linux/drivers/net/ethernet/intel/e1000e/80003es2lan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
  24 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
  25 */
  26
  27#include "e1000.h"
  28
  29/* A table for the GG82563 cable length where the range is defined
  30 * with a lower bound at "index" and the upper bound at
  31 * "index + 5".
  32 */
  33static const u16 e1000_gg82563_cable_length_table[] = {
  34        0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  35};
  36
  37#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  38                ARRAY_SIZE(e1000_gg82563_cable_length_table)
  39
  40static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  41static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  42static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  43static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  44static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  45static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  46static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  47static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  48                                           u16 *data);
  49static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  50                                            u16 data);
  51static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  52
  53/**
  54 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  55 *  @hw: pointer to the HW structure
  56 **/
  57static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  58{
  59        struct e1000_phy_info *phy = &hw->phy;
  60        s32 ret_val;
  61
  62        if (hw->phy.media_type != e1000_media_type_copper) {
  63                phy->type = e1000_phy_none;
  64                return 0;
  65        } else {
  66                phy->ops.power_up = e1000_power_up_phy_copper;
  67                phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  68        }
  69
  70        phy->addr = 1;
  71        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  72        phy->reset_delay_us = 100;
  73        phy->type = e1000_phy_gg82563;
  74
  75        /* This can only be done after all function pointers are setup. */
  76        ret_val = e1000e_get_phy_id(hw);
  77
  78        /* Verify phy id */
  79        if (phy->id != GG82563_E_PHY_ID)
  80                return -E1000_ERR_PHY;
  81
  82        return ret_val;
  83}
  84
  85/**
  86 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  87 *  @hw: pointer to the HW structure
  88 **/
  89static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  90{
  91        struct e1000_nvm_info *nvm = &hw->nvm;
  92        u32 eecd = er32(EECD);
  93        u16 size;
  94
  95        nvm->opcode_bits = 8;
  96        nvm->delay_usec = 1;
  97        switch (nvm->override) {
  98        case e1000_nvm_override_spi_large:
  99                nvm->page_size = 32;
 100                nvm->address_bits = 16;
 101                break;
 102        case e1000_nvm_override_spi_small:
 103                nvm->page_size = 8;
 104                nvm->address_bits = 8;
 105                break;
 106        default:
 107                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 108                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 109                break;
 110        }
 111
 112        nvm->type = e1000_nvm_eeprom_spi;
 113
 114        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 115                     E1000_EECD_SIZE_EX_SHIFT);
 116
 117        /* Added to a constant, "size" becomes the left-shift value
 118         * for setting word_size.
 119         */
 120        size += NVM_WORD_SIZE_BASE_SHIFT;
 121
 122        /* EEPROM access above 16k is unsupported */
 123        if (size > 14)
 124                size = 14;
 125        nvm->word_size = BIT(size);
 126
 127        return 0;
 128}
 129
 130/**
 131 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 132 *  @hw: pointer to the HW structure
 133 **/
 134static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 135{
 136        struct e1000_mac_info *mac = &hw->mac;
 137
 138        /* Set media type and media-dependent function pointers */
 139        switch (hw->adapter->pdev->device) {
 140        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 141                hw->phy.media_type = e1000_media_type_internal_serdes;
 142                mac->ops.check_for_link = e1000e_check_for_serdes_link;
 143                mac->ops.setup_physical_interface =
 144                    e1000e_setup_fiber_serdes_link;
 145                break;
 146        default:
 147                hw->phy.media_type = e1000_media_type_copper;
 148                mac->ops.check_for_link = e1000e_check_for_copper_link;
 149                mac->ops.setup_physical_interface =
 150                    e1000_setup_copper_link_80003es2lan;
 151                break;
 152        }
 153
 154        /* Set mta register count */
 155        mac->mta_reg_count = 128;
 156        /* Set rar entry count */
 157        mac->rar_entry_count = E1000_RAR_ENTRIES;
 158        /* FWSM register */
 159        mac->has_fwsm = true;
 160        /* ARC supported; valid only if manageability features are enabled. */
 161        mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 162        /* Adaptive IFS not supported */
 163        mac->adaptive_ifs = false;
 164
 165        /* set lan id for port to determine which phy lock to use */
 166        hw->mac.ops.set_lan_id(hw);
 167
 168        return 0;
 169}
 170
 171static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 172{
 173        struct e1000_hw *hw = &adapter->hw;
 174        s32 rc;
 175
 176        rc = e1000_init_mac_params_80003es2lan(hw);
 177        if (rc)
 178                return rc;
 179
 180        rc = e1000_init_nvm_params_80003es2lan(hw);
 181        if (rc)
 182                return rc;
 183
 184        rc = e1000_init_phy_params_80003es2lan(hw);
 185        if (rc)
 186                return rc;
 187
 188        return 0;
 189}
 190
 191/**
 192 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 193 *  @hw: pointer to the HW structure
 194 *
 195 *  A wrapper to acquire access rights to the correct PHY.
