linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel(R) Ethernet Switch Host Interface Driver
   3 * Copyright(c) 2013 - 2017 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22#include <linux/types.h>
  23#include <linux/module.h>
  24#include <net/ipv6.h>
  25#include <net/ip.h>
  26#include <net/tcp.h>
  27#include <linux/if_macvlan.h>
  28#include <linux/prefetch.h>
  29
  30#include "fm10k.h"
  31
  32#define DRV_VERSION     "0.23.4-k"
  33#define DRV_SUMMARY     "Intel(R) Ethernet Switch Host Interface Driver"
  34const char fm10k_driver_version[] = DRV_VERSION;
  35char fm10k_driver_name[] = "fm10k";
  36static const char fm10k_driver_string[] = DRV_SUMMARY;
  37static const char fm10k_copyright[] =
  38        "Copyright(c) 2013 - 2018 Intel Corporation.";
  39
  40MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  41MODULE_DESCRIPTION(DRV_SUMMARY);
  42MODULE_LICENSE("GPL");
  43MODULE_VERSION(DRV_VERSION);
  44
  45/* single workqueue for entire fm10k driver */
  46struct workqueue_struct *fm10k_workqueue;
  47
  48/**
  49 * fm10k_init_module - Driver Registration Routine
  50 *
  51 * fm10k_init_module is the first routine called when the driver is
  52 * loaded.  All it does is register with the PCI subsystem.
  53 **/
  54static int __init fm10k_init_module(void)
  55{
  56        pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  57        pr_info("%s\n", fm10k_copyright);
  58
  59        /* create driver workqueue */
  60        fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
  61                                          fm10k_driver_name);
  62
  63        fm10k_dbg_init();
  64
  65        return fm10k_register_pci_driver();
  66}
  67module_init(fm10k_init_module);
  68
  69/**
  70 * fm10k_exit_module - Driver Exit Cleanup Routine
  71 *
  72 * fm10k_exit_module is called just before the driver is removed
  73 * from memory.
  74 **/
  75static void __exit fm10k_exit_module(void)
  76{
  77        fm10k_unregister_pci_driver();
  78
  79        fm10k_dbg_exit();
  80
  81        /* destroy driver workqueue */
  82        destroy_workqueue(fm10k_workqueue);
  83}
  84module_exit(fm10k_exit_module);
  85
  86static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  87                                    struct fm10k_rx_buffer *bi)
  88{
  89        struct page *page = bi->page;
  90        dma_addr_t dma;
  91
  92        /* Only page will be NULL if buffer was consumed */
  93        if (likely(page))
  94                return true;
  95
  96        /* alloc new page for storage */
  97        page = dev_alloc_page();
  98        if (unlikely(!page)) {
  99                rx_ring->rx_stats.alloc_failed++;
 100                return false;
 101        }
 102
 103        /* map page for use */
 104        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 105
 106        /* if mapping failed free memory back to system since
 107         * there isn't much point in holding memory we can't use
 108         */
 109        if (dma_mapping_error(rx_ring->dev, dma)) {
 110                __free_page(page);
 111
 112                rx_ring->rx_stats.alloc_failed++;
 113                return false;
 114        }
 115
 116        bi->dma = dma;
 117        bi->page = page;
 118        bi->page_offset = 0;
 119
 120        return true;
 121}
 122
 123/**
 124 * fm10k_alloc_rx_buffers - Replace used receive buffers
 125 * @rx_ring: ring to place buffers on
 126 * @cleaned_count: number of buffers to replace
 127 **/
 128void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 129{
 130        union fm10k_rx_desc *rx_desc;
 131        struct fm10k_rx_buffer *bi;
 132        u16 i = rx_ring->next_to_use;
 133
 134        /* nothing to do */
 135        if (!cleaned_count)
 136                return;
 137
 138        rx_desc = FM10K_RX_DESC(rx_ring, i);
 139        bi = &rx_ring->rx_buffer[i];
 140        i -= rx_ring->count;
 141
 142        do {
 143                if (!fm10k_alloc_mapped_page(rx_ring, bi))
 144                        break;
 145
 146                /* Refresh the desc even if buffer_addrs didn't change
 147                 * because each write-back erases this info.
 148                 */
 149                rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 150
 151                rx_desc++;
 152                bi++;
 153                i++;
 154                if (unlikely(!i)) {
 155                        rx_desc = FM10K_RX_DESC(rx_ring, 0);
 156                        bi = rx_ring->rx_buffer;
 157                        i -= rx_ring->count;
 158                }
 159
 160                /* clear the status bits for the next_to_use descriptor */
 161                rx_desc->d.staterr = 0;
 162
 163                cleaned_count--;
 164        } while (cleaned_count);
 165
 166        i += rx_ring->count;
 167
 168        if (rx_ring->next_to_use != i) {
 169                /* record the next descriptor to use */
 170                rx_ring->next_to_use = i;
 171
 172                /* update next to alloc since we have filled the ring */
 173                rx_ring->next_to_alloc = i;
 174
 175                /* Force memory writes to complete before letting h/w
 176                 * know there are new descriptors to fetch.  (Only
 177                 * applicable for weak-ordered memory model archs,
 178                 * such as IA-64).
 179                 */
 180                wmb();
 181
 182                /* notify hardware of new descriptors */
 183                writel(i, rx_ring->tail);
 184        }
 185}
 186
 187/**
 188 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 189 * @rx_ring: rx descriptor ring to store buffers on
 190 * @old_buff: donor buffer to have page reused
 191 *
 192 * Synchronizes page for reuse by the interface
 193 **/
 194static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 195                                struct fm10k_rx_buffer *old_buff)
 196{
 197        struct fm10k_rx_buffer *new_buff;
 198        u16 nta = rx_ring->next_to_alloc;
 199
 200        new_buff = &rx_ring->rx_buffer[nta];
 201
 202        /* update, and store next to alloc */
 203        nta++;
 204        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 205
 206        /* transfer page from old buffer to new buffer */
 207        *new_buff = *old_buff;
 208
 209        /* sync the buffer for use by the device */
 210        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 211                                         old_buff->page_offset,
 212                                         FM10K_RX_BUFSZ,
 213                                         DMA_FROM_DEVICE);
 214}
 215
 216static inline bool fm10k_page_is_reserved(struct page *page)
 217{
 218        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 219}
 220
 221static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 222                                    struct page *page,
 223                                    unsigned int __maybe_unused truesize)
 224{
 225        /* avoid re-using remote pages */
 226        if (unlikely(fm10k_page_is_reserved(page)))
 227                return false;
 228
 229#if (PAGE_SIZE < 8192)
 230        /* if we are only owner of page we can reuse it */
 231        if (unlikely(page_count(page) != 1))
 232                return false;
 233
 234        /* flip page offset to other buffer */
 235        rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 236#else
 237        /* move offset up to the next cache line */
 238        rx_buffer->page_offset += truesize;
 239
 240        if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 241                return false;
 242#endif
 243
 244        /* Even if we own the page, we are not allowed to use atomic_set()
 245         * This would break get_page_unless_zero() users.
 246         */
 247        page_ref_inc(page);
 248
 249        return true;
 250}
 251
 252/**
 253 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 254 * @rx_buffer: buffer containing page to add
 255 * @size: packet size from rx_desc
 256 * @rx_desc: descriptor containing length of buffer written by hardware
 257 * @skb: sk_buff to place the data into
 258 *
 259 * This function will add the data contained in rx_buffer->page to the skb.
 260 * This is done either through a direct copy if the data in the buffer is
 261 * less than the skb header size, otherwise it will just attach the page as
 262 * a frag to the skb.
 263 *
 264 * The function will then update the page offset if necessary and return
 265 * true if the buffer can be reused by the interface.
