linux/drivers/net/ethernet/intel/e1000e/82571.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23/* 82571EB Gigabit Ethernet Controller
  24 * 82571EB Gigabit Ethernet Controller (Copper)
  25 * 82571EB Gigabit Ethernet Controller (Fiber)
  26 * 82571EB Dual Port Gigabit Mezzanine Adapter
  27 * 82571EB Quad Port Gigabit Mezzanine Adapter
  28 * 82571PT Gigabit PT Quad Port Server ExpressModule
  29 * 82572EI Gigabit Ethernet Controller (Copper)
  30 * 82572EI Gigabit Ethernet Controller (Fiber)
  31 * 82572EI Gigabit Ethernet Controller
  32 * 82573V Gigabit Ethernet Controller (Copper)
  33 * 82573E Gigabit Ethernet Controller (Copper)
  34 * 82573L Gigabit Ethernet Controller
  35 * 82574L Gigabit Network Connection
  36 * 82583V Gigabit Network Connection
  37 */
  38
  39#include "e1000.h"
  40
  41static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
  42static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
  43static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
  44static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
  45static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
  46                                      u16 words, u16 *data);
  47static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
  48static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
  49static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
  50static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
  51static s32 e1000_led_on_82574(struct e1000_hw *hw);
  52static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
  53static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
  54static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
  55static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
  56static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
  57static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
  58static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
  59
  60/**
  61 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
  62 *  @hw: pointer to the HW structure
  63 **/
  64static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
  65{
  66        struct e1000_phy_info *phy = &hw->phy;
  67        s32 ret_val;
  68
  69        if (hw->phy.media_type != e1000_media_type_copper) {
  70                phy->type = e1000_phy_none;
  71                return 0;
  72        }
  73
  74        phy->addr = 1;
  75        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  76        phy->reset_delay_us = 100;
  77
  78        phy->ops.power_up = e1000_power_up_phy_copper;
  79        phy->ops.power_down = e1000_power_down_phy_copper_82571;
  80
  81        switch (hw->mac.type) {
  82        case e1000_82571:
  83        case e1000_82572:
  84                phy->type = e1000_phy_igp_2;
  85                break;
  86        case e1000_82573:
  87                phy->type = e1000_phy_m88;
  88                break;
  89        case e1000_82574:
  90        case e1000_82583:
  91                phy->type = e1000_phy_bm;
  92                phy->ops.acquire = e1000_get_hw_semaphore_82574;
  93                phy->ops.release = e1000_put_hw_semaphore_82574;
  94                phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
  95                phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
  96                break;
  97        default:
  98                return -E1000_ERR_PHY;
  99        }
 100
 101        /* This can only be done after all function pointers are setup. */
 102        ret_val = e1000_get_phy_id_82571(hw);
 103        if (ret_val) {
 104                e_dbg("Error getting PHY ID\n");
 105                return ret_val;
 106        }
 107
 108        /* Verify phy id */
 109        switch (hw->mac.type) {
 110        case e1000_82571:
 111        case e1000_82572:
 112                if (phy->id != IGP01E1000_I_PHY_ID)
 113                        ret_val = -E1000_ERR_PHY;
 114                break;
 115        case e1000_82573:
 116                if (phy->id != M88E1111_I_PHY_ID)
 117                        ret_val = -E1000_ERR_PHY;
 118                break;
 119        case e1000_82574:
 120        case e1000_82583:
 121                if (phy->id != BME1000_E_PHY_ID_R2)
 122                        ret_val = -E1000_ERR_PHY;
 123                break;
 124        default:
 125                ret_val = -E1000_ERR_PHY;
 126                break;
 127        }
 128
 129        if (ret_val)
 130                e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
 131
 132        return ret_val;
 133}
 134
 135/**
 136 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 137 *  @hw: pointer to the HW structure
 138 **/
 139static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
 140{
 141        struct e1000_nvm_info *nvm = &hw->nvm;
 142        u32 eecd = er32(EECD);
 143        u16 size;
 144
 145        nvm->opcode_bits = 8;
 146        nvm->delay_usec = 1;
 147        switch (nvm->override) {
 148        case e1000_nvm_override_spi_large:
 149                nvm->page_size = 32;
 150                nvm->address_bits = 16;
 151                break;
 152        case e1000_nvm_override_spi_small:
 153                nvm->page_size = 8;
 154                nvm->address_bits = 8;
 155                break;
 156        default:
 157                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 158                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 159                break;
 160        }
 161
 162        switch (hw->mac.type) {
 163        case e1000_82573:
 164        case e1000_82574:
 165        case e1000_82583:
 166                if (((eecd >> 15) & 0x3) == 0x3) {
 167                        nvm->type = e1000_nvm_flash_hw;
 168                        nvm->word_size = 2048;
 169                        /* Autonomous Flash update bit must be cleared due
 170                         * to Flash update issue.
 171                         */
 172                        eecd &= ~E1000_EECD_AUPDEN;
 173                        ew32(EECD, eecd);
 174                        break;
 175                }
 176                /* Fall Through */
 177        default:
 178                nvm->type = e1000_nvm_eeprom_spi;
 179                size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 180                             E1000_EECD_SIZE_EX_SHIFT);
 181                /* Added to a constant, "size" becomes the left-shift value
 182                 * for setting word_size.
 183                 */
 184                size += NVM_WORD_SIZE_BASE_SHIFT;
 185
 186                /* EEPROM access above 16k is unsupported */
 187                if (size > 14)
 188                        size = 14;
 189                nvm->word_size = BIT(size);
 190                break;
 191        }
 192
 193        /* Function Pointers */
 194        switch (hw->mac.type) {
 195        case e1000_82574:
 196        case e1000_82583:
 197                nvm->ops.acquire = e1000_get_hw_semaphore_82574;
 198                nvm->ops.release = e1000_put_hw_semaphore_82574;
 199                break;
 200        default:
 201                break;
 202        }
 203
 204        return 0;
 205}
 206
 207/**
 208 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 209 *  @hw: pointer to the HW structure
 210 **/
 211static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
 212{
 213        struct e1000_mac_info *mac = &hw->mac;
 214        u32 swsm = 0;
 215        u32 swsm2 = 0;
 216        bool force_clear_smbi = false;
 217
 218        /* Set media type and media-dependent function pointers */
 219        switch (hw->adapter->pdev->device) {
 220        case E1000_DEV_ID_82571EB_FIBER:
 221        case E1000_DEV_ID_82572EI_FIBER:
 222        case E1000_DEV_ID_82571EB_QUAD_FIBER:
 223                hw->phy.media_type = e1000_media_type_fiber;
 224                mac->ops.setup_physical_interface =
 225                    e1000_setup_fiber_serdes_link_82571;
 226                mac->ops.check_for_link = e1000e_check_for_fiber_link;
 227                mac->ops.get_link_up_info =
 228                    e1000e_get_speed_and_duplex_fiber_serdes;
 229                break;
 230        case E1000_DEV_ID_82571EB_SERDES:
 231        case E1000_DEV_ID_82571EB_SERDES_DUAL:
 232        case E1000_DEV_ID_82571EB_SERDES_QUAD:
 233        case E1000_DEV_ID_82572EI_SERDES:
 234                hw->phy.media_type = e1000_media_type_internal_serdes;
 235                mac->ops.setup_physical_interface =
 236                    e1000_setup_fiber_serdes_link_82571;
 237                mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
 238                mac->ops.get_link_up_info =
 239                    e1000e_get_speed_and_duplex_fiber_serdes;
 240                break;
 241        default:
 242                hw->phy.media_type = e1000_media_type_copper;
 243                mac->ops.setup_physical_interface =
 244                    e1000_setup_copper_link_82571;
 245                mac->ops.check_for_link = e1000e_check_for_copper_link;
 246                mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
 247                break;
 248        }
 249
 250        /* Set mta register count */
 251        mac->mta_reg_count = 128;
 252        /* Set rar entry count */
 253        mac->rar_entry_count = E1000_RAR_ENTRIES;
 254        /* Adaptive IFS supported */
 255        mac->adaptive_ifs = true;
 256
 257        /* MAC-specific function pointers */
 258        switch (hw->mac.type) {
 259        case e1000_82573:
 260                mac->ops.set_lan_id = e1000_set_lan_id_single_port;
 261                mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
 262                mac->ops.led_on = e1000e_led_on_generic;
 263                mac->ops.blink_led = e1000e_blink_led_generic;
 264
 265                /* FWSM register */
 266                mac->has_fwsm = true;
 267                /* ARC supported; valid only if manageability features are
 268                 * enabled.
