
1007        txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1008                                    GFP_KERNEL);
1009        if (!txdr->buffer_info) {
1010                ret_val = 1;
1011                goto err_nomem;
1012        }
1013
1014        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1015        txdr->size = ALIGN(txdr->size, 4096);
1016        txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1017                                         GFP_KERNEL);
1018        if (!txdr->desc) {
1019                ret_val = 2;
1020                goto err_nomem;
1021        }
1022        txdr->next_to_use = txdr->next_to_clean = 0;
1023
1024        ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1025        ew32(TDBAH, ((u64)txdr->dma >> 32));
1026        ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1027        ew32(TDH, 0);
1028        ew32(TDT, 0);
1029        ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1030             E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1031             E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1032
1033        for (i = 0; i < txdr->count; i++) {
1034                struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1035                struct sk_buff *skb;
1036                unsigned int size = 1024;
1037
1038                skb = alloc_skb(size, GFP_KERNEL);
1039                if (!skb) {
1040                        ret_val = 3;
1041                        goto err_nomem;
1042                }
1043                skb_put(skb, size);
1044                txdr->buffer_info[i].skb = skb;
1045                txdr->buffer_info[i].length = skb->len;
1046                txdr->buffer_info[i].dma =
1047                        dma_map_single(&pdev->dev, skb->data, skb->len,
1048                                       DMA_TO_DEVICE);
1049                if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1050                        ret_val = 4;
1051                        goto err_nomem;
1052                }
1053                tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1054                tx_desc->lower.data = cpu_to_le32(skb->len);
1055                tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1056                                                   E1000_TXD_CMD_IFCS |
1057                                                   E1000_TXD_CMD_RPS);
1058                tx_desc->upper.data = 0;
1059        }
1060
1061        /* Setup Rx descriptor ring and Rx buffers */
1062
1063        if (!rxdr->count)
1064                rxdr->count = E1000_DEFAULT_RXD;
1065
1066        rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1067                                    GFP_KERNEL);
1068        if (!rxdr->buffer_info) {
1069                ret_val = 5;
1070                goto err_nomem;
1071        }
1072
1073        rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1074        rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1075                                         GFP_KERNEL);
1076        if (!rxdr->desc) {
1077                ret_val = 6;
1078                goto err_nomem;
1079        }
1080        rxdr->next_to_use = rxdr->next_to_clean = 0;
1081
1082        rctl = er32(RCTL);
1083        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1084        ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1085        ew32(RDBAH, ((u64)rxdr->dma >> 32));
1086        ew32(RDLEN, rxdr->size);
1087        ew32(RDH, 0);
1088        ew32(RDT, 0);
1089        rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1090                E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1091                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1092        ew32(RCTL, rctl);
1093
1094        for (i = 0; i < rxdr->count; i++) {
1095                struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1096                u8 *buf;
1097
1098                buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1099                              GFP_KERNEL);
1100                if (!buf) {
1101                        ret_val = 7;
1102                        goto err_nomem;
1103                }
1104                rxdr->buffer_info[i].rxbuf.data = buf;
1105
1106                rxdr->buffer_info[i].dma =
1107                        dma_map_single(&pdev->dev,
1108                                       buf + NET_SKB_PAD + NET_IP_ALIGN,
1109                                       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1110                if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1111                        ret_val = 8;
1112                        goto err_nomem;
1113                }
1114                rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115        }
1116
1117        return 0;
1118
1119err_nomem:
1120        e1000_free_desc_rings(adapter);
1121        return ret_val;
1122}
1123
1124static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1125{
1126        struct e1000_hw *hw = &adapter->hw;
1127
1128        /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129        e1000_write_phy_reg(hw, 29, 0x001F);
1130        e1000_write_phy_reg(hw, 30, 0x8FFC);
1131        e1000_write_phy_reg(hw, 29, 0x001A);
1132        e1000_write_phy_reg(hw, 30, 0x8FF0);
1133}
1134
1135static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1136{
1137        struct e1000_hw *hw = &adapter->hw;
1138        u16 phy_reg;
1139
1140        /* Because we reset the PHY above, we need to re-force TX_CLK in the
1141         * Extended PHY Specific Control Register to 25MHz clock.  This
1142         * value defaults back to a 2.5MHz clock when the PHY is reset.