 266 **/
 267static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 268                              unsigned int size,
 269                              union fm10k_rx_desc *rx_desc,
 270                              struct sk_buff *skb)
 271{
 272        struct page *page = rx_buffer->page;
 273        unsigned char *va = page_address(page) + rx_buffer->page_offset;
 274#if (PAGE_SIZE < 8192)
 275        unsigned int truesize = FM10K_RX_BUFSZ;
 276#else
 277        unsigned int truesize = ALIGN(size, 512);
 278#endif
 279        unsigned int pull_len;
 280
 281        if (unlikely(skb_is_nonlinear(skb)))
 282                goto add_tail_frag;
 283
 284        if (likely(size <= FM10K_RX_HDR_LEN)) {
 285                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 286
 287                /* page is not reserved, we can reuse buffer as-is */
 288                if (likely(!fm10k_page_is_reserved(page)))
 289                        return true;
 290
 291                /* this page cannot be reused so discard it */
 292                __free_page(page);
 293                return false;
 294        }
 295
 296        /* we need the header to contain the greater of either ETH_HLEN or
 297         * 60 bytes if the skb->len is less than 60 for skb_pad.
 298         */
 299        pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
 300
 301        /* align pull length to size of long to optimize memcpy performance */
 302        memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 303
 304        /* update all of the pointers */
 305        va += pull_len;
 306        size -= pull_len;
 307
 308add_tail_frag:
 309        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 310                        (unsigned long)va & ~PAGE_MASK, size, truesize);
 311
 312        return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 313}
 314
 315static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 316                                             union fm10k_rx_desc *rx_desc,
 317                                             struct sk_buff *skb)
 318{
 319        unsigned int size = le16_to_cpu(rx_desc->w.length);
 320        struct fm10k_rx_buffer *rx_buffer;
 321        struct page *page;
 322
 323        rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 324        page = rx_buffer->page;
 325        prefetchw(page);
 326
 327        if (likely(!skb)) {
 328                void *page_addr = page_address(page) +
 329                                  rx_buffer->page_offset;
 330
 331                /* prefetch first cache line of first page */
 332                prefetch(page_addr);
 333#if L1_CACHE_BYTES < 128
 334                prefetch(page_addr + L1_CACHE_BYTES);
 335#endif
 336
 337                /* allocate a skb to store the frags */
 338                skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 339                                     FM10K_RX_HDR_LEN);
 340                if (unlikely(!skb)) {
 341                        rx_ring->rx_stats.alloc_failed++;
 342                        return NULL;
 343                }
 344
 345                /* we will be copying header into skb->data in
 346                 * pskb_may_pull so it is in our interest to prefetch
 347                 * it now to avoid a possible cache miss
 348                 */
 349                prefetchw(skb->data);
 350        }
 351
 352        /* we are reusing so sync this buffer for CPU use */
 353        dma_sync_single_range_for_cpu(rx_ring->dev,
 354                                      rx_buffer->dma,
 355                                      rx_buffer->page_offset,
 356                                      size,
 357                                      DMA_FROM_DEVICE);
 358
 359        /* pull page into skb */
 360        if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
 361                /* hand second half of page back to the ring */
 362                fm10k_reuse_rx_page(rx_ring, rx_buffer);
 363        } else {
 364                /* we are not reusing the buffer so unmap it */
 365                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 366                               PAGE_SIZE, DMA_FROM_DEVICE);
 367        }
 368
 369        /* clear contents of rx_buffer */
 370        rx_buffer->page = NULL;
 371
 372        return skb;
 373}
 374
 375static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 376                                     union fm10k_rx_desc *rx_desc,
 377                                     struct sk_buff *skb)
 378{
 379        skb_checksum_none_assert(skb);
 380
 381        /* Rx checksum disabled via ethtool */
 382        if (!(ring->netdev->features & NETIF_F_RXCSUM))
 383                return;
 384
 385        /* TCP/UDP checksum error bit is set */
 386        if (fm10k_test_staterr(rx_desc,
 387                               FM10K_RXD_STATUS_L4E |
 388                               FM10K_RXD_STATUS_L4E2 |
 389                               FM10K_RXD_STATUS_IPE |
 390                               FM10K_RXD_STATUS_IPE2)) {
 391                ring->rx_stats.csum_err++;
 392                return;
 393        }
 394
 395        /* It must be a TCP or UDP packet with a valid checksum */
 396        if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 397                skb->encapsulation = true;
 398        else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 399                return;
 400
 401        skb->ip_summed = CHECKSUM_UNNECESSARY;
 402
 403        ring->rx_stats.csum_good++;
 404}
 405
 406#define FM10K_RSS_L4_TYPES_MASK \
 407        (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
 408         BIT(FM10K_RSSTYPE_IPV4_UDP) | \
 409         BIT(FM10K_RSSTYPE_IPV6_TCP) | \
 410         BIT(FM10K_RSSTYPE_IPV6_UDP))
 411
 412static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 413                                 union fm10k_rx_desc *rx_desc,
 414                                 struct sk_buff *skb)
 415{
 416        u16 rss_type;
 417
 418        if (!(ring->netdev->features & NETIF_F_RXHASH))
 419                return;
 420
 421        rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 422        if (!rss_type)
 423                return;
 424
 425        skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 426                     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
 427                     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 428}
 429
 430static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 431                             union fm10k_rx_desc __maybe_unused *rx_desc,
 432                             struct sk_buff *skb)
 433{
 434        struct net_device *dev = rx_ring->netdev;
 435        struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 436
 437        /* check to see if DGLORT belongs to a MACVLAN */
 438        if (l2_accel) {
 439                u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 440
 441                idx -= l2_accel->dglort;
 442                if (idx < l2_accel->size && l2_accel->macvlan[idx])
 443                        dev = l2_accel->macvlan[idx];
 444                else
 445                        l2_accel = NULL;
 446        }
 447
 448        skb->protocol = eth_type_trans(skb, dev);
 449
 450        /* Record Rx queue, or update macvlan statistics */
 451        if (!l2_accel)
 452                skb_record_rx_queue(skb, rx_ring->queue_index);
 453        else
 454                macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
 455                                 (skb->pkt_type == PACKET_BROADCAST) ||
 456                                 (skb->pkt_type == PACKET_MULTICAST));
 457}
 458
 459/**
 460 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 461 * @rx_ring: rx descriptor ring packet is being transacted on
 462 * @rx_desc: pointer to the EOP Rx descriptor
 463 * @skb: pointer to current skb being populated
 464 *
 465 * This function checks the ring, descriptor, and packet information in
 466 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 467 * other fields within the skb.
 468 **/
 469static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 470                                             union fm10k_rx_desc *rx_desc,
 471                                             struct sk_buff *skb)
 472{
 473        unsigned int len = skb->len;
 474
 475        fm10k_rx_hash(rx_ring, rx_desc, skb);
 476
 477        fm10k_rx_checksum(rx_ring, rx_desc, skb);
 478
 479        FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 480
 481        FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 482
 483        FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 484
 485        if (rx_desc->w.vlan) {
 486                u16 vid = le16_to_cpu(rx_desc->w.vlan);
 487
 488                if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 489                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 490                else if (vid & VLAN_PRIO_MASK)
 491                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 492                                               vid & VLAN_PRIO_MASK);
 493        }
 494
 495        fm10k_type_trans(rx_ring, rx_desc, skb);
 496
 497        return len;
 498}
 499
 500/**
 501 * fm10k_is_non_eop - process handling of non-EOP buffers
 502 * @rx_ring: Rx ring being processed
 503 * @rx_desc: Rx descriptor for current buffer
 504 *
 505 * This function updates next to clean.  If the buffer is an EOP buffer
 506 * this function exits returning false, otherwise it will place the
 507 * sk_buff in the next buffer to be chained and return true indicating
 508 * that this is in fact a non-EOP buffer.