 269                 */
 270                mac->arc_subsystem_valid = !!(er32(FWSM) &
 271                                              E1000_FWSM_MODE_MASK);
 272                break;
 273        case e1000_82574:
 274        case e1000_82583:
 275                mac->ops.set_lan_id = e1000_set_lan_id_single_port;
 276                mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
 277                mac->ops.led_on = e1000_led_on_82574;
 278                break;
 279        default:
 280                mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
 281                mac->ops.led_on = e1000e_led_on_generic;
 282                mac->ops.blink_led = e1000e_blink_led_generic;
 283
 284                /* FWSM register */
 285                mac->has_fwsm = true;
 286                break;
 287        }
 288
 289        /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
 290         * first NVM or PHY access. This should be done for single-port
 291         * devices, and for one port only on dual-port devices so that
 292         * for those devices we can still use the SMBI lock to synchronize
 293         * inter-port accesses to the PHY & NVM.
 294         */
 295        switch (hw->mac.type) {
 296        case e1000_82571:
 297        case e1000_82572:
 298                swsm2 = er32(SWSM2);
 299
 300                if (!(swsm2 & E1000_SWSM2_LOCK)) {
 301                        /* Only do this for the first interface on this card */
 302                        ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
 303                        force_clear_smbi = true;
 304                } else {
 305                        force_clear_smbi = false;
 306                }
 307                break;
 308        default:
 309                force_clear_smbi = true;
 310                break;
 311        }
 312
 313        if (force_clear_smbi) {
 314                /* Make sure SWSM.SMBI is clear */
 315                swsm = er32(SWSM);
 316                if (swsm & E1000_SWSM_SMBI) {
 317                        /* This bit should not be set on a first interface, and
 318                         * indicates that the bootagent or EFI code has
 319                         * improperly left this bit enabled
 320                         */
 321                        e_dbg("Please update your 82571 Bootagent\n");
 322                }
 323                ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
 324        }
 325
 326        /* Initialize device specific counter of SMBI acquisition timeouts. */
 327        hw->dev_spec.e82571.smb_counter = 0;
 328
 329        return 0;
 330}
 331
 332static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
 333{
 334        struct e1000_hw *hw = &adapter->hw;
 335        static int global_quad_port_a;  /* global port a indication */
 336        struct pci_dev *pdev = adapter->pdev;
 337        int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
 338        s32 rc;
 339
 340        rc = e1000_init_mac_params_82571(hw);
 341        if (rc)
 342                return rc;
 343
 344        rc = e1000_init_nvm_params_82571(hw);
 345        if (rc)
 346                return rc;
 347
 348        rc = e1000_init_phy_params_82571(hw);
 349        if (rc)
 350                return rc;
 351
 352        /* tag quad port adapters first, it's used below */
 353        switch (pdev->device) {
 354        case E1000_DEV_ID_82571EB_QUAD_COPPER:
 355        case E1000_DEV_ID_82571EB_QUAD_FIBER:
 356        case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
 357        case E1000_DEV_ID_82571PT_QUAD_COPPER:
 358                adapter->flags |= FLAG_IS_QUAD_PORT;
 359                /* mark the first port */
 360                if (global_quad_port_a == 0)
 361                        adapter->flags |= FLAG_IS_QUAD_PORT_A;
 362                /* Reset for multiple quad port adapters */
 363                global_quad_port_a++;
 364                if (global_quad_port_a == 4)
 365                        global_quad_port_a = 0;
 366                break;
 367        default:
 368                break;
 369        }
 370
 371        switch (adapter->hw.mac.type) {
 372        case e1000_82571:
 373                /* these dual ports don't have WoL on port B at all */
 374                if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
 375                     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
 376                     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
 377                    (is_port_b))
 378                        adapter->flags &= ~FLAG_HAS_WOL;
 379                /* quad ports only support WoL on port A */
 380                if (adapter->flags & FLAG_IS_QUAD_PORT &&
 381                    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
 382                        adapter->flags &= ~FLAG_HAS_WOL;
 383                /* Does not support WoL on any port */
 384                if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
 385                        adapter->flags &= ~FLAG_HAS_WOL;
 386                break;
 387        case e1000_82573:
 388                if (pdev->device == E1000_DEV_ID_82573L) {
 389                        adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
 390                        adapter->max_hw_frame_size = DEFAULT_JUMBO;
 391                }
 392                break;
 393        default:
 394                break;
 395        }
 396
 397        return 0;
 398}
 399
 400/**
 401 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 402 *  @hw: pointer to the HW structure
 403 *
 404 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 405 *  revision in the hardware structure.
 406 **/
 407static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
 408{
 409        struct e1000_phy_info *phy = &hw->phy;
 410        s32 ret_val;
 411        u16 phy_id = 0;
 412
 413        switch (hw->mac.type) {
 414        case e1000_82571:
 415        case e1000_82572:
 416                /* The 82571 firmware may still be configuring the PHY.
 417                 * In this case, we cannot access the PHY until the
 418                 * configuration is done.  So we explicitly set the
 419                 * PHY ID.
 420                 */
 421                phy->id = IGP01E1000_I_PHY_ID;
 422                break;
 423        case e1000_82573:
 424                return e1000e_get_phy_id(hw);
 425        case e1000_82574:
 426        case e1000_82583:
 427                ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
 428                if (ret_val)
 429                        return ret_val;
 430
 431                phy->id = (u32)(phy_id << 16);
 432                usleep_range(20, 40);
 433                ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
 434                if (ret_val)
 435                        return ret_val;
 436
 437                phy->id |= (u32)(phy_id);
 438                phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 439                break;
 440        default:
 441                return -E1000_ERR_PHY;
 442        }
 443
 444        return 0;
 445}
 446
 447/**
 448 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 449 *  @hw: pointer to the HW structure
 450 *
 451 *  Acquire the HW semaphore to access the PHY or NVM
 452 **/
 453static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
 454{
 455        u32 swsm;
 456        s32 sw_timeout = hw->nvm.word_size + 1;
 457        s32 fw_timeout = hw->nvm.word_size + 1;
 458        s32 i = 0;
 459
 460        /* If we have timedout 3 times on trying to acquire
 461         * the inter-port SMBI semaphore, there is old code
 462         * operating on the other port, and it is not
 463         * releasing SMBI. Modify the number of times that
 464         * we try for the semaphore to interwork with this
 465         * older code.
 466         */
 467        if (hw->dev_spec.e82571.smb_counter > 2)
 468                sw_timeout = 1;
 469
 470        /* Get the SW semaphore */
 471        while (i < sw_timeout) {
 472                swsm = er32(SWSM);
 473                if (!(swsm & E1000_SWSM_SMBI))
 474                        break;
 475
 476                usleep_range(50, 100);
 477                i++;
 478        }
 479
 480        if (i == sw_timeout) {
 481                e_dbg("Driver can't access device - SMBI bit is set.\n");
 482                hw->dev_spec.e82571.smb_counter++;
 483        }
 484        /* Get the FW semaphore. */
 485        for (i = 0; i < fw_timeout; i++) {
 486                swsm = er32(SWSM);
 487                ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
 488
 489                /* Semaphore acquired if bit latched */
 490                if (er32(SWSM) & E1000_SWSM_SWESMBI)
 491                        break;
 492
 493                usleep_range(50, 100);
 494        }
 495
 496        if (i == fw_timeout) {
 497                /* Release semaphores */
 498                e1000_put_hw_semaphore_82571(hw);
 499                e_dbg("Driver can't access the NVM\n");
 500                return -E1000_ERR_NVM;
 501        }
 502
 503        return 0;
 504}
 505
 506/**
 507 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 508 *  @hw: pointer to the HW structure
 509 *
 510 *  Release hardware semaphore used to access the PHY or NVM
 511 **/
 512static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
 513{
 514        u32 swsm;
 515
 516        swsm = er32(SWSM);
 517        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
 518        ew32(SWSM, swsm);
 519}
 520
 521/**
 522 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
 523 *  @hw: pointer to the HW structure
 524 *
 525 *  Acquire the HW semaphore during reset.
