linux/drivers/net/ethernet/intel/e1000e/phy.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23#include "e1000.h"
  24
  25static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  26static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  27                                          u16 *data, bool read, bool page_set);
  28static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  29static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  30                                          u16 *data, bool read);
  31
  32/* Cable length tables */
  33static const u16 e1000_m88_cable_length_table[] = {
  34        0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  35};
  36
  37#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  38                ARRAY_SIZE(e1000_m88_cable_length_table)
  39
  40static const u16 e1000_igp_2_cable_length_table[] = {
  41        0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  42        6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  43        26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  44        44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  45        66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  46        87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  47        100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  48        124
  49};
  50
  51#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  52                ARRAY_SIZE(e1000_igp_2_cable_length_table)
  53
  54/**
  55 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  56 *  @hw: pointer to the HW structure
  57 *
  58 *  Read the PHY management control register and check whether a PHY reset
  59 *  is blocked.  If a reset is not blocked return 0, otherwise
  60 *  return E1000_BLK_PHY_RESET (12).
  61 **/
  62s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  63{
  64        u32 manc;
  65
  66        manc = er32(MANC);
  67
  68        return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  69}
  70
  71/**
  72 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  73 *  @hw: pointer to the HW structure
  74 *
  75 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  76 *  revision in the hardware structure.
  77 **/
  78s32 e1000e_get_phy_id(struct e1000_hw *hw)
  79{
  80        struct e1000_phy_info *phy = &hw->phy;
  81        s32 ret_val = 0;
  82        u16 phy_id;
  83        u16 retry_count = 0;
  84
  85        if (!phy->ops.read_reg)
  86                return 0;
  87
  88        while (retry_count < 2) {
  89                ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  90                if (ret_val)
  91                        return ret_val;
  92
  93                phy->id = (u32)(phy_id << 16);
  94                usleep_range(20, 40);
  95                ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  96                if (ret_val)
  97                        return ret_val;
  98
  99                phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 100                phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 101
 102                if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 103                        return 0;
 104
 105                retry_count++;
 106        }
 107
 108        return 0;
 109}
 110
 111/**
 112 *  e1000e_phy_reset_dsp - Reset PHY DSP
 113 *  @hw: pointer to the HW structure
 114 *
 115 *  Reset the digital signal processor.
 116 **/
 117s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 118{
 119        s32 ret_val;
 120
 121        ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 122        if (ret_val)
 123                return ret_val;
 124
 125        return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 126}
 127
 128/**
 129 *  e1000e_read_phy_reg_mdic - Read MDI control register
 130 *  @hw: pointer to the HW structure
 131 *  @offset: register offset to be read
 132 *  @data: pointer to the read data
 133 *
 134 *  Reads the MDI control register in the PHY at offset and stores the
 135 *  information read to data.
 136 **/
 137s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 138{
 139        struct e1000_phy_info *phy = &hw->phy;
 140        u32 i, mdic = 0;
 141
 142        if (offset > MAX_PHY_REG_ADDRESS) {
 143                e_dbg("PHY Address %d is out of range\n", offset);
 144                return -E1000_ERR_PARAM;
 145        }
 146
 147        /* Set up Op-code, Phy Address, and register offset in the MDI
 148         * Control register.  The MAC will take care of interfacing with the
 149         * PHY to retrieve the desired data.
 150         */
 151        mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 152                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 153                (E1000_MDIC_OP_READ));
 154
 155        ew32(MDIC, mdic);
 156
 157        /* Poll the ready bit to see if the MDI read completed
 158         * Increasing the time out as testing showed failures with
 159         * the lower time out
 160         */
 161        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 162                udelay(50);
 163                mdic = er32(MDIC);
 164                if (mdic & E1000_MDIC_READY)
 165                        break;
 166        }
 167        if (!(mdic & E1000_MDIC_READY)) {
 168                e_dbg("MDI Read did not complete\n");
 169                return -E1000_ERR_PHY;
 170        }
 171        if (mdic & E1000_MDIC_ERROR) {
 172                e_dbg("MDI Error\n");
 173                return -E1000_ERR_PHY;
 174        }
 175        if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 176                e_dbg("MDI Read offset error - requested %d, returned %d\n",
 177                      offset,
 178                      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 179                return -E1000_ERR_PHY;
 180        }
 181        *data = (u16)mdic;
 182
 183        /* Allow some time after each MDIC transaction to avoid
 184         * reading duplicate data in the next MDIC transaction.
 185         */
 186        if (hw->mac.type == e1000_pch2lan)
 187                udelay(100);
 188
 189        return 0;
 190}
 191
 192/**
 193 *  e1000e_write_phy_reg_mdic - Write MDI control register
 194 *  @hw: pointer to the HW structure
 195 *  @offset: register offset to write to
 196 *  @data: data to write to register at offset
 197 *
 198 *  Writes data to MDI control register in the PHY at offset.
 199 **/
 200s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 201{
 202        struct e1000_phy_info *phy = &hw->phy;
 203        u32 i, mdic = 0;
 204
 205        if (offset > MAX_PHY_REG_ADDRESS) {
 206                e_dbg("PHY Address %d is out of range\n", offset);
 207                return -E1000_ERR_PARAM;
 208        }
 209
 210        /* Set up Op-code, Phy Address, and register offset in the MDI
 211         * Control register.  The MAC will take care of interfacing with the
 212         * PHY to retrieve the desired data.
 213         */
 214        mdic = (((u32)data) |
 215                (offset << E1000_MDIC_REG_SHIFT) |
 216                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 217                (E1000_MDIC_OP_WRITE));
 218
 219        ew32(MDIC, mdic);
 220
 221        /* Poll the ready bit to see if the MDI read completed
 222         * Increasing the time out as testing showed failures with
 223         * the lower time out
 224         */
 225        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 226                udelay(50);
 227                mdic = er32(MDIC);
 228                if (mdic & E1000_MDIC_READY)
 229                        break;
 230        }
 231        if (!(mdic & E1000_MDIC_READY)) {
 232                e_dbg("MDI Write did not complete\n");
 233                return -E1000_ERR_PHY;
 234        }
 235        if (mdic & E1000_MDIC_ERROR) {
 236                e_dbg("MDI Error\n");
 237                return -E1000_ERR_PHY;
 238        }
 239        if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 240                e_dbg("MDI Write offset error - requested %d, returned %d\n",
 241                      offset,
 242                      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 243                return -E1000_ERR_PHY;
 244        }
 245
 246        /* Allow some time after each MDIC transaction to avoid
 247         * reading duplicate data in the next MDIC transaction.
 248         */
 249        if (hw->mac.type == e1000_pch2lan)
 250                udelay(100);
 251
 252        return 0;
 253}
 254
 255/**
 256 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 257 *  @hw: pointer to the HW structure
 258 *  @offset: register offset to be read
 259 *  @data: pointer to the read data
 260 *
 261 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 262 *  and storing the retrieved information in data.  Release any acquired
 263 *  semaphores before exiting.
 264 **/
 265s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 266{
 267        s32 ret_val;
 268
 269        ret_val = hw->phy.ops.acquire(hw);
 270        if (ret_val)
 271                return ret_val;
 272
 273        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 274                                           data);
 275
 276        hw->phy.ops.release(hw);
 277
 278        return ret_val;
 279}
 280
 281/**
 282 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 283 *  @hw: pointer to the HW structure
 284 *  @offset: register offset to write to
 285 *  @data: data to write at register offset
 286 *
 287 *  Acquires semaphore, if necessary, then writes the data to PHY register
 288 *  at the offset.  Release any acquired semaphores before exiting.
 289 **/
 290s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 291{
 292        s32 ret_val;
 293
 294        ret_val = hw->phy.ops.acquire(hw);
 295        if (ret_val)
 296                return ret_val;
 297
 298        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 299                                            data);
 300
 301        hw->phy.ops.release(hw);
 302
 303        return ret_val;
 304}
 305
 306/**
 307 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 308 *  @hw: pointer to the HW structure
 309 *  @page: page to set (shifted left when necessary)
 310 *
 311 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 312 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 313 *  must set it appropriately (if necessary) after this function returns.
 314 **/
 315s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 316{
 317        e_dbg("Setting page 0x%x\n", page);
 318
 319        hw->phy.addr = 1;
 320
 321        return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 322}
 323
 324/**
 325 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 326 *  @hw: pointer to the HW structure
 327 *  @offset: register offset to be read
 328 *  @data: pointer to the read data
 329 *  @locked: semaphore has already been acquired or not
 330 *
 331 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 332 *  and stores the retrieved information in data.  Release any acquired
 333 *  semaphores before exiting.
 334 **/
 335static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 336                                     bool locked)
 337{
 338        s32 ret_val = 0;
 339
 340        if (!locked) {
 341                if (!hw->phy.ops.acquire)
 342                        return 0;
 343
 344                ret_val = hw->phy.ops.acquire(hw);
 345                if (ret_val)
 346                        return ret_val;
 347        }
 348
 349        if (offset > MAX_PHY_MULTI_PAGE_REG)
 350                ret_val = e1000e_write_phy_reg_mdic(hw,
 351                                                    IGP01E1000_PHY_PAGE_SELECT,
 352                                                    (u16)offset);
 353        if (!ret_val)
 354                ret_val = e1000e_read_phy_reg_mdic(hw,
 355                                                   MAX_PHY_REG_ADDRESS & offset,
 356                                                   data);
 357        if (!locked)
 358                hw->phy.ops.release(hw);
 359
 360        return ret_val;
 361}
 362
 363/**
 364 *  e1000e_read_phy_reg_igp - Read igp PHY register
 365 *  @hw: pointer to the HW structure
 366 *  @offset: register offset to be read
 367 *  @data: pointer to the read data
 368 *
 369 *  Acquires semaphore then reads the PHY register at offset and stores the
 370 *  retrieved information in data.
 371 *  Release the acquired semaphore before exiting.
 372 **/
 373s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 374{
 375        return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 376}
 377
 378/**
 379 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 380 *  @hw: pointer to the HW structure
 381 *  @offset: register offset to be read
 382 *  @data: pointer to the read data
 383 *
 384 *  Reads the PHY register at offset and stores the retrieved information
 385 *  in data.  Assumes semaphore already acquired.
 386 **/
 387s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 388{
 389        return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 390}
 391
 392/**
 393 *  e1000e_write_phy_reg_igp - Write igp PHY register
 394 *  @hw: pointer to the HW structure
 395 *  @offset: register offset to write to
 396 *  @data: data to write at register offset
 397 *  @locked: semaphore has already been acquired or not
 398 *
 399 *  Acquires semaphore, if necessary, then writes the data to PHY register
 400 *  at the offset.  Release any acquired semaphores before exiting.
 401 **/
 402static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 403                                      bool locked)
 404{
 405        s32 ret_val = 0;
 406
 407        if (!locked) {
 408                if (!hw->phy.ops.acquire)
 409                        return 0;
 410
 411                ret_val = hw->phy.ops.acquire(hw);
 412                if (ret_val)
 413                        return ret_val;
 414        }
 415
 416        if (offset > MAX_PHY_MULTI_PAGE_REG)
 417                ret_val = e1000e_write_phy_reg_mdic(hw,
 418                                                    IGP01E1000_PHY_PAGE_SELECT,
 419                                                    (u16)offset);
 420        if (!ret_val)
 421                ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 422                                                    offset, data);
 423        if (!locked)
 424                hw->phy.ops.release(hw);
 425
 426        return ret_val;
 427}
 428
 429/**
 430 *  e1000e_write_phy_reg_igp - Write igp PHY register
 431 *  @hw: pointer to the HW structure
 432 *  @offset: register offset to write to
 433 *  @data: data to write at register offset
 434 *
 435 *  Acquires semaphore then writes the data to PHY register
 436 *  at the offset.  Release any acquired semaphores before exiting.
