linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3 *
   4 * Intel Ethernet Controller XL710 Family Linux Driver
   5 * Copyright(c) 2013 - 2016 Intel Corporation.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 *
  19 * The full GNU General Public License is included in this distribution in
  20 * the file called "COPYING".
  21 *
  22 * Contact Information:
  23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25 *
  26 ******************************************************************************/
  27
  28#include <linux/prefetch.h>
  29#include <net/busy_poll.h>
  30#include <linux/bpf_trace.h>
  31#include <net/xdp.h>
  32#include "i40e.h"
  33#include "i40e_trace.h"
  34#include "i40e_prototype.h"
  35
  36static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  37                                u32 td_tag)
  38{
  39        return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  40                           ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  41                           ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  42                           ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  43                           ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  44}
  45
  46#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  47/**
  48 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  49 * @tx_ring: Tx ring to send buffer on
  50 * @fdata: Flow director filter data
  51 * @add: Indicate if we are adding a rule or deleting one
  52 *
  53 **/
  54static void i40e_fdir(struct i40e_ring *tx_ring,
  55                      struct i40e_fdir_filter *fdata, bool add)
  56{
  57        struct i40e_filter_program_desc *fdir_desc;
  58        struct i40e_pf *pf = tx_ring->vsi->back;
  59        u32 flex_ptype, dtype_cmd;
  60        u16 i;
  61
  62        /* grab the next descriptor */
  63        i = tx_ring->next_to_use;
  64        fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  65
  66        i++;
  67        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  68
  69        flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  70                     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  71
  72        flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  73                      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  74
  75        flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  76                      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  77
  78        flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  79                      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  80
  81        /* Use LAN VSI Id if not programmed by user */
  82        flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  83                      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  84                       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  85
  86        dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  87
  88        dtype_cmd |= add ?
  89                     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  90                     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  91                     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  92                     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  93
  94        dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  95                     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  96
  97        dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  98                     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  99
 100        if (fdata->cnt_index) {
 101                dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
 102                dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
 103                             ((u32)fdata->cnt_index <<
 104                              I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
 105        }
 106
 107        fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 108        fdir_desc->rsvd = cpu_to_le32(0);
 109        fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 110        fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 111}
 112
 113#define I40E_FD_CLEAN_DELAY 10
 114/**
 115 * i40e_program_fdir_filter - Program a Flow Director filter
 116 * @fdir_data: Packet data that will be filter parameters
 117 * @raw_packet: the pre-allocated packet buffer for FDir
 118 * @pf: The PF pointer
 119 * @add: True for add/update, False for remove
 120 **/
 121static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
 122                                    u8 *raw_packet, struct i40e_pf *pf,
 123                                    bool add)
 124{
 125        struct i40e_tx_buffer *tx_buf, *first;
 126        struct i40e_tx_desc *tx_desc;
 127        struct i40e_ring *tx_ring;
 128        struct i40e_vsi *vsi;
 129        struct device *dev;
 130        dma_addr_t dma;
 131        u32 td_cmd = 0;
 132        u16 i;
 133
 134        /* find existing FDIR VSI */
 135        vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 136        if (!vsi)
 137                return -ENOENT;
 138
 139        tx_ring = vsi->tx_rings[0];
 140        dev = tx_ring->dev;
 141
 142        /* we need two descriptors to add/del a filter and we can wait */
 143        for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 144                if (!i)
 145                        return -EAGAIN;
 146                msleep_interruptible(1);
 147        }
 148
 149        dma = dma_map_single(dev, raw_packet,
 150                             I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 151        if (dma_mapping_error(dev, dma))
 152                goto dma_fail;
 153
 154        /* grab the next descriptor */
 155        i = tx_ring->next_to_use;
 156        first = &tx_ring->tx_bi[i];
 157        i40e_fdir(tx_ring, fdir_data, add);
 158
 159        /* Now program a dummy descriptor */
 160        i = tx_ring->next_to_use;
 161        tx_desc = I40E_TX_DESC(tx_ring, i);
 162        tx_buf = &tx_ring->tx_bi[i];
 163
 164        tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 165
 166        memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 167
 168        /* record length, and DMA address */
 169        dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 170        dma_unmap_addr_set(tx_buf, dma, dma);
 171
 172        tx_desc->buffer_addr = cpu_to_le64(dma);
 173        td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 174
 175        tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 176        tx_buf->raw_buf = (void *)raw_packet;
 177
 178        tx_desc->cmd_type_offset_bsz =
 179                build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 180
 181        /* Force memory writes to complete before letting h/w
 182         * know there are new descriptors to fetch.