 526 *
 527 **/
 528static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
 529{
 530        u32 extcnf_ctrl;
 531        s32 i = 0;
 532
 533        extcnf_ctrl = er32(EXTCNF_CTRL);
 534        do {
 535                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
 536                ew32(EXTCNF_CTRL, extcnf_ctrl);
 537                extcnf_ctrl = er32(EXTCNF_CTRL);
 538
 539                if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
 540                        break;
 541
 542                usleep_range(2000, 4000);
 543                i++;
 544        } while (i < MDIO_OWNERSHIP_TIMEOUT);
 545
 546        if (i == MDIO_OWNERSHIP_TIMEOUT) {
 547                /* Release semaphores */
 548                e1000_put_hw_semaphore_82573(hw);
 549                e_dbg("Driver can't access the PHY\n");
 550                return -E1000_ERR_PHY;
 551        }
 552
 553        return 0;
 554}
 555
 556/**
 557 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
 558 *  @hw: pointer to the HW structure
 559 *
 560 *  Release hardware semaphore used during reset.
 561 *
 562 **/
 563static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
 564{
 565        u32 extcnf_ctrl;
 566
 567        extcnf_ctrl = er32(EXTCNF_CTRL);
 568        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
 569        ew32(EXTCNF_CTRL, extcnf_ctrl);
 570}
 571
 572static DEFINE_MUTEX(swflag_mutex);
 573
 574/**
 575 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
 576 *  @hw: pointer to the HW structure
 577 *
 578 *  Acquire the HW semaphore to access the PHY or NVM.
 579 *
 580 **/
 581static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
 582{
 583        s32 ret_val;
 584
 585        mutex_lock(&swflag_mutex);
 586        ret_val = e1000_get_hw_semaphore_82573(hw);
 587        if (ret_val)
 588                mutex_unlock(&swflag_mutex);
 589        return ret_val;
 590}
 591
 592/**
 593 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
 594 *  @hw: pointer to the HW structure
 595 *
 596 *  Release hardware semaphore used to access the PHY or NVM
 597 *
 598 **/
 599static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
 600{
 601        e1000_put_hw_semaphore_82573(hw);
 602        mutex_unlock(&swflag_mutex);
 603}
 604
 605/**
 606 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
 607 *  @hw: pointer to the HW structure
 608 *  @active: true to enable LPLU, false to disable
 609 *
 610 *  Sets the LPLU D0 state according to the active flag.
 611 *  LPLU will not be activated unless the
 612 *  device autonegotiation advertisement meets standards of
 613 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 614 *  This is a function pointer entry point only called by
 615 *  PHY setup routines.
 616 **/
 617static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
 618{
 619        u32 data = er32(POEMB);
 620
 621        if (active)
 622                data |= E1000_PHY_CTRL_D0A_LPLU;
 623        else
 624                data &= ~E1000_PHY_CTRL_D0A_LPLU;
 625
 626        ew32(POEMB, data);
 627        return 0;
 628}
 629
 630/**
 631 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
 632 *  @hw: pointer to the HW structure
 633 *  @active: boolean used to enable/disable lplu
 634 *
 635 *  The low power link up (lplu) state is set to the power management level D3
 636 *  when active is true, else clear lplu for D3. LPLU
 637 *  is used during Dx states where the power conservation is most important.
 638 *  During driver activity, SmartSpeed should be enabled so performance is
 639 *  maintained.
 640 **/
 641static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
 642{
 643        u32 data = er32(POEMB);
 644
 645        if (!active) {
 646                data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
 647        } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
 648                   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
 649                   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
 650                data |= E1000_PHY_CTRL_NOND0A_LPLU;
 651        }
 652
 653        ew32(POEMB, data);
 654        return 0;
 655}
 656
 657/**
 658 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 659 *  @hw: pointer to the HW structure
 660 *
 661 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 662 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 663 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 664 *  hardware semaphore.
 665 **/
 666static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
 667{
 668        s32 ret_val;
 669
 670        ret_val = e1000_get_hw_semaphore_82571(hw);
 671        if (ret_val)
 672                return ret_val;
 673
 674        switch (hw->mac.type) {
 675        case e1000_82573:
 676                break;
 677        default:
 678                ret_val = e1000e_acquire_nvm(hw);
 679                break;
 680        }
 681
 682        if (ret_val)
 683                e1000_put_hw_semaphore_82571(hw);
 684
 685        return ret_val;
 686}
 687
 688/**
 689 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 690 *  @hw: pointer to the HW structure
 691 *
 692 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 693 **/
 694static void e1000_release_nvm_82571(struct e1000_hw *hw)
 695{
 696        e1000e_release_nvm(hw);
 697        e1000_put_hw_semaphore_82571(hw);
 698}
 699
 700/**
 701 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 702 *  @hw: pointer to the HW structure
 703 *  @offset: offset within the EEPROM to be written to
 704 *  @words: number of words to write
 705 *  @data: 16 bit word(s) to be written to the EEPROM
 706 *
 707 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 708 *
 709 *  If e1000e_update_nvm_checksum is not called after this function, the
 710 *  EEPROM will most likely contain an invalid checksum.
 711 **/
 712static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
 713                                 u16 *data)
 714{
 715        s32 ret_val;
 716
 717        switch (hw->mac.type) {
 718        case e1000_82573:
 719        case e1000_82574:
 720        case e1000_82583:
 721                ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
 722                break;
 723        case e1000_82571:
 724        case e1000_82572:
 725                ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
 726                break;
 727        default:
 728                ret_val = -E1000_ERR_NVM;
 729                break;
 730        }
 731
 732        return ret_val;
 733}
 734
 735/**
 736 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 737 *  @hw: pointer to the HW structure
 738 *
 739 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 740 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 741 *  value to the EEPROM.
 742 **/
 743static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
 744{
 745        u32 eecd;
 746        s32 ret_val;
 747        u16 i;
 748
 749        ret_val = e1000e_update_nvm_checksum_generic(hw);
 750        if (ret_val)
 751                return ret_val;
 752
 753        /* If our nvm is an EEPROM, then we're done
 754         * otherwise, commit the checksum to the flash NVM.
 755         */
 756        if (hw->nvm.type != e1000_nvm_flash_hw)
 757                return 0;
 758
 759        /* Check for pending operations. */
 760        for (i = 0; i < E1000_FLASH_UPDATES; i++) {
 761                usleep_range(1000, 2000);
 762                if (!(er32(EECD) & E1000_EECD_FLUPD))
 763                        break;
 764        }
 765
 766        if (i == E1000_FLASH_UPDATES)
 767                return -E1000_ERR_NVM;
 768
 769        /* Reset the firmware if using STM opcode. */
 770        if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
 771                /* The enabling of and the actual reset must be done
 772                 * in two write cycles.
 773                 */
 774                ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
 775                e1e_flush();
 776                ew32(HICR, E1000_HICR_FW_RESET);
 777        }
 778
 779        /* Commit the write to flash */
 780        eecd = er32(EECD) | E1000_EECD_FLUPD;
 781        ew32(EECD, eecd);
 782
 783        for (i = 0; i < E1000_FLASH_UPDATES; i++) {
 784                usleep_range(1000, 2000);
 785                if (!(er32(EECD) & E1000_EECD_FLUPD))
 786                        break;
 787        }
 788
 789        if (i == E1000_FLASH_UPDATES)
 790                return -E1000_ERR_NVM;
 791
 792        return 0;
 793}
 794
 795/**
 796 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 797 *  @hw: pointer to the HW structure
 798 *
 799 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 800 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 801 **/
 802static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
 803{
 804        if (hw->nvm.type == e1000_nvm_flash_hw)
 805                e1000_fix_nvm_checksum_82571(hw);
 806
 807        return e1000e_validate_nvm_checksum_generic(hw);
 808}
 809
 810/**
 811 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 812 *  @hw: pointer to the HW structure
 813 *  @offset: offset within the EEPROM to be written to
 814 *  @words: number of words to write
 815 *  @data: 16 bit word(s) to be written to the EEPROM
 816 *
 817 *  After checking for invalid values, poll the EEPROM to ensure the previous
 818 *  command has completed before trying to write the next word.  After write
 819 *  poll for completion.
 820 *
 821 *  If e1000e_update_nvm_checksum is not called after this function, the
 822 *  EEPROM will most likely contain an invalid checksum.
 823 **/
 824static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
 825                                      u16 words, u16 *data)
 826{
 827        struct e1000_nvm_info *nvm = &hw->nvm;
 828        u32 i, eewr = 0;
 829        s32 ret_val = 0;
 830
 831        /* A check for invalid values:  offset too large, too many words,
 832         * and not enough words.