 437 **/
 438s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 439{
 440        return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 441}
 442
 443/**
 444 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 445 *  @hw: pointer to the HW structure
 446 *  @offset: register offset to write to
 447 *  @data: data to write at register offset
 448 *
 449 *  Writes the data to PHY register at the offset.
 450 *  Assumes semaphore already acquired.
 451 **/
 452s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 453{
 454        return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 455}
 456
 457/**
 458 *  __e1000_read_kmrn_reg - Read kumeran register
 459 *  @hw: pointer to the HW structure
 460 *  @offset: register offset to be read
 461 *  @data: pointer to the read data
 462 *  @locked: semaphore has already been acquired or not
 463 *
 464 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 465 *  using the kumeran interface.  The information retrieved is stored in data.
 466 *  Release any acquired semaphores before exiting.
 467 **/
 468static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 469                                 bool locked)
 470{
 471        u32 kmrnctrlsta;
 472
 473        if (!locked) {
 474                s32 ret_val = 0;
 475
 476                if (!hw->phy.ops.acquire)
 477                        return 0;
 478
 479                ret_val = hw->phy.ops.acquire(hw);
 480                if (ret_val)
 481                        return ret_val;
 482        }
 483
 484        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 485                       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 486        ew32(KMRNCTRLSTA, kmrnctrlsta);
 487        e1e_flush();
 488
 489        udelay(2);
 490
 491        kmrnctrlsta = er32(KMRNCTRLSTA);
 492        *data = (u16)kmrnctrlsta;
 493
 494        if (!locked)
 495                hw->phy.ops.release(hw);
 496
 497        return 0;
 498}
 499
 500/**
 501 *  e1000e_read_kmrn_reg -  Read kumeran register
 502 *  @hw: pointer to the HW structure
 503 *  @offset: register offset to be read
 504 *  @data: pointer to the read data
 505 *
 506 *  Acquires semaphore then reads the PHY register at offset using the
 507 *  kumeran interface.  The information retrieved is stored in data.
 508 *  Release the acquired semaphore before exiting.
 509 **/
 510s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 511{
 512        return __e1000_read_kmrn_reg(hw, offset, data, false);
 513}
 514
 515/**
 516 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 517 *  @hw: pointer to the HW structure
 518 *  @offset: register offset to be read
 519 *  @data: pointer to the read data
 520 *
 521 *  Reads the PHY register at offset using the kumeran interface.  The
 522 *  information retrieved is stored in data.
 523 *  Assumes semaphore already acquired.
 524 **/
 525s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 526{
 527        return __e1000_read_kmrn_reg(hw, offset, data, true);
 528}
 529
 530/**
 531 *  __e1000_write_kmrn_reg - Write kumeran register
 532 *  @hw: pointer to the HW structure
 533 *  @offset: register offset to write to
 534 *  @data: data to write at register offset
 535 *  @locked: semaphore has already been acquired or not
 536 *
 537 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 538 *  at the offset using the kumeran interface.  Release any acquired semaphores
 539 *  before exiting.
 540 **/
 541static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 542                                  bool locked)
 543{
 544        u32 kmrnctrlsta;
 545
 546        if (!locked) {
 547                s32 ret_val = 0;
 548
 549                if (!hw->phy.ops.acquire)
 550                        return 0;
 551
 552                ret_val = hw->phy.ops.acquire(hw);
 553                if (ret_val)
 554                        return ret_val;
 555        }
 556
 557        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 558                       E1000_KMRNCTRLSTA_OFFSET) | data;
 559        ew32(KMRNCTRLSTA, kmrnctrlsta);
 560        e1e_flush();
 561
 562        udelay(2);
 563
 564        if (!locked)
 565                hw->phy.ops.release(hw);
 566
 567        return 0;
 568}
 569
 570/**
 571 *  e1000e_write_kmrn_reg -  Write kumeran register
 572 *  @hw: pointer to the HW structure
 573 *  @offset: register offset to write to
 574 *  @data: data to write at register offset
 575 *
 576 *  Acquires semaphore then writes the data to the PHY register at the offset
 577 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 578 **/
 579s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 580{
 581        return __e1000_write_kmrn_reg(hw, offset, data, false);
 582}
 583
 584/**
 585 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 586 *  @hw: pointer to the HW structure
 587 *  @offset: register offset to write to
 588 *  @data: data to write at register offset
 589 *
 590 *  Write the data to PHY register at the offset using the kumeran interface.
 591 *  Assumes semaphore already acquired.
 592 **/
 593s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 594{
 595        return __e1000_write_kmrn_reg(hw, offset, data, true);
 596}
 597
 598/**
 599 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 600 *  @hw: pointer to the HW structure
 601 *
 602 *  Sets up Master/slave mode
 603 **/
 604static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 605{
 606        s32 ret_val;
 607        u16 phy_data;
 608
 609        /* Resolve Master/Slave mode */
 610        ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 611        if (ret_val)
 612                return ret_val;
 613
 614        /* load defaults for future use */
 615        hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 616            ((phy_data & CTL1000_AS_MASTER) ?
 617             e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 618
 619        switch (hw->phy.ms_type) {
 620        case e1000_ms_force_master:
 621                phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 622                break;
 623        case e1000_ms_force_slave:
 624                phy_data |= CTL1000_ENABLE_MASTER;
 625                phy_data &= ~(CTL1000_AS_MASTER);
 626                break;
 627        case e1000_ms_auto:
 628                phy_data &= ~CTL1000_ENABLE_MASTER;
 629                /* fall-through */
 630        default:
 631                break;
 632        }
 633
 634        return e1e_wphy(hw, MII_CTRL1000, phy_data);
 635}
 636
 637/**
 638 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 639 *  @hw: pointer to the HW structure
 640 *
 641 *  Sets up Carrier-sense on Transmit and downshift values.
 642 **/
 643s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 644{
 645        s32 ret_val;
 646        u16 phy_data;
 647
 648        /* Enable CRS on Tx. This must be set for half-duplex operation. */
 649        ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 650        if (ret_val)
 651                return ret_val;
 652
 653        phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 654
 655        /* Enable downshift */
 656        phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 657
 658        ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 659        if (ret_val)
 660                return ret_val;
 661
 662        /* Set MDI/MDIX mode */
 663        ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 664        if (ret_val)
 665                return ret_val;
 666        phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 667        /* Options:
 668         *   0 - Auto (default)
 669         *   1 - MDI mode
 670         *   2 - MDI-X mode
 671         */
 672        switch (hw->phy.mdix) {
 673        case 1:
 674                break;
 675        case 2:
 676                phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 677                break;
 678        case 0:
 679        default:
 680                phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 681                break;
 682        }
 683        ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 684        if (ret_val)
 685                return ret_val;
 686
 687        return e1000_set_master_slave_mode(hw);
 688}
 689
 690/**
 691 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 692 *  @hw: pointer to the HW structure
 693 *
 694 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 695 *  and downshift values are set also.
 696 **/
 697s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 698{
 699        struct e1000_phy_info *phy = &hw->phy;
 700        s32 ret_val;
 701        u16 phy_data;
 702
 703        /* Enable CRS on Tx. This must be set for half-duplex operation. */
 704        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 705        if (ret_val)
 706                return ret_val;
 707
 708        /* For BM PHY this bit is downshift enable */
 709        if (phy->type != e1000_phy_bm)
 710                phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 711
 712        /* Options:
 713         *   MDI/MDI-X = 0 (default)
 714         *   0 - Auto for all speeds
 715         *   1 - MDI mode
 716         *   2 - MDI-X mode
 717         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 718         */
 719        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 720
 721        switch (phy->mdix) {
 722        case 1:
 723                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 724                break;
 725        case 2:
 726                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 727                break;
 728        case 3:
 729                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 730                break;
 731        case 0:
 732        default:
 733                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 734                break;
 735        }
 736
 737        /* Options:
 738         *   disable_polarity_correction = 0 (default)
 739         *       Automatic Correction for Reversed Cable Polarity
 740         *   0 - Disabled
 741         *   1 - Enabled
 742         */
 743        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 744        if (phy->disable_polarity_correction)
 745                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 746
 747        /* Enable downshift on BM (disabled by default) */
 748        if (phy->type == e1000_phy_bm) {
 749                /* For 82574/82583, first disable then enable downshift */
 750                if (phy->id == BME1000_E_PHY_ID_R2) {
 751                        phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 752                        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 753                                           phy_data);
 754                        if (ret_val)
 755                                return ret_val;
 756                        /* Commit the changes. */
 757                        ret_val = phy->ops.commit(hw);
 758                        if (ret_val) {
 759                                e_dbg("Error committing the PHY changes\n");
 760                                return ret_val;
 761                        }
 762                }
 763
 764                phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 765        }
 766
 767        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 768        if (ret_val)
 769                return ret_val;
 770
 771        if ((phy->type == e1000_phy_m88) &&
 772            (phy->revision < E1000_REVISION_4) &&
 773            (phy->id != BME1000_E_PHY_ID_R2)) {
 774                /* Force TX_CLK in the Extended PHY Specific Control Register
 775                 * to 25MHz clock.
 776                 */
 777                ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 778                if (ret_val)
 779                        return ret_val;
 780
 781                phy_data |= M88E1000_EPSCR_TX_CLK_25;
 782
 783                if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 784                        /* 82573L PHY - set the downshift counter to 5x. */
 785                        phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 786                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 787                } else {
 788                        /* Configure Master and Slave downshift values */
 789                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 790                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 791                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 792                                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 793                }
 794                ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 795                if (ret_val)
 796                        return ret_val;
 797        }
 798
 799        if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 800                /* Set PHY page 0, register 29 to 0x0003 */
 801                ret_val = e1e_wphy(hw, 29, 0x0003);
 802                if (ret_val)
 803                        return ret_val;
 804
 805                /* Set PHY page 0, register 30 to 0x0000 */
 806                ret_val = e1e_wphy(hw, 30, 0x0000);
 807                if (ret_val)
 808                        return ret_val;
 809        }
 810
 811        /* Commit the changes. */
 812        if (phy->ops.commit) {
 813                ret_val = phy->ops.commit(hw);
 814                if (ret_val) {
 815                        e_dbg("Error committing the PHY changes\n");
 816                        return ret_val;
 817                }
 818        }
 819
 820        if (phy->type == e1000_phy_82578) {
 821                ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 822                if (ret_val)
 823                        return ret_val;
 824
 825                /* 82578 PHY - set the downshift count to 1x. */
 826                phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 827                phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 828                ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 829                if (ret_val)
 830                        return ret_val;
 831        }
 832
 833        return 0;
 834}
 835
 836/**
 837 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 838 *  @hw: pointer to the HW structure
 839 *
 840 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 841 *  igp PHY's.
 842 **/
 843s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 844{
 845        struct e1000_phy_info *phy = &hw->phy;
 846        s32 ret_val;
 847        u16 data;
 848
 849        ret_val = e1000_phy_hw_reset(hw);
 850        if (ret_val) {
 851                e_dbg("Error resetting the PHY.\n");
 852                return ret_val;
 853        }
 854
 855        /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 856         * timeout issues when LFS is enabled.