 509 **/
 510static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 511                             union fm10k_rx_desc *rx_desc)
 512{
 513        u32 ntc = rx_ring->next_to_clean + 1;
 514
 515        /* fetch, update, and store next to clean */
 516        ntc = (ntc < rx_ring->count) ? ntc : 0;
 517        rx_ring->next_to_clean = ntc;
 518
 519        prefetch(FM10K_RX_DESC(rx_ring, ntc));
 520
 521        if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 522                return false;
 523
 524        return true;
 525}
 526
 527/**
 528 * fm10k_cleanup_headers - Correct corrupted or empty headers
 529 * @rx_ring: rx descriptor ring packet is being transacted on
 530 * @rx_desc: pointer to the EOP Rx descriptor
 531 * @skb: pointer to current skb being fixed
 532 *
 533 * Address the case where we are pulling data in on pages only
 534 * and as such no data is present in the skb header.
 535 *
 536 * In addition if skb is not at least 60 bytes we need to pad it so that
 537 * it is large enough to qualify as a valid Ethernet frame.
 538 *
 539 * Returns true if an error was encountered and skb was freed.
 540 **/
 541static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 542                                  union fm10k_rx_desc *rx_desc,
 543                                  struct sk_buff *skb)
 544{
 545        if (unlikely((fm10k_test_staterr(rx_desc,
 546                                         FM10K_RXD_STATUS_RXE)))) {
 547#define FM10K_TEST_RXD_BIT(rxd, bit) \
 548        ((rxd)->w.csum_err & cpu_to_le16(bit))
 549                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 550                        rx_ring->rx_stats.switch_errors++;
 551                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 552                        rx_ring->rx_stats.drops++;
 553                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 554                        rx_ring->rx_stats.pp_errors++;
 555                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 556                        rx_ring->rx_stats.link_errors++;
 557                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 558                        rx_ring->rx_stats.length_errors++;
 559                dev_kfree_skb_any(skb);
 560                rx_ring->rx_stats.errors++;
 561                return true;
 562        }
 563
 564        /* if eth_skb_pad returns an error the skb was freed */
 565        if (eth_skb_pad(skb))
 566                return true;
 567
 568        return false;
 569}
 570
 571/**
 572 * fm10k_receive_skb - helper function to handle rx indications
 573 * @q_vector: structure containing interrupt and ring information
 574 * @skb: packet to send up
 575 **/
 576static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 577                              struct sk_buff *skb)
 578{
 579        napi_gro_receive(&q_vector->napi, skb);
 580}
 581
 582static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 583                              struct fm10k_ring *rx_ring,
 584                              int budget)
 585{
 586        struct sk_buff *skb = rx_ring->skb;
 587        unsigned int total_bytes = 0, total_packets = 0;
 588        u16 cleaned_count = fm10k_desc_unused(rx_ring);
 589
 590        while (likely(total_packets < budget)) {
 591                union fm10k_rx_desc *rx_desc;
 592
 593                /* return some buffers to hardware, one at a time is too slow */
 594                if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 595                        fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 596                        cleaned_count = 0;
 597                }
 598
 599                rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 600
 601                if (!rx_desc->d.staterr)
 602                        break;
 603
 604                /* This memory barrier is needed to keep us from reading
 605                 * any other fields out of the rx_desc until we know the
 606                 * descriptor has been written back
 607                 */
 608                dma_rmb();
 609
 610                /* retrieve a buffer from the ring */
 611                skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 612
 613                /* exit if we failed to retrieve a buffer */
 614                if (!skb)
 615                        break;
 616
 617                cleaned_count++;
 618
 619                /* fetch next buffer in frame if non-eop */
 620                if (fm10k_is_non_eop(rx_ring, rx_desc))
 621                        continue;
 622
 623                /* verify the packet layout is correct */
 624                if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 625                        skb = NULL;
 626                        continue;
 627                }
 628
 629                /* populate checksum, timestamp, VLAN, and protocol */
 630                total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 631
 632                fm10k_receive_skb(q_vector, skb);
 633
 634                /* reset skb pointer */
 635                skb = NULL;
 636
 637                /* update budget accounting */
 638                total_packets++;
 639        }
 640
 641        /* place incomplete frames back on ring for completion */
 642        rx_ring->skb = skb;
 643
 644        u64_stats_update_begin(&rx_ring->syncp);
 645        rx_ring->stats.packets += total_packets;
 646        rx_ring->stats.bytes += total_bytes;
 647        u64_stats_update_end(&rx_ring->syncp);
 648        q_vector->rx.total_packets += total_packets;
 649        q_vector->rx.total_bytes += total_bytes;
 650
 651        return total_packets;
 652}
 653
 654#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 655static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 656{
 657        struct fm10k_intfc *interface = netdev_priv(skb->dev);
 658        struct fm10k_udp_port *vxlan_port;
 659
 660        /* we can only offload a vxlan if we recognize it as such */
 661        vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 662                                              struct fm10k_udp_port, list);
 663
 664        if (!vxlan_port)
 665                return NULL;
 666        if (vxlan_port->port != udp_hdr(skb)->dest)
 667                return NULL;
 668
 669        /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 670        return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 671}
 672
 673#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 674#define NVGRE_TNI htons(0x2000)
 675struct fm10k_nvgre_hdr {
 676        __be16 flags;
 677        __be16 proto;
 678        __be32 tni;
 679};
 680
 681static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 682{
 683        struct fm10k_nvgre_hdr *nvgre_hdr;
 684        int hlen = ip_hdrlen(skb);
 685
 686        /* currently only IPv4 is supported due to hlen above */
 687        if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 688                return NULL;
 689
 690        /* our transport header should be NVGRE */
 691        nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 692
 693        /* verify all reserved flags are 0 */
 694        if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 695                return NULL;
 696
 697        /* report start of ethernet header */
 698        if (nvgre_hdr->flags & NVGRE_TNI)
 699                return (struct ethhdr *)(nvgre_hdr + 1);
 700
 701        return (struct ethhdr *)(&nvgre_hdr->tni);
 702}
 703
 704__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 705{
 706        u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 707        struct ethhdr *eth_hdr;
 708
 709        if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 710            skb->inner_protocol != htons(ETH_P_TEB))
 711                return 0;
 712
 713        switch (vlan_get_protocol(skb)) {
 714        case htons(ETH_P_IP):
 715                l4_hdr = ip_hdr(skb)->protocol;
 716                break;
 717        case htons(ETH_P_IPV6):
 718                l4_hdr = ipv6_hdr(skb)->nexthdr;
 719                break;
 720        default:
 721                return 0;
 722        }
 723
 724        switch (l4_hdr) {
 725        case IPPROTO_UDP:
 726                eth_hdr = fm10k_port_is_vxlan(skb);
 727                break;
 728        case IPPROTO_GRE:
 729                eth_hdr = fm10k_gre_is_nvgre(skb);
 730                break;
 731        default:
 732                return 0;
 733        }
 734
 735        if (!eth_hdr)
 736                return 0;
 737
 738        switch (eth_hdr->h_proto) {
 739        case htons(ETH_P_IP):
 740                inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 741                break;
 742        case htons(ETH_P_IPV6):
 743                inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 744                break;
 745        default:
 746                return 0;
 747        }
 748
 749        switch (inner_l4_hdr) {
 750        case IPPROTO_TCP:
 751                inner_l4_hlen = inner_tcp_hdrlen(skb);
 752                break;
 753        case IPPROTO_UDP:
 754                inner_l4_hlen = 8;
 755                break;
 756        default:
 757                return 0;
 758        }
 759
 760        /* The hardware allows tunnel offloads only if the combined inner and
 761         * outer header is 184 bytes or less
 762         */
 763        if (skb_inner_transport_header(skb) + inner_l4_hlen -
 764            skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 765                return 0;
 766
 767        return eth_hdr->h_proto;
 768}
 769
 770static int fm10k_tso(struct fm10k_ring *tx_ring,
 771                     struct fm10k_tx_buffer *first)
 772{
 773        struct sk_buff *skb = first->skb;
 774        struct fm10k_tx_desc *tx_desc;
 775        unsigned char *th;
 776        u8 hdrlen;
 777
 778        if (skb->ip_summed != CHECKSUM_PARTIAL)
 779                return 0;
 780
 781        if (!skb_is_gso(skb))