 833         */
 834        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 835            (words == 0)) {
 836                e_dbg("nvm parameter(s) out of bounds\n");
 837                return -E1000_ERR_NVM;
 838        }
 839
 840        for (i = 0; i < words; i++) {
 841                eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
 842                        ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
 843                        E1000_NVM_RW_REG_START);
 844
 845                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
 846                if (ret_val)
 847                        break;
 848
 849                ew32(EEWR, eewr);
 850
 851                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
 852                if (ret_val)
 853                        break;
 854        }
 855
 856        return ret_val;
 857}
 858
 859/**
 860 *  e1000_get_cfg_done_82571 - Poll for configuration done
 861 *  @hw: pointer to the HW structure
 862 *
 863 *  Reads the management control register for the config done bit to be set.
 864 **/
 865static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
 866{
 867        s32 timeout = PHY_CFG_TIMEOUT;
 868
 869        while (timeout) {
 870                if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
 871                        break;
 872                usleep_range(1000, 2000);
 873                timeout--;
 874        }
 875        if (!timeout) {
 876                e_dbg("MNG configuration cycle has not completed.\n");
 877                return -E1000_ERR_RESET;
 878        }
 879
 880        return 0;
 881}
 882
 883/**
 884 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 885 *  @hw: pointer to the HW structure
 886 *  @active: true to enable LPLU, false to disable
 887 *
 888 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 889 *  this function also disables smart speed and vice versa.  LPLU will not be
 890 *  activated unless the device autonegotiation advertisement meets standards
 891 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 892 *  pointer entry point only called by PHY setup routines.
 893 **/
 894static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
 895{
 896        struct e1000_phy_info *phy = &hw->phy;
 897        s32 ret_val;
 898        u16 data;
 899
 900        ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 901        if (ret_val)
 902                return ret_val;
 903
 904        if (active) {
 905                data |= IGP02E1000_PM_D0_LPLU;
 906                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
 907                if (ret_val)
 908                        return ret_val;
 909
 910                /* When LPLU is enabled, we should disable SmartSpeed */
 911                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
 912                if (ret_val)
 913                        return ret_val;
 914                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 915                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
 916                if (ret_val)
 917                        return ret_val;
 918        } else {
 919                data &= ~IGP02E1000_PM_D0_LPLU;
 920                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
 921                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 922                 * during Dx states where the power conservation is most
 923                 * important.  During driver activity we should enable
 924                 * SmartSpeed, so performance is maintained.
 925                 */
 926                if (phy->smart_speed == e1000_smart_speed_on) {
 927                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 928                                           &data);
 929                        if (ret_val)
 930                                return ret_val;
 931
 932                        data |= IGP01E1000_PSCFR_SMART_SPEED;
 933                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 934                                           data);
 935                        if (ret_val)
 936                                return ret_val;
 937                } else if (phy->smart_speed == e1000_smart_speed_off) {
 938                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 939                                           &data);
 940                        if (ret_val)
 941                                return ret_val;
 942
 943                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 944                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 945                                           data);
 946                        if (ret_val)
 947                                return ret_val;
 948                }
 949        }
 950
 951        return 0;
 952}
 953
 954/**
 955 *  e1000_reset_hw_82571 - Reset hardware
 956 *  @hw: pointer to the HW structure
 957 *
 958 *  This resets the hardware into a known state.
 959 **/
 960static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
 961{
 962        u32 ctrl, ctrl_ext, eecd, tctl;
 963        s32 ret_val;
 964
 965        /* Prevent the PCI-E bus from sticking if there is no TLP connection
 966         * on the last TLP read/write transaction when MAC is reset.
 967         */
 968        ret_val = e1000e_disable_pcie_master(hw);
 969        if (ret_val)
 970                e_dbg("PCI-E Master disable polling has failed.\n");
 971
 972        e_dbg("Masking off all interrupts\n");
 973        ew32(IMC, 0xffffffff);
 974
 975        ew32(RCTL, 0);
 976        tctl = er32(TCTL);
 977        tctl &= ~E1000_TCTL_EN;
 978        ew32(TCTL, tctl);
 979        e1e_flush();
 980
 981        usleep_range(10000, 20000);
 982
 983        /* Must acquire the MDIO ownership before MAC reset.
 984         * Ownership defaults to firmware after a reset.
 985         */
 986        switch (hw->mac.type) {
 987        case e1000_82573:
 988                ret_val = e1000_get_hw_semaphore_82573(hw);
 989                break;
 990        case e1000_82574:
 991        case e1000_82583:
 992                ret_val = e1000_get_hw_semaphore_82574(hw);
 993                break;
 994        default:
 995                break;
 996        }
 997
 998        ctrl = er32(CTRL);
 999
1000        e_dbg("Issuing a global reset to MAC\n");
1001        ew32(CTRL, ctrl | E1000_CTRL_RST);
1002
1003        /* Must release MDIO ownership and mutex after MAC reset. */
1004        switch (hw->mac.type) {
1005        case e1000_82573:
1006                /* Release mutex only if the hw semaphore is acquired */
1007                if (!ret_val)
1008                        e1000_put_hw_semaphore_82573(hw);
1009                break;
1010        case e1000_82574:
1011        case e1000_82583:
1012                /* Release mutex only if the hw semaphore is acquired */
1013                if (!ret_val)
1014                        e1000_put_hw_semaphore_82574(hw);
1015                break;
1016        default:
1017                break;
1018        }
1019
1020        if (hw->nvm.type == e1000_nvm_flash_hw) {
1021                usleep_range(10, 20);
1022                ctrl_ext = er32(CTRL_EXT);
1023                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1024                ew32(CTRL_EXT, ctrl_ext);
1025                e1e_flush();
1026        }
1027
1028        ret_val = e1000e_get_auto_rd_done(hw);
1029        if (ret_val)
1030                /* We don't want to continue accessing MAC registers. */
1031                return ret_val;
1032
1033        /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1034         * Need to wait for Phy configuration completion before accessing
1035         * NVM and Phy.
1036         */
1037
1038        switch (hw->mac.type) {
1039        case e1000_82571:
1040        case e1000_82572:
1041                /* REQ and GNT bits need to be cleared when using AUTO_RD
1042                 * to access the EEPROM.
1043                 */
1044                eecd = er32(EECD);
1045                eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1046                ew32(EECD, eecd);
1047                break;
1048        case e1000_82573:
1049        case e1000_82574:
1050        case e1000_82583:
1051                msleep(25);
1052                break;
1053        default:
1054                break;
1055        }
1056
1057        /* Clear any pending interrupt events. */
1058        ew32(IMC, 0xffffffff);
1059        er32(ICR);
1060
1061        if (hw->mac.type == e1000_82571) {
1062                /* Install any alternate MAC address into RAR0 */
1063                ret_val = e1000_check_alt_mac_addr_generic(hw);
1064                if (ret_val)
1065                        return ret_val;
1066
1067                e1000e_set_laa_state_82571(hw, true);
1068        }
1069
1070        /* Reinitialize the 82571 serdes link state machine */
1071        if (hw->phy.media_type == e1000_media_type_internal_serdes)
1072                hw->mac.serdes_link_state = e1000_serdes_link_down;
1073
1074        return 0;
1075}
1076
1077/**
1078 *  e1000_init_hw_82571 - Initialize hardware
1079 *  @hw: pointer to the HW structure
1080 *
1081 *  This inits the hardware readying it for operation.
1082 **/
1083static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1084{
1085        struct e1000_mac_info *mac = &hw->mac;
1086        u32 reg_data;
1087        s32 ret_val;
1088        u16 i, rar_count = mac->rar_entry_count;
1089
1090        e1000_initialize_hw_bits_82571(hw);
1091
1092        /* Initialize identification LED */
1093        ret_val = mac->ops.id_led_init(hw);
1094        /* An error is not fatal and we should not stop init due to this */
1095        if (ret_val)
1096                e_dbg("Error initializing identification LED\n");
1097
1098        /* Disabling VLAN filtering */
1099        e_dbg("Initializing the IEEE VLAN\n");
1100        mac->ops.clear_vfta(hw);
1101
1102        /* Setup the receive address.
1103         * If, however, a locally administered address was assigned to the
1104         * 82571, we must reserve a RAR for it to work around an issue where
1105         * resetting one port will reload the MAC on the other port.