 857         */
 858        msleep(100);
 859
 860        /* disable lplu d0 during driver init */
 861        if (hw->phy.ops.set_d0_lplu_state) {
 862                ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 863                if (ret_val) {
 864                        e_dbg("Error Disabling LPLU D0\n");
 865                        return ret_val;
 866                }
 867        }
 868        /* Configure mdi-mdix settings */
 869        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 870        if (ret_val)
 871                return ret_val;
 872
 873        data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 874
 875        switch (phy->mdix) {
 876        case 1:
 877                data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 878                break;
 879        case 2:
 880                data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 881                break;
 882        case 0:
 883        default:
 884                data |= IGP01E1000_PSCR_AUTO_MDIX;
 885                break;
 886        }
 887        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 888        if (ret_val)
 889                return ret_val;
 890
 891        /* set auto-master slave resolution settings */
 892        if (hw->mac.autoneg) {
 893                /* when autonegotiation advertisement is only 1000Mbps then we
 894                 * should disable SmartSpeed and enable Auto MasterSlave
 895                 * resolution as hardware default.
 896                 */
 897                if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 898                        /* Disable SmartSpeed */
 899                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 900                                           &data);
 901                        if (ret_val)
 902                                return ret_val;
 903
 904                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 905                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 906                                           data);
 907                        if (ret_val)
 908                                return ret_val;
 909
 910                        /* Set auto Master/Slave resolution process */
 911                        ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 912                        if (ret_val)
 913                                return ret_val;
 914
 915                        data &= ~CTL1000_ENABLE_MASTER;
 916                        ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 917                        if (ret_val)
 918                                return ret_val;
 919                }
 920
 921                ret_val = e1000_set_master_slave_mode(hw);
 922        }
 923
 924        return ret_val;
 925}
 926
 927/**
 928 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 929 *  @hw: pointer to the HW structure
 930 *
 931 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 932 *  register and if the PHY is already setup for auto-negotiation, then
 933 *  return successful.  Otherwise, setup advertisement and flow control to
 934 *  the appropriate values for the wanted auto-negotiation.
 935 **/
 936static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 937{
 938        struct e1000_phy_info *phy = &hw->phy;
 939        s32 ret_val;
 940        u16 mii_autoneg_adv_reg;
 941        u16 mii_1000t_ctrl_reg = 0;
 942
 943        phy->autoneg_advertised &= phy->autoneg_mask;
 944
 945        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
 946        ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 947        if (ret_val)
 948                return ret_val;
 949
 950        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 951                /* Read the MII 1000Base-T Control Register (Address 9). */
 952                ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 953                if (ret_val)
 954                        return ret_val;
 955        }
 956
 957        /* Need to parse both autoneg_advertised and fc and set up
 958         * the appropriate PHY registers.  First we will parse for
 959         * autoneg_advertised software override.  Since we can advertise
 960         * a plethora of combinations, we need to check each bit
 961         * individually.
 962         */
 963
 964        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
 965         * Advertisement Register (Address 4) and the 1000 mb speed bits in
 966         * the  1000Base-T Control Register (Address 9).
 967         */
 968        mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 969                                 ADVERTISE_100HALF |
 970                                 ADVERTISE_10FULL | ADVERTISE_10HALF);
 971        mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 972
 973        e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 974
 975        /* Do we want to advertise 10 Mb Half Duplex? */
 976        if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 977                e_dbg("Advertise 10mb Half duplex\n");
 978                mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 979        }
 980
 981        /* Do we want to advertise 10 Mb Full Duplex? */
 982        if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 983                e_dbg("Advertise 10mb Full duplex\n");
 984                mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 985        }
 986
 987        /* Do we want to advertise 100 Mb Half Duplex? */
 988        if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 989                e_dbg("Advertise 100mb Half duplex\n");
 990                mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 991        }
 992
 993        /* Do we want to advertise 100 Mb Full Duplex? */
 994        if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 995                e_dbg("Advertise 100mb Full duplex\n");
 996                mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 997        }
 998
 999        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1000        if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1001                e_dbg("Advertise 1000mb Half duplex request denied!\n");
1002
1003        /* Do we want to advertise 1000 Mb Full Duplex? */
1004        if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1005                e_dbg("Advertise 1000mb Full duplex\n");
1006                mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1007        }
1008
1009        /* Check for a software override of the flow control settings, and
1010         * setup the PHY advertisement registers accordingly.  If
1011         * auto-negotiation is enabled, then software will have to set the
1012         * "PAUSE" bits to the correct value in the Auto-Negotiation
1013         * Advertisement Register (MII_ADVERTISE) and re-start auto-
1014         * negotiation.
1015         *
1016         * The possible values of the "fc" parameter are:
1017         *      0:  Flow control is completely disabled
1018         *      1:  Rx flow control is enabled (we can receive pause frames
1019         *          but not send pause frames).
1020         *      2:  Tx flow control is enabled (we can send pause frames
1021         *          but we do not support receiving pause frames).
1022         *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1023         *  other:  No software override.  The flow control configuration
1024         *          in the EEPROM is used.
1025         */
1026        switch (hw->fc.current_mode) {
1027        case e1000_fc_none:
1028                /* Flow control (Rx & Tx) is completely disabled by a
1029                 * software over-ride.
1030                 */
1031                mii_autoneg_adv_reg &=
1032                    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1033                break;
1034        case e1000_fc_rx_pause:
1035                /* Rx Flow control is enabled, and Tx Flow control is
1036                 * disabled, by a software over-ride.
1037                 *
1038                 * Since there really isn't a way to advertise that we are
1039                 * capable of Rx Pause ONLY, we will advertise that we
1040                 * support both symmetric and asymmetric Rx PAUSE.  Later
1041                 * (in e1000e_config_fc_after_link_up) we will disable the
1042                 * hw's ability to send PAUSE frames.
1043                 */
1044                mii_autoneg_adv_reg |=
1045                    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1046                break;
1047        case e1000_fc_tx_pause:
1048                /* Tx Flow control is enabled, and Rx Flow control is
1049                 * disabled, by a software over-ride.
1050                 */
1051                mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1052                mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1053                break;
1054        case e1000_fc_full:
1055                /* Flow control (both Rx and Tx) is enabled by a software
1056                 * over-ride.
1057                 */
1058                mii_autoneg_adv_reg |=
1059                    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1060                break;
1061        default:
1062                e_dbg("Flow control param set incorrectly\n");
1063                return -E1000_ERR_CONFIG;
1064        }
1065
1066        ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1067        if (ret_val)
1068                return ret_val;
1069
1070        e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1071
1072        if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1073                ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1074
1075        return ret_val;
1076}
1077
1078/**
1079 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1080 *  @hw: pointer to the HW structure
1081 *
1082 *  Performs initial bounds checking on autoneg advertisement parameter, then
1083 *  configure to advertise the full capability.  Setup the PHY to autoneg
1084 *  and restart the negotiation process between the link partner.  If
1085 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1086 **/
1087static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1088{
1089        struct e1000_phy_info *phy = &hw->phy;
1090        s32 ret_val;
1091        u16 phy_ctrl;
1092
1093        /* Perform some bounds checking on the autoneg advertisement
1094         * parameter.
1095         */
1096        phy->autoneg_advertised &= phy->autoneg_mask;
1097
1098        /* If autoneg_advertised is zero, we assume it was not defaulted
1099         * by the calling code so we set to advertise full capability.
1100         */
1101        if (!phy->autoneg_advertised)
1102                phy->autoneg_advertised = phy->autoneg_mask;
1103
1104        e_dbg("Reconfiguring auto-neg advertisement params\n");
1105        ret_val = e1000_phy_setup_autoneg(hw);
1106        if (ret_val) {
1107                e_dbg("Error Setting up Auto-Negotiation\n");
1108                return ret_val;
1109        }
1110        e_dbg("Restarting Auto-Neg\n");
1111
1112        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1113         * the Auto Neg Restart bit in the PHY control register.
1114         */
1115        ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1116        if (ret_val)
1117                return ret_val;
1118
1119        phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1120        ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1121        if (ret_val)
1122                return ret_val;
1123
1124        /* Does the user want to wait for Auto-Neg to complete here, or
1125         * check at a later time (for example, callback routine).
1126         */
1127        if (phy->autoneg_wait_to_complete) {
1128                ret_val = e1000_wait_autoneg(hw);
1129                if (ret_val) {
1130                        e_dbg("Error while waiting for autoneg to complete\n");
1131                        return ret_val;
1132                }
1133        }
1134
1135        hw->mac.get_link_status = true;
1136
1137        return ret_val;
1138}
1139
1140/**
1141 *  e1000e_setup_copper_link - Configure copper link settings
1142 *  @hw: pointer to the HW structure
1143 *
1144 *  Calls the appropriate function to configure the link for auto-neg or forced
1145 *  speed and duplex.  Then we check for link, once link is established calls
1146 *  to configure collision distance and flow control are called.  If link is
1147 *  not established, we return -E1000_ERR_PHY (-2).
1148 **/
1149s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1150{
1151        s32 ret_val;
1152        bool link;
1153
1154        if (hw->mac.autoneg) {
1155                /* Setup autoneg and flow control advertisement and perform
1156                 * autonegotiation.
1157                 */
1158                ret_val = e1000_copper_link_autoneg(hw);
1159                if (ret_val)
1160                        return ret_val;
1161        } else {
1162                /* PHY will be set to 10H, 10F, 100H or 100F
1163                 * depending on user settings.
1164                 */
1165                e_dbg("Forcing Speed and Duplex\n");
1166                ret_val = hw->phy.ops.force_speed_duplex(hw);
1167                if (ret_val) {
1168                        e_dbg("Error Forcing Speed and Duplex\n");
1169                        return ret_val;
1170                }
1171        }
1172
1173        /* Check link status. Wait up to 100 microseconds for link to become
1174         * valid.
1175         */
1176        ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1177                                              &link);
1178        if (ret_val)
1179                return ret_val;
1180
1181        if (link) {
1182                e_dbg("Valid link established!!!\n");
1183                hw->mac.ops.config_collision_dist(hw);
1184                ret_val = e1000e_config_fc_after_link_up(hw);
1185        } else {
1186                e_dbg("Unable to establish link!!!\n");
1187        }
1188
1189        return ret_val;
1190}
1191
1192/**
1193 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1194 *  @hw: pointer to the HW structure
1195 *
1196 *  Calls the PHY setup function to force speed and duplex.  Clears the
1197 *  auto-crossover to force MDI manually.  Waits for link and returns
1198 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1199 **/
1200s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1201{
1202        struct e1000_phy_info *phy = &hw->phy;
1203        s32 ret_val;
1204        u16 phy_data;
1205        bool link;
1206
1207        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1208        if (ret_val)
1209                return ret_val;
1210
1211        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1212
1213        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1214        if (ret_val)
1215                return ret_val;
1216
1217        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1218         * forced whenever speed and duplex are forced.
1219         */
1220        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1221        if (ret_val)
1222                return ret_val;
1223
1224        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1225        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1226
1227        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1228        if (ret_val)
1229                return ret_val;
1230
1231        e_dbg("IGP PSCR: %X\n", phy_data);
1232
1233        udelay(1);
1234
1235        if (phy->autoneg_wait_to_complete) {
1236                e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1237
1238                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1239                                                      100000, &link);
1240                if (ret_val)
1241                        return ret_val;
1242
1243                if (!link)
1244                        e_dbg("Link taking longer than expected.\n");
1245
1246                /* Try once more */
1247                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1248                                                      100000, &link);
1249        }
1250
1251        return ret_val;
1252}
1253
1254/**
1255 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1256 *  @hw: pointer to the HW structure
1257 *
1258 *  Calls the PHY setup function to force speed and duplex.  Clears the
1259 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1260 *  changes.  If time expires while waiting for link up, we reset the DSP.