 196 **/
 197static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 198{
 199        u16 mask;
 200
 201        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 202        return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 203}
 204
 205/**
 206 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 207 *  @hw: pointer to the HW structure
 208 *
 209 *  A wrapper to release access rights to the correct PHY.
 210 **/
 211static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 212{
 213        u16 mask;
 214
 215        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 216        e1000_release_swfw_sync_80003es2lan(hw, mask);
 217}
 218
 219/**
 220 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 221 *  @hw: pointer to the HW structure
 222 *
 223 *  Acquire the semaphore to access the Kumeran interface.
 224 *
 225 **/
 226static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 227{
 228        u16 mask;
 229
 230        mask = E1000_SWFW_CSR_SM;
 231
 232        return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 233}
 234
 235/**
 236 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 237 *  @hw: pointer to the HW structure
 238 *
 239 *  Release the semaphore used to access the Kumeran interface
 240 **/
 241static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 242{
 243        u16 mask;
 244
 245        mask = E1000_SWFW_CSR_SM;
 246
 247        e1000_release_swfw_sync_80003es2lan(hw, mask);
 248}
 249
 250/**
 251 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 252 *  @hw: pointer to the HW structure
 253 *
 254 *  Acquire the semaphore to access the EEPROM.
 255 **/
 256static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 257{
 258        s32 ret_val;
 259
 260        ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 261        if (ret_val)
 262                return ret_val;
 263
 264        ret_val = e1000e_acquire_nvm(hw);
 265
 266        if (ret_val)
 267                e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 268
 269        return ret_val;
 270}
 271
 272/**
 273 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 274 *  @hw: pointer to the HW structure
 275 *
 276 *  Release the semaphore used to access the EEPROM.
 277 **/
 278static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 279{
 280        e1000e_release_nvm(hw);
 281        e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 282}
 283
 284/**
 285 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 286 *  @hw: pointer to the HW structure
 287 *  @mask: specifies which semaphore to acquire
 288 *
 289 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 290 *  will also specify which port we're acquiring the lock for.
 291 **/
 292static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 293{
 294        u32 swfw_sync;
 295        u32 swmask = mask;
 296        u32 fwmask = mask << 16;
 297        s32 i = 0;
 298        s32 timeout = 50;
 299
 300        while (i < timeout) {
 301                if (e1000e_get_hw_semaphore(hw))
 302                        return -E1000_ERR_SWFW_SYNC;
 303
 304                swfw_sync = er32(SW_FW_SYNC);
 305                if (!(swfw_sync & (fwmask | swmask)))
 306                        break;
 307
 308                /* Firmware currently using resource (fwmask)
 309                 * or other software thread using resource (swmask)
 310                 */
 311                e1000e_put_hw_semaphore(hw);
 312                mdelay(5);
 313                i++;
 314        }
 315
 316        if (i == timeout) {
 317                e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 318                return -E1000_ERR_SWFW_SYNC;
 319        }
 320
 321        swfw_sync |= swmask;
 322        ew32(SW_FW_SYNC, swfw_sync);
 323
 324        e1000e_put_hw_semaphore(hw);
 325
 326        return 0;
 327}
 328
 329/**
 330 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 331 *  @hw: pointer to the HW structure
 332 *  @mask: specifies which semaphore to acquire
 333 *
 334 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 335 *  will also specify which port we're releasing the lock for.
 336 **/
 337static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 338{
 339        u32 swfw_sync;
 340
 341        while (e1000e_get_hw_semaphore(hw) != 0)
 342                ; /* Empty */
 343
 344        swfw_sync = er32(SW_FW_SYNC);
 345        swfw_sync &= ~mask;
 346        ew32(SW_FW_SYNC, swfw_sync);
 347
 348        e1000e_put_hw_semaphore(hw);
 349}
 350
 351/**
 352 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 353 *  @hw: pointer to the HW structure
 354 *  @offset: offset of the register to read
 355 *  @data: pointer to the data returned from the operation
 356 *
 357 *  Read the GG82563 PHY register.
 358 **/
 359static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 360                                                  u32 offset, u16 *data)
 361{
 362        s32 ret_val;
 363        u32 page_select;
 364        u16 temp;
 365
 366        ret_val = e1000_acquire_phy_80003es2lan(hw);
 367        if (ret_val)
 368                return ret_val;
 369
 370        /* Select Configuration Page */
 371        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 372                page_select = GG82563_PHY_PAGE_SELECT;
 373        } else {
 374                /* Use Alternative Page Select register to access
 375                 * registers 30 and 31
 376                 */
 377                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 378        }
 379
 380        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 381        ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 382        if (ret_val) {
 383                e1000_release_phy_80003es2lan(hw);
 384                return ret_val;
 385        }
 386
 387        if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 388                /* The "ready" bit in the MDIC register may be incorrectly set
 389                 * before the device has completed the "Page Select" MDI
 390                 * transaction.  So we wait 200us after each MDI command...