 782                return 0;
 783
 784        /* compute header lengths */
 785        if (skb->encapsulation) {
 786                if (!fm10k_tx_encap_offload(skb))
 787                        goto err_vxlan;
 788                th = skb_inner_transport_header(skb);
 789        } else {
 790                th = skb_transport_header(skb);
 791        }
 792
 793        /* compute offset from SOF to transport header and add header len */
 794        hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 795
 796        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 797
 798        /* update gso size and bytecount with header size */
 799        first->gso_segs = skb_shinfo(skb)->gso_segs;
 800        first->bytecount += (first->gso_segs - 1) * hdrlen;
 801
 802        /* populate Tx descriptor header size and mss */
 803        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 804        tx_desc->hdrlen = hdrlen;
 805        tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 806
 807        return 1;
 808
 809err_vxlan:
 810        tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 811        if (net_ratelimit())
 812                netdev_err(tx_ring->netdev,
 813                           "TSO requested for unsupported tunnel, disabling offload\n");
 814        return -1;
 815}
 816
 817static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 818                          struct fm10k_tx_buffer *first)
 819{
 820        struct sk_buff *skb = first->skb;
 821        struct fm10k_tx_desc *tx_desc;
 822        union {
 823                struct iphdr *ipv4;
 824                struct ipv6hdr *ipv6;
 825                u8 *raw;
 826        } network_hdr;
 827        u8 *transport_hdr;
 828        __be16 frag_off;
 829        __be16 protocol;
 830        u8 l4_hdr = 0;
 831
 832        if (skb->ip_summed != CHECKSUM_PARTIAL)
 833                goto no_csum;
 834
 835        if (skb->encapsulation) {
 836                protocol = fm10k_tx_encap_offload(skb);
 837                if (!protocol) {
 838                        if (skb_checksum_help(skb)) {
 839                                dev_warn(tx_ring->dev,
 840                                         "failed to offload encap csum!\n");
 841                                tx_ring->tx_stats.csum_err++;
 842                        }
 843                        goto no_csum;
 844                }
 845                network_hdr.raw = skb_inner_network_header(skb);
 846                transport_hdr = skb_inner_transport_header(skb);
 847        } else {
 848                protocol = vlan_get_protocol(skb);
 849                network_hdr.raw = skb_network_header(skb);
 850                transport_hdr = skb_transport_header(skb);
 851        }
 852
 853        switch (protocol) {
 854        case htons(ETH_P_IP):
 855                l4_hdr = network_hdr.ipv4->protocol;
 856                break;
 857        case htons(ETH_P_IPV6):
 858                l4_hdr = network_hdr.ipv6->nexthdr;
 859                if (likely((transport_hdr - network_hdr.raw) ==
 860                           sizeof(struct ipv6hdr)))
 861                        break;
 862                ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
 863                                      sizeof(struct ipv6hdr),
 864                                 &l4_hdr, &frag_off);
 865                if (unlikely(frag_off))
 866                        l4_hdr = NEXTHDR_FRAGMENT;
 867                break;
 868        default:
 869                break;
 870        }
 871
 872        switch (l4_hdr) {
 873        case IPPROTO_TCP:
 874        case IPPROTO_UDP:
 875                break;
 876        case IPPROTO_GRE:
 877                if (skb->encapsulation)
 878                        break;
 879                /* fall through */
 880        default:
 881                if (unlikely(net_ratelimit())) {
 882                        dev_warn(tx_ring->dev,
 883                                 "partial checksum, version=%d l4 proto=%x\n",
 884                                 protocol, l4_hdr);
 885                }
 886                skb_checksum_help(skb);
 887                tx_ring->tx_stats.csum_err++;
 888                goto no_csum;
 889        }
 890
 891        /* update TX checksum flag */
 892        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 893        tx_ring->tx_stats.csum_good++;
 894
 895no_csum:
 896        /* populate Tx descriptor header size and mss */
 897        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 898        tx_desc->hdrlen = 0;
 899        tx_desc->mss = 0;
 900}
 901
 902#define FM10K_SET_FLAG(_input, _flag, _result) \
 903        ((_flag <= _result) ? \
 904         ((u32)(_input & _flag) * (_result / _flag)) : \
 905         ((u32)(_input & _flag) / (_flag / _result)))
 906
 907static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 908{
 909        /* set type for advanced descriptor with frame checksum insertion */
 910        u32 desc_flags = 0;
 911
 912        /* set checksum offload bits */
 913        desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 914                                     FM10K_TXD_FLAG_CSUM);
 915
 916        return desc_flags;
 917}
 918
 919static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 920                               struct fm10k_tx_desc *tx_desc, u16 i,
 921                               dma_addr_t dma, unsigned int size, u8 desc_flags)
 922{
 923        /* set RS and INT for last frame in a cache line */
 924        if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 925                desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 926
 927        /* record values to descriptor */
 928        tx_desc->buffer_addr = cpu_to_le64(dma);
 929        tx_desc->flags = desc_flags;
 930        tx_desc->buflen = cpu_to_le16(size);
 931
 932        /* return true if we just wrapped the ring */
 933        return i == tx_ring->count;
 934}
 935
 936static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 937{
 938        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 939
 940        /* Memory barrier before checking head and tail */
 941        smp_mb();
 942
 943        /* Check again in a case another CPU has just made room available */
 944        if (likely(fm10k_desc_unused(tx_ring) < size))
 945                return -EBUSY;
 946
 947        /* A reprieve! - use start_queue because it doesn't call schedule */
 948        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 949        ++tx_ring->tx_stats.restart_queue;
 950        return 0;
 951}
 952
 953static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 954{
 955        if (likely(fm10k_desc_unused(tx_ring) >= size))
 956                return 0;
 957        return __fm10k_maybe_stop_tx(tx_ring, size);
 958}
 959
 960static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 961                         struct fm10k_tx_buffer *first)
 962{
 963        struct sk_buff *skb = first->skb;
 964        struct fm10k_tx_buffer *tx_buffer;
 965        struct fm10k_tx_desc *tx_desc;
 966        struct skb_frag_struct *frag;
 967        unsigned char *data;
 968        dma_addr_t dma;
 969        unsigned int data_len, size;
 970        u32 tx_flags = first->tx_flags;
 971        u16 i = tx_ring->next_to_use;
 972        u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 973
 974        tx_desc = FM10K_TX_DESC(tx_ring, i);
 975
 976        /* add HW VLAN tag */
 977        if (skb_vlan_tag_present(skb))
 978                tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 979        else
 980                tx_desc->vlan = 0;
 981
 982        size = skb_headlen(skb);
 983        data = skb->data;
 984
 985        dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 986
 987        data_len = skb->data_len;
 988        tx_buffer = first;
 989
 990        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 991                if (dma_mapping_error(tx_ring->dev, dma))
 992                        goto dma_error;
 993
 994                /* record length, and DMA address */
 995                dma_unmap_len_set(tx_buffer, len, size);
 996                dma_unmap_addr_set(tx_buffer, dma, dma);
 997
 998                while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 999                        if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1000                                               FM10K_MAX_DATA_PER_TXD, flags)) {
1001                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1002                                i = 0;
1003                        }
1004
1005                        dma += FM10K_MAX_DATA_PER_TXD;
1006                        size -= FM10K_MAX_DATA_PER_TXD;
1007                }
1008
1009                if (likely(!data_len))
1010                        break;
1011
1012                if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1013                                       dma, size, flags)) {
1014                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1015                        i = 0;
1016                }
1017
1018                size = skb_frag_size(frag);
1019                data_len -= size;
1020
1021                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1022                                       DMA_TO_DEVICE);
1023
1024                tx_buffer = &tx_ring->tx_buffer[i];
1025        }
1026
1027        /* write last descriptor with LAST bit set */
1028        flags |= FM10K_TXD_FLAG_LAST;
1029
1030        if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1031                i = 0;
1032
1033        /* record bytecount for BQL */
1034        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1035
1036        /* record SW timestamp if HW timestamp is not available */
1037        skb_tx_timestamp(first->skb);
1038
1039        /* Force memory writes to complete before letting h/w know there
1040         * are new descriptors to fetch.  (Only applicable for weak-ordered
1041         * memory model archs, such as IA-64).