1261 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1262 *  successful completion, else return corresponding error code.
1263 **/
1264s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1265{
1266        struct e1000_phy_info *phy = &hw->phy;
1267        s32 ret_val;
1268        u16 phy_data;
1269        bool link;
1270
1271        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1272         * forced whenever speed and duplex are forced.
1273         */
1274        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1275        if (ret_val)
1276                return ret_val;
1277
1278        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1279        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1280        if (ret_val)
1281                return ret_val;
1282
1283        e_dbg("M88E1000 PSCR: %X\n", phy_data);
1284
1285        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1286        if (ret_val)
1287                return ret_val;
1288
1289        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1290
1291        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1292        if (ret_val)
1293                return ret_val;
1294
1295        /* Reset the phy to commit changes. */
1296        if (hw->phy.ops.commit) {
1297                ret_val = hw->phy.ops.commit(hw);
1298                if (ret_val)
1299                        return ret_val;
1300        }
1301
1302        if (phy->autoneg_wait_to_complete) {
1303                e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1304
1305                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1306                                                      100000, &link);
1307                if (ret_val)
1308                        return ret_val;
1309
1310                if (!link) {
1311                        if (hw->phy.type != e1000_phy_m88) {
1312                                e_dbg("Link taking longer than expected.\n");
1313                        } else {
1314                                /* We didn't get link.
1315                                 * Reset the DSP and cross our fingers.
1316                                 */
1317                                ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1318                                                   0x001d);
1319                                if (ret_val)
1320                                        return ret_val;
1321                                ret_val = e1000e_phy_reset_dsp(hw);
1322                                if (ret_val)
1323                                        return ret_val;
1324                        }
1325                }
1326
1327                /* Try once more */
1328                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1329                                                      100000, &link);
1330                if (ret_val)
1331                        return ret_val;
1332        }
1333
1334        if (hw->phy.type != e1000_phy_m88)
1335                return 0;
1336
1337        ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1338        if (ret_val)
1339                return ret_val;
1340
1341        /* Resetting the phy means we need to re-force TX_CLK in the
1342         * Extended PHY Specific Control Register to 25MHz clock from
1343         * the reset value of 2.5MHz.
1344         */
1345        phy_data |= M88E1000_EPSCR_TX_CLK_25;
1346        ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1347        if (ret_val)
1348                return ret_val;
1349
1350        /* In addition, we must re-enable CRS on Tx for both half and full
1351         * duplex.
1352         */
1353        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1354        if (ret_val)
1355                return ret_val;
1356
1357        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1358        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1359
1360        return ret_val;
1361}
1362
1363/**
1364 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1365 *  @hw: pointer to the HW structure
1366 *
1367 *  Forces the speed and duplex settings of the PHY.
1368 *  This is a function pointer entry point only called by
1369 *  PHY setup routines.
1370 **/
1371s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1372{
1373        struct e1000_phy_info *phy = &hw->phy;
1374        s32 ret_val;
1375        u16 data;
1376        bool link;
1377
1378        ret_val = e1e_rphy(hw, MII_BMCR, &data);
1379        if (ret_val)
1380                return ret_val;
1381
1382        e1000e_phy_force_speed_duplex_setup(hw, &data);
1383
1384        ret_val = e1e_wphy(hw, MII_BMCR, data);
1385        if (ret_val)
1386                return ret_val;
1387
1388        /* Disable MDI-X support for 10/100 */
1389        ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1390        if (ret_val)
1391                return ret_val;
1392
1393        data &= ~IFE_PMC_AUTO_MDIX;
1394        data &= ~IFE_PMC_FORCE_MDIX;
1395
1396        ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1397        if (ret_val)
1398                return ret_val;
1399
1400        e_dbg("IFE PMC: %X\n", data);
1401
1402        udelay(1);
1403
1404        if (phy->autoneg_wait_to_complete) {
1405                e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1406
1407                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1408                                                      100000, &link);
1409                if (ret_val)
1410                        return ret_val;
1411
1412                if (!link)
1413                        e_dbg("Link taking longer than expected.\n");
1414
1415                /* Try once more */
1416                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1417                                                      100000, &link);
1418                if (ret_val)
1419                        return ret_val;
1420        }
1421
1422        return 0;
1423}
1424
1425/**
1426 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 *  @hw: pointer to the HW structure
1428 *  @phy_ctrl: pointer to current value of MII_BMCR
1429 *
1430 *  Forces speed and duplex on the PHY by doing the following: disable flow
1431 *  control, force speed/duplex on the MAC, disable auto speed detection,
1432 *  disable auto-negotiation, configure duplex, configure speed, configure
1433 *  the collision distance, write configuration to CTRL register.  The
1434 *  caller must write to the MII_BMCR register for these settings to
1435 *  take affect.
1436 **/
1437void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438{
1439        struct e1000_mac_info *mac = &hw->mac;
1440        u32 ctrl;
1441
1442        /* Turn off flow control when forcing speed/duplex */
1443        hw->fc.current_mode = e1000_fc_none;
1444
1445        /* Force speed/duplex on the mac */
1446        ctrl = er32(CTRL);
1447        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448        ctrl &= ~E1000_CTRL_SPD_SEL;
1449
1450        /* Disable Auto Speed Detection */
1451        ctrl &= ~E1000_CTRL_ASDE;
1452
1453        /* Disable autoneg on the phy */
1454        *phy_ctrl &= ~BMCR_ANENABLE;
1455
1456        /* Forcing Full or Half Duplex? */
1457        if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458                ctrl &= ~E1000_CTRL_FD;
1459                *phy_ctrl &= ~BMCR_FULLDPLX;
1460                e_dbg("Half Duplex\n");
1461        } else {
1462                ctrl |= E1000_CTRL_FD;
1463                *phy_ctrl |= BMCR_FULLDPLX;
1464                e_dbg("Full Duplex\n");
1465        }
1466
1467        /* Forcing 10mb or 100mb? */
1468        if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469                ctrl |= E1000_CTRL_SPD_100;
1470                *phy_ctrl |= BMCR_SPEED100;
1471                *phy_ctrl &= ~BMCR_SPEED1000;
1472                e_dbg("Forcing 100mb\n");
1473        } else {
1474                ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475                *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1476                e_dbg("Forcing 10mb\n");
1477        }
1478
1479        hw->mac.ops.config_collision_dist(hw);
1480
1481        ew32(CTRL, ctrl);
1482}
1483
1484/**
1485 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1486 *  @hw: pointer to the HW structure
1487 *  @active: boolean used to enable/disable lplu
1488 *
1489 *  Success returns 0, Failure returns 1
1490 *
1491 *  The low power link up (lplu) state is set to the power management level D3
1492 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1493 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1494 *  is used during Dx states where the power conservation is most important.
1495 *  During driver activity, SmartSpeed should be enabled so performance is
1496 *  maintained.
1497 **/
1498s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1499{
1500        struct e1000_phy_info *phy = &hw->phy;
1501        s32 ret_val;
1502        u16 data;
1503
1504        ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1505        if (ret_val)
1506                return ret_val;
1507
1508        if (!active) {
1509                data &= ~IGP02E1000_PM_D3_LPLU;
1510                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1511                if (ret_val)
1512                        return ret_val;
1513                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1514                 * during Dx states where the power conservation is most
1515                 * important.  During driver activity we should enable
1516                 * SmartSpeed, so performance is maintained.
1517                 */
1518                if (phy->smart_speed == e1000_smart_speed_on) {
1519                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1520                                           &data);
1521                        if (ret_val)
1522                                return ret_val;
1523
1524                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1525                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1526                                           data);
1527                        if (ret_val)
1528                                return ret_val;
1529                } else if (phy->smart_speed == e1000_smart_speed_off) {
1530                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1531                                           &data);
1532                        if (ret_val)
1533                                return ret_val;
1534
1535                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1537                                           data);
1538                        if (ret_val)
1539                                return ret_val;
1540                }
1541        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1542                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1543                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1544                data |= IGP02E1000_PM_D3_LPLU;
1545                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1546                if (ret_val)
1547                        return ret_val;
1548
1549                /* When LPLU is enabled, we should disable SmartSpeed */
1550                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1551                if (ret_val)
1552                        return ret_val;
1553
1554                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1555                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1556        }
1557
1558        return ret_val;
1559}
1560
1561/**
1562 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1563 *  @hw: pointer to the HW structure
1564 *
1565 *  Success returns 0, Failure returns 1
1566 *
1567 *  A downshift is detected by querying the PHY link health.
1568 **/
1569s32 e1000e_check_downshift(struct e1000_hw *hw)
1570{
1571        struct e1000_phy_info *phy = &hw->phy;
1572        s32 ret_val;
1573        u16 phy_data, offset, mask;
1574
1575        switch (phy->type) {
1576        case e1000_phy_m88:
1577        case e1000_phy_gg82563:
1578        case e1000_phy_bm:
1579        case e1000_phy_82578:
1580                offset = M88E1000_PHY_SPEC_STATUS;
1581                mask = M88E1000_PSSR_DOWNSHIFT;
1582                break;
1583        case e1000_phy_igp_2:
1584        case e1000_phy_igp_3:
1585                offset = IGP01E1000_PHY_LINK_HEALTH;
1586                mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1587                break;
1588        default:
1589                /* speed downshift not supported */
1590                phy->speed_downgraded = false;
1591                return 0;
1592        }
1593
1594        ret_val = e1e_rphy(hw, offset, &phy_data);
1595
1596        if (!ret_val)
1597                phy->speed_downgraded = !!(phy_data & mask);
1598
1599        return ret_val;
1600}
1601
1602/**
1603 *  e1000_check_polarity_m88 - Checks the polarity.
1604 *  @hw: pointer to the HW structure
1605 *
1606 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1607 *
1608 *  Polarity is determined based on the PHY specific status register.
1609 **/
1610s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1611{
1612        struct e1000_phy_info *phy = &hw->phy;
1613        s32 ret_val;
1614        u16 data;
1615
1616        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1617
1618        if (!ret_val)
1619                phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1620                                       ? e1000_rev_polarity_reversed
1621                                       : e1000_rev_polarity_normal);
1622
1623        return ret_val;
1624}
1625
1626/**
1627 *  e1000_check_polarity_igp - Checks the polarity.
1628 *  @hw: pointer to the HW structure
1629 *
1630 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1631 *
1632 *  Polarity is determined based on the PHY port status register, and the
1633 *  current speed (since there is no polarity at 100Mbps).
1634 **/
1635s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1636{
1637        struct e1000_phy_info *phy = &hw->phy;
1638        s32 ret_val;
1639        u16 data, offset, mask;
1640
1641        /* Polarity is determined based on the speed of
1642         * our connection.
1643         */
1644        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1645        if (ret_val)
1646                return ret_val;
1647
1648        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1649            IGP01E1000_PSSR_SPEED_1000MBPS) {
1650                offset = IGP01E1000_PHY_PCS_INIT_REG;
1651                mask = IGP01E1000_PHY_POLARITY_MASK;
1652        } else {
1653                /* This really only applies to 10Mbps since
1654                 * there is no polarity for 100Mbps (always 0).