 391                 */
 392                usleep_range(200, 400);
 393
 394                /* ...and verify the command was successful. */
 395                ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 396
 397                if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 398                        e1000_release_phy_80003es2lan(hw);
 399                        return -E1000_ERR_PHY;
 400                }
 401
 402                usleep_range(200, 400);
 403
 404                ret_val = e1000e_read_phy_reg_mdic(hw,
 405                                                   MAX_PHY_REG_ADDRESS & offset,
 406                                                   data);
 407
 408                usleep_range(200, 400);
 409        } else {
 410                ret_val = e1000e_read_phy_reg_mdic(hw,
 411                                                   MAX_PHY_REG_ADDRESS & offset,
 412                                                   data);
 413        }
 414
 415        e1000_release_phy_80003es2lan(hw);
 416
 417        return ret_val;
 418}
 419
 420/**
 421 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 422 *  @hw: pointer to the HW structure
 423 *  @offset: offset of the register to read
 424 *  @data: value to write to the register
 425 *
 426 *  Write to the GG82563 PHY register.
 427 **/
 428static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 429                                                   u32 offset, u16 data)
 430{
 431        s32 ret_val;
 432        u32 page_select;
 433        u16 temp;
 434
 435        ret_val = e1000_acquire_phy_80003es2lan(hw);
 436        if (ret_val)
 437                return ret_val;
 438
 439        /* Select Configuration Page */
 440        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 441                page_select = GG82563_PHY_PAGE_SELECT;
 442        } else {
 443                /* Use Alternative Page Select register to access
 444                 * registers 30 and 31
 445                 */
 446                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 447        }
 448
 449        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 450        ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 451        if (ret_val) {
 452                e1000_release_phy_80003es2lan(hw);
 453                return ret_val;
 454        }
 455
 456        if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 457                /* The "ready" bit in the MDIC register may be incorrectly set
 458                 * before the device has completed the "Page Select" MDI
 459                 * transaction.  So we wait 200us after each MDI command...
 460                 */
 461                usleep_range(200, 400);
 462
 463                /* ...and verify the command was successful. */
 464                ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 465
 466                if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 467                        e1000_release_phy_80003es2lan(hw);
 468                        return -E1000_ERR_PHY;
 469                }
 470
 471                usleep_range(200, 400);
 472
 473                ret_val = e1000e_write_phy_reg_mdic(hw,
 474                                                    MAX_PHY_REG_ADDRESS &
 475                                                    offset, data);
 476
 477                usleep_range(200, 400);
 478        } else {
 479                ret_val = e1000e_write_phy_reg_mdic(hw,
 480                                                    MAX_PHY_REG_ADDRESS &
 481                                                    offset, data);
 482        }
 483
 484        e1000_release_phy_80003es2lan(hw);
 485
 486        return ret_val;
 487}
 488
 489/**
 490 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 491 *  @hw: pointer to the HW structure
 492 *  @offset: offset of the register to read
 493 *  @words: number of words to write
 494 *  @data: buffer of data to write to the NVM
 495 *
 496 *  Write "words" of data to the ESB2 NVM.
 497 **/
 498static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 499                                       u16 words, u16 *data)
 500{
 501        return e1000e_write_nvm_spi(hw, offset, words, data);
 502}
 503
 504/**
 505 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 506 *  @hw: pointer to the HW structure
 507 *
 508 *  Wait a specific amount of time for manageability processes to complete.
 509 *  This is a function pointer entry point called by the phy module.
 510 **/
 511static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 512{
 513        s32 timeout = PHY_CFG_TIMEOUT;
 514        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 515
 516        if (hw->bus.func == 1)
 517                mask = E1000_NVM_CFG_DONE_PORT_1;
 518
 519        while (timeout) {
 520                if (er32(EEMNGCTL) & mask)
 521                        break;
 522                usleep_range(1000, 2000);
 523                timeout--;
 524        }
 525        if (!timeout) {
 526                e_dbg("MNG configuration cycle has not completed.\n");
 527                return -E1000_ERR_RESET;
 528        }
 529
 530        return 0;
 531}
 532
 533/**
 534 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 535 *  @hw: pointer to the HW structure
 536 *
 537 *  Force the speed and duplex settings onto the PHY.  This is a
 538 *  function pointer entry point called by the phy module.
 539 **/
 540static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 541{
 542        s32 ret_val;
 543        u16 phy_data;
 544        bool link;
 545
 546        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 547         * forced whenever speed and duplex are forced.