 183         */
 184        wmb();
 185
 186        /* Mark the data descriptor to be watched */
 187        first->next_to_watch = tx_desc;
 188
 189        writel(tx_ring->next_to_use, tx_ring->tail);
 190        return 0;
 191
 192dma_fail:
 193        return -1;
 194}
 195
 196#define IP_HEADER_OFFSET 14
 197#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 198/**
 199 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 200 * @vsi: pointer to the targeted VSI
 201 * @fd_data: the flow director data required for the FDir descriptor
 202 * @add: true adds a filter, false removes it
 203 *
 204 * Returns 0 if the filters were successfully added or removed
 205 **/
 206static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 207                                   struct i40e_fdir_filter *fd_data,
 208                                   bool add)
 209{
 210        struct i40e_pf *pf = vsi->back;
 211        struct udphdr *udp;
 212        struct iphdr *ip;
 213        u8 *raw_packet;
 214        int ret;
 215        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 216                0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 217                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 218
 219        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 220        if (!raw_packet)
 221                return -ENOMEM;
 222        memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 223
 224        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 225        udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 226              + sizeof(struct iphdr));
 227
 228        ip->daddr = fd_data->dst_ip;
 229        udp->dest = fd_data->dst_port;
 230        ip->saddr = fd_data->src_ip;
 231        udp->source = fd_data->src_port;
 232
 233        if (fd_data->flex_filter) {
 234                u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 235                __be16 pattern = fd_data->flex_word;
 236                u16 off = fd_data->flex_offset;
 237
 238                *((__force __be16 *)(payload + off)) = pattern;
 239        }
 240
 241        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 242        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 243        if (ret) {
 244                dev_info(&pf->pdev->dev,
 245                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 246                         fd_data->pctype, fd_data->fd_id, ret);
 247                /* Free the packet buffer since it wasn't added to the ring */
 248                kfree(raw_packet);
 249                return -EOPNOTSUPP;
 250        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 251                if (add)
 252                        dev_info(&pf->pdev->dev,
 253                                 "Filter OK for PCTYPE %d loc = %d\n",
 254                                 fd_data->pctype, fd_data->fd_id);
 255                else
 256                        dev_info(&pf->pdev->dev,
 257                                 "Filter deleted for PCTYPE %d loc = %d\n",
 258                                 fd_data->pctype, fd_data->fd_id);
 259        }
 260
 261        if (add)
 262                pf->fd_udp4_filter_cnt++;
 263        else
 264                pf->fd_udp4_filter_cnt--;
 265
 266        return 0;
 267}
 268
 269#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 270/**
 271 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 272 * @vsi: pointer to the targeted VSI
 273 * @fd_data: the flow director data required for the FDir descriptor
 274 * @add: true adds a filter, false removes it
 275 *
 276 * Returns 0 if the filters were successfully added or removed
 277 **/
 278static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 279                                   struct i40e_fdir_filter *fd_data,
 280                                   bool add)
 281{
 282        struct i40e_pf *pf = vsi->back;
 283        struct tcphdr *tcp;
 284        struct iphdr *ip;
 285        u8 *raw_packet;
 286        int ret;
 287        /* Dummy packet */
 288        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 289                0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 290                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 291                0x0, 0x72, 0, 0, 0, 0};
 292
 293        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 294        if (!raw_packet)
 295                return -ENOMEM;
 296        memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 297
 298        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 299        tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 300              + sizeof(struct iphdr));
 301
 302        ip->daddr = fd_data->dst_ip;
 303        tcp->dest = fd_data->dst_port;
 304        ip->saddr = fd_data->src_ip;
 305        tcp->source = fd_data->src_port;
 306
 307        if (fd_data->flex_filter) {
 308                u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 309                __be16 pattern = fd_data->flex_word;
 310                u16 off = fd_data->flex_offset;
 311
 312                *((__force __be16 *)(payload + off)) = pattern;
 313        }
 314
 315        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 316        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 317        if (ret) {
 318                dev_info(&pf->pdev->dev,
 319                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 320                         fd_data->pctype, fd_data->fd_id, ret);
 321                /* Free the packet buffer since it wasn't added to the ring */
 322                kfree(raw_packet);
 323                return -EOPNOTSUPP;
 324        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 325                if (add)
 326                        dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 327                                 fd_data->pctype, fd_data->fd_id);
 328                else
 329                        dev_info(&pf->pdev->dev,