1106         */
1107        if (e1000e_get_laa_state_82571(hw))
1108                rar_count--;
1109        e1000e_init_rx_addrs(hw, rar_count);
1110
1111        /* Zero out the Multicast HASH table */
1112        e_dbg("Zeroing the MTA\n");
1113        for (i = 0; i < mac->mta_reg_count; i++)
1114                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1115
1116        /* Setup link and flow control */
1117        ret_val = mac->ops.setup_link(hw);
1118
1119        /* Set the transmit descriptor write-back policy */
1120        reg_data = er32(TXDCTL(0));
1121        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1122                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1123        ew32(TXDCTL(0), reg_data);
1124
1125        /* ...for both queues. */
1126        switch (mac->type) {
1127        case e1000_82573:
1128                e1000e_enable_tx_pkt_filtering(hw);
1129                /* fall through */
1130        case e1000_82574:
1131        case e1000_82583:
1132                reg_data = er32(GCR);
1133                reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1134                ew32(GCR, reg_data);
1135                break;
1136        default:
1137                reg_data = er32(TXDCTL(1));
1138                reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1139                            E1000_TXDCTL_FULL_TX_DESC_WB |
1140                            E1000_TXDCTL_COUNT_DESC);
1141                ew32(TXDCTL(1), reg_data);
1142                break;
1143        }
1144
1145        /* Clear all of the statistics registers (clear on read).  It is
1146         * important that we do this after we have tried to establish link
1147         * because the symbol error count will increment wildly if there
1148         * is no link.
1149         */
1150        e1000_clear_hw_cntrs_82571(hw);
1151
1152        return ret_val;
1153}
1154
1155/**
1156 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1157 *  @hw: pointer to the HW structure
1158 *
1159 *  Initializes required hardware-dependent bits needed for normal operation.
1160 **/
1161static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1162{
1163        u32 reg;
1164
1165        /* Transmit Descriptor Control 0 */
1166        reg = er32(TXDCTL(0));
1167        reg |= BIT(22);
1168        ew32(TXDCTL(0), reg);
1169
1170        /* Transmit Descriptor Control 1 */
1171        reg = er32(TXDCTL(1));
1172        reg |= BIT(22);
1173        ew32(TXDCTL(1), reg);
1174
1175        /* Transmit Arbitration Control 0 */
1176        reg = er32(TARC(0));
1177        reg &= ~(0xF << 27);    /* 30:27 */
1178        switch (hw->mac.type) {
1179        case e1000_82571:
1180        case e1000_82572:
1181                reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1182                break;
1183        case e1000_82574:
1184        case e1000_82583:
1185                reg |= BIT(26);
1186                break;
1187        default:
1188                break;
1189        }
1190        ew32(TARC(0), reg);
1191
1192        /* Transmit Arbitration Control 1 */
1193        reg = er32(TARC(1));
1194        switch (hw->mac.type) {
1195        case e1000_82571:
1196        case e1000_82572:
1197                reg &= ~(BIT(29) | BIT(30));
1198                reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1199                if (er32(TCTL) & E1000_TCTL_MULR)
1200                        reg &= ~BIT(28);
1201                else
1202                        reg |= BIT(28);
1203                ew32(TARC(1), reg);
1204                break;
1205        default:
1206                break;
1207        }
1208
1209        /* Device Control */
1210        switch (hw->mac.type) {
1211        case e1000_82573:
1212        case e1000_82574:
1213        case e1000_82583:
1214                reg = er32(CTRL);
1215                reg &= ~BIT(29);
1216                ew32(CTRL, reg);
1217                break;
1218        default:
1219                break;
1220        }
1221
1222        /* Extended Device Control */
1223        switch (hw->mac.type) {
1224        case e1000_82573:
1225        case e1000_82574:
1226        case e1000_82583:
1227                reg = er32(CTRL_EXT);
1228                reg &= ~BIT(23);
1229                reg |= BIT(22);
1230                ew32(CTRL_EXT, reg);
1231                break;
1232        default:
1233                break;
1234        }
1235
1236        if (hw->mac.type == e1000_82571) {
1237                reg = er32(PBA_ECC);
1238                reg |= E1000_PBA_ECC_CORR_EN;
1239                ew32(PBA_ECC, reg);
1240        }
1241
1242        /* Workaround for hardware errata.
1243         * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1244         */
1245        if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1246                reg = er32(CTRL_EXT);
1247                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1248                ew32(CTRL_EXT, reg);
1249        }
1250
1251        /* Disable IPv6 extension header parsing because some malformed
1252         * IPv6 headers can hang the Rx.
1253         */
1254        if (hw->mac.type <= e1000_82573) {
1255                reg = er32(RFCTL);
1256                reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1257                ew32(RFCTL, reg);
1258        }
1259
1260        /* PCI-Ex Control Registers */
1261        switch (hw->mac.type) {
1262        case e1000_82574:
1263        case e1000_82583:
1264                reg = er32(GCR);
1265                reg |= BIT(22);
1266                ew32(GCR, reg);
1267
1268                /* Workaround for hardware errata.
1269                 * apply workaround for hardware errata documented in errata
1270                 * docs Fixes issue where some error prone or unreliable PCIe
1271                 * completions are occurring, particularly with ASPM enabled.
1272                 * Without fix, issue can cause Tx timeouts.
1273                 */
1274                reg = er32(GCR2);
1275                reg |= 1;
1276                ew32(GCR2, reg);
1277                break;
1278        default:
1279                break;
1280        }
1281}
1282
1283/**
1284 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1285 *  @hw: pointer to the HW structure
1286 *
1287 *  Clears the register array which contains the VLAN filter table by
1288 *  setting all the values to 0.
1289 **/
1290static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1291{
1292        u32 offset;
1293        u32 vfta_value = 0;
1294        u32 vfta_offset = 0;
1295        u32 vfta_bit_in_reg = 0;
1296
1297        switch (hw->mac.type) {
1298        case e1000_82573:
1299        case e1000_82574:
1300        case e1000_82583:
1301                if (hw->mng_cookie.vlan_id != 0) {
1302                        /* The VFTA is a 4096b bit-field, each identifying
1303                         * a single VLAN ID.  The following operations
1304                         * determine which 32b entry (i.e. offset) into the
1305                         * array we want to set the VLAN ID (i.e. bit) of
1306                         * the manageability unit.
1307                         */
1308                        vfta_offset = (hw->mng_cookie.vlan_id >>
1309                                       E1000_VFTA_ENTRY_SHIFT) &
1310                            E1000_VFTA_ENTRY_MASK;
1311                        vfta_bit_in_reg =
1312                            BIT(hw->mng_cookie.vlan_id &
1313                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1314                }
1315                break;
1316        default:
1317                break;
1318        }
1319        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1320                /* If the offset we want to clear is the same offset of the
1321                 * manageability VLAN ID, then clear all bits except that of
1322                 * the manageability unit.
1323                 */
1324                vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1325                E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1326                e1e_flush();
1327        }
1328}
1329
1330/**
1331 *  e1000_check_mng_mode_82574 - Check manageability is enabled
1332 *  @hw: pointer to the HW structure
1333 *
1334 *  Reads the NVM Initialization Control Word 2 and returns true
1335 *  (>0) if any manageability is enabled, else false (0).
1336 **/
1337static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1338{
1339        u16 data;
1340
1341        e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1342        return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1343}
1344
1345/**
1346 *  e1000_led_on_82574 - Turn LED on
1347 *  @hw: pointer to the HW structure
1348 *
1349 *  Turn LED on.
1350 **/
1351static s32 e1000_led_on_82574(struct e1000_hw *hw)
1352{
1353        u32 ctrl;
1354        u32 i;
1355
1356        ctrl = hw->mac.ledctl_mode2;
1357        if (!(E1000_STATUS_LU & er32(STATUS))) {
1358                /* If no link, then turn LED on by setting the invert bit
1359                 * for each LED that's "on" (0x0E) in ledctl_mode2.
1360                 */
1361                for (i = 0; i < 4; i++)
1362                        if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1363                            E1000_LEDCTL_MODE_LED_ON)
1364                                ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1365        }
1366        ew32(LEDCTL, ctrl);
1367
1368        return 0;
1369}
1370
1371/**
1372 *  e1000_check_phy_82574 - check 82574 phy hung state
1373 *  @hw: pointer to the HW structure
1374 *
1375 *  Returns whether phy is hung or not
1376 **/
1377bool e1000_check_phy_82574(struct e1000_hw *hw)
1378{
1379        u16 status_1kbt = 0;
1380        u16 receive_errors = 0;
1381        s32 ret_val;
1382
1383        /* Read PHY Receive Error counter first, if its is max - all F's then
1384         * read the Base1000T status register If both are max then PHY is hung.