 548         */
 549        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 550        if (ret_val)
 551                return ret_val;
 552
 553        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 554        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 555        if (ret_val)
 556                return ret_val;
 557
 558        e_dbg("GG82563 PSCR: %X\n", phy_data);
 559
 560        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 561        if (ret_val)
 562                return ret_val;
 563
 564        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 565
 566        /* Reset the phy to commit changes. */
 567        phy_data |= BMCR_RESET;
 568
 569        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 570        if (ret_val)
 571                return ret_val;
 572
 573        udelay(1);
 574
 575        if (hw->phy.autoneg_wait_to_complete) {
 576                e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 577
 578                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 579                                                      100000, &link);
 580                if (ret_val)
 581                        return ret_val;
 582
 583                if (!link) {
 584                        /* We didn't get link.
 585                         * Reset the DSP and cross our fingers.
 586                         */
 587                        ret_val = e1000e_phy_reset_dsp(hw);
 588                        if (ret_val)
 589                                return ret_val;
 590                }
 591
 592                /* Try once more */
 593                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 594                                                      100000, &link);
 595                if (ret_val)
 596                        return ret_val;
 597        }
 598
 599        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 600        if (ret_val)
 601                return ret_val;
 602
 603        /* Resetting the phy means we need to verify the TX_CLK corresponds
 604         * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 605         */
 606        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 607        if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 608                phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 609        else
 610                phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 611
 612        /* In addition, we must re-enable CRS on Tx for both half and full
 613         * duplex.
 614         */
 615        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 616        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 617
 618        return ret_val;
 619}
 620
 621/**
 622 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 623 *  @hw: pointer to the HW structure
 624 *
 625 *  Find the approximate cable length as measured by the GG82563 PHY.
 626 *  This is a function pointer entry point called by the phy module.
 627 **/
 628static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 629{
 630        struct e1000_phy_info *phy = &hw->phy;
 631        s32 ret_val;
 632        u16 phy_data, index;
 633
 634        ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 635        if (ret_val)
 636                return ret_val;
 637
 638        index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 639
 640        if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 641                return -E1000_ERR_PHY;
 642
 643        phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 644        phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 645
 646        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 647
 648        return 0;
 649}
 650
 651/**
 652 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 653 *  @hw: pointer to the HW structure
 654 *  @speed: pointer to speed buffer
 655 *  @duplex: pointer to duplex buffer
 656 *
 657 *  Retrieve the current speed and duplex configuration.
 658 **/
 659static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 660                                              u16 *duplex)
 661{
 662        s32 ret_val;
 663
 664        if (hw->phy.media_type == e1000_media_type_copper) {
 665                ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 666                hw->phy.ops.cfg_on_link_up(hw);
 667        } else {
 668                ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 669                                                                   speed,
 670                                                                   duplex);
 671        }
 672
 673        return ret_val;
 674}
 675
 676/**
 677 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 678 *  @hw: pointer to the HW structure
 679 *
 680 *  Perform a global reset to the ESB2 controller.
 681 **/
 682static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 683{
 684        u32 ctrl;
 685        s32 ret_val;
 686        u16 kum_reg_data;
 687
 688        /* Prevent the PCI-E bus from sticking if there is no TLP connection
 689         * on the last TLP read/write transaction when MAC is reset.
 690         */
 691        ret_val = e1000e_disable_pcie_master(hw);
 692        if (ret_val)
 693                e_dbg("PCI-E Master disable polling has failed.\n");
 694
 695        e_dbg("Masking off all interrupts\n");
 696        ew32(IMC, 0xffffffff);
 697
 698        ew32(RCTL, 0);
 699        ew32(TCTL, E1000_TCTL_PSP);
 700        e1e_flush();
 701
 702        usleep_range(10000, 20000);
 703
 704        ctrl = er32(CTRL);
 705
 706        ret_val = e1000_acquire_phy_80003es2lan(hw);
 707        if (ret_val)
 708                return ret_val;
 709
 710        e_dbg("Issuing a global reset to MAC\n");
 711        ew32(CTRL, ctrl | E1000_CTRL_RST);
 712        e1000_release_phy_80003es2lan(hw);
 713
 714        /* Disable IBIST slave mode (far-end loopback) */
 715        ret_val =
 716            e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 717                                            &kum_reg_data);