1655                 */
1656                offset = IGP01E1000_PHY_PORT_STATUS;
1657                mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1658        }
1659
1660        ret_val = e1e_rphy(hw, offset, &data);
1661
1662        if (!ret_val)
1663                phy->cable_polarity = ((data & mask)
1664                                       ? e1000_rev_polarity_reversed
1665                                       : e1000_rev_polarity_normal);
1666
1667        return ret_val;
1668}
1669
1670/**
1671 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1672 *  @hw: pointer to the HW structure
1673 *
1674 *  Polarity is determined on the polarity reversal feature being enabled.
1675 **/
1676s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1677{
1678        struct e1000_phy_info *phy = &hw->phy;
1679        s32 ret_val;
1680        u16 phy_data, offset, mask;
1681
1682        /* Polarity is determined based on the reversal feature being enabled.
1683         */
1684        if (phy->polarity_correction) {
1685                offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1686                mask = IFE_PESC_POLARITY_REVERSED;
1687        } else {
1688                offset = IFE_PHY_SPECIAL_CONTROL;
1689                mask = IFE_PSC_FORCE_POLARITY;
1690        }
1691
1692        ret_val = e1e_rphy(hw, offset, &phy_data);
1693
1694        if (!ret_val)
1695                phy->cable_polarity = ((phy_data & mask)
1696                                       ? e1000_rev_polarity_reversed
1697                                       : e1000_rev_polarity_normal);
1698
1699        return ret_val;
1700}
1701
1702/**
1703 *  e1000_wait_autoneg - Wait for auto-neg completion
1704 *  @hw: pointer to the HW structure
1705 *
1706 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1707 *  limit to expire, which ever happens first.
1708 **/
1709static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1710{
1711        s32 ret_val = 0;
1712        u16 i, phy_status;
1713
1714        /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1715        for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1716                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1717                if (ret_val)
1718                        break;
1719                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1720                if (ret_val)
1721                        break;
1722                if (phy_status & BMSR_ANEGCOMPLETE)
1723                        break;
1724                msleep(100);
1725        }
1726
1727        /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1728         * has completed.
1729         */
1730        return ret_val;
1731}
1732
1733/**
1734 *  e1000e_phy_has_link_generic - Polls PHY for link
1735 *  @hw: pointer to the HW structure
1736 *  @iterations: number of times to poll for link
1737 *  @usec_interval: delay between polling attempts
1738 *  @success: pointer to whether polling was successful or not
1739 *
1740 *  Polls the PHY status register for link, 'iterations' number of times.
1741 **/
1742s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1743                                u32 usec_interval, bool *success)
1744{
1745        s32 ret_val = 0;
1746        u16 i, phy_status;
1747
1748        *success = false;
1749        for (i = 0; i < iterations; i++) {
1750                /* Some PHYs require the MII_BMSR register to be read
1751                 * twice due to the link bit being sticky.  No harm doing
1752                 * it across the board.
1753                 */
1754                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1755                if (ret_val) {
1756                        /* If the first read fails, another entity may have
1757                         * ownership of the resources, wait and try again to
1758                         * see if they have relinquished the resources yet.
1759                         */
1760                        if (usec_interval >= 1000)
1761                                msleep(usec_interval / 1000);
1762                        else
1763                                udelay(usec_interval);
1764                }
1765                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1766                if (ret_val)
1767                        break;
1768                if (phy_status & BMSR_LSTATUS) {
1769                        *success = true;
1770                        break;
1771                }
1772                if (usec_interval >= 1000)
1773                        msleep(usec_interval / 1000);
1774                else
1775                        udelay(usec_interval);
1776        }
1777
1778        return ret_val;
1779}
1780
1781/**
1782 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1783 *  @hw: pointer to the HW structure
1784 *
1785 *  Reads the PHY specific status register to retrieve the cable length
1786 *  information.  The cable length is determined by averaging the minimum and
1787 *  maximum values to get the "average" cable length.  The m88 PHY has four
1788 *  possible cable length values, which are:
1789 *      Register Value          Cable Length
1790 *      0                       < 50 meters
1791 *      1                       50 - 80 meters
1792 *      2                       80 - 110 meters
1793 *      3                       110 - 140 meters
1794 *      4                       > 140 meters
1795 **/
1796s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1797{
1798        struct e1000_phy_info *phy = &hw->phy;
1799        s32 ret_val;
1800        u16 phy_data, index;
1801
1802        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1803        if (ret_val)
1804                return ret_val;
1805
1806        index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1807                 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1808
1809        if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1810                return -E1000_ERR_PHY;
1811
1812        phy->min_cable_length = e1000_m88_cable_length_table[index];
1813        phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1814
1815        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1816
1817        return 0;
1818}
1819
1820/**
1821 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1822 *  @hw: pointer to the HW structure
1823 *
1824 *  The automatic gain control (agc) normalizes the amplitude of the
1825 *  received signal, adjusting for the attenuation produced by the
1826 *  cable.  By reading the AGC registers, which represent the
1827 *  combination of coarse and fine gain value, the value can be put
1828 *  into a lookup table to obtain the approximate cable length
1829 *  for each channel.
1830 **/
1831s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1832{
1833        struct e1000_phy_info *phy = &hw->phy;
1834        s32 ret_val;
1835        u16 phy_data, i, agc_value = 0;
1836        u16 cur_agc_index, max_agc_index = 0;
1837        u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1838        static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1839                IGP02E1000_PHY_AGC_A,
1840                IGP02E1000_PHY_AGC_B,
1841                IGP02E1000_PHY_AGC_C,
1842                IGP02E1000_PHY_AGC_D
1843        };
1844
1845        /* Read the AGC registers for all channels */
1846        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1847                ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1848                if (ret_val)
1849                        return ret_val;
1850
1851                /* Getting bits 15:9, which represent the combination of
1852                 * coarse and fine gain values.  The result is a number
1853                 * that can be put into the lookup table to obtain the
1854                 * approximate cable length.
1855                 */
1856                cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1857                                 IGP02E1000_AGC_LENGTH_MASK);
1858
1859                /* Array index bound check. */
1860                if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1861                    (cur_agc_index == 0))
1862                        return -E1000_ERR_PHY;
1863
1864                /* Remove min & max AGC values from calculation. */
1865                if (e1000_igp_2_cable_length_table[min_agc_index] >
1866                    e1000_igp_2_cable_length_table[cur_agc_index])
1867                        min_agc_index = cur_agc_index;
1868                if (e1000_igp_2_cable_length_table[max_agc_index] <
1869                    e1000_igp_2_cable_length_table[cur_agc_index])
1870                        max_agc_index = cur_agc_index;
1871
1872                agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1873        }
1874
1875        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1876                      e1000_igp_2_cable_length_table[max_agc_index]);
1877        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1878
1879        /* Calculate cable length with the error range of +/- 10 meters. */
1880        phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1881                                 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1882        phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1883
1884        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1885
1886        return 0;
1887}
1888
1889/**
1890 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  Valid for only copper links.  Read the PHY status register (sticky read)
1894 *  to verify that link is up.  Read the PHY special control register to
1895 *  determine the polarity and 10base-T extended distance.  Read the PHY
1896 *  special status register to determine MDI/MDIx and current speed.  If
1897 *  speed is 1000, then determine cable length, local and remote receiver.
1898 **/
1899s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1900{
1901        struct e1000_phy_info *phy = &hw->phy;
1902        s32 ret_val;
1903        u16 phy_data;
1904        bool link;
1905
1906        if (phy->media_type != e1000_media_type_copper) {
1907                e_dbg("Phy info is only valid for copper media\n");
1908                return -E1000_ERR_CONFIG;
1909        }
1910
1911        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1912        if (ret_val)
1913                return ret_val;
1914
1915        if (!link) {
1916                e_dbg("Phy info is only valid if link is up\n");
1917                return -E1000_ERR_CONFIG;
1918        }
1919
1920        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1921        if (ret_val)
1922                return ret_val;
1923
1924        phy->polarity_correction = !!(phy_data &
1925                                      M88E1000_PSCR_POLARITY_REVERSAL);
1926
1927        ret_val = e1000_check_polarity_m88(hw);
1928        if (ret_val)
1929                return ret_val;
1930
1931        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1932        if (ret_val)
1933                return ret_val;
1934
1935        phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1936
1937        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1938                ret_val = hw->phy.ops.get_cable_length(hw);
1939                if (ret_val)
1940                        return ret_val;
1941
1942                ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1943                if (ret_val)
1944                        return ret_val;
1945
1946                phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1947                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1948
1949                phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1950                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1951        } else {
1952                /* Set values to "undefined" */
1953                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1954                phy->local_rx = e1000_1000t_rx_status_undefined;
1955                phy->remote_rx = e1000_1000t_rx_status_undefined;
1956        }
1957
1958        return ret_val;
1959}
1960
1961/**
1962 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1963 *  @hw: pointer to the HW structure
1964 *
1965 *  Read PHY status to determine if link is up.  If link is up, then
1966 *  set/determine 10base-T extended distance and polarity correction.  Read
1967 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1968 *  determine on the cable length, local and remote receiver.
1969 **/
1970s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1971{
1972        struct e1000_phy_info *phy = &hw->phy;
1973        s32 ret_val;
1974        u16 data;
1975        bool link;
1976
1977        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1978        if (ret_val)
1979                return ret_val;
1980
1981        if (!link) {
1982                e_dbg("Phy info is only valid if link is up\n");
1983                return -E1000_ERR_CONFIG;
1984        }
1985
1986        phy->polarity_correction = true;
1987
1988        ret_val = e1000_check_polarity_igp(hw);
1989        if (ret_val)
1990                return ret_val;
1991
1992        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1993        if (ret_val)
1994                return ret_val;
1995
1996        phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1997
1998        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1999            IGP01E1000_PSSR_SPEED_1000MBPS) {
2000                ret_val = phy->ops.get_cable_length(hw);
2001                if (ret_val)
2002                        return ret_val;
2003
2004                ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2005                if (ret_val)
2006                        return ret_val;
2007
2008                phy->local_rx = (data & LPA_1000LOCALRXOK)
2009                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2010
2011                phy->remote_rx = (data & LPA_1000REMRXOK)
2012                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2013        } else {
2014                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2015                phy->local_rx = e1000_1000t_rx_status_undefined;
2016                phy->remote_rx = e1000_1000t_rx_status_undefined;
2017        }
2018
2019        return ret_val;
2020}
2021
2022/**
2023 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2024 *  @hw: pointer to the HW structure
2025 *
2026 *  Populates "phy" structure with various feature states.
2027 **/
2028s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2029{
2030        struct e1000_phy_info *phy = &hw->phy;
2031        s32 ret_val;
2032        u16 data;
2033        bool link;
2034
2035        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2036        if (ret_val)
2037                return ret_val;
2038
2039        if (!link) {
2040                e_dbg("Phy info is only valid if link is up\n");
2041                return -E1000_ERR_CONFIG;
2042        }
2043
2044        ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2045        if (ret_val)
2046                return ret_val;
2047        phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2048
2049        if (phy->polarity_correction) {
2050                ret_val = e1000_check_polarity_ife(hw);
2051                if (ret_val)
2052                        return ret_val;
2053        } else {
2054                /* Polarity is forced */
2055                phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2056                                       ? e1000_rev_polarity_reversed
2057                                       : e1000_rev_polarity_normal);
2058        }
2059
2060        ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2061        if (ret_val)
2062                return ret_val;
2063
2064        phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2065
2066        /* The following parameters are undefined for 10/100 operation. */
2067        phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2068        phy->local_rx = e1000_1000t_rx_status_undefined;
2069        phy->remote_rx = e1000_1000t_rx_status_undefined;
2070
2071        return 0;
2072}
2073
2074/**
2075 *  e1000e_phy_sw_reset - PHY software reset
2076 *  @hw: pointer to the HW structure
2077 *
2078 *  Does a software reset of the PHY by reading the PHY control register and
2079 *  setting/write the control register reset bit to the PHY.