1143         */
1144        e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1145        phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1146        e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1147
1148        /* In addition, because of the s/w reset above, we need to enable
1149         * CRS on TX.  This must be set for both full and half duplex
1150         * operation.
1151         */
1152        e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1153        phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1154        e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1155}
1156
1157static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1158{
1159        struct e1000_hw *hw = &adapter->hw;
1160        u32 ctrl_reg;
1161        u16 phy_reg;
1162
1163        /* Setup the Device Control Register for PHY loopback test. */
1164
1165        ctrl_reg = er32(CTRL);
1166        ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1167                     E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1168                     E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1169                     E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1170                     E1000_CTRL_FD);            /* Force Duplex to FULL */
1171
1172        ew32(CTRL, ctrl_reg);
1173
1174        /* Read the PHY Specific Control Register (0x10) */
1175        e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1176
1177        /* Clear Auto-Crossover bits in PHY Specific Control Register
1178         * (bits 6:5).
1179         */
1180        phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1181        e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1182
1183        /* Perform software reset on the PHY */
1184        e1000_phy_reset(hw);
1185
1186        /* Have to setup TX_CLK and TX_CRS after software reset */
1187        e1000_phy_reset_clk_and_crs(adapter);
1188
1189        e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1190
1191        /* Wait for reset to complete. */
1192        udelay(500);
1193
1194        /* Have to setup TX_CLK and TX_CRS after software reset */
1195        e1000_phy_reset_clk_and_crs(adapter);
1196
1197        /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1198        e1000_phy_disable_receiver(adapter);
1199
1200        /* Set the loopback bit in the PHY control register. */
1201        e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1202        phy_reg |= MII_CR_LOOPBACK;
1203        e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1204
1205        /* Setup TX_CLK and TX_CRS one more time. */
1206        e1000_phy_reset_clk_and_crs(adapter);
1207
1208        /* Check Phy Configuration */
1209        e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210        if (phy_reg != 0x4100)
1211                return 9;
1212
1213        e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1214        if (phy_reg != 0x0070)
1215                return 10;
1216
1217        e1000_read_phy_reg(hw, 29, &phy_reg);
1218        if (phy_reg != 0x001A)
1219                return 11;
1220
1221        return 0;
1222}
1223
1224static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1225{
1226        struct e1000_hw *hw = &adapter->hw;
1227        u32 ctrl_reg = 0;
1228        u32 stat_reg = 0;
1229
1230        hw->autoneg = false;
1231
1232        if (hw->phy_type == e1000_phy_m88) {
1233                /* Auto-MDI/MDIX Off */
1234                e1000_write_phy_reg(hw,
1235                                    M88E1000_PHY_SPEC_CTRL, 0x0808);
1236                /* reset to update Auto-MDI/MDIX */
1237                e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1238                /* autoneg off */
1239                e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1240        }
1241
1242        ctrl_reg = er32(CTRL);
1243
1244        /* force 1000, set loopback */
1245        e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1246
1247        /* Now set up the MAC to the same speed/duplex as the PHY. */
1248        ctrl_reg = er32(CTRL);
1249        ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1250        ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1251                        E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1252                        E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1253                        E1000_CTRL_FD); /* Force Duplex to FULL */
1254
1255        if (hw->media_type == e1000_media_type_copper &&
1256            hw->phy_type == e1000_phy_m88)
1257                ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1258        else {
1259                /* Set the ILOS bit on the fiber Nic is half
1260                 * duplex link is detected.
1261                 */
1262                stat_reg = er32(STATUS);
1263                if ((stat_reg & E1000_STATUS_FD) == 0)
1264                        ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1265        }
1266
1267        ew32(CTRL, ctrl_reg);
1268
1269        /* Disable the receiver on the PHY so when a cable is plugged in, the
1270         * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1271         */
1272        if (hw->phy_type == e1000_phy_m88)
1273                e1000_phy_disable_receiver(adapter);
1274
1275        udelay(500);
1276
1277        return 0;
1278}
1279
1280static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1281{
1282        struct e1000_hw *hw = &adapter->hw;
1283        u16 phy_reg = 0;
1284        u16 count = 0;
1285
1286        switch (hw->mac_type) {
1287        case e1000_82543:
1288                if (hw->media_type == e1000_media_type_copper) {
1289                        /* Attempt to setup Loopback mode on Non-integrated PHY.