1042         *
1043         * We also need this memory barrier to make certain all of the
1044         * status bits have been updated before next_to_watch is written.
1045         */
1046        wmb();
1047
1048        /* set next_to_watch value indicating a packet is present */
1049        first->next_to_watch = tx_desc;
1050
1051        tx_ring->next_to_use = i;
1052
1053        /* Make sure there is space in the ring for the next send. */
1054        fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1055
1056        /* notify HW of packet */
1057        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1058                writel(i, tx_ring->tail);
1059
1060                /* we need this if more than one processor can write to our tail
1061                 * at a time, it synchronizes IO on IA64/Altix systems
1062                 */
1063                mmiowb();
1064        }
1065
1066        return;
1067dma_error:
1068        dev_err(tx_ring->dev, "TX DMA map failed\n");
1069
1070        /* clear dma mappings for failed tx_buffer map */
1071        for (;;) {
1072                tx_buffer = &tx_ring->tx_buffer[i];
1073                fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1074                if (tx_buffer == first)
1075                        break;
1076                if (i == 0)
1077                        i = tx_ring->count;
1078                i--;
1079        }
1080
1081        tx_ring->next_to_use = i;
1082}
1083
1084netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1085                                  struct fm10k_ring *tx_ring)
1086{
1087        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1088        struct fm10k_tx_buffer *first;
1089        unsigned short f;
1090        u32 tx_flags = 0;
1091        int tso;
1092
1093        /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1094         *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1095         *       + 2 desc gap to keep tail from touching head
1096         * otherwise try next time
1097         */
1098        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1099                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1100
1101        if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1102                tx_ring->tx_stats.tx_busy++;
1103                return NETDEV_TX_BUSY;
1104        }
1105
1106        /* record the location of the first descriptor for this packet */
1107        first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1108        first->skb = skb;
1109        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1110        first->gso_segs = 1;
1111
1112        /* record initial flags and protocol */
1113        first->tx_flags = tx_flags;
1114
1115        tso = fm10k_tso(tx_ring, first);
1116        if (tso < 0)
1117                goto out_drop;
1118        else if (!tso)
1119                fm10k_tx_csum(tx_ring, first);
1120
1121        fm10k_tx_map(tx_ring, first);
1122
1123        return NETDEV_TX_OK;
1124
1125out_drop:
1126        dev_kfree_skb_any(first->skb);
1127        first->skb = NULL;
1128
1129        return NETDEV_TX_OK;
1130}
1131
1132static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1133{
1134        return ring->stats.packets;
1135}
1136
1137/**
1138 * fm10k_get_tx_pending - how many Tx descriptors not processed
1139 * @ring: the ring structure
1140 * @in_sw: is tx_pending being checked in SW or in HW?
1141 */
1142u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1143{
1144        struct fm10k_intfc *interface = ring->q_vector->interface;
1145        struct fm10k_hw *hw = &interface->hw;
1146        u32 head, tail;
1147
1148        if (likely(in_sw)) {
1149                head = ring->next_to_clean;
1150                tail = ring->next_to_use;
1151        } else {
1152                head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1153                tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1154        }
1155
1156        return ((head <= tail) ? tail : tail + ring->count) - head;
1157}
1158
1159bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1160{
1161        u32 tx_done = fm10k_get_tx_completed(tx_ring);
1162        u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1163        u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1164
1165        clear_check_for_tx_hang(tx_ring);
1166
1167        /* Check for a hung queue, but be thorough. This verifies
1168         * that a transmit has been completed since the previous
1169         * check AND there is at least one packet pending. By
1170         * requiring this to fail twice we avoid races with
1171         * clearing the ARMED bit and conditions where we
1172         * run the check_tx_hang logic with a transmit completion
1173         * pending but without time to complete it yet.
1174         */
1175        if (!tx_pending || (tx_done_old != tx_done)) {
1176                /* update completed stats and continue */
1177                tx_ring->tx_stats.tx_done_old = tx_done;
1178                /* reset the countdown */
1179                clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1180
1181                return false;
1182        }
1183
1184        /* make sure it is true for two checks in a row */
1185        return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1186}
1187
1188/**
1189 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1190 * @interface: driver private struct
1191 **/
1192void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1193{
1194        /* Do the reset outside of interrupt context */
1195        if (!test_bit(__FM10K_DOWN, interface->state)) {
1196                interface->tx_timeout_count++;
1197                set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1198                fm10k_service_event_schedule(interface);
1199        }
1200}
1201
1202/**
1203 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1204 * @q_vector: structure containing interrupt and ring information
1205 * @tx_ring: tx ring to clean
1206 * @napi_budget: Used to determine if we are in netpoll
1207 **/
1208static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1209                               struct fm10k_ring *tx_ring, int napi_budget)
1210{
1211        struct fm10k_intfc *interface = q_vector->interface;
1212        struct fm10k_tx_buffer *tx_buffer;
1213        struct fm10k_tx_desc *tx_desc;
1214        unsigned int total_bytes = 0, total_packets = 0;
1215        unsigned int budget = q_vector->tx.work_limit;
1216        unsigned int i = tx_ring->next_to_clean;
1217
1218        if (test_bit(__FM10K_DOWN, interface->state))
1219                return true;
1220
1221        tx_buffer = &tx_ring->tx_buffer[i];
1222        tx_desc = FM10K_TX_DESC(tx_ring, i);
1223        i -= tx_ring->count;
1224
1225        do {
1226                struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1227
1228                /* if next_to_watch is not set then there is no work pending */
1229                if (!eop_desc)
1230                        break;
1231
1232                /* prevent any other reads prior to eop_desc */
1233                smp_rmb();
1234
1235                /* if DD is not set pending work has not been completed */
1236                if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1237                        break;
1238
1239                /* clear next_to_watch to prevent false hangs */
1240                tx_buffer->next_to_watch = NULL;
1241
1242                /* update the statistics for this packet */
1243                total_bytes += tx_buffer->bytecount;
1244                total_packets += tx_buffer->gso_segs;
1245
1246                /* free the skb */
1247                napi_consume_skb(tx_buffer->skb, napi_budget);
1248
1249                /* unmap skb header data */
1250                dma_unmap_single(tx_ring->dev,
1251                                 dma_unmap_addr(tx_buffer, dma),
1252                                 dma_unmap_len(tx_buffer, len),
1253                                 DMA_TO_DEVICE);
1254
1255                /* clear tx_buffer data */
1256                tx_buffer->skb = NULL;
1257                dma_unmap_len_set(tx_buffer, len, 0);
1258
1259                /* unmap remaining buffers */
1260                while (tx_desc != eop_desc) {
1261                        tx_buffer++;
1262                        tx_desc++;
1263                        i++;
1264                        if (unlikely(!i)) {
1265                                i -= tx_ring->count;
1266                                tx_buffer = tx_ring->tx_buffer;
1267                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1268                        }
1269
1270                        /* unmap any remaining paged data */
1271                        if (dma_unmap_len(tx_buffer, len)) {
1272                                dma_unmap_page(tx_ring->dev,
1273                                               dma_unmap_addr(tx_buffer, dma),
1274                                               dma_unmap_len(tx_buffer, len),
1275                                               DMA_TO_DEVICE);
1276                                dma_unmap_len_set(tx_buffer, len, 0);
1277                        }
1278                }
1279
1280                /* move us one more past the eop_desc for start of next pkt */
1281                tx_buffer++;
1282                tx_desc++;
1283                i++;
1284                if (unlikely(!i)) {
1285                        i -= tx_ring->count;
1286                        tx_buffer = tx_ring->tx_buffer;
1287                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1288                }
1289
1290                /* issue prefetch for next Tx descriptor */
1291                prefetch(tx_desc);
1292
1293                /* update budget accounting */
1294                budget--;
1295        } while (likely(budget));
1296
1297        i += tx_ring->count;
1298        tx_ring->next_to_clean = i;
1299        u64_stats_update_begin(&tx_ring->syncp);
1300        tx_ring->stats.bytes += total_bytes;
1301        tx_ring->stats.packets += total_packets;
1302        u64_stats_update_end(&tx_ring->syncp);
1303        q_vector->tx.total_bytes += total_bytes;
1304        q_vector->tx.total_packets += total_packets;
1305
1306        if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1307                /* schedule immediate reset if we believe we hung */
1308                struct fm10k_hw *hw = &interface->hw;
1309
1310                netif_err(interface, drv, tx_ring->netdev,
1311                          "Detected Tx Unit Hang\n"
1312                          "  Tx Queue             <%d>\n"
1313                          "  TDH, TDT             <%x>, <%x>\n"
1314                          "  next_to_use          <%x>\n"
1315                          "  next_to_clean        <%x>\n",
1316                          tx_ring->queue_index,
1317                          fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1318                          fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1319                          tx_ring->next_to_use, i);
1320
1321                netif_stop_subqueue(tx_ring->netdev,
1322                                    tx_ring->queue_index);
1323
1324                netif_info(interface, probe, tx_ring->netdev,
1325                           "tx hang %d detected on queue %d, resetting interface\n",
1326                           interface->tx_timeout_count + 1,
1327                           tx_ring->queue_index);
1328
1329                fm10k_tx_timeout_reset(interface);
1330
1331                /* the netdev is about to reset, no point in enabling stuff */
1332                return true;
1333        }
1334
1335        /* notify netdev of completed buffers */
1336        netdev_tx_completed_queue(txring_txq(tx_ring),
1337                                  total_packets, total_bytes);
1338
1339#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1340        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1341                     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1342                /* Make sure that anybody stopping the queue after this
1343                 * sees the new next_to_clean.