2080 **/
2081s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2082{
2083        s32 ret_val;
2084        u16 phy_ctrl;
2085
2086        ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2087        if (ret_val)
2088                return ret_val;
2089
2090        phy_ctrl |= BMCR_RESET;
2091        ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2092        if (ret_val)
2093                return ret_val;
2094
2095        udelay(1);
2096
2097        return ret_val;
2098}
2099
2100/**
2101 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2102 *  @hw: pointer to the HW structure
2103 *
2104 *  Verify the reset block is not blocking us from resetting.  Acquire
2105 *  semaphore (if necessary) and read/set/write the device control reset
2106 *  bit in the PHY.  Wait the appropriate delay time for the device to
2107 *  reset and release the semaphore (if necessary).
2108 **/
2109s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2110{
2111        struct e1000_phy_info *phy = &hw->phy;
2112        s32 ret_val;
2113        u32 ctrl;
2114
2115        if (phy->ops.check_reset_block) {
2116                ret_val = phy->ops.check_reset_block(hw);
2117                if (ret_val)
2118                        return 0;
2119        }
2120
2121        ret_val = phy->ops.acquire(hw);
2122        if (ret_val)
2123                return ret_val;
2124
2125        ctrl = er32(CTRL);
2126        ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2127        e1e_flush();
2128
2129        udelay(phy->reset_delay_us);
2130
2131        ew32(CTRL, ctrl);
2132        e1e_flush();
2133
2134        usleep_range(150, 300);
2135
2136        phy->ops.release(hw);
2137
2138        return phy->ops.get_cfg_done(hw);
2139}
2140
2141/**
2142 *  e1000e_get_cfg_done_generic - Generic configuration done
2143 *  @hw: pointer to the HW structure
2144 *
2145 *  Generic function to wait 10 milli-seconds for configuration to complete
2146 *  and return success.
2147 **/
2148s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2149{
2150        mdelay(10);
2151
2152        return 0;
2153}
2154
2155/**
2156 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2157 *  @hw: pointer to the HW structure
2158 *
2159 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2160 **/
2161s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2162{
2163        e_dbg("Running IGP 3 PHY init script\n");
2164
2165        /* PHY init IGP 3 */
2166        /* Enable rise/fall, 10-mode work in class-A */
2167        e1e_wphy(hw, 0x2F5B, 0x9018);
2168        /* Remove all caps from Replica path filter */
2169        e1e_wphy(hw, 0x2F52, 0x0000);
2170        /* Bias trimming for ADC, AFE and Driver (Default) */
2171        e1e_wphy(hw, 0x2FB1, 0x8B24);
2172        /* Increase Hybrid poly bias */
2173        e1e_wphy(hw, 0x2FB2, 0xF8F0);
2174        /* Add 4% to Tx amplitude in Gig mode */
2175        e1e_wphy(hw, 0x2010, 0x10B0);
2176        /* Disable trimming (TTT) */
2177        e1e_wphy(hw, 0x2011, 0x0000);
2178        /* Poly DC correction to 94.6% + 2% for all channels */
2179        e1e_wphy(hw, 0x20DD, 0x249A);
2180        /* ABS DC correction to 95.9% */
2181        e1e_wphy(hw, 0x20DE, 0x00D3);
2182        /* BG temp curve trim */
2183        e1e_wphy(hw, 0x28B4, 0x04CE);
2184        /* Increasing ADC OPAMP stage 1 currents to max */
2185        e1e_wphy(hw, 0x2F70, 0x29E4);
2186        /* Force 1000 ( required for enabling PHY regs configuration) */
2187        e1e_wphy(hw, 0x0000, 0x0140);
2188        /* Set upd_freq to 6 */
2189        e1e_wphy(hw, 0x1F30, 0x1606);
2190        /* Disable NPDFE */
2191        e1e_wphy(hw, 0x1F31, 0xB814);
2192        /* Disable adaptive fixed FFE (Default) */
2193        e1e_wphy(hw, 0x1F35, 0x002A);
2194        /* Enable FFE hysteresis */
2195        e1e_wphy(hw, 0x1F3E, 0x0067);
2196        /* Fixed FFE for short cable lengths */
2197        e1e_wphy(hw, 0x1F54, 0x0065);
2198        /* Fixed FFE for medium cable lengths */
2199        e1e_wphy(hw, 0x1F55, 0x002A);
2200        /* Fixed FFE for long cable lengths */
2201        e1e_wphy(hw, 0x1F56, 0x002A);
2202        /* Enable Adaptive Clip Threshold */
2203        e1e_wphy(hw, 0x1F72, 0x3FB0);
2204        /* AHT reset limit to 1 */
2205        e1e_wphy(hw, 0x1F76, 0xC0FF);
2206        /* Set AHT master delay to 127 msec */
2207        e1e_wphy(hw, 0x1F77, 0x1DEC);
2208        /* Set scan bits for AHT */
2209        e1e_wphy(hw, 0x1F78, 0xF9EF);
2210        /* Set AHT Preset bits */
2211        e1e_wphy(hw, 0x1F79, 0x0210);
2212        /* Change integ_factor of channel A to 3 */
2213        e1e_wphy(hw, 0x1895, 0x0003);
2214        /* Change prop_factor of channels BCD to 8 */
2215        e1e_wphy(hw, 0x1796, 0x0008);
2216        /* Change cg_icount + enable integbp for channels BCD */
2217        e1e_wphy(hw, 0x1798, 0xD008);
2218        /* Change cg_icount + enable integbp + change prop_factor_master
2219         * to 8 for channel A
2220         */
2221        e1e_wphy(hw, 0x1898, 0xD918);
2222        /* Disable AHT in Slave mode on channel A */
2223        e1e_wphy(hw, 0x187A, 0x0800);
2224        /* Enable LPLU and disable AN to 1000 in non-D0a states,
2225         * Enable SPD+B2B
2226         */
2227        e1e_wphy(hw, 0x0019, 0x008D);
2228        /* Enable restart AN on an1000_dis change */
2229        e1e_wphy(hw, 0x001B, 0x2080);
2230        /* Enable wh_fifo read clock in 10/100 modes */
2231        e1e_wphy(hw, 0x0014, 0x0045);
2232        /* Restart AN, Speed selection is 1000 */
2233        e1e_wphy(hw, 0x0000, 0x1340);
2234
2235        return 0;
2236}
2237
2238/**
2239 *  e1000e_get_phy_type_from_id - Get PHY type from id
2240 *  @phy_id: phy_id read from the phy
2241 *
2242 *  Returns the phy type from the id.
2243 **/
2244enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2245{
2246        enum e1000_phy_type phy_type = e1000_phy_unknown;
2247
2248        switch (phy_id) {
2249        case M88E1000_I_PHY_ID:
2250        case M88E1000_E_PHY_ID:
2251        case M88E1111_I_PHY_ID:
2252        case M88E1011_I_PHY_ID:
2253                phy_type = e1000_phy_m88;
2254                break;
2255        case IGP01E1000_I_PHY_ID:       /* IGP 1 & 2 share this */
2256                phy_type = e1000_phy_igp_2;
2257                break;
2258        case GG82563_E_PHY_ID:
2259                phy_type = e1000_phy_gg82563;
2260                break;
2261        case IGP03E1000_E_PHY_ID:
2262                phy_type = e1000_phy_igp_3;
2263                break;
2264        case IFE_E_PHY_ID:
2265        case IFE_PLUS_E_PHY_ID:
2266        case IFE_C_E_PHY_ID:
2267                phy_type = e1000_phy_ife;
2268                break;
2269        case BME1000_E_PHY_ID:
2270        case BME1000_E_PHY_ID_R2:
2271                phy_type = e1000_phy_bm;
2272                break;
2273        case I82578_E_PHY_ID:
2274                phy_type = e1000_phy_82578;
2275                break;
2276        case I82577_E_PHY_ID:
2277                phy_type = e1000_phy_82577;
2278                break;
2279        case I82579_E_PHY_ID:
2280                phy_type = e1000_phy_82579;
2281                break;
2282        case I217_E_PHY_ID:
2283                phy_type = e1000_phy_i217;
2284                break;
2285        default:
2286                phy_type = e1000_phy_unknown;
2287                break;
2288        }
2289        return phy_type;
2290}
2291
2292/**
2293 *  e1000e_determine_phy_address - Determines PHY address.
2294 *  @hw: pointer to the HW structure
2295 *
2296 *  This uses a trial and error method to loop through possible PHY
2297 *  addresses. It tests each by reading the PHY ID registers and
2298 *  checking for a match.
2299 **/
2300s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2301{
2302        u32 phy_addr = 0;
2303        u32 i;
2304        enum e1000_phy_type phy_type = e1000_phy_unknown;
2305
2306        hw->phy.id = phy_type;
2307
2308        for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2309                hw->phy.addr = phy_addr;
2310                i = 0;
2311
2312                do {
2313                        e1000e_get_phy_id(hw);
2314                        phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2315
2316                        /* If phy_type is valid, break - we found our
2317                         * PHY address
2318                         */
2319                        if (phy_type != e1000_phy_unknown)
2320                                return 0;
2321
2322                        usleep_range(1000, 2000);
2323                        i++;
2324                } while (i < 10);
2325        }
2326
2327        return -E1000_ERR_PHY_TYPE;
2328}
2329
2330/**
2331 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2332 *  @page: page to access
2333 *
2334 *  Returns the phy address for the page requested.
2335 **/
2336static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2337{
2338        u32 phy_addr = 2;
2339
2340        if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2341                phy_addr = 1;
2342
2343        return phy_addr;
2344}
2345
2346/**
2347 *  e1000e_write_phy_reg_bm - Write BM PHY register
2348 *  @hw: pointer to the HW structure
2349 *  @offset: register offset to write to
2350 *  @data: data to write at register offset
2351 *
2352 *  Acquires semaphore, if necessary, then writes the data to PHY register
2353 *  at the offset.  Release any acquired semaphores before exiting.
2354 **/
2355s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2356{
2357        s32 ret_val;
2358        u32 page = offset >> IGP_PAGE_SHIFT;
2359
2360        ret_val = hw->phy.ops.acquire(hw);
2361        if (ret_val)
2362                return ret_val;
2363
2364        /* Page 800 works differently than the rest so it has its own func */
2365        if (page == BM_WUC_PAGE) {
2366                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2367                                                         false, false);
2368                goto release;
2369        }
2370
2371        hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2372
2373        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2374                u32 page_shift, page_select;
2375
2376                /* Page select is register 31 for phy address 1 and 22 for
2377                 * phy address 2 and 3. Page select is shifted only for
2378                 * phy address 1.