 330                                 "Filter deleted for PCTYPE %d loc = %d\n",
 331                                 fd_data->pctype, fd_data->fd_id);
 332        }
 333
 334        if (add) {
 335                pf->fd_tcp4_filter_cnt++;
 336                if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 337                    I40E_DEBUG_FD & pf->hw.debug_mask)
 338                        dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 339                set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 340        } else {
 341                pf->fd_tcp4_filter_cnt--;
 342        }
 343
 344        return 0;
 345}
 346
 347#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 348/**
 349 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 350 * a specific flow spec
 351 * @vsi: pointer to the targeted VSI
 352 * @fd_data: the flow director data required for the FDir descriptor
 353 * @add: true adds a filter, false removes it
 354 *
 355 * Returns 0 if the filters were successfully added or removed
 356 **/
 357static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 358                                    struct i40e_fdir_filter *fd_data,
 359                                    bool add)
 360{
 361        struct i40e_pf *pf = vsi->back;
 362        struct sctphdr *sctp;
 363        struct iphdr *ip;
 364        u8 *raw_packet;
 365        int ret;
 366        /* Dummy packet */
 367        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 368                0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 369                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 370
 371        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 372        if (!raw_packet)
 373                return -ENOMEM;
 374        memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 375
 376        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 377        sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 378              + sizeof(struct iphdr));
 379
 380        ip->daddr = fd_data->dst_ip;
 381        sctp->dest = fd_data->dst_port;
 382        ip->saddr = fd_data->src_ip;
 383        sctp->source = fd_data->src_port;
 384
 385        if (fd_data->flex_filter) {
 386                u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 387                __be16 pattern = fd_data->flex_word;
 388                u16 off = fd_data->flex_offset;
 389
 390                *((__force __be16 *)(payload + off)) = pattern;
 391        }
 392
 393        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 394        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 395        if (ret) {
 396                dev_info(&pf->pdev->dev,
 397                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 398                         fd_data->pctype, fd_data->fd_id, ret);
 399                /* Free the packet buffer since it wasn't added to the ring */
 400                kfree(raw_packet);
 401                return -EOPNOTSUPP;
 402        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 403                if (add)
 404                        dev_info(&pf->pdev->dev,
 405                                 "Filter OK for PCTYPE %d loc = %d\n",
 406                                 fd_data->pctype, fd_data->fd_id);
 407                else
 408                        dev_info(&pf->pdev->dev,
 409                                 "Filter deleted for PCTYPE %d loc = %d\n",
 410                                 fd_data->pctype, fd_data->fd_id);
 411        }
 412
 413        if (add)
 414                pf->fd_sctp4_filter_cnt++;
 415        else
 416                pf->fd_sctp4_filter_cnt--;
 417
 418        return 0;
 419}
 420
 421#define I40E_IP_DUMMY_PACKET_LEN 34
 422/**
 423 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 424 * a specific flow spec
 425 * @vsi: pointer to the targeted VSI
 426 * @fd_data: the flow director data required for the FDir descriptor
 427 * @add: true adds a filter, false removes it
 428 *
 429 * Returns 0 if the filters were successfully added or removed
 430 **/
 431static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 432                                  struct i40e_fdir_filter *fd_data,
 433                                  bool add)
 434{
 435        struct i40e_pf *pf = vsi->back;
 436        struct iphdr *ip;
 437        u8 *raw_packet;
 438        int ret;
 439        int i;
 440        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 441                0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 442                0, 0, 0, 0};
 443
 444        for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 445             i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
 446                raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 447                if (!raw_packet)
 448                        return -ENOMEM;
 449                memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 450                ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 451
 452                ip->saddr = fd_data->src_ip;
 453                ip->daddr = fd_data->dst_ip;
 454                ip->protocol = 0;
 455
 456                if (fd_data->flex_filter) {
 457                        u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 458                        __be16 pattern = fd_data->flex_word;
 459                        u16 off = fd_data->flex_offset;
 460
 461                        *((__force __be16 *)(payload + off)) = pattern;
 462                }
 463
 464                fd_data->pctype = i;
 465                ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 466                if (ret) {
 467                        dev_info(&pf->pdev->dev,
 468                                 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 469                                 fd_data->pctype, fd_data->fd_id, ret);
 470                        /* The packet buffer wasn't added to the ring so we
 471                         * need to free it now.