1290                         * Some PHY registers get corrupted at random, so
1291                         * attempt this 10 times.
1292                         */
1293                        while (e1000_nonintegrated_phy_loopback(adapter) &&
1294                               count++ < 10);
1295                        if (count < 11)
1296                                return 0;
1297                }
1298                break;
1299
1300        case e1000_82544:
1301        case e1000_82540:
1302        case e1000_82545:
1303        case e1000_82545_rev_3:
1304        case e1000_82546:
1305        case e1000_82546_rev_3:
1306        case e1000_82541:
1307        case e1000_82541_rev_2:
1308        case e1000_82547:
1309        case e1000_82547_rev_2:
1310                return e1000_integrated_phy_loopback(adapter);
1311        default:
1312                /* Default PHY loopback work is to read the MII
1313                 * control register and assert bit 14 (loopback mode).
1314                 */
1315                e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1316                phy_reg |= MII_CR_LOOPBACK;
1317                e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1318                return 0;
1319        }
1320
1321        return 8;
1322}
1323
1324static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1325{
1326        struct e1000_hw *hw = &adapter->hw;
1327        u32 rctl;
1328
1329        if (hw->media_type == e1000_media_type_fiber ||
1330            hw->media_type == e1000_media_type_internal_serdes) {
1331                switch (hw->mac_type) {
1332                case e1000_82545:
1333                case e1000_82546:
1334                case e1000_82545_rev_3:
1335                case e1000_82546_rev_3:
1336                        return e1000_set_phy_loopback(adapter);
1337                default:
1338                        rctl = er32(RCTL);
1339                        rctl |= E1000_RCTL_LBM_TCVR;
1340                        ew32(RCTL, rctl);
1341                        return 0;
1342                }
1343        } else if (hw->media_type == e1000_media_type_copper) {
1344                return e1000_set_phy_loopback(adapter);
1345        }
1346
1347        return 7;
1348}
1349
1350static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1351{
1352        struct e1000_hw *hw = &adapter->hw;
1353        u32 rctl;
1354        u16 phy_reg;
1355
1356        rctl = er32(RCTL);
1357        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1358        ew32(RCTL, rctl);
1359
1360        switch (hw->mac_type) {
1361        case e1000_82545:
1362        case e1000_82546:
1363        case e1000_82545_rev_3:
1364        case e1000_82546_rev_3:
1365        default:
1366                hw->autoneg = true;
1367                e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1368                if (phy_reg & MII_CR_LOOPBACK) {
1369                        phy_reg &= ~MII_CR_LOOPBACK;
1370                        e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1371                        e1000_phy_reset(hw);
1372                }
1373                break;
1374        }
1375}
1376
1377static void e1000_create_lbtest_frame(struct sk_buff *skb,
1378                                      unsigned int frame_size)
1379{
1380        memset(skb->data, 0xFF, frame_size);
1381        frame_size &= ~1;
1382        memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1383        memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1384        memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1385}
1386
1387static int e1000_check_lbtest_frame(const unsigned char *data,
1388                                    unsigned int frame_size)
1389{
1390        frame_size &= ~1;
1391        if (*(data + 3) == 0xFF) {
1392                if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1393                    (*(data + frame_size / 2 + 12) == 0xAF)) {
1394                        return 0;
1395                }
1396        }
1397        return 13;
1398}
1399
1400static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1401{
1402        struct e1000_hw *hw = &adapter->hw;
1403        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1404        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1405        struct pci_dev *pdev = adapter->pdev;
1406        int i, j, k, l, lc, good_cnt, ret_val = 0;
1407        unsigned long time;
1408
1409        ew32(RDT, rxdr->count - 1);
1410
1411        /* Calculate the loop count based on the largest descriptor ring
1412         * The idea is to wrap the largest ring a number of times using 64
1413         * send/receive pairs during each loop
1414         */
1415
1416        if (rxdr->count <= txdr->count)
1417                lc = ((txdr->count / 64) * 2) + 1;
1418        else
1419                lc = ((rxdr->count / 64) * 2) + 1;