 718        if (ret_val)
 719                return ret_val;
 720        kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 721        e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 722                                         kum_reg_data);
 723
 724        ret_val = e1000e_get_auto_rd_done(hw);
 725        if (ret_val)
 726                /* We don't want to continue accessing MAC registers. */
 727                return ret_val;
 728
 729        /* Clear any pending interrupt events. */
 730        ew32(IMC, 0xffffffff);
 731        er32(ICR);
 732
 733        return e1000_check_alt_mac_addr_generic(hw);
 734}
 735
 736/**
 737 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 738 *  @hw: pointer to the HW structure
 739 *
 740 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 741 **/
 742static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 743{
 744        struct e1000_mac_info *mac = &hw->mac;
 745        u32 reg_data;
 746        s32 ret_val;
 747        u16 kum_reg_data;
 748        u16 i;
 749
 750        e1000_initialize_hw_bits_80003es2lan(hw);
 751
 752        /* Initialize identification LED */
 753        ret_val = mac->ops.id_led_init(hw);
 754        /* An error is not fatal and we should not stop init due to this */
 755        if (ret_val)
 756                e_dbg("Error initializing identification LED\n");
 757
 758        /* Disabling VLAN filtering */
 759        e_dbg("Initializing the IEEE VLAN\n");
 760        mac->ops.clear_vfta(hw);
 761
 762        /* Setup the receive address. */
 763        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 764
 765        /* Zero out the Multicast HASH table */
 766        e_dbg("Zeroing the MTA\n");
 767        for (i = 0; i < mac->mta_reg_count; i++)
 768                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 769
 770        /* Setup link and flow control */
 771        ret_val = mac->ops.setup_link(hw);
 772        if (ret_val)
 773                return ret_val;
 774
 775        /* Disable IBIST slave mode (far-end loopback) */
 776        e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 777                                        &kum_reg_data);
 778        kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 779        e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 780                                         kum_reg_data);
 781
 782        /* Set the transmit descriptor write-back policy */
 783        reg_data = er32(TXDCTL(0));
 784        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 785                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 786        ew32(TXDCTL(0), reg_data);
 787
 788        /* ...for both queues. */
 789        reg_data = er32(TXDCTL(1));
 790        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 791                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 792        ew32(TXDCTL(1), reg_data);
 793
 794        /* Enable retransmit on late collisions */
 795        reg_data = er32(TCTL);
 796        reg_data |= E1000_TCTL_RTLC;
 797        ew32(TCTL, reg_data);
 798
 799        /* Configure Gigabit Carry Extend Padding */
 800        reg_data = er32(TCTL_EXT);
 801        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 802        reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 803        ew32(TCTL_EXT, reg_data);
 804
 805        /* Configure Transmit Inter-Packet Gap */
 806        reg_data = er32(TIPG);
 807        reg_data &= ~E1000_TIPG_IPGT_MASK;
 808        reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 809        ew32(TIPG, reg_data);
 810
 811        reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 812        reg_data &= ~0x00100000;
 813        E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 814
 815        /* default to true to enable the MDIC W/A */
 816        hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 817
 818        ret_val =
 819            e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 820                                            E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 821        if (!ret_val) {
 822                if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 823                    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 824                        hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 825        }
 826
 827        /* Clear all of the statistics registers (clear on read).  It is
 828         * important that we do this after we have tried to establish link
 829         * because the symbol error count will increment wildly if there
 830         * is no link.
 831         */
 832        e1000_clear_hw_cntrs_80003es2lan(hw);
 833
 834        return ret_val;
 835}
 836
 837/**
 838 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 839 *  @hw: pointer to the HW structure
 840 *
 841 *  Initializes required hardware-dependent bits needed for normal operation.
 842 **/
 843static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 844{
 845        u32 reg;
 846
 847        /* Transmit Descriptor Control 0 */
 848        reg = er32(TXDCTL(0));
 849        reg |= BIT(22);
 850        ew32(TXDCTL(0), reg);
 851
 852        /* Transmit Descriptor Control 1 */
 853        reg = er32(TXDCTL(1));
 854        reg |= BIT(22);
 855        ew32(TXDCTL(1), reg);
 856
 857        /* Transmit Arbitration Control 0 */
 858        reg = er32(TARC(0));
 859        reg &= ~(0xF << 27);    /* 30:27 */
 860        if (hw->phy.media_type != e1000_media_type_copper)
 861                reg &= ~BIT(20);
 862        ew32(TARC(0), reg);
 863
 864        /* Transmit Arbitration Control 1 */
 865        reg = er32(TARC(1));
 866        if (er32(TCTL) & E1000_TCTL_MULR)
 867                reg &= ~BIT(28);
 868        else
 869                reg |= BIT(28);
 870        ew32(TARC(1), reg);
 871
 872        /* Disable IPv6 extension header parsing because some malformed
 873         * IPv6 headers can hang the Rx.