1385         */
1386        ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1387        if (ret_val)
1388                return false;
1389        if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1390                ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1391                if (ret_val)
1392                        return false;
1393                if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1394                    E1000_IDLE_ERROR_COUNT_MASK)
1395                        return true;
1396        }
1397
1398        return false;
1399}
1400
1401/**
1402 *  e1000_setup_link_82571 - Setup flow control and link settings
1403 *  @hw: pointer to the HW structure
1404 *
1405 *  Determines which flow control settings to use, then configures flow
1406 *  control.  Calls the appropriate media-specific link configuration
1407 *  function.  Assuming the adapter has a valid link partner, a valid link
1408 *  should be established.  Assumes the hardware has previously been reset
1409 *  and the transmitter and receiver are not enabled.
1410 **/
1411static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1412{
1413        /* 82573 does not have a word in the NVM to determine
1414         * the default flow control setting, so we explicitly
1415         * set it to full.
1416         */
1417        switch (hw->mac.type) {
1418        case e1000_82573:
1419        case e1000_82574:
1420        case e1000_82583:
1421                if (hw->fc.requested_mode == e1000_fc_default)
1422                        hw->fc.requested_mode = e1000_fc_full;
1423                break;
1424        default:
1425                break;
1426        }
1427
1428        return e1000e_setup_link_generic(hw);
1429}
1430
1431/**
1432 *  e1000_setup_copper_link_82571 - Configure copper link settings
1433 *  @hw: pointer to the HW structure
1434 *
1435 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1436 *  for link, once link is established calls to configure collision distance
1437 *  and flow control are called.
1438 **/
1439static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1440{
1441        u32 ctrl;
1442        s32 ret_val;
1443
1444        ctrl = er32(CTRL);
1445        ctrl |= E1000_CTRL_SLU;
1446        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1447        ew32(CTRL, ctrl);
1448
1449        switch (hw->phy.type) {
1450        case e1000_phy_m88:
1451        case e1000_phy_bm:
1452                ret_val = e1000e_copper_link_setup_m88(hw);
1453                break;
1454        case e1000_phy_igp_2:
1455                ret_val = e1000e_copper_link_setup_igp(hw);
1456                break;
1457        default:
1458                return -E1000_ERR_PHY;
1459        }
1460
1461        if (ret_val)
1462                return ret_val;
1463
1464        return e1000e_setup_copper_link(hw);
1465}
1466
1467/**
1468 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1469 *  @hw: pointer to the HW structure
1470 *
1471 *  Configures collision distance and flow control for fiber and serdes links.
1472 *  Upon successful setup, poll for link.
1473 **/
1474static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1475{
1476        switch (hw->mac.type) {
1477        case e1000_82571:
1478        case e1000_82572:
1479                /* If SerDes loopback mode is entered, there is no form
1480                 * of reset to take the adapter out of that mode.  So we
1481                 * have to explicitly take the adapter out of loopback
1482                 * mode.  This prevents drivers from twiddling their thumbs
1483                 * if another tool failed to take it out of loopback mode.
1484                 */
1485                ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1486                break;
1487        default:
1488                break;
1489        }
1490
1491        return e1000e_setup_fiber_serdes_link(hw);
1492}
1493
1494/**
1495 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1496 *  @hw: pointer to the HW structure
1497 *
1498 *  Reports the link state as up or down.
1499 *
1500 *  If autonegotiation is supported by the link partner, the link state is
1501 *  determined by the result of autonegotiation. This is the most likely case.
1502 *  If autonegotiation is not supported by the link partner, and the link
1503 *  has a valid signal, force the link up.
1504 *
1505 *  The link state is represented internally here by 4 states:
1506 *
1507 *  1) down
1508 *  2) autoneg_progress
1509 *  3) autoneg_complete (the link successfully autonegotiated)
1510 *  4) forced_up (the link has been forced up, it did not autonegotiate)
1511 *
1512 **/
1513static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1514{
1515        struct e1000_mac_info *mac = &hw->mac;
1516        u32 rxcw;
1517        u32 ctrl;
1518        u32 status;
1519        u32 txcw;
1520        u32 i;
1521        s32 ret_val = 0;
1522
1523        ctrl = er32(CTRL);
1524        status = er32(STATUS);
1525        er32(RXCW);
1526        /* SYNCH bit and IV bit are sticky */
1527        usleep_range(10, 20);
1528        rxcw = er32(RXCW);
1529
1530        if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1531                /* Receiver is synchronized with no invalid bits.  */
1532                switch (mac->serdes_link_state) {
1533                case e1000_serdes_link_autoneg_complete:
1534                        if (!(status & E1000_STATUS_LU)) {
1535                                /* We have lost link, retry autoneg before
1536                                 * reporting link failure
1537                                 */
1538                                mac->serdes_link_state =
1539                                    e1000_serdes_link_autoneg_progress;
1540                                mac->serdes_has_link = false;
1541                                e_dbg("AN_UP     -> AN_PROG\n");
1542                        } else {
1543                                mac->serdes_has_link = true;
1544                        }
1545                        break;
1546
1547                case e1000_serdes_link_forced_up:
1548                        /* If we are receiving /C/ ordered sets, re-enable
1549                         * auto-negotiation in the TXCW register and disable
1550                         * forced link in the Device Control register in an
1551                         * attempt to auto-negotiate with our link partner.
1552                         */
1553                        if (rxcw & E1000_RXCW_C) {
1554                                /* Enable autoneg, and unforce link up */
1555                                ew32(TXCW, mac->txcw);
1556                                ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1557                                mac->serdes_link_state =
1558                                    e1000_serdes_link_autoneg_progress;
1559                                mac->serdes_has_link = false;
1560                                e_dbg("FORCED_UP -> AN_PROG\n");
1561                        } else {
1562                                mac->serdes_has_link = true;
1563                        }
1564                        break;
1565
1566                case e1000_serdes_link_autoneg_progress:
1567                        if (rxcw & E1000_RXCW_C) {
1568                                /* We received /C/ ordered sets, meaning the
1569                                 * link partner has autonegotiated, and we can
1570                                 * trust the Link Up (LU) status bit.
1571                                 */
1572                                if (status & E1000_STATUS_LU) {
1573                                        mac->serdes_link_state =
1574                                            e1000_serdes_link_autoneg_complete;
1575                                        e_dbg("AN_PROG   -> AN_UP\n");
1576                                        mac->serdes_has_link = true;
1577                                } else {
1578                                        /* Autoneg completed, but failed. */
1579                                        mac->serdes_link_state =
1580                                            e1000_serdes_link_down;
1581                                        e_dbg("AN_PROG   -> DOWN\n");
1582                                }
1583                        } else {
1584                                /* The link partner did not autoneg.
1585                                 * Force link up and full duplex, and change
1586                                 * state to forced.
1587                                 */
1588                                ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1589                                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1590                                ew32(CTRL, ctrl);
1591
1592                                /* Configure Flow Control after link up. */
1593                                ret_val = e1000e_config_fc_after_link_up(hw);
1594                                if (ret_val) {
1595                                        e_dbg("Error config flow control\n");
1596                                        break;
1597                                }
1598                                mac->serdes_link_state =
1599                                    e1000_serdes_link_forced_up;
1600                                mac->serdes_has_link = true;
1601                                e_dbg("AN_PROG   -> FORCED_UP\n");
1602                        }
1603                        break;
1604
1605                case e1000_serdes_link_down:
1606                default:
1607                        /* The link was down but the receiver has now gained
1608                         * valid sync, so lets see if we can bring the link
1609                         * up.