1420
1421        k = l = 0;
1422        for (j = 0; j <= lc; j++) { /* loop count loop */
1423                for (i = 0; i < 64; i++) { /* send the packets */
1424                        e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1425                                                  1024);
1426                        dma_sync_single_for_device(&pdev->dev,
1427                                                   txdr->buffer_info[k].dma,
1428                                                   txdr->buffer_info[k].length,
1429                                                   DMA_TO_DEVICE);
1430                        if (unlikely(++k == txdr->count))
1431                                k = 0;
1432                }
1433                ew32(TDT, k);
1434                E1000_WRITE_FLUSH();
1435                msleep(200);
1436                time = jiffies; /* set the start time for the receive */
1437                good_cnt = 0;
1438                do { /* receive the sent packets */
1439                        dma_sync_single_for_cpu(&pdev->dev,
1440                                                rxdr->buffer_info[l].dma,
1441                                                E1000_RXBUFFER_2048,
1442                                                DMA_FROM_DEVICE);
1443
1444                        ret_val = e1000_check_lbtest_frame(
1445                                        rxdr->buffer_info[l].rxbuf.data +
1446                                        NET_SKB_PAD + NET_IP_ALIGN,
1447                                        1024);
1448                        if (!ret_val)
1449                                good_cnt++;
1450                        if (unlikely(++l == rxdr->count))
1451                                l = 0;
1452                        /* time + 20 msecs (200 msecs on 2.4) is more than
1453                         * enough time to complete the receives, if it's
1454                         * exceeded, break and error off
1455                         */
1456                } while (good_cnt < 64 && time_after(time + 20, jiffies));
1457
1458                if (good_cnt != 64) {
1459                        ret_val = 13; /* ret_val is the same as mis-compare */
1460                        break;
1461                }
1462                if (time_after_eq(jiffies, time + 2)) {
1463                        ret_val = 14; /* error code for time out error */
1464                        break;
1465                }
1466        } /* end loop count loop */
1467        return ret_val;
1468}
1469
1470static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1471{
1472        *data = e1000_setup_desc_rings(adapter);
1473        if (*data)
1474                goto out;
1475        *data = e1000_setup_loopback_test(adapter);
1476        if (*data)
1477                goto err_loopback;
1478        *data = e1000_run_loopback_test(adapter);
1479        e1000_loopback_cleanup(adapter);
1480
1481err_loopback:
1482        e1000_free_desc_rings(adapter);
1483out:
1484        return *data;
1485}
1486
1487static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1488{
1489        struct e1000_hw *hw = &adapter->hw;
1490        *data = 0;
1491        if (hw->media_type == e1000_media_type_internal_serdes) {
1492                int i = 0;
1493
1494                hw->serdes_has_link = false;
1495
1496                /* On some blade server designs, link establishment
1497                 * could take as long as 2-3 minutes
1498                 */
1499                do {
1500                        e1000_check_for_link(hw);
1501                        if (hw->serdes_has_link)
1502                                return *data;
1503                        msleep(20);
1504                } while (i++ < 3750);
1505
1506                *data = 1;
1507        } else {
1508                e1000_check_for_link(hw);
1509                if (hw->autoneg)  /* if auto_neg is set wait for it */
1510                        msleep(4000);
1511
1512                if (!(er32(STATUS) & E1000_STATUS_LU))
1513                        *data = 1;
1514        }
1515        return *data;
1516}
1517
1518static int e1000_get_sset_count(struct net_device *netdev, int sset)
1519{
1520        switch (sset) {
1521        case ETH_SS_TEST:
1522                return E1000_TEST_LEN;
1523        case ETH_SS_STATS:
1524                return E1000_STATS_LEN;
1525        default:
1526                return -EOPNOTSUPP;
1527        }
1528}
1529
1530static void e1000_diag_test(struct net_device *netdev,
1531                            struct ethtool_test *eth_test, u64 *data)
1532{
1533        struct e1000_adapter *adapter = netdev_priv(netdev);
1534        struct e1000_hw *hw = &adapter->hw;
1535        bool if_running = netif_running(netdev);
1536
1537        set_bit(__E1000_TESTING, &adapter->flags);