 874         */
 875        reg = er32(RFCTL);
 876        reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 877        ew32(RFCTL, reg);
 878}
 879
 880/**
 881 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 882 *  @hw: pointer to the HW structure
 883 *
 884 *  Setup some GG82563 PHY registers for obtaining link
 885 **/
 886static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 887{
 888        struct e1000_phy_info *phy = &hw->phy;
 889        s32 ret_val;
 890        u32 reg;
 891        u16 data;
 892
 893        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 894        if (ret_val)
 895                return ret_val;
 896
 897        data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 898        /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 899        data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 900
 901        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 902        if (ret_val)
 903                return ret_val;
 904
 905        /* Options:
 906         *   MDI/MDI-X = 0 (default)
 907         *   0 - Auto for all speeds
 908         *   1 - MDI mode
 909         *   2 - MDI-X mode
 910         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 911         */
 912        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 913        if (ret_val)
 914                return ret_val;
 915
 916        data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 917
 918        switch (phy->mdix) {
 919        case 1:
 920                data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 921                break;
 922        case 2:
 923                data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 924                break;
 925        case 0:
 926        default:
 927                data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 928                break;
 929        }
 930
 931        /* Options:
 932         *   disable_polarity_correction = 0 (default)
 933         *       Automatic Correction for Reversed Cable Polarity
 934         *   0 - Disabled
 935         *   1 - Enabled
 936         */
 937        data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 938        if (phy->disable_polarity_correction)
 939                data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 940
 941        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 942        if (ret_val)
 943                return ret_val;
 944
 945        /* SW Reset the PHY so all changes take effect */
 946        ret_val = hw->phy.ops.commit(hw);
 947        if (ret_val) {
 948                e_dbg("Error Resetting the PHY\n");
 949                return ret_val;
 950        }
 951
 952        /* Bypass Rx and Tx FIFO's */
 953        reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 954        data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 955                E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 956        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 957        if (ret_val)
 958                return ret_val;
 959
 960        reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 961        ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 962        if (ret_val)
 963                return ret_val;
 964        data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 965        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 966        if (ret_val)
 967                return ret_val;
 968
 969        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 970        if (ret_val)
 971                return ret_val;
 972
 973        data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 974        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 975        if (ret_val)
 976                return ret_val;
 977
 978        reg = er32(CTRL_EXT);
 979        reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 980        ew32(CTRL_EXT, reg);
 981
 982        ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 983        if (ret_val)
 984                return ret_val;
 985
 986        /* Do not init these registers when the HW is in IAMT mode, since the
 987         * firmware will have already initialized them.  We only initialize
 988         * them if the HW is not in IAMT mode.
 989         */
 990        if (!hw->mac.ops.check_mng_mode(hw)) {
 991                /* Enable Electrical Idle on the PHY */
 992                data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 993                ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 994                if (ret_val)
 995                        return ret_val;
 996
 997                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 998                if (ret_val)
 999                        return ret_val;
1000
1001                data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1002                ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1003                if (ret_val)
1004                        return ret_val;
1005        }
1006
1007        /* Workaround: Disable padding in Kumeran interface in the MAC
1008         * and in the PHY to avoid CRC errors.
1009         */
1010        ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1011        if (ret_val)
1012                return ret_val;
1013
1014        data |= GG82563_ICR_DIS_PADDING;
1015        ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1016        if (ret_val)
1017                return ret_val;
1018
1019        return 0;
1020}
1021
1022/**
1023 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1024 *  @hw: pointer to the HW structure
1025 *
1026 *  Essentially a wrapper for setting up all things "copper" related.
1027 *  This is a function pointer entry point called by the mac module.
1028 **/
1029static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1030{
1031        u32 ctrl;
1032        s32 ret_val;
1033        u16 reg_data;
1034
1035        ctrl = er32(CTRL);
1036        ctrl |= E1000_CTRL_SLU;
1037        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1038        ew32(CTRL, ctrl);
1039
1040        /* Set the mac to wait the maximum time between each
1041         * iteration and increase the max iterations when
1042         * polling the phy; this fixes erroneous timeouts at 10Mbps.
1043         */
1044        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1045                                                   0xFFFF);
1046        if (ret_val)
1047                return ret_val;
1048        ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1049                                                  &reg_data);
1050        if (ret_val)
1051                return ret_val;
1052        reg_data |= 0x3F;
1053        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1054                                                   reg_data);
1055        if (ret_val)
1056                return ret_val;
1057        ret_val =
1058            e1000_read_kmrn_reg_80003es2lan(hw,
1059                                            E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1060                                            &reg_data);
1061        if (ret_val)
1062                return ret_val;
1063        reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1064        ret_val =
1065            e1000_write_kmrn_reg_80003es2lan(hw,
1066                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1067                                             reg_data);
1068        if (ret_val)
1069                return ret_val;
1070
1071        ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1072        if (ret_val)
1073                return ret_val;
1074
1075        return e1000e_setup_copper_link(hw);
1076}
1077
1078/**
1079 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1080 *  @hw: pointer to the HW structure
1081 *  @duplex: current duplex setting
1082 *
1083 *  Configure the KMRN interface by applying last minute quirks for
1084 *  10/100 operation.
1085 **/
1086static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1087{
1088        s32 ret_val = 0;
1089        u16 speed;
1090        u16 duplex;
1091
1092        if (hw->phy.media_type == e1000_media_type_copper) {
1093                ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1094                                                             &duplex);
1095                if (ret_val)
1096                        return ret_val;
1097
1098                if (speed == SPEED_1000)
1099                        ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1100                else
1101                        ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1102        }
1103
1104        return ret_val;
1105}
1106
1107/**
1108 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1109 *  @hw: pointer to the HW structure
1110 *  @duplex: current duplex setting
1111 *
1112 *  Configure the KMRN interface by applying last minute quirks for
1113 *  10/100 operation.