1610                         */
1611                        ew32(TXCW, mac->txcw);
1612                        ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1613                        mac->serdes_link_state =
1614                            e1000_serdes_link_autoneg_progress;
1615                        mac->serdes_has_link = false;
1616                        e_dbg("DOWN      -> AN_PROG\n");
1617                        break;
1618                }
1619        } else {
1620                if (!(rxcw & E1000_RXCW_SYNCH)) {
1621                        mac->serdes_has_link = false;
1622                        mac->serdes_link_state = e1000_serdes_link_down;
1623                        e_dbg("ANYSTATE  -> DOWN\n");
1624                } else {
1625                        /* Check several times, if SYNCH bit and CONFIG
1626                         * bit both are consistently 1 then simply ignore
1627                         * the IV bit and restart Autoneg
1628                         */
1629                        for (i = 0; i < AN_RETRY_COUNT; i++) {
1630                                usleep_range(10, 20);
1631                                rxcw = er32(RXCW);
1632                                if ((rxcw & E1000_RXCW_SYNCH) &&
1633                                    (rxcw & E1000_RXCW_C))
1634                                        continue;
1635
1636                                if (rxcw & E1000_RXCW_IV) {
1637                                        mac->serdes_has_link = false;
1638                                        mac->serdes_link_state =
1639                                            e1000_serdes_link_down;
1640                                        e_dbg("ANYSTATE  -> DOWN\n");
1641                                        break;
1642                                }
1643                        }
1644
1645                        if (i == AN_RETRY_COUNT) {
1646                                txcw = er32(TXCW);
1647                                txcw |= E1000_TXCW_ANE;
1648                                ew32(TXCW, txcw);
1649                                mac->serdes_link_state =
1650                                    e1000_serdes_link_autoneg_progress;
1651                                mac->serdes_has_link = false;
1652                                e_dbg("ANYSTATE  -> AN_PROG\n");
1653                        }
1654                }
1655        }
1656
1657        return ret_val;
1658}
1659
1660/**
1661 *  e1000_valid_led_default_82571 - Verify a valid default LED config
1662 *  @hw: pointer to the HW structure
1663 *  @data: pointer to the NVM (EEPROM)
1664 *
1665 *  Read the EEPROM for the current default LED configuration.  If the
1666 *  LED configuration is not valid, set to a valid LED configuration.
1667 **/
1668static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1669{
1670        s32 ret_val;
1671
1672        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1673        if (ret_val) {
1674                e_dbg("NVM Read Error\n");
1675                return ret_val;
1676        }
1677
1678        switch (hw->mac.type) {
1679        case e1000_82573:
1680        case e1000_82574:
1681        case e1000_82583:
1682                if (*data == ID_LED_RESERVED_F746)
1683                        *data = ID_LED_DEFAULT_82573;
1684                break;
1685        default:
1686                if (*data == ID_LED_RESERVED_0000 ||
1687                    *data == ID_LED_RESERVED_FFFF)
1688                        *data = ID_LED_DEFAULT;
1689                break;
1690        }
1691
1692        return 0;
1693}
1694
1695/**
1696 *  e1000e_get_laa_state_82571 - Get locally administered address state
1697 *  @hw: pointer to the HW structure
1698 *
1699 *  Retrieve and return the current locally administered address state.
1700 **/
1701bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1702{
1703        if (hw->mac.type != e1000_82571)
1704                return false;
1705
1706        return hw->dev_spec.e82571.laa_is_present;
1707}
1708
1709/**
1710 *  e1000e_set_laa_state_82571 - Set locally administered address state
1711 *  @hw: pointer to the HW structure
1712 *  @state: enable/disable locally administered address
1713 *
1714 *  Enable/Disable the current locally administered address state.
1715 **/
1716void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1717{
1718        if (hw->mac.type != e1000_82571)
1719                return;
1720
1721        hw->dev_spec.e82571.laa_is_present = state;
1722
1723        /* If workaround is activated... */
1724        if (state)
1725                /* Hold a copy of the LAA in RAR[14] This is done so that
1726                 * between the time RAR[0] gets clobbered and the time it
1727                 * gets fixed, the actual LAA is in one of the RARs and no
1728                 * incoming packets directed to this port are dropped.
1729                 * Eventually the LAA will be in RAR[0] and RAR[14].
1730                 */
1731                hw->mac.ops.rar_set(hw, hw->mac.addr,
1732                                    hw->mac.rar_entry_count - 1);
1733}
1734
1735/**
1736 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1737 *  @hw: pointer to the HW structure
1738 *
1739 *  Verifies that the EEPROM has completed the update.  After updating the
1740 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1741 *  the checksum fix is not implemented, we need to set the bit and update
1742 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1743 *  we need to return bad checksum.
1744 **/
1745static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1746{
1747        struct e1000_nvm_info *nvm = &hw->nvm;
1748        s32 ret_val;
1749        u16 data;
1750
1751        if (nvm->type != e1000_nvm_flash_hw)
1752                return 0;
1753
1754        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1755         * 10h-12h.  Checksum may need to be fixed.
1756         */
1757        ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1758        if (ret_val)
1759                return ret_val;
1760
1761        if (!(data & 0x10)) {
1762                /* Read 0x23 and check bit 15.  This bit is a 1
1763                 * when the checksum has already been fixed.  If
1764                 * the checksum is still wrong and this bit is a
1765                 * 1, we need to return bad checksum.  Otherwise,
1766                 * we need to set this bit to a 1 and update the
1767                 * checksum.
1768                 */
1769                ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1770                if (ret_val)
1771                        return ret_val;
1772
1773                if (!(data & 0x8000)) {
1774                        data |= 0x8000;
1775                        ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1776                        if (ret_val)
1777                                return ret_val;
1778                        ret_val = e1000e_update_nvm_checksum(hw);
1779                        if (ret_val)
1780                                return ret_val;
1781                }
1782        }
1783
1784        return 0;
1785}
1786
1787/**
1788 *  e1000_read_mac_addr_82571 - Read device MAC address
1789 *  @hw: pointer to the HW structure
1790 **/
1791static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1792{
1793        if (hw->mac.type == e1000_82571) {
1794                s32 ret_val;
1795
1796                /* If there's an alternate MAC address place it in RAR0
1797                 * so that it will override the Si installed default perm
1798                 * address.
1799                 */
1800                ret_val = e1000_check_alt_mac_addr_generic(hw);
1801                if (ret_val)
1802                        return ret_val;
1803        }
1804
1805        return e1000_read_mac_addr_generic(hw);
1806}
1807
1808/**
1809 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1810 * @hw: pointer to the HW structure
1811 *
1812 * In the case of a PHY power down to save power, or to turn off link during a
1813 * driver unload, or wake on lan is not enabled, remove the link.
1814 **/
1815static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1816{
1817        struct e1000_phy_info *phy = &hw->phy;
1818        struct e1000_mac_info *mac = &hw->mac;
1819
1820        if (!phy->ops.check_reset_block)
1821                return;
1822
1823        /* If the management interface is not enabled, then power down */
1824        if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1825                e1000_power_down_phy_copper(hw);
1826}
1827
1828/**
1829 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1830 *  @hw: pointer to the HW structure
1831 *
1832 *  Clears the hardware counters by reading the counter registers.