1538        if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1539                /* Offline tests */
1540
1541                /* save speed, duplex, autoneg settings */
1542                u16 autoneg_advertised = hw->autoneg_advertised;
1543                u8 forced_speed_duplex = hw->forced_speed_duplex;
1544                u8 autoneg = hw->autoneg;
1545
1546                e_info(hw, "offline testing starting\n");
1547
1548                /* Link test performed before hardware reset so autoneg doesn't
1549                 * interfere with test result
1550                 */
1551                if (e1000_link_test(adapter, &data[4]))
1552                        eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554                if (if_running)
1555                        /* indicate we're in test mode */
1556                        e1000_close(netdev);
1557                else
1558                        e1000_reset(adapter);
1559
1560                if (e1000_reg_test(adapter, &data[0]))
1561                        eth_test->flags |= ETH_TEST_FL_FAILED;
1562
1563                e1000_reset(adapter);
1564                if (e1000_eeprom_test(adapter, &data[1]))
1565                        eth_test->flags |= ETH_TEST_FL_FAILED;
1566
1567                e1000_reset(adapter);
1568                if (e1000_intr_test(adapter, &data[2]))
1569                        eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571                e1000_reset(adapter);
1572                /* make sure the phy is powered up */
1573                e1000_power_up_phy(adapter);
1574                if (e1000_loopback_test(adapter, &data[3]))
1575                        eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577                /* restore speed, duplex, autoneg settings */
1578                hw->autoneg_advertised = autoneg_advertised;
1579                hw->forced_speed_duplex = forced_speed_duplex;
1580                hw->autoneg = autoneg;
1581
1582                e1000_reset(adapter);
1583                clear_bit(__E1000_TESTING, &adapter->flags);
1584                if (if_running)
1585                        e1000_open(netdev);
1586        } else {
1587                e_info(hw, "online testing starting\n");
1588                /* Online tests */
1589                if (e1000_link_test(adapter, &data[4]))
1590                        eth_test->flags |= ETH_TEST_FL_FAILED;
1591
1592                /* Online tests aren't run; pass by default */
1593                data[0] = 0;
1594                data[1] = 0;
1595                data[2] = 0;
1596                data[3] = 0;
1597
1598                clear_bit(__E1000_TESTING, &adapter->flags);
1599        }
1600        msleep_interruptible(4 * 1000);
1601}
1602
1603static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1604                               struct ethtool_wolinfo *wol)
1605{
1606        struct e1000_hw *hw = &adapter->hw;
1607        int retval = 1; /* fail by default */
1608
1609        switch (hw->device_id) {
1610        case E1000_DEV_ID_82542:
1611        case E1000_DEV_ID_82543GC_FIBER:
1612        case E1000_DEV_ID_82543GC_COPPER:
1613        case E1000_DEV_ID_82544EI_FIBER:
1614        case E1000_DEV_ID_82546EB_QUAD_COPPER:
1615        case E1000_DEV_ID_82545EM_FIBER:
1616        case E1000_DEV_ID_82545EM_COPPER:
1617        case E1000_DEV_ID_82546GB_QUAD_COPPER:
1618        case E1000_DEV_ID_82546GB_PCIE:
1619                /* these don't support WoL at all */
1620                wol->supported = 0;
1621                break;
1622        case E1000_DEV_ID_82546EB_FIBER:
1623        case E1000_DEV_ID_82546GB_FIBER:
1624                /* Wake events not supported on port B */
1625                if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1626                        wol->supported = 0;
1627                        break;
1628                }
1629                /* return success for non excluded adapter ports */
1630                retval = 0;
1631                break;
1632        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1633                /* quad port adapters only support WoL on port A */
1634                if (!adapter->quad_port_a) {
1635                        wol->supported = 0;
1636                        break;
1637                }
1638                /* return success for non excluded adapter ports */
1639                retval = 0;
1640                break;
1641        default:
1642                /* dual port cards only support WoL on port A from now on
1643                 * unless it was enabled in the eeprom for port B
1644                 * so exclude FUNC_1 ports from having WoL enabled
1645                 */
1646                if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1647                    !adapter->eeprom_wol) {
1648                        wol->supported = 0;