 472                         */
 473                        kfree(raw_packet);
 474                        return -EOPNOTSUPP;
 475                } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 476                        if (add)
 477                                dev_info(&pf->pdev->dev,
 478                                         "Filter OK for PCTYPE %d loc = %d\n",
 479                                         fd_data->pctype, fd_data->fd_id);
 480                        else
 481                                dev_info(&pf->pdev->dev,
 482                                         "Filter deleted for PCTYPE %d loc = %d\n",
 483                                         fd_data->pctype, fd_data->fd_id);
 484                }
 485        }
 486
 487        if (add)
 488                pf->fd_ip4_filter_cnt++;
 489        else
 490                pf->fd_ip4_filter_cnt--;
 491
 492        return 0;
 493}
 494
 495/**
 496 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 497 * @vsi: pointer to the targeted VSI
 498 * @cmd: command to get or set RX flow classification rules
 499 * @add: true adds a filter, false removes it
 500 *
 501 **/
 502int i40e_add_del_fdir(struct i40e_vsi *vsi,
 503                      struct i40e_fdir_filter *input, bool add)
 504{
 505        struct i40e_pf *pf = vsi->back;
 506        int ret;
 507
 508        switch (input->flow_type & ~FLOW_EXT) {
 509        case TCP_V4_FLOW:
 510                ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 511                break;
 512        case UDP_V4_FLOW:
 513                ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 514                break;
 515        case SCTP_V4_FLOW:
 516                ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 517                break;
 518        case IP_USER_FLOW:
 519                switch (input->ip4_proto) {
 520                case IPPROTO_TCP:
 521                        ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 522                        break;
 523                case IPPROTO_UDP:
 524                        ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 525                        break;
 526                case IPPROTO_SCTP:
 527                        ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 528                        break;
 529                case IPPROTO_IP:
 530                        ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 531                        break;
 532                default:
 533                        /* We cannot support masking based on protocol */
 534                        dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 535                                 input->ip4_proto);
 536                        return -EINVAL;
 537                }
 538                break;
 539        default:
 540                dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 541                         input->flow_type);
 542                return -EINVAL;
 543        }
 544
 545        /* The buffer allocated here will be normally be freed by
 546         * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 547         * completion. In the event of an error adding the buffer to the FDIR
 548         * ring, it will immediately be freed. It may also be freed by
 549         * i40e_clean_tx_ring() when closing the VSI.
 550         */
 551        return ret;
 552}
 553
 554/**
 555 * i40e_fd_handle_status - check the Programming Status for FD
 556 * @rx_ring: the Rx ring for this descriptor
 557 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 558 * @prog_id: the id originally used for programming
 559 *
 560 * This is used to verify if the FD programming or invalidation
 561 * requested by SW to the HW is successful or not and take actions accordingly.
 562 **/
 563static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 564                                  union i40e_rx_desc *rx_desc, u8 prog_id)
 565{
 566        struct i40e_pf *pf = rx_ring->vsi->back;
 567        struct pci_dev *pdev = pf->pdev;
 568        u32 fcnt_prog, fcnt_avail;
 569        u32 error;
 570        u64 qw;
 571
 572        qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 573        error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 574                I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 575
 576        if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 577                pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 578                if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 579                    (I40E_DEBUG_FD & pf->hw.debug_mask))
 580                        dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 581                                 pf->fd_inv);
 582
 583                /* Check if the programming error is for ATR.