1114 **/
1115static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1116{
1117        s32 ret_val;
1118        u32 tipg;
1119        u32 i = 0;
1120        u16 reg_data, reg_data2;
1121
1122        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1123        ret_val =
1124            e1000_write_kmrn_reg_80003es2lan(hw,
1125                                             E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1126                                             reg_data);
1127        if (ret_val)
1128                return ret_val;
1129
1130        /* Configure Transmit Inter-Packet Gap */
1131        tipg = er32(TIPG);
1132        tipg &= ~E1000_TIPG_IPGT_MASK;
1133        tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1134        ew32(TIPG, tipg);
1135
1136        do {
1137                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1138                if (ret_val)
1139                        return ret_val;
1140
1141                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1142                if (ret_val)
1143                        return ret_val;
1144                i++;
1145        } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1146
1147        if (duplex == HALF_DUPLEX)
1148                reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1149        else
1150                reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1151
1152        return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1153}
1154
1155/**
1156 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1157 *  @hw: pointer to the HW structure
1158 *
1159 *  Configure the KMRN interface by applying last minute quirks for
1160 *  gigabit operation.
1161 **/
1162static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1163{
1164        s32 ret_val;
1165        u16 reg_data, reg_data2;
1166        u32 tipg;
1167        u32 i = 0;
1168
1169        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1170        ret_val =
1171            e1000_write_kmrn_reg_80003es2lan(hw,
1172                                             E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1173                                             reg_data);
1174        if (ret_val)
1175                return ret_val;
1176
1177        /* Configure Transmit Inter-Packet Gap */
1178        tipg = er32(TIPG);
1179        tipg &= ~E1000_TIPG_IPGT_MASK;
1180        tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1181        ew32(TIPG, tipg);
1182
1183        do {
1184                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1185                if (ret_val)
1186                        return ret_val;
1187
1188                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1189                if (ret_val)
1190                        return ret_val;
1191                i++;
1192        } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1193
1194        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1195
1196        return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1197}
1198
1199/**
1200 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1201 *  @hw: pointer to the HW structure
1202 *  @offset: register offset to be read
1203 *  @data: pointer to the read data
1204 *
1205 *  Acquire semaphore, then read the PHY register at offset
1206 *  using the kumeran interface.  The information retrieved is stored in data.
1207 *  Release the semaphore before exiting.
1208 **/
1209static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1210                                           u16 *data)
1211{
1212        u32 kmrnctrlsta;
1213        s32 ret_val;
1214
1215        ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1216        if (ret_val)
1217                return ret_val;
1218
1219        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1220                       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1221        ew32(KMRNCTRLSTA, kmrnctrlsta);
1222        e1e_flush();
1223
1224        udelay(2);
1225
1226        kmrnctrlsta = er32(KMRNCTRLSTA);
1227        *data = (u16)kmrnctrlsta;
1228
1229        e1000_release_mac_csr_80003es2lan(hw);
1230
1231        return ret_val;
1232}
1233
1234/**
1235 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1236 *  @hw: pointer to the HW structure
1237 *  @offset: register offset to write to
1238 *  @data: data to write at register offset
1239 *
1240 *  Acquire semaphore, then write the data to PHY register
1241 *  at the offset using the kumeran interface.  Release semaphore
1242 *  before exiting.
1243 **/
1244static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1245                                            u16 data)
1246{
1247        u32 kmrnctrlsta;
1248        s32 ret_val;
1249
1250        ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1251        if (ret_val)
1252                return ret_val;
1253
1254        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1255                       E1000_KMRNCTRLSTA_OFFSET) | data;
1256        ew32(KMRNCTRLSTA, kmrnctrlsta);
1257        e1e_flush();
1258
1259        udelay(2);
1260
1261        e1000_release_mac_csr_80003es2lan(hw);
1262
1263        return ret_val;
1264}
1265
1266/**
1267 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1268 *  @hw: pointer to the HW structure
1269 **/
1270static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1271{
1272        s32 ret_val;
1273
1274        /* If there's an alternate MAC address place it in RAR0
1275         * so that it will override the Si installed default perm
1276         * address.
1277         */
1278        ret_val = e1000_check_alt_mac_addr_generic(hw);
1279        if (ret_val)
1280                return ret_val;
1281
1282        return e1000_read_mac_addr_generic(hw);
1283}
1284
1285/**
1286 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1287 * @hw: pointer to the HW structure
1288 *
1289 * In the case of a PHY power down to save power, or to turn off link during a
1290 * driver unload, or wake on lan is not enabled, remove the link.
1291 **/
1292static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1293{
1294        /* If the management interface is not enabled, then power down */
1295        if (!(hw->mac.ops.check_mng_mode(hw) ||
1296              hw->phy.ops.check_reset_block(hw)))
1297                e1000_power_down_phy_copper(hw);
1298}
1299
1300/**
1301 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1302 *  @hw: pointer to the HW structure
1303 *
1304 *  Clears the hardware counters by reading the counter registers.