1649                        break;
1650                }
1651
1652                retval = 0;
1653        }
1654
1655        return retval;
1656}
1657
1658static void e1000_get_wol(struct net_device *netdev,
1659                          struct ethtool_wolinfo *wol)
1660{
1661        struct e1000_adapter *adapter = netdev_priv(netdev);
1662        struct e1000_hw *hw = &adapter->hw;
1663
1664        wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1665        wol->wolopts = 0;
1666
1667        /* this function will set ->supported = 0 and return 1 if wol is not
1668         * supported by this hardware
1669         */
1670        if (e1000_wol_exclusion(adapter, wol) ||
1671            !device_can_wakeup(&adapter->pdev->dev))
1672                return;
1673
1674        /* apply any specific unsupported masks here */
1675        switch (hw->device_id) {
1676        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1677                /* KSP3 does not support UCAST wake-ups */
1678                wol->supported &= ~WAKE_UCAST;
1679
1680                if (adapter->wol & E1000_WUFC_EX)
1681                        e_err(drv, "Interface does not support directed "
1682                              "(unicast) frame wake-up packets\n");
1683                break;
1684        default:
1685                break;
1686        }
1687
1688        if (adapter->wol & E1000_WUFC_EX)
1689                wol->wolopts |= WAKE_UCAST;
1690        if (adapter->wol & E1000_WUFC_MC)
1691                wol->wolopts |= WAKE_MCAST;
1692        if (adapter->wol & E1000_WUFC_BC)
1693                wol->wolopts |= WAKE_BCAST;
1694        if (adapter->wol & E1000_WUFC_MAG)
1695                wol->wolopts |= WAKE_MAGIC;
1696}
1697
1698static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1699{
1700        struct e1000_adapter *adapter = netdev_priv(netdev);
1701        struct e1000_hw *hw = &adapter->hw;
1702
1703        if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1704                return -EOPNOTSUPP;
1705
1706        if (e1000_wol_exclusion(adapter, wol) ||
1707            !device_can_wakeup(&adapter->pdev->dev))
1708                return wol->wolopts ? -EOPNOTSUPP : 0;
1709
1710        switch (hw->device_id) {
1711        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1712                if (wol->wolopts & WAKE_UCAST) {
1713                        e_err(drv, "Interface does not support directed "
1714                              "(unicast) frame wake-up packets\n");
1715                        return -EOPNOTSUPP;
1716                }
1717                break;
1718        default:
1719                break;
1720        }
1721
1722        /* these settings will always override what we currently have */
1723        adapter->wol = 0;
1724
1725        if (wol->wolopts & WAKE_UCAST)
1726                adapter->wol |= E1000_WUFC_EX;
1727        if (wol->wolopts & WAKE_MCAST)
1728                adapter->wol |= E1000_WUFC_MC;
1729        if (wol->wolopts & WAKE_BCAST)
1730                adapter->wol |= E1000_WUFC_BC;
1731        if (wol->wolopts & WAKE_MAGIC)
1732                adapter->wol |= E1000_WUFC_MAG;
1733
1734        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1735
1736        return 0;
1737}
1738
1739static int e1000_set_phys_id(struct net_device *netdev,
1740                             enum ethtool_phys_id_state state)
1741{
1742        struct e1000_adapter *adapter = netdev_priv(netdev);
1743        struct e1000_hw *hw = &adapter->hw;
1744
1745        switch (state) {
1746        case ETHTOOL_ID_ACTIVE:
1747                e1000_setup_led(hw);
1748                return 2;
1749
1750        case ETHTOOL_ID_ON:
1751                e1000_led_on(hw);
1752                break;
1753
1754        case ETHTOOL_ID_OFF:
1755                e1000_led_off(hw);
1756                break;
1757
1758        case ETHTOOL_ID_INACTIVE:
1759                e1000_cleanup_led(hw);
1760        }
1761
1762        return 0;
1763}
1764
1765static int e1000_get_coalesce(struct net_device *netdev,
1766                              struct ethtool_coalesce *ec)
1767{
1768        struct e1000_adapter *adapter = netdev_priv(netdev);
1769
1770        if (adapter->hw.mac_type < e1000_82545)
1771                return -EOPNOTSUPP;
1772
1773        if (adapter->itr_setting <= 4)
1774                ec->rx_coalesce_usecs = adapter->itr_setting;
1775        else
1776                ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1777
1778        return 0;
1779}
1780
1781static int e1000_set_coalesce(struct net_device *netdev,
1782                              struct ethtool_coalesce *ec)
1783{
1784        struct e1000_adapter *adapter = netdev_priv(netdev);
1785        struct e1000_hw *hw = &adapter->hw;
1786
1787        if (hw->mac_type < e1000_82545)
1788                return -EOPNOTSUPP;
1789