 584                 * If so, auto disable ATR and set a state for
 585                 * flush in progress. Next time we come here if flush is in
 586                 * progress do nothing, once flush is complete the state will
 587                 * be cleared.
 588                 */
 589                if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 590                        return;
 591
 592                pf->fd_add_err++;
 593                /* store the current atr filter count */
 594                pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 595
 596                if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 597                    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 598                        /* These set_bit() calls aren't atomic with the
 599                         * test_bit() here, but worse case we potentially
 600                         * disable ATR and queue a flush right after SB
 601                         * support is re-enabled. That shouldn't cause an
 602                         * issue in practice
 603                         */
 604                        set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 605                        set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 606                }
 607
 608                /* filter programming failed most likely due to table full */
 609                fcnt_prog = i40e_get_global_fd_count(pf);
 610                fcnt_avail = pf->fdir_pf_filter_count;
 611                /* If ATR is running fcnt_prog can quickly change,
 612                 * if we are very close to full, it makes sense to disable
 613                 * FD ATR/SB and then re-enable it when there is room.
 614                 */
 615                if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 616                        if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 617                            !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 618                                              pf->state))
 619                                if (I40E_DEBUG_FD & pf->hw.debug_mask)
 620                                        dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 621                }
 622        } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 623                if (I40E_DEBUG_FD & pf->hw.debug_mask)
 624                        dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 625                                 rx_desc->wb.qword0.hi_dword.fd_id);
 626        }
 627}
 628
 629/**
 630 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 631 * @ring:      the ring that owns the buffer
 632 * @tx_buffer: the buffer to free
 633 **/
 634static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 635                                            struct i40e_tx_buffer *tx_buffer)
 636{
 637        if (tx_buffer->skb) {
 638                if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 639                        kfree(tx_buffer->raw_buf);
 640                else if (ring_is_xdp(ring))
 641                        page_frag_free(tx_buffer->raw_buf);
 642                else
 643                        dev_kfree_skb_any(tx_buffer->skb);
 644                if (dma_unmap_len(tx_buffer, len))
 645                        dma_unmap_single(ring->dev,
 646                                         dma_unmap_addr(tx_buffer, dma),
 647                                         dma_unmap_len(tx_buffer, len),
 648                                         DMA_TO_DEVICE);
 649        } else if (dma_unmap_len(tx_buffer, len)) {
 650                dma_unmap_page(ring->dev,
 651                               dma_unmap_addr(tx_buffer, dma),
 652                               dma_unmap_len(tx_buffer, len),
 653                               DMA_TO_DEVICE);
 654        }
 655
 656        tx_buffer->next_to_watch = NULL;
 657        tx_buffer->skb = NULL;
 658        dma_unmap_len_set(tx_buffer, len, 0);
 659        /* tx_buffer must be completely set up in the transmit path */
 660}
 661
 662/**
 663 * i40e_clean_tx_ring - Free any empty Tx buffers
 664 * @tx_ring: ring to be cleaned
 665 **/
 666void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 667{
 668        unsigned long bi_size;
 669        u16 i;
 670
 671        /* ring already cleared, nothing to do */
 672        if (!tx_ring->tx_bi)
 673                return;
 674
 675        /* Free all the Tx ring sk_buffs */
 676        for (i = 0; i < tx_ring->count; i++)
 677                i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 678
 679        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 680        memset(tx_ring->tx_bi, 0, bi_size);
 681
 682        /* Zero out the descriptor ring */
 683        memset(tx_ring->desc, 0, tx_ring->size);
 684
 685        tx_ring->next_to_use = 0;
 686        tx_ring->next_to_clean = 0;
 687
 688        if (!tx_ring->netdev)
 689                return;
 690
 691        /* cleanup Tx queue statistics */
 692        netdev_tx_reset_queue(txring_txq(tx_ring));
 693}
 694
 695/**
 696 * i40e_free_tx_resources - Free Tx resources per queue
 697 * @tx_ring: Tx descriptor ring for a specific queue
 698 *
 699 * Free all transmit software resources
 700 **/
 701void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 702{
 703        i40e_clean_tx_ring(tx_ring);
 704        kfree(tx_ring->tx_bi);
 705        tx_ring->tx_bi = NULL;
 706
 707        if (tx_ring->desc) {
 708                dma_free_coherent(tx_ring->dev, tx_ring->size,
 709                                  tx_ring->desc, tx_ring->dma);
 710                tx_ring->desc = NULL;
 711        }
 712}
 713
 714/**
 715 * i40e_get_tx_pending - how many tx descriptors not processed
 716 * @tx_ring: the ring of descriptors
 717 * @in_sw: use SW variables
 718 *
 719 * Since there is no access to the ring head register
 720 * in XL710, we need to use our local copies
 721 **/
 722u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 723{
 724        u32 head, tail;
 725
 726        if (!in_sw) {
 727                head = i40e_get_head(ring);
 728                tail = readl(ring->tail);
 729        } else {
 730                head = ring->next_to_clean;
 731                tail = ring->next_to_use;
 732        }
 733
 734        if (head != tail)
 735                return (head < tail) ?