1305 **/
1306static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1307{
1308        e1000e_clear_hw_cntrs_base(hw);
1309
1310        er32(PRC64);
1311        er32(PRC127);
1312        er32(PRC255);
1313        er32(PRC511);
1314        er32(PRC1023);
1315        er32(PRC1522);
1316        er32(PTC64);
1317        er32(PTC127);
1318        er32(PTC255);
1319        er32(PTC511);
1320        er32(PTC1023);
1321        er32(PTC1522);
1322
1323        er32(ALGNERRC);
1324        er32(RXERRC);
1325        er32(TNCRS);
1326        er32(CEXTERR);
1327        er32(TSCTC);
1328        er32(TSCTFC);
1329
1330        er32(MGTPRC);
1331        er32(MGTPDC);
1332        er32(MGTPTC);
1333
1334        er32(IAC);
1335        er32(ICRXOC);
1336
1337        er32(ICRXPTC);
1338        er32(ICRXATC);
1339        er32(ICTXPTC);
1340        er32(ICTXATC);
1341        er32(ICTXQEC);
1342        er32(ICTXQMTC);
1343        er32(ICRXDMTC);
1344}
1345
1346static const struct e1000_mac_operations es2_mac_ops = {
1347        .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1348        .id_led_init            = e1000e_id_led_init_generic,
1349        .blink_led              = e1000e_blink_led_generic,
1350        .check_mng_mode         = e1000e_check_mng_mode_generic,
1351        /* check_for_link dependent on media type */
1352        .cleanup_led            = e1000e_cleanup_led_generic,
1353        .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1354        .get_bus_info           = e1000e_get_bus_info_pcie,
1355        .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1356        .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1357        .led_on                 = e1000e_led_on_generic,
1358        .led_off                = e1000e_led_off_generic,
1359        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1360        .write_vfta             = e1000_write_vfta_generic,
1361        .clear_vfta             = e1000_clear_vfta_generic,
1362        .reset_hw               = e1000_reset_hw_80003es2lan,
1363        .init_hw                = e1000_init_hw_80003es2lan,
1364        .setup_link             = e1000e_setup_link_generic,
1365        /* setup_physical_interface dependent on media type */
1366        .setup_led              = e1000e_setup_led_generic,
1367        .config_collision_dist  = e1000e_config_collision_dist_generic,
1368        .rar_set                = e1000e_rar_set_generic,
1369        .rar_get_count          = e1000e_rar_get_count_generic,
1370};
1371
1372static const struct e1000_phy_operations es2_phy_ops = {
1373        .acquire                = e1000_acquire_phy_80003es2lan,
1374        .check_polarity         = e1000_check_polarity_m88,
1375        .check_reset_block      = e1000e_check_reset_block_generic,
1376        .commit                 = e1000e_phy_sw_reset,
1377        .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1378        .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1379        .get_cable_length       = e1000_get_cable_length_80003es2lan,
1380        .get_info               = e1000e_get_phy_info_m88,
1381        .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1382        .release                = e1000_release_phy_80003es2lan,
1383        .reset                  = e1000e_phy_hw_reset_generic,
1384        .set_d0_lplu_state      = NULL,
1385        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1386        .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1387        .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1388};
1389
1390static const struct e1000_nvm_operations es2_nvm_ops = {
1391        .acquire                = e1000_acquire_nvm_80003es2lan,
1392        .read                   = e1000e_read_nvm_eerd,
1393        .release                = e1000_release_nvm_80003es2lan,
1394        .reload                 = e1000e_reload_nvm_generic,
1395        .update                 = e1000e_update_nvm_checksum_generic,
1396        .valid_led_default      = e1000e_valid_led_default,
1397        .validate               = e1000e_validate_nvm_checksum_generic,
1398        .write                  = e1000_write_nvm_80003es2lan,
1399};
1400
1401const struct e1000_info e1000_es2_info = {
1402        .mac                    = e1000_80003es2lan,
1403        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1404                                  | FLAG_HAS_JUMBO_FRAMES
1405                                  | FLAG_HAS_WOL
1406                                  | FLAG_APME_IN_CTRL3
1407                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1408                                  | FLAG_RX_NEEDS_RESTART /* errata */
1409                                  | FLAG_TARC_SET_BIT_ZERO /* errata */
1410                                  | FLAG_APME_CHECK_PORT_B
1411                                  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1412        .flags2                 = FLAG2_DMA_BURST,
1413        .pba                    = 38,
1414        .max_hw_frame_size      = DEFAULT_JUMBO,
1415        .get_variants           = e1000_get_variants_80003es2lan,
1416        .mac_ops                = &es2_mac_ops,
1417        .phy_ops                = &es2_phy_ops,
1418        .nvm_ops                = &es2_nvm_ops,
1419};
1420