1790        if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1791            ((ec->rx_coalesce_usecs > 4) &&
1792             (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1793            (ec->rx_coalesce_usecs == 2))
1794                return -EINVAL;
1795
1796        if (ec->rx_coalesce_usecs == 4) {
1797                adapter->itr = adapter->itr_setting = 4;
1798        } else if (ec->rx_coalesce_usecs <= 3) {
1799                adapter->itr = 20000;
1800                adapter->itr_setting = ec->rx_coalesce_usecs;
1801        } else {
1802                adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1803                adapter->itr_setting = adapter->itr & ~3;
1804        }
1805
1806        if (adapter->itr_setting != 0)
1807                ew32(ITR, 1000000000 / (adapter->itr * 256));
1808        else
1809                ew32(ITR, 0);
1810
1811        return 0;
1812}
1813
1814static int e1000_nway_reset(struct net_device *netdev)
1815{
1816        struct e1000_adapter *adapter = netdev_priv(netdev);
1817
1818        if (netif_running(netdev))
1819                e1000_reinit_locked(adapter);
1820        return 0;
1821}
1822
1823static void e1000_get_ethtool_stats(struct net_device *netdev,
1824                                    struct ethtool_stats *stats, u64 *data)
1825{
1826        struct e1000_adapter *adapter = netdev_priv(netdev);
1827        int i;
1828        const struct e1000_stats *stat = e1000_gstrings_stats;
1829
1830        e1000_update_stats(adapter);
1831        for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1832                char *p;
1833
1834                switch (stat->type) {
1835                case NETDEV_STATS:
1836                        p = (char *)netdev + stat->stat_offset;
1837                        break;
1838                case E1000_STATS:
1839                        p = (char *)adapter + stat->stat_offset;
1840                        break;
1841                default:
1842                        netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1843                                         stat->type, i);
1844                        continue;
1845                }
1846
1847                if (stat->sizeof_stat == sizeof(u64))
1848                        data[i] = *(u64 *)p;
1849                else
1850                        data[i] = *(u32 *)p;
1851        }
1852/* BUG_ON(i != E1000_STATS_LEN); */
1853}
1854
1855static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856                              u8 *data)
1857{
1858        u8 *p = data;
1859        int i;
1860
1861        switch (stringset) {
1862        case ETH_SS_TEST:
1863                memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1864                break;
1865        case ETH_SS_STATS:
1866                for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1867                        memcpy(p, e1000_gstrings_stats[i].stat_string,
1868                               ETH_GSTRING_LEN);
1869                        p += ETH_GSTRING_LEN;
1870                }
1871                /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1872                break;
1873        }
1874}
1875
1876static const struct ethtool_ops e1000_ethtool_ops = {
1877        .get_drvinfo            = e1000_get_drvinfo,
1878        .get_regs_len           = e1000_get_regs_len,
1879        .get_regs               = e1000_get_regs,
1880        .get_wol                = e1000_get_wol,
1881        .set_wol                = e1000_set_wol,
1882        .get_msglevel           = e1000_get_msglevel,
1883        .set_msglevel           = e1000_set_msglevel,
1884        .nway_reset             = e1000_nway_reset,
1885        .get_link               = e1000_get_link,
1886        .get_eeprom_len         = e1000_get_eeprom_len,
1887        .get_eeprom             = e1000_get_eeprom,
1888        .set_eeprom             = e1000_set_eeprom,
1889        .get_ringparam          = e1000_get_ringparam,
1890        .set_ringparam          = e1000_set_ringparam,
1891        .get_pauseparam         = e1000_get_pauseparam,
1892        .set_pauseparam         = e1000_set_pauseparam,
1893        .self_test              = e1000_diag_test,
1894        .get_strings            = e1000_get_strings,
1895        .set_phys_id            = e1000_set_phys_id,
1896        .get_ethtool_stats      = e1000_get_ethtool_stats,
1897        .get_sset_count         = e1000_get_sset_count,
1898        .get_coalesce           = e1000_get_coalesce,
1899        .set_coalesce           = e1000_set_coalesce,
1900        .get_ts_info            = ethtool_op_get_ts_info,
1901        .get_link_ksettings     = e1000_get_link_ksettings,
1902        .set_link_ksettings     = e1000_set_link_ksettings,
1903};
1904
1905void e1000_set_ethtool_ops(struct net_device *netdev)
1906{
1907        netdev->ethtool_ops = &e1000_ethtool_ops;
1908}
1909