 736                        tail - head : (tail + ring->count - head);
 737
 738        return 0;
 739}
 740
 741/**
 742 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 743 * @vsi:  pointer to vsi struct with tx queues
 744 *
 745 * VSI has netdev and netdev has TX queues. This function is to check each of
 746 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 747 **/
 748void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 749{
 750        struct i40e_ring *tx_ring = NULL;
 751        struct net_device *netdev;
 752        unsigned int i;
 753        int packets;
 754
 755        if (!vsi)
 756                return;
 757
 758        if (test_bit(__I40E_VSI_DOWN, vsi->state))
 759                return;
 760
 761        netdev = vsi->netdev;
 762        if (!netdev)
 763                return;
 764
 765        if (!netif_carrier_ok(netdev))
 766                return;
 767
 768        for (i = 0; i < vsi->num_queue_pairs; i++) {
 769                tx_ring = vsi->tx_rings[i];
 770                if (tx_ring && tx_ring->desc) {
 771                        /* If packet counter has not changed the queue is
 772                         * likely stalled, so force an interrupt for this
 773                         * queue.
 774                         *
 775                         * prev_pkt_ctr would be negative if there was no
 776                         * pending work.
 777                         */
 778                        packets = tx_ring->stats.packets & INT_MAX;
 779                        if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 780                                i40e_force_wb(vsi, tx_ring->q_vector);
 781                                continue;
 782                        }
 783
 784                        /* Memory barrier between read of packet count and call
 785                         * to i40e_get_tx_pending()
 786                         */
 787                        smp_rmb();
 788                        tx_ring->tx_stats.prev_pkt_ctr =
 789                            i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 790                }
 791        }
 792}
 793
 794#define WB_STRIDE 4
 795
 796/**
 797 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 798 * @vsi: the VSI we care about
 799 * @tx_ring: Tx ring to clean
 800 * @napi_budget: Used to determine if we are in netpoll
 801 *
 802 * Returns true if there's any budget left (e.g. the clean is finished)
 803 **/
 804static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 805                              struct i40e_ring *tx_ring, int napi_budget)
 806{
 807        u16 i = tx_ring->next_to_clean;
 808        struct i40e_tx_buffer *tx_buf;
 809        struct i40e_tx_desc *tx_head;
 810        struct i40e_tx_desc *tx_desc;
 811        unsigned int total_bytes = 0, total_packets = 0;
 812        unsigned int budget = vsi->work_limit;
 813
 814        tx_buf = &tx_ring->tx_bi[i];
 815        tx_desc = I40E_TX_DESC(tx_ring, i);
 816        i -= tx_ring->count;
 817
 818        tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 819
 820        do {
 821                struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 822
 823                /* if next_to_watch is not set then there is no work pending */
 824                if (!eop_desc)
 825                        break;
 826
 827                /* prevent any other reads prior to eop_desc */
 828                smp_rmb();
 829
 830                i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 831                /* we have caught up to head, no work left to do */
 832                if (tx_head == tx_desc)
 833                        break;
 834
 835                /* clear next_to_watch to prevent false hangs */
 836                tx_buf->next_to_watch = NULL;
 837
 838                /* update the statistics for this packet */
 839                total_bytes += tx_buf->bytecount;
 840                total_packets += tx_buf->gso_segs;
 841
 842                /* free the skb/XDP data */
 843                if (ring_is_xdp(tx_ring))