1344                 */
1345                smp_mb();
1346                if (__netif_subqueue_stopped(tx_ring->netdev,
1347                                             tx_ring->queue_index) &&
1348                    !test_bit(__FM10K_DOWN, interface->state)) {
1349                        netif_wake_subqueue(tx_ring->netdev,
1350                                            tx_ring->queue_index);
1351                        ++tx_ring->tx_stats.restart_queue;
1352                }
1353        }
1354
1355        return !!budget;
1356}
1357
1358/**
1359 * fm10k_update_itr - update the dynamic ITR value based on packet size
1360 *
1361 *      Stores a new ITR value based on strictly on packet size.  The
1362 *      divisors and thresholds used by this function were determined based
1363 *      on theoretical maximum wire speed and testing data, in order to
1364 *      minimize response time while increasing bulk throughput.
1365 *
1366 * @ring_container: Container for rings to have ITR updated
1367 **/
1368static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1369{
1370        unsigned int avg_wire_size, packets, itr_round;
1371
1372        /* Only update ITR if we are using adaptive setting */
1373        if (!ITR_IS_ADAPTIVE(ring_container->itr))
1374                goto clear_counts;
1375
1376        packets = ring_container->total_packets;
1377        if (!packets)
1378                goto clear_counts;
1379
1380        avg_wire_size = ring_container->total_bytes / packets;
1381
1382        /* The following is a crude approximation of:
1383         *  wmem_default / (size + overhead) = desired_pkts_per_int
1384         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1385         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1386         *
1387         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1388         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1389         * formula down to
1390         *
1391         *  (34 * (size + 24)) / (size + 640) = ITR
1392         *
1393         * We first do some math on the packet size and then finally bitshift
1394         * by 8 after rounding up. We also have to account for PCIe link speed
1395         * difference as ITR scales based on this.
1396         */
1397        if (avg_wire_size <= 360) {
1398                /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1399                avg_wire_size *= 8;
1400                avg_wire_size += 376;
1401        } else if (avg_wire_size <= 1152) {
1402                /* 77K ints/sec to 45K ints/sec */
1403                avg_wire_size *= 3;
1404                avg_wire_size += 2176;
1405        } else if (avg_wire_size <= 1920) {
1406                /* 45K ints/sec to 38K ints/sec */
1407                avg_wire_size += 4480;
1408        } else {
1409                /* plateau at a limit of 38K ints/sec */
1410                avg_wire_size = 6656;
1411        }
1412
1413        /* Perform final bitshift for division after rounding up to ensure
1414         * that the calculation will never get below a 1. The bit shift
1415         * accounts for changes in the ITR due to PCIe link speed.
1416         */
1417        itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1418        avg_wire_size += BIT(itr_round) - 1;
1419        avg_wire_size >>= itr_round;
1420
1421        /* write back value and retain adaptive flag */
1422        ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1423
1424clear_counts:
1425        ring_container->total_bytes = 0;
1426        ring_container->total_packets = 0;
1427}
1428
1429static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1430{
1431        /* Enable auto-mask and clear the current mask */
1432        u32 itr = FM10K_ITR_ENABLE;
1433
1434        /* Update Tx ITR */
1435        fm10k_update_itr(&q_vector->tx);
1436
1437        /* Update Rx ITR */
1438        fm10k_update_itr(&q_vector->rx);
1439
1440        /* Store Tx itr in timer slot 0 */
1441        itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1442
1443        /* Shift Rx itr to timer slot 1 */
1444        itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1445
1446        /* Write the final value to the ITR register */
1447        writel(itr, q_vector->itr);
1448}
1449
1450static int fm10k_poll(struct napi_struct *napi, int budget)
1451{
1452        struct fm10k_q_vector *q_vector =
1453                               container_of(napi, struct fm10k_q_vector, napi);
1454        struct fm10k_ring *ring;
1455        int per_ring_budget, work_done = 0;
1456        bool clean_complete = true;
1457
1458        fm10k_for_each_ring(ring, q_vector->tx) {
1459                if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1460                        clean_complete = false;
1461        }
1462
1463        /* Handle case where we are called by netpoll with a budget of 0 */
1464        if (budget <= 0)
1465                return budget;
1466
1467        /* attempt to distribute budget to each queue fairly, but don't
1468         * allow the budget to go below 1 because we'll exit polling
1469         */
1470        if (q_vector->rx.count > 1)
1471                per_ring_budget = max(budget / q_vector->rx.count, 1);
1472        else
1473                per_ring_budget = budget;
1474
1475        fm10k_for_each_ring(ring, q_vector->rx) {
1476                int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1477
1478                work_done += work;
1479                if (work >= per_ring_budget)
1480                        clean_complete = false;
1481        }
1482
1483        /* If all work not completed, return budget and keep polling */
1484        if (!clean_complete)
1485                return budget;
1486
1487        /* all work done, exit the polling mode */
1488        napi_complete_done(napi, work_done);
1489
1490        /* re-enable the q_vector */
1491        fm10k_qv_enable(q_vector);
1492
1493        return min(work_done, budget - 1);
1494}
1495
1496/**
1497 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1498 * @interface: board private structure to initialize
1499 *
1500 * When QoS (Quality of Service) is enabled, allocate queues for
1501 * each traffic class.  If multiqueue isn't available,then abort QoS
1502 * initialization.
1503 *
1504 * This function handles all combinations of Qos and RSS.