2379                 */
2380                if (hw->phy.addr == 1) {
2381                        page_shift = IGP_PAGE_SHIFT;
2382                        page_select = IGP01E1000_PHY_PAGE_SELECT;
2383                } else {
2384                        page_shift = 0;
2385                        page_select = BM_PHY_PAGE_SELECT;
2386                }
2387
2388                /* Page is shifted left, PHY expects (page x 32) */
2389                ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2390                                                    (page << page_shift));
2391                if (ret_val)
2392                        goto release;
2393        }
2394
2395        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2396                                            data);
2397
2398release:
2399        hw->phy.ops.release(hw);
2400        return ret_val;
2401}
2402
2403/**
2404 *  e1000e_read_phy_reg_bm - Read BM PHY register
2405 *  @hw: pointer to the HW structure
2406 *  @offset: register offset to be read
2407 *  @data: pointer to the read data
2408 *
2409 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2410 *  and storing the retrieved information in data.  Release any acquired
2411 *  semaphores before exiting.
2412 **/
2413s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2414{
2415        s32 ret_val;
2416        u32 page = offset >> IGP_PAGE_SHIFT;
2417
2418        ret_val = hw->phy.ops.acquire(hw);
2419        if (ret_val)
2420                return ret_val;
2421
2422        /* Page 800 works differently than the rest so it has its own func */
2423        if (page == BM_WUC_PAGE) {
2424                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2425                                                         true, false);
2426                goto release;
2427        }
2428
2429        hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2430
2431        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2432                u32 page_shift, page_select;
2433
2434                /* Page select is register 31 for phy address 1 and 22 for
2435                 * phy address 2 and 3. Page select is shifted only for
2436                 * phy address 1.
2437                 */
2438                if (hw->phy.addr == 1) {
2439                        page_shift = IGP_PAGE_SHIFT;
2440                        page_select = IGP01E1000_PHY_PAGE_SELECT;
2441                } else {
2442                        page_shift = 0;
2443                        page_select = BM_PHY_PAGE_SELECT;
2444                }
2445
2446                /* Page is shifted left, PHY expects (page x 32) */
2447                ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2448                                                    (page << page_shift));
2449                if (ret_val)
2450                        goto release;
2451        }
2452
2453        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2454                                           data);
2455release:
2456        hw->phy.ops.release(hw);
2457        return ret_val;
2458}
2459
2460/**
2461 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2462 *  @hw: pointer to the HW structure
2463 *  @offset: register offset to be read
2464 *  @data: pointer to the read data
2465 *
2466 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2467 *  and storing the retrieved information in data.  Release any acquired
2468 *  semaphores before exiting.
2469 **/
2470s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2471{
2472        s32 ret_val;
2473        u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2474
2475        ret_val = hw->phy.ops.acquire(hw);
2476        if (ret_val)
2477                return ret_val;
2478
2479        /* Page 800 works differently than the rest so it has its own func */
2480        if (page == BM_WUC_PAGE) {
2481                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2482                                                         true, false);
2483                goto release;
2484        }
2485
2486        hw->phy.addr = 1;
2487
2488        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2489                /* Page is shifted left, PHY expects (page x 32) */
2490                ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2491                                                    page);
2492
2493                if (ret_val)
2494                        goto release;
2495        }
2496
2497        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2498                                           data);
2499release:
2500        hw->phy.ops.release(hw);
2501        return ret_val;
2502}
2503
2504/**
2505 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2506 *  @hw: pointer to the HW structure
2507 *  @offset: register offset to write to
2508 *  @data: data to write at register offset
2509 *
2510 *  Acquires semaphore, if necessary, then writes the data to PHY register
2511 *  at the offset.  Release any acquired semaphores before exiting.
2512 **/
2513s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2514{
2515        s32 ret_val;
2516        u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2517
2518        ret_val = hw->phy.ops.acquire(hw);
2519        if (ret_val)
2520                return ret_val;
2521
2522        /* Page 800 works differently than the rest so it has its own func */
2523        if (page == BM_WUC_PAGE) {
2524                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2525                                                         false, false);
2526                goto release;
2527        }
2528
2529        hw->phy.addr = 1;
2530
2531        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2532                /* Page is shifted left, PHY expects (page x 32) */
2533                ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2534                                                    page);
2535
2536                if (ret_val)
2537                        goto release;
2538        }
2539
2540        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2541                                            data);
2542
2543release:
2544        hw->phy.ops.release(hw);
2545        return ret_val;
2546}
2547
2548/**
2549 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2550 *  @hw: pointer to the HW structure
2551 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2552 *
2553 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2554 *  address to store contents of the BM_WUC_ENABLE_REG register.
2555 **/
2556s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2557{
2558        s32 ret_val;
2559        u16 temp;
2560
2561        /* All page select, port ctrl and wakeup registers use phy address 1 */
2562        hw->phy.addr = 1;
2563
2564        /* Select Port Control Registers page */
2565        ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2566        if (ret_val) {
2567                e_dbg("Could not set Port Control page\n");
2568                return ret_val;
2569        }
2570
2571        ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2572        if (ret_val) {
2573                e_dbg("Could not read PHY register %d.%d\n",
2574                      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2575                return ret_val;
2576        }
2577
2578        /* Enable both PHY wakeup mode and Wakeup register page writes.
2579         * Prevent a power state change by disabling ME and Host PHY wakeup.
2580         */
2581        temp = *phy_reg;
2582        temp |= BM_WUC_ENABLE_BIT;
2583        temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2584
2585        ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2586        if (ret_val) {
2587                e_dbg("Could not write PHY register %d.%d\n",
2588                      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2589                return ret_val;
2590        }
2591
2592        /* Select Host Wakeup Registers page - caller now able to write
2593         * registers on the Wakeup registers page
2594         */
2595        return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2596}
2597
2598/**
2599 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2600 *  @hw: pointer to the HW structure
2601 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2602 *
2603 *  Restore BM_WUC_ENABLE_REG to its original value.
2604 *
2605 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2606 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2607 *  caller.
2608 **/
2609s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2610{
2611        s32 ret_val;
2612
2613        /* Select Port Control Registers page */
2614        ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2615        if (ret_val) {
2616                e_dbg("Could not set Port Control page\n");
2617                return ret_val;
2618        }
2619
2620        /* Restore 769.17 to its original value */
2621        ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2622        if (ret_val)
2623                e_dbg("Could not restore PHY register %d.%d\n",
2624                      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2625
2626        return ret_val;
2627}
2628
2629/**
2630 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2631 *  @hw: pointer to the HW structure
2632 *  @offset: register offset to be read or written
2633 *  @data: pointer to the data to read or write
2634 *  @read: determines if operation is read or write
2635 *  @page_set: BM_WUC_PAGE already set and access enabled
2636 *
2637 *  Read the PHY register at offset and store the retrieved information in
2638 *  data, or write data to PHY register at offset.  Note the procedure to
2639 *  access the PHY wakeup registers is different than reading the other PHY
2640 *  registers. It works as such:
2641 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2642 *  2) Set page to 800 for host (801 if we were manageability)
2643 *  3) Write the address using the address opcode (0x11)
2644 *  4) Read or write the data using the data opcode (0x12)
2645 *  5) Restore 769.17.2 to its original value
2646 *
2647 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2648 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2649 *
2650 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2651 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2652 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2653 **/
2654static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2655                                          u16 *data, bool read, bool page_set)
2656{
2657        s32 ret_val;
2658        u16 reg = BM_PHY_REG_NUM(offset);
2659        u16 page = BM_PHY_REG_PAGE(offset);
2660        u16 phy_reg = 0;
2661
2662        /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2663        if ((hw->mac.type == e1000_pchlan) &&
2664            (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2665                e_dbg("Attempting to access page %d while gig enabled.\n",
2666                      page);
2667
2668        if (!page_set) {
2669                /* Enable access to PHY wakeup registers */
2670                ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2671                if (ret_val) {
2672                        e_dbg("Could not enable PHY wakeup reg access\n");
2673                        return ret_val;
2674                }
2675        }
2676
2677        e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2678
2679        /* Write the Wakeup register page offset value using opcode 0x11 */
2680        ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2681        if (ret_val) {
2682                e_dbg("Could not write address opcode to page %d\n", page);
2683                return ret_val;
2684        }
2685
2686        if (read) {
2687                /* Read the Wakeup register page value using opcode 0x12 */
2688                ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2689                                                   data);
2690        } else {
2691                /* Write the Wakeup register page value using opcode 0x12 */
2692                ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2693                                                    *data);
2694        }
2695
2696        if (ret_val) {
2697                e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2698                return ret_val;
2699        }
2700
2701        if (!page_set)
2702                ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2703
2704        return ret_val;
2705}
2706
2707/**
2708 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2709 * @hw: pointer to the HW structure
2710 *
2711 * In the case of a PHY power down to save power, or to turn off link during a
2712 * driver unload, or wake on lan is not enabled, restore the link to previous
2713 * settings.
2714 **/
2715void e1000_power_up_phy_copper(struct e1000_hw *hw)
2716{
2717        u16 mii_reg = 0;
2718
2719        /* The PHY will retain its settings across a power down/up cycle */
2720        e1e_rphy(hw, MII_BMCR, &mii_reg);
2721        mii_reg &= ~BMCR_PDOWN;
2722        e1e_wphy(hw, MII_BMCR, mii_reg);
2723}
2724
2725/**
2726 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2727 * @hw: pointer to the HW structure
2728 *
2729 * In the case of a PHY power down to save power, or to turn off link during a
2730 * driver unload, or wake on lan is not enabled, restore the link to previous
2731 * settings.
2732 **/
2733void e1000_power_down_phy_copper(struct e1000_hw *hw)
2734{
2735        u16 mii_reg = 0;
2736
2737        /* The PHY will retain its settings across a power down/up cycle */
2738        e1e_rphy(hw, MII_BMCR, &mii_reg);
2739        mii_reg |= BMCR_PDOWN;
2740        e1e_wphy(hw, MII_BMCR, mii_reg);
2741        usleep_range(1000, 2000);
2742}
2743
2744/**
2745 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2746 *  @hw: pointer to the HW structure
2747 *  @offset: register offset to be read
2748 *  @data: pointer to the read data
2749 *  @locked: semaphore has already been acquired or not
2750 *
2751 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2752 *  and stores the retrieved information in data.  Release any acquired
2753 *  semaphore before exiting.
2754 **/
2755static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2756                                   bool locked, bool page_set)
2757{
2758        s32 ret_val;
2759        u16 page = BM_PHY_REG_PAGE(offset);
2760        u16 reg = BM_PHY_REG_NUM(offset);
2761        u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2762
2763        if (!locked) {
2764                ret_val = hw->phy.ops.acquire(hw);
2765                if (ret_val)
2766                        return ret_val;
2767        }
2768
2769        /* Page 800 works differently than the rest so it has its own func */
2770        if (page == BM_WUC_PAGE) {
2771                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2772                                                         true, page_set);
2773                goto out;
2774        }
2775
2776        if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2777                ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2778                                                         data, true);
2779                goto out;
2780        }
2781
2782        if (!page_set) {
2783                if (page == HV_INTC_FC_PAGE_START)
2784                        page = 0;
2785
2786                if (reg > MAX_PHY_MULTI_PAGE_REG) {
2787                        /* Page is shifted left, PHY expects (page x 32) */
2788                        ret_val = e1000_set_page_igp(hw,
2789                                                     (page << IGP_PAGE_SHIFT));
2790
2791                        hw->phy.addr = phy_addr;
2792
2793                        if (ret_val)
2794                                goto out;
2795                }
2796        }
2797
2798        e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2799              page << IGP_PAGE_SHIFT, reg);
2800
2801        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2802out:
2803        if (!locked)
2804                hw->phy.ops.release(hw);
2805
2806        return ret_val;
2807}
2808
2809/**
2810 *  e1000_read_phy_reg_hv -  Read HV PHY register
2811 *  @hw: pointer to the HW structure
2812 *  @offset: register offset to be read
2813 *  @data: pointer to the read data
2814 *
2815 *  Acquires semaphore then reads the PHY register at offset and stores
2816 *  the retrieved information in data.  Release the acquired semaphore
2817 *  before exiting.