 844                        page_frag_free(tx_buf->raw_buf);
 845                else
 846                        napi_consume_skb(tx_buf->skb, napi_budget);
 847
 848                /* unmap skb header data */
 849                dma_unmap_single(tx_ring->dev,
 850                                 dma_unmap_addr(tx_buf, dma),
 851                                 dma_unmap_len(tx_buf, len),
 852                                 DMA_TO_DEVICE);
 853
 854                /* clear tx_buffer data */
 855                tx_buf->skb = NULL;
 856                dma_unmap_len_set(tx_buf, len, 0);
 857
 858                /* unmap remaining buffers */
 859                while (tx_desc != eop_desc) {
 860                        i40e_trace(clean_tx_irq_unmap,
 861                                   tx_ring, tx_desc, tx_buf);
 862
 863                        tx_buf++;
 864                        tx_desc++;
 865                        i++;
 866                        if (unlikely(!i)) {
 867                                i -= tx_ring->count;
 868                                tx_buf = tx_ring->tx_bi;
 869                                tx_desc = I40E_TX_DESC(tx_ring, 0);
 870                        }
 871
 872                        /* unmap any remaining paged data */
 873                        if (dma_unmap_len(tx_buf, len)) {
 874                                dma_unmap_page(tx_ring->dev,
 875                                               dma_unmap_addr(tx_buf, dma),
 876                                               dma_unmap_len(tx_buf, len),
 877                                               DMA_TO_DEVICE);
 878                                dma_unmap_len_set(tx_buf, len, 0);
 879                        }
 880                }
 881
 882                /* move us one more past the eop_desc for start of next pkt */
 883                tx_buf++;
 884                tx_desc++;
 885                i++;
 886                if (unlikely(!i)) {
 887                        i -= tx_ring->count;
 888                        tx_buf = tx_ring->tx_bi;
 889                        tx_desc = I40E_TX_DESC(tx_ring, 0);
 890                }
 891
 892                prefetch(tx_desc);
 893
 894                /* update budget accounting */
 895                budget--;
 896        } while (likely(budget));
 897
 898        i += tx_ring->count;
 899        tx_ring->next_to_clean = i;
 900        u64_stats_update_begin(&tx_ring->syncp);
 901        tx_ring->stats.bytes += total_bytes;
 902        tx_ring->stats.packets += total_packets;
 903        u64_stats_update_end(&tx_ring->syncp);
 904        tx_ring->q_vector->tx.total_bytes += total_bytes;
 905        tx_ring->q_vector->tx.total_packets += total_packets;
 906
 907        if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 908                /* check to see if there are < 4 descriptors
 909                 * waiting to be written back, then kick the hardware to force
 910                 * them to be written back in case we stay in NAPI.
 911                 * In this mode on X722 we do not enable Interrupt.
 912                 */
 913                unsigned int j = i40e_get_tx_pending(tx_ring, false);
 914
 915                if (budget &&
 916                    ((j / WB_STRIDE) == 0) && (j > 0) &&
 917                    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
 918                    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 919                        tx_ring->arm_wb = true;
 920        }
 921
 922        if (ring_is_xdp(tx_ring))
 923                return !!budget;
 924
 925        /* notify netdev of completed buffers */
 926        netdev_tx_completed_queue(txring_txq(tx_ring),
 927                                  total_packets, total_bytes);
 928
 929#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 930        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 931                     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 932                /* Make sure that anybody stopping the queue after this
 933                 * sees the new next_to_clean.