1505 *
1506 **/
1507static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1508{
1509        struct net_device *dev = interface->netdev;
1510        struct fm10k_ring_feature *f;
1511        int rss_i, i;
1512        int pcs;
1513
1514        /* Map queue offset and counts onto allocated tx queues */
1515        pcs = netdev_get_num_tc(dev);
1516
1517        if (pcs <= 1)
1518                return false;
1519
1520        /* set QoS mask and indices */
1521        f = &interface->ring_feature[RING_F_QOS];
1522        f->indices = pcs;
1523        f->mask = BIT(fls(pcs - 1)) - 1;
1524
1525        /* determine the upper limit for our current DCB mode */
1526        rss_i = interface->hw.mac.max_queues / pcs;
1527        rss_i = BIT(fls(rss_i) - 1);
1528
1529        /* set RSS mask and indices */
1530        f = &interface->ring_feature[RING_F_RSS];
1531        rss_i = min_t(u16, rss_i, f->limit);
1532        f->indices = rss_i;
1533        f->mask = BIT(fls(rss_i - 1)) - 1;
1534
1535        /* configure pause class to queue mapping */
1536        for (i = 0; i < pcs; i++)
1537                netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1538
1539        interface->num_rx_queues = rss_i * pcs;
1540        interface->num_tx_queues = rss_i * pcs;
1541
1542        return true;
1543}
1544
1545/**
1546 * fm10k_set_rss_queues: Allocate queues for RSS
1547 * @interface: board private structure to initialize
1548 *
1549 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1550 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1551 *
1552 **/
1553static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1554{
1555        struct fm10k_ring_feature *f;
1556        u16 rss_i;
1557
1558        f = &interface->ring_feature[RING_F_RSS];
1559        rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1560
1561        /* record indices and power of 2 mask for RSS */
1562        f->indices = rss_i;
1563        f->mask = BIT(fls(rss_i - 1)) - 1;
1564
1565        interface->num_rx_queues = rss_i;
1566        interface->num_tx_queues = rss_i;
1567
1568        return true;
1569}
1570
1571/**
1572 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1573 * @interface: board private structure to initialize
1574 *
1575 * This is the top level queue allocation routine.  The order here is very
1576 * important, starting with the "most" number of features turned on at once,
1577 * and ending with the smallest set of features.  This way large combinations
1578 * can be allocated if they're turned on, and smaller combinations are the
1579 * fallthrough conditions.
1580 *
1581 **/
1582static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1583{
1584        /* Attempt to setup QoS and RSS first */
1585        if (fm10k_set_qos_queues(interface))
1586                return;
1587
1588        /* If we don't have QoS, just fallback to only RSS. */
1589        fm10k_set_rss_queues(interface);
1590}
1591
1592/**
1593 * fm10k_reset_num_queues - Reset the number of queues to zero
1594 * @interface: board private structure
1595 *
1596 * This function should be called whenever we need to reset the number of
1597 * queues after an error condition.
1598 */
1599static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1600{
1601        interface->num_tx_queues = 0;
1602        interface->num_rx_queues = 0;
1603        interface->num_q_vectors = 0;
1604}
1605
1606/**
1607 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1608 * @interface: board private structure to initialize
1609 * @v_count: q_vectors allocated on interface, used for ring interleaving
1610 * @v_idx: index of vector in interface struct
1611 * @txr_count: total number of Tx rings to allocate
1612 * @txr_idx: index of first Tx ring to allocate
1613 * @rxr_count: total number of Rx rings to allocate
1614 * @rxr_idx: index of first Rx ring to allocate
1615 *
1616 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1617 **/
1618static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1619                                unsigned int v_count, unsigned int v_idx,
1620                                unsigned int txr_count, unsigned int txr_idx,
1621                                unsigned int rxr_count, unsigned int rxr_idx)
1622{
1623        struct fm10k_q_vector *q_vector;
1624        struct fm10k_ring *ring;
1625        int ring_count, size;
1626
1627        ring_count = txr_count + rxr_count;
1628        size = sizeof(struct fm10k_q_vector) +
1629               (sizeof(struct fm10k_ring) * ring_count);
1630
1631        /* allocate q_vector and rings */
1632        q_vector = kzalloc(size, GFP_KERNEL);
1633        if (!q_vector)
1634                return -ENOMEM;
1635
1636        /* initialize NAPI */
1637        netif_napi_add(interface->netdev, &q_vector->napi,
1638                       fm10k_poll, NAPI_POLL_WEIGHT);
1639
1640        /* tie q_vector and interface together */
1641        interface->q_vector[v_idx] = q_vector;
1642        q_vector->interface = interface;
1643        q_vector->v_idx = v_idx;
1644
1645        /* initialize pointer to rings */
1646        ring = q_vector->ring;
1647
1648        /* save Tx ring container info */
1649        q_vector->tx.ring = ring;
1650        q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1651        q_vector->tx.itr = interface->tx_itr;
1652        q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1653        q_vector->tx.count = txr_count;
1654
1655        while (txr_count) {
1656                /* assign generic ring traits */
1657                ring->dev = &interface->pdev->dev;
1658                ring->netdev = interface->netdev;
1659
1660                /* configure backlink on ring */
1661                ring->q_vector = q_vector;
1662
1663                /* apply Tx specific ring traits */
1664                ring->count = interface->tx_ring_count;
1665                ring->queue_index = txr_idx;
1666
1667                /* assign ring to interface */
1668                interface->tx_ring[txr_idx] = ring;
1669
1670                /* update count and index */
1671                txr_count--;
1672                txr_idx += v_count;
1673
1674                /* push pointer to next ring */
1675                ring++;
1676        }
1677
1678        /* save Rx ring container info */
1679        q_vector->rx.ring = ring;
1680        q_vector->rx.itr = interface->rx_itr;
1681        q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1682        q_vector->rx.count = rxr_count;
1683
1684        while (rxr_count) {
1685                /* assign generic ring traits */
1686                ring->dev = &interface->pdev->dev;
1687                ring->netdev = interface->netdev;
1688                rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1689
1690                /* configure backlink on ring */
1691                ring->q_vector = q_vector;
1692
1693                /* apply Rx specific ring traits */
1694                ring->count = interface->rx_ring_count;
1695                ring->queue_index = rxr_idx;
1696
1697                /* assign ring to interface */
1698                interface->rx_ring[rxr_idx] = ring;
1699
1700                /* update count and index */
1701                rxr_count--;
1702                rxr_idx += v_count;
1703
1704                /* push pointer to next ring */
1705                ring++;
1706        }
1707
1708        fm10k_dbg_q_vector_init(q_vector);
1709
1710        return 0;
1711}
1712
1713/**
1714 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1715 * @interface: board private structure to initialize
1716 * @v_idx: Index of vector to be freed
1717 *
1718 * This function frees the memory allocated to the q_vector.  In addition if
1719 * NAPI is enabled it will delete any references to the NAPI struct prior
1720 * to freeing the q_vector.
1721 **/
1722static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1723{
1724        struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1725        struct fm10k_ring *ring;
1726
1727        fm10k_dbg_q_vector_exit(q_vector);
1728
1729        fm10k_for_each_ring(ring, q_vector->tx)
1730                interface->tx_ring[ring->queue_index] = NULL;
1731
1732        fm10k_for_each_ring(ring, q_vector->rx)
1733                interface->rx_ring[ring->queue_index] = NULL;
1734
1735        interface->q_vector[v_idx] = NULL;
1736        netif_napi_del(&q_vector->napi);
1737        kfree_rcu(q_vector, rcu);
1738}
1739
1740/**
1741 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1742 * @interface: board private structure to initialize
1743 *
1744 * We allocate one q_vector per queue interrupt.  If allocation fails we
1745 * return -ENOMEM.
1746 **/
1747static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1748{
1749        unsigned int q_vectors = interface->num_q_vectors;
1750        unsigned int rxr_remaining = interface->num_rx_queues;
1751        unsigned int txr_remaining = interface->num_tx_queues;
1752        unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1753        int err;
1754
1755        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1756                for (; rxr_remaining; v_idx++) {
1757                        err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1758                                                   0, 0, 1, rxr_idx);
1759                        if (err)
1760                                goto err_out;
1761
1762                        /* update counts and index */
1763                        rxr_remaining--;
1764                        rxr_idx++;
1765                }
1766        }
1767
1768        for (; v_idx < q_vectors; v_idx++) {
1769                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1770                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1771
1772                err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1773                                           tqpv, txr_idx,
1774                                           rqpv, rxr_idx);
1775
1776                if (err)
1777                        goto err_out;
1778
1779                /* update counts and index */
1780                rxr_remaining -= rqpv;
1781                txr_remaining -= tqpv;
1782                rxr_idx++;
1783                txr_idx++;
1784        }
1785
1786        return 0;
1787
1788err_out:
1789        fm10k_reset_num_queues(interface);
1790
1791        while (v_idx--)
1792                fm10k_free_q_vector(interface, v_idx);
1793
1794        return -ENOMEM;
1795}
1796
1797/**
1798 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1799 * @interface: board private structure to initialize
1800 *
1801 * This function frees the memory allocated to the q_vectors.  In addition if
1802 * NAPI is enabled it will delete any references to the NAPI struct prior
1803 * to freeing the q_vector.