2818 **/
2819s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2820{
2821        return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2822}
2823
2824/**
2825 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2826 *  @hw: pointer to the HW structure
2827 *  @offset: register offset to be read
2828 *  @data: pointer to the read data
2829 *
2830 *  Reads the PHY register at offset and stores the retrieved information
2831 *  in data.  Assumes semaphore already acquired.
2832 **/
2833s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2834{
2835        return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2836}
2837
2838/**
2839 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2840 *  @hw: pointer to the HW structure
2841 *  @offset: register offset to write to
2842 *  @data: data to write at register offset
2843 *
2844 *  Reads the PHY register at offset and stores the retrieved information
2845 *  in data.  Assumes semaphore already acquired and page already set.
2846 **/
2847s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2848{
2849        return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2850}
2851
2852/**
2853 *  __e1000_write_phy_reg_hv - Write HV PHY register
2854 *  @hw: pointer to the HW structure
2855 *  @offset: register offset to write to
2856 *  @data: data to write at register offset
2857 *  @locked: semaphore has already been acquired or not
2858 *
2859 *  Acquires semaphore, if necessary, then writes the data to PHY register
2860 *  at the offset.  Release any acquired semaphores before exiting.
2861 **/
2862static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2863                                    bool locked, bool page_set)
2864{
2865        s32 ret_val;
2866        u16 page = BM_PHY_REG_PAGE(offset);
2867        u16 reg = BM_PHY_REG_NUM(offset);
2868        u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2869
2870        if (!locked) {
2871                ret_val = hw->phy.ops.acquire(hw);
2872                if (ret_val)
2873                        return ret_val;
2874        }
2875
2876        /* Page 800 works differently than the rest so it has its own func */
2877        if (page == BM_WUC_PAGE) {
2878                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2879                                                         false, page_set);
2880                goto out;
2881        }
2882
2883        if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2884                ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2885                                                         &data, false);
2886                goto out;
2887        }
2888
2889        if (!page_set) {
2890                if (page == HV_INTC_FC_PAGE_START)
2891                        page = 0;
2892
2893                /* Workaround MDIO accesses being disabled after entering IEEE
2894                 * Power Down (when bit 11 of the PHY Control register is set)
2895                 */
2896                if ((hw->phy.type == e1000_phy_82578) &&
2897                    (hw->phy.revision >= 1) &&
2898                    (hw->phy.addr == 2) &&
2899                    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2900                        u16 data2 = 0x7EFF;
2901
2902                        ret_val = e1000_access_phy_debug_regs_hv(hw,
2903                                                                 BIT(6) | 0x3,
2904                                                                 &data2, false);
2905                        if (ret_val)
2906                                goto out;
2907                }
2908
2909                if (reg > MAX_PHY_MULTI_PAGE_REG) {
2910                        /* Page is shifted left, PHY expects (page x 32) */
2911                        ret_val = e1000_set_page_igp(hw,
2912                                                     (page << IGP_PAGE_SHIFT));
2913
2914                        hw->phy.addr = phy_addr;
2915
2916                        if (ret_val)
2917                                goto out;
2918                }
2919        }
2920
2921        e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2922              page << IGP_PAGE_SHIFT, reg);
2923
2924        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2925                                            data);
2926
2927out:
2928        if (!locked)
2929                hw->phy.ops.release(hw);
2930
2931        return ret_val;
2932}
2933
2934/**
2935 *  e1000_write_phy_reg_hv - Write HV PHY register
2936 *  @hw: pointer to the HW structure
2937 *  @offset: register offset to write to
2938 *  @data: data to write at register offset
2939 *
2940 *  Acquires semaphore then writes the data to PHY register at the offset.
2941 *  Release the acquired semaphores before exiting.
2942 **/
2943s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2944{
2945        return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2946}
2947
2948/**
2949 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2950 *  @hw: pointer to the HW structure
2951 *  @offset: register offset to write to
2952 *  @data: data to write at register offset
2953 *
2954 *  Writes the data to PHY register at the offset.  Assumes semaphore
2955 *  already acquired.
2956 **/
2957s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2958{
2959        return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2960}
2961
2962/**
2963 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2964 *  @hw: pointer to the HW structure
2965 *  @offset: register offset to write to
2966 *  @data: data to write at register offset
2967 *
2968 *  Writes the data to PHY register at the offset.  Assumes semaphore
2969 *  already acquired and page already set.
2970 **/
2971s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2972{
2973        return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2974}
2975
2976/**
2977 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2978 *  @page: page to be accessed
2979 **/
2980static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2981{
2982        u32 phy_addr = 2;
2983
2984        if (page >= HV_INTC_FC_PAGE_START)
2985                phy_addr = 1;
2986
2987        return phy_addr;
2988}
2989
2990/**
2991 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2992 *  @hw: pointer to the HW structure
2993 *  @offset: register offset to be read or written
2994 *  @data: pointer to the data to be read or written
2995 *  @read: determines if operation is read or write
2996 *
2997 *  Reads the PHY register at offset and stores the retreived information
2998 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2999 *  to access these regs uses the address port and data port to read/write.
3000 *  These accesses done with PHY address 2 and without using pages.
3001 **/
3002static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3003                                          u16 *data, bool read)
3004{
3005        s32 ret_val;
3006        u32 addr_reg;
3007        u32 data_reg;
3008
3009        /* This takes care of the difference with desktop vs mobile phy */
3010        addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3011                    I82578_ADDR_REG : I82577_ADDR_REG);
3012        data_reg = addr_reg + 1;
3013
3014        /* All operations in this function are phy address 2 */
3015        hw->phy.addr = 2;
3016
3017        /* masking with 0x3F to remove the page from offset */
3018        ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3019        if (ret_val) {
3020                e_dbg("Could not write the Address Offset port register\n");
3021                return ret_val;
3022        }
3023
3024        /* Read or write the data value next */
3025        if (read)
3026                ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3027        else
3028                ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3029
3030        if (ret_val)
3031                e_dbg("Could not access the Data port register\n");
3032
3033        return ret_val;
3034}
3035
3036/**
3037 *  e1000_link_stall_workaround_hv - Si workaround
3038 *  @hw: pointer to the HW structure
3039 *
3040 *  This function works around a Si bug where the link partner can get
3041 *  a link up indication before the PHY does.  If small packets are sent
3042 *  by the link partner they can be placed in the packet buffer without
3043 *  being properly accounted for by the PHY and will stall preventing
3044 *  further packets from being received.  The workaround is to clear the
3045 *  packet buffer after the PHY detects link up.
3046 **/
3047s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3048{
3049        s32 ret_val = 0;
3050        u16 data;
3051
3052        if (hw->phy.type != e1000_phy_82578)
3053                return 0;
3054
3055        /* Do not apply workaround if in PHY loopback bit 14 set */
3056        e1e_rphy(hw, MII_BMCR, &data);
3057        if (data & BMCR_LOOPBACK)
3058                return 0;
3059
3060        /* check if link is up and at 1Gbps */
3061        ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3062        if (ret_val)
3063                return ret_val;
3064
3065        data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3066                 BM_CS_STATUS_SPEED_MASK);
3067
3068        if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3069                     BM_CS_STATUS_SPEED_1000))
3070                return 0;
3071
3072        msleep(200);
3073
3074        /* flush the packets in the fifo buffer */
3075        ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3076                           (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3077                            HV_MUX_DATA_CTRL_FORCE_SPEED));
3078        if (ret_val)
3079                return ret_val;
3080
3081        return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3082}
3083
3084/**
3085 *  e1000_check_polarity_82577 - Checks the polarity.
3086 *  @hw: pointer to the HW structure
3087 *
3088 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3089 *
3090 *  Polarity is determined based on the PHY specific status register.
3091 **/
3092s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3093{
3094        struct e1000_phy_info *phy = &hw->phy;
3095        s32 ret_val;
3096        u16 data;
3097
3098        ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3099
3100        if (!ret_val)
3101                phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3102                                       ? e1000_rev_polarity_reversed
3103                                       : e1000_rev_polarity_normal);
3104
3105        return ret_val;
3106}
3107
3108/**
3109 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3110 *  @hw: pointer to the HW structure
3111 *
3112 *  Calls the PHY setup function to force speed and duplex.
3113 **/
3114s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3115{
3116        struct e1000_phy_info *phy = &hw->phy;
3117        s32 ret_val;
3118        u16 phy_data;
3119        bool link;
3120
3121        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3122        if (ret_val)
3123                return ret_val;
3124
3125        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3126
3127        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3128        if (ret_val)
3129                return ret_val;
3130
3131        udelay(1);
3132
3133        if (phy->autoneg_wait_to_complete) {
3134                e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3135
3136                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3137                                                      100000, &link);
3138                if (ret_val)
3139                        return ret_val;
3140
3141                if (!link)
3142                        e_dbg("Link taking longer than expected.\n");
3143
3144                /* Try once more */
3145                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3146                                                      100000, &link);
3147        }
3148
3149        return ret_val;
3150}
3151
3152/**
3153 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3154 *  @hw: pointer to the HW structure
3155 *
3156 *  Read PHY status to determine if link is up.  If link is up, then
3157 *  set/determine 10base-T extended distance and polarity correction.  Read
3158 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3159 *  determine on the cable length, local and remote receiver.
3160 **/
3161s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3162{
3163        struct e1000_phy_info *phy = &hw->phy;
3164        s32 ret_val;
3165        u16 data;
3166        bool link;
3167
3168        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3169        if (ret_val)
3170                return ret_val;
3171
3172        if (!link) {
3173                e_dbg("Phy info is only valid if link is up\n");
3174                return -E1000_ERR_CONFIG;
3175        }
3176
3177        phy->polarity_correction = true;
3178
3179        ret_val = e1000_check_polarity_82577(hw);
3180        if (ret_val)
3181                return ret_val;
3182
3183        ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3184        if (ret_val)
3185                return ret_val;
3186
3187        phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3188
3189        if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3190            I82577_PHY_STATUS2_SPEED_1000MBPS) {
3191                ret_val = hw->phy.ops.get_cable_length(hw);
3192                if (ret_val)
3193                        return ret_val;
3194
3195                ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3196                if (ret_val)
3197                        return ret_val;
3198
3199                phy->local_rx = (data & LPA_1000LOCALRXOK)
3200                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3201
3202                phy->remote_rx = (data & LPA_1000REMRXOK)
3203                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3204        } else {
3205                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3206                phy->local_rx = e1000_1000t_rx_status_undefined;
3207                phy->remote_rx = e1000_1000t_rx_status_undefined;
3208        }
3209
3210        return 0;
3211}
3212
3213/**
3214 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3215 *  @hw: pointer to the HW structure
3216 *
3217 * Reads the diagnostic status register and verifies result is valid before
3218 * placing it in the phy_cable_length field.
3219 **/
3220s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3221{
3222        struct e1000_phy_info *phy = &hw->phy;
3223        s32 ret_val;
3224        u16 phy_data, length;
3225
3226        ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3227        if (ret_val)
3228                return ret_val;
3229
3230        length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3231                  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3232
3233        if (length == E1000_CABLE_LENGTH_UNDEFINED)
3234                return -E1000_ERR_PHY;
3235
3236        phy->cable_length = length;
3237
3238        return 0;
3239}
3240