 934                 */
 935                smp_mb();
 936                if (__netif_subqueue_stopped(tx_ring->netdev,
 937                                             tx_ring->queue_index) &&
 938                   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 939                        netif_wake_subqueue(tx_ring->netdev,
 940                                            tx_ring->queue_index);
 941                        ++tx_ring->tx_stats.restart_queue;
 942                }
 943        }
 944
 945        return !!budget;
 946}
 947
 948/**
 949 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 950 * @vsi: the VSI we care about
 951 * @q_vector: the vector on which to enable writeback
 952 *
 953 **/
 954static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 955                                  struct i40e_q_vector *q_vector)
 956{
 957        u16 flags = q_vector->tx.ring[0].flags;
 958        u32 val;
 959
 960        if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 961                return;
 962
 963        if (q_vector->arm_wb_state)
 964                return;
 965
 966        if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 967                val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 968                      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 969
 970                wr32(&vsi->back->hw,
 971                     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 972                     val);
 973        } else {
 974                val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 975                      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 976
 977                wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 978        }
 979        q_vector->arm_wb_state = true;
 980}
 981
 982/**
 983 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 984 * @vsi: the VSI we care about
 985 * @q_vector: the vector  on which to force writeback
 986 *
 987 **/
 988void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 989{
 990        if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 991                u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 992                          I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 993                          I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 994                          I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 995                          /* allow 00 to be written to the index */
 996
 997                wr32(&vsi->back->hw,
 998                     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 999        } else {
1000                u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1001                          I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1002                          I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1003                          I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1004                        /* allow 00 to be written to the index */
1005
1006                wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1007        }
1008}
1009
1010static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1011                                        struct i40e_ring_container *rc)
1012{
1013        return &q_vector->rx == rc;
1014}
1015
1016static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1017{
1018        unsigned int divisor;
1019
1020        switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1021        case I40E_LINK_SPEED_40GB:
1022                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1023                break;
1024        case I40E_LINK_SPEED_25GB:
1025        case I40E_LINK_SPEED_20GB:
1026                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1027                break;
1028        default:
1029        case I40E_LINK_SPEED_10GB:
1030                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1031                break;
1032        case I40E_LINK_SPEED_1GB:
1033        case I40E_LINK_SPEED_100MB:
1034                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1035                break;
1036        }
1037
1038        return divisor;
1039}
1040
1041/**
1042 * i40e_update_itr - update the dynamic ITR value based on statistics
1043 * @q_vector: structure containing interrupt and ring information
1044 * @rc: structure containing ring performance data
1045 *
1046 * Stores a new ITR value based on packets and byte
1047 * counts during the last interrupt.  The advantage of per interrupt
1048 * computation is faster updates and more accurate ITR for the current
1049 * traffic pattern.  Constants in this function were computed
1050 * based on theoretical maximum wire speed and thresholds were set based
1051 * on testing data as well as attempting to minimize response time
1052 * while increasing bulk throughput.
1053 **/
1054static void i40e_update_itr(struct i40e_q_vector *q_vector,
1055                            struct i40e_ring_container *rc)
1056{
1057        unsigned int avg_wire_size, packets, bytes, itr;
1058        unsigned long next_update = jiffies;
1059
1060        /* If we don't have any rings just leave ourselves set for maximum
1061         * possible latency so we take ourselves out of the equation.
1062         */
1063        if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1064                return;
1065
1066        /* For Rx we want to push the delay up and default to low latency.
1067         * for Tx we want to pull the delay down and default to high latency.
1068         */
1069        itr = i40e_container_is_rx(q_vector, rc) ?
1070              I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1071              I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1072
1073        /* If we didn't update within up to 1 - 2 jiffies we can assume
1074         * that either packets are coming in so slow there hasn't been
1075         * any work, or that there is so much work that NAPI is dealing
1076         * with interrupt moderation and we don't need to do anything.
1077         */
1078        if (time_after(next_update, rc->next_update))
1079                goto clear_counts;
1080
1081        /* If itr_countdown is set it means we programmed an ITR within
1082         * the last 4 interrupt cycles. This has a side effect of us
1083         * potentially firing an early interrupt. In order to work around
1084         * this we need to throw out any data received for a few
1085         * interrupts following the update.
1086         */
1087        if (q_vector->itr_countdown) {
1088                itr = rc->target_itr;
1089                goto clear_counts;
1090        }
1091
1092        packets = rc->total_packets;
1093        bytes = rc->total_bytes;
1094
1095        if (i40e_container_is_rx(q_vector, rc)) {
1096                /* If Rx there are 1 to 4 packets and bytes are less than
1097                 * 9000 assume insufficient data to use bulk rate limiting
1098