1804 **/
1805static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1806{
1807        int v_idx = interface->num_q_vectors;
1808
1809        fm10k_reset_num_queues(interface);
1810
1811        while (v_idx--)
1812                fm10k_free_q_vector(interface, v_idx);
1813}
1814
1815/**
1816 * f10k_reset_msix_capability - reset MSI-X capability
1817 * @interface: board private structure to initialize
1818 *
1819 * Reset the MSI-X capability back to its starting state
1820 **/
1821static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1822{
1823        pci_disable_msix(interface->pdev);
1824        kfree(interface->msix_entries);
1825        interface->msix_entries = NULL;
1826}
1827
1828/**
1829 * f10k_init_msix_capability - configure MSI-X capability
1830 * @interface: board private structure to initialize
1831 *
1832 * Attempt to configure the interrupts using the best available
1833 * capabilities of the hardware and the kernel.
1834 **/
1835static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1836{
1837        struct fm10k_hw *hw = &interface->hw;
1838        int v_budget, vector;
1839
1840        /* It's easy to be greedy for MSI-X vectors, but it really
1841         * doesn't do us much good if we have a lot more vectors
1842         * than CPU's.  So let's be conservative and only ask for
1843         * (roughly) the same number of vectors as there are CPU's.
1844         * the default is to use pairs of vectors
1845         */
1846        v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1847        v_budget = min_t(u16, v_budget, num_online_cpus());
1848
1849        /* account for vectors not related to queues */
1850        v_budget += NON_Q_VECTORS(hw);
1851
1852        /* At the same time, hardware can only support a maximum of
1853         * hw.mac->max_msix_vectors vectors.  With features
1854         * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1855         * descriptor queues supported by our device.  Thus, we cap it off in
1856         * those rare cases where the cpu count also exceeds our vector limit.
1857         */
1858        v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1859
1860        /* A failure in MSI-X entry allocation is fatal. */
1861        interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1862                                          GFP_KERNEL);
1863        if (!interface->msix_entries)
1864                return -ENOMEM;
1865
1866        /* populate entry values */
1867        for (vector = 0; vector < v_budget; vector++)
1868                interface->msix_entries[vector].entry = vector;
1869
1870        /* Attempt to enable MSI-X with requested value */
1871        v_budget = pci_enable_msix_range(interface->pdev,
1872                                         interface->msix_entries,
1873                                         MIN_MSIX_COUNT(hw),
1874                                         v_budget);
1875        if (v_budget < 0) {
1876                kfree(interface->msix_entries);
1877                interface->msix_entries = NULL;
1878                return v_budget;
1879        }
1880
1881        /* record the number of queues available for q_vectors */
1882        interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1883
1884        return 0;
1885}
1886
1887/**
1888 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1889 * @interface: Interface structure continaining rings and devices
1890 *
1891 * Cache the descriptor ring offsets for Qos
1892 **/
1893static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1894{
1895        struct net_device *dev = interface->netdev;
1896        int pc, offset, rss_i, i, q_idx;
1897        u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1898        u8 num_pcs = netdev_get_num_tc(dev);
1899
1900        if (num_pcs <= 1)
1901                return false;
1902
1903        rss_i = interface->ring_feature[RING_F_RSS].indices;
1904
1905        for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1906                q_idx = pc;
1907                for (i = 0; i < rss_i; i++) {
1908                        interface->tx_ring[offset + i]->reg_idx = q_idx;
1909                        interface->tx_ring[offset + i]->qos_pc = pc;
1910                        interface->rx_ring[offset + i]->reg_idx = q_idx;
1911                        interface->rx_ring[offset + i]->qos_pc = pc;
1912                        q_idx += pc_stride;
1913                }
1914        }
1915
1916        return true;
1917}
1918
1919/**
1920 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1921 * @interface: Interface structure continaining rings and devices
1922 *
1923 * Cache the descriptor ring offsets for RSS
1924 **/
1925static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1926{
1927        int i;
1928
1929        for (i = 0; i < interface->num_rx_queues; i++)
1930                interface->rx_ring[i]->reg_idx = i;
1931
1932        for (i = 0; i < interface->num_tx_queues; i++)
1933                interface->tx_ring[i]->reg_idx = i;
1934}
1935
1936/**
1937 * fm10k_assign_rings - Map rings to network devices
1938 * @interface: Interface structure containing rings and devices
1939 *
1940 * This function is meant to go though and configure both the network
1941 * devices so that they contain rings, and configure the rings so that
1942 * they function with their network devices.
1943 **/
1944static void fm10k_assign_rings(struct fm10k_intfc *interface)
1945{
1946        if (fm10k_cache_ring_qos(interface))
1947                return;
1948
1949        fm10k_cache_ring_rss(interface);
1950}
1951
1952static void fm10k_init_reta(struct fm10k_intfc *interface)
1953{
1954        u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1955        u32 reta;
1956
1957        /* If the Rx flow indirection table has been configured manually, we
1958         * need to maintain it when possible.
1959         */
1960        if (netif_is_rxfh_configured(interface->netdev)) {
1961                for (i = FM10K_RETA_SIZE; i--;) {
1962                        reta = interface->reta[i];
1963                        if ((((reta << 24) >> 24) < rss_i) &&
1964                            (((reta << 16) >> 24) < rss_i) &&
1965                            (((reta <<  8) >> 24) < rss_i) &&
1966                            (((reta)       >> 24) < rss_i))
1967                                continue;
1968
1969                        /* this should never happen */
1970                        dev_err(&interface->pdev->dev,
1971                                "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1972                        goto repopulate_reta;
1973                }
1974
1975                /* do nothing if all of the elements are in bounds */
1976                return;
1977        }
1978
1979repopulate_reta:
1980        fm10k_write_reta(interface, NULL);
1981}
1982
1983/**
1984 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1985 * @interface: board private structure to initialize
1986 *
1987 * We determine which queueing scheme to use based on...
1988 * - Hardware queue count (num_*_queues)
1989 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1990 **/
1991int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1992{
1993        int err;
1994
1995        /* Number of supported queues */
1996        fm10k_set_num_queues(interface);
1997
1998        /* Configure MSI-X capability */
1999        err = fm10k_init_msix_capability(interface);
2000        if (err) {
2001                dev_err(&interface->pdev->dev,
2002                        "Unable to initialize MSI-X capability\n");
2003                goto err_init_msix;
2004        }
2005
2006        /* Allocate memory for queues */
2007        err = fm10k_alloc_q_vectors(interface);
2008        if (err) {
2009                dev_err(&interface->pdev->dev,
2010                        "Unable to allocate queue vectors\n");
2011                goto err_alloc_q_vectors;
2012        }
2013
2014        /* Map rings to devices, and map devices to physical queues */
2015        fm10k_assign_rings(interface);
2016
2017        /* Initialize RSS redirection table */
2018        fm10k_init_reta(interface);
2019
2020        return 0;
2021
2022err_alloc_q_vectors:
2023        fm10k_reset_msix_capability(interface);
2024err_init_msix:
2025        fm10k_reset_num_queues(interface);
2026        return err;
2027}
2028
2029/**
2030 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2031 * @interface: board private structure to clear queueing scheme on
2032 *
2033 * We go through and clear queueing specific resources and reset the structure
2034 * to pre-load conditions
2035 **/
2036void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2037{
2038        fm10k_free_q_vectors(interface);
2039        fm10k_reset_msix_capability(interface);
2040}
2041