1833 **/
1834static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1835{
1836        e1000e_clear_hw_cntrs_base(hw);
1837
1838        er32(PRC64);
1839        er32(PRC127);
1840        er32(PRC255);
1841        er32(PRC511);
1842        er32(PRC1023);
1843        er32(PRC1522);
1844        er32(PTC64);
1845        er32(PTC127);
1846        er32(PTC255);
1847        er32(PTC511);
1848        er32(PTC1023);
1849        er32(PTC1522);
1850
1851        er32(ALGNERRC);
1852        er32(RXERRC);
1853        er32(TNCRS);
1854        er32(CEXTERR);
1855        er32(TSCTC);
1856        er32(TSCTFC);
1857
1858        er32(MGTPRC);
1859        er32(MGTPDC);
1860        er32(MGTPTC);
1861
1862        er32(IAC);
1863        er32(ICRXOC);
1864
1865        er32(ICRXPTC);
1866        er32(ICRXATC);
1867        er32(ICTXPTC);
1868        er32(ICTXATC);
1869        er32(ICTXQEC);
1870        er32(ICTXQMTC);
1871        er32(ICRXDMTC);
1872}
1873
1874static const struct e1000_mac_operations e82571_mac_ops = {
1875        /* .check_mng_mode: mac type dependent */
1876        /* .check_for_link: media type dependent */
1877        .id_led_init            = e1000e_id_led_init_generic,
1878        .cleanup_led            = e1000e_cleanup_led_generic,
1879        .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1880        .get_bus_info           = e1000e_get_bus_info_pcie,
1881        .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1882        /* .get_link_up_info: media type dependent */
1883        /* .led_on: mac type dependent */
1884        .led_off                = e1000e_led_off_generic,
1885        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1886        .write_vfta             = e1000_write_vfta_generic,
1887        .clear_vfta             = e1000_clear_vfta_82571,
1888        .reset_hw               = e1000_reset_hw_82571,
1889        .init_hw                = e1000_init_hw_82571,
1890        .setup_link             = e1000_setup_link_82571,
1891        /* .setup_physical_interface: media type dependent */
1892        .setup_led              = e1000e_setup_led_generic,
1893        .config_collision_dist  = e1000e_config_collision_dist_generic,
1894        .read_mac_addr          = e1000_read_mac_addr_82571,
1895        .rar_set                = e1000e_rar_set_generic,
1896        .rar_get_count          = e1000e_rar_get_count_generic,
1897};
1898
1899static const struct e1000_phy_operations e82_phy_ops_igp = {
1900        .acquire                = e1000_get_hw_semaphore_82571,
1901        .check_polarity         = e1000_check_polarity_igp,
1902        .check_reset_block      = e1000e_check_reset_block_generic,
1903        .commit                 = NULL,
1904        .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1905        .get_cfg_done           = e1000_get_cfg_done_82571,
1906        .get_cable_length       = e1000e_get_cable_length_igp_2,
1907        .get_info               = e1000e_get_phy_info_igp,
1908        .read_reg               = e1000e_read_phy_reg_igp,
1909        .release                = e1000_put_hw_semaphore_82571,
1910        .reset                  = e1000e_phy_hw_reset_generic,
1911        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1912        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1913        .write_reg              = e1000e_write_phy_reg_igp,
1914        .cfg_on_link_up         = NULL,
1915};
1916
1917static const struct e1000_phy_operations e82_phy_ops_m88 = {
1918        .acquire                = e1000_get_hw_semaphore_82571,
1919        .check_polarity         = e1000_check_polarity_m88,
1920        .check_reset_block      = e1000e_check_reset_block_generic,
1921        .commit                 = e1000e_phy_sw_reset,
1922        .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1923        .get_cfg_done           = e1000e_get_cfg_done_generic,
1924        .get_cable_length       = e1000e_get_cable_length_m88,
1925        .get_info               = e1000e_get_phy_info_m88,
1926        .read_reg               = e1000e_read_phy_reg_m88,
1927        .release                = e1000_put_hw_semaphore_82571,
1928        .reset                  = e1000e_phy_hw_reset_generic,
1929        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1930        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1931        .write_reg              = e1000e_write_phy_reg_m88,
1932        .cfg_on_link_up         = NULL,
1933};
1934
1935static const struct e1000_phy_operations e82_phy_ops_bm = {
1936        .acquire                = e1000_get_hw_semaphore_82571,
1937        .check_polarity         = e1000_check_polarity_m88,
1938        .check_reset_block      = e1000e_check_reset_block_generic,
1939        .commit                 = e1000e_phy_sw_reset,
1940        .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1941        .get_cfg_done           = e1000e_get_cfg_done_generic,
1942        .get_cable_length       = e1000e_get_cable_length_m88,
1943        .get_info               = e1000e_get_phy_info_m88,
1944        .read_reg               = e1000e_read_phy_reg_bm2,
1945        .release                = e1000_put_hw_semaphore_82571,
1946        .reset                  = e1000e_phy_hw_reset_generic,
1947        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1948        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1949        .write_reg              = e1000e_write_phy_reg_bm2,
1950        .cfg_on_link_up         = NULL,
1951};
1952
1953static const struct e1000_nvm_operations e82571_nvm_ops = {
1954        .acquire                = e1000_acquire_nvm_82571,
1955        .read                   = e1000e_read_nvm_eerd,
1956        .release                = e1000_release_nvm_82571,
1957        .reload                 = e1000e_reload_nvm_generic,
1958        .update                 = e1000_update_nvm_checksum_82571,
1959        .valid_led_default      = e1000_valid_led_default_82571,
1960        .validate               = e1000_validate_nvm_checksum_82571,
1961        .write                  = e1000_write_nvm_82571,
1962};
1963
1964const struct e1000_info e1000_82571_info = {
1965        .mac                    = e1000_82571,
1966        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1967                                  | FLAG_HAS_JUMBO_FRAMES
1968                                  | FLAG_HAS_WOL
1969                                  | FLAG_APME_IN_CTRL3
1970                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1971                                  | FLAG_HAS_SMART_POWER_DOWN
1972                                  | FLAG_RESET_OVERWRITES_LAA /* errata */
1973                                  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1974                                  | FLAG_APME_CHECK_PORT_B,
1975        .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1976                                  | FLAG2_DMA_BURST,
1977        .pba                    = 38,
1978        .max_hw_frame_size      = DEFAULT_JUMBO,
1979        .get_variants           = e1000_get_variants_82571,
1980        .mac_ops                = &e82571_mac_ops,
1981        .phy_ops                = &e82_phy_ops_igp,
1982        .nvm_ops                = &e82571_nvm_ops,
1983};
1984
1985const struct e1000_info e1000_82572_info = {
1986        .mac                    = e1000_82572,
1987        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1988                                  | FLAG_HAS_JUMBO_FRAMES
1989                                  | FLAG_HAS_WOL
1990                                  | FLAG_APME_IN_CTRL3
1991                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1992                                  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1993        .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1994                                  | FLAG2_DMA_BURST,
1995        .pba                    = 38,
1996        .max_hw_frame_size      = DEFAULT_JUMBO,
1997        .get_variants           = e1000_get_variants_82571,
1998        .mac_ops                = &e82571_mac_ops,
1999        .phy_ops                = &e82_phy_ops_igp,
2000        .nvm_ops                = &e82571_nvm_ops,
2001};
2002
2003const struct e1000_info e1000_82573_info = {
2004        .mac                    = e1000_82573,
2005        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2006                                  | FLAG_HAS_WOL
2007                                  | FLAG_APME_IN_CTRL3
2008                                  | FLAG_HAS_SMART_POWER_DOWN
2009                                  | FLAG_HAS_AMT
2010                                  | FLAG_HAS_SWSM_ON_LOAD,
2011        .flags2                 = FLAG2_DISABLE_ASPM_L1
2012                                  | FLAG2_DISABLE_ASPM_L0S,
2013        .pba                    = 20,
2014        .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
2015        .get_variants           = e1000_get_variants_82571,
2016        .mac_ops                = &e82571_mac_ops,
2017        .phy_ops                = &e82_phy_ops_m88,
2018        .nvm_ops                = &e82571_nvm_ops,
2019};
2020
2021const struct e1000_info e1000_82574_info = {
2022        .mac                    = e1000_82574,
2023        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2024                                  | FLAG_HAS_MSIX
2025                                  | FLAG_HAS_JUMBO_FRAMES
2026                                  | FLAG_HAS_WOL
2027                                  | FLAG_HAS_HW_TIMESTAMP
2028                                  | FLAG_APME_IN_CTRL3
2029                                  | FLAG_HAS_SMART_POWER_DOWN
2030                                  | FLAG_HAS_AMT
2031                                  | FLAG_HAS_CTRLEXT_ON_LOAD,
2032        .flags2                  = FLAG2_CHECK_PHY_HANG
2033                                  | FLAG2_DISABLE_ASPM_L0S
2034                                  | FLAG2_DISABLE_ASPM_L1
2035                                  | FLAG2_NO_DISABLE_RX
2036                                  | FLAG2_DMA_BURST
2037                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2038        .pba                    = 32,
2039        .max_hw_frame_size      = DEFAULT_JUMBO,
2040        .get_variants           = e1000_get_variants_82571,
2041        .mac_ops                = &e82571_mac_ops,
2042        .phy_ops                = &e82_phy_ops_bm,
2043        .nvm_ops                = &e82571_nvm_ops,
2044};
2045
2046const struct e1000_info e1000_82583_info = {
2047        .mac                    = e1000_82583,
2048        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2049                                  | FLAG_HAS_WOL
2050                                  | FLAG_HAS_HW_TIMESTAMP
2051                                  | FLAG_APME_IN_CTRL3
2052                                  | FLAG_HAS_SMART_POWER_DOWN
2053                                  | FLAG_HAS_AMT
2054                                  | FLAG_HAS_JUMBO_FRAMES
2055                                  | FLAG_HAS_CTRLEXT_ON_LOAD,
2056        .flags2                 = FLAG2_DISABLE_ASPM_L0S
2057                                  | FLAG2_DISABLE_ASPM_L1
2058                                  | FLAG2_NO_DISABLE_RX
2059                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2060        .pba                    = 32,
2061        .max_hw_frame_size      = DEFAULT_JUMBO,
2062        .get_variants           = e1000_get_variants_82571,
2063        .mac_ops                = &e82571_mac_ops,
2064        .phy_ops                = &e82_phy_ops_bm,
2065        .nvm_ops                = &e82571_nvm_ops,
2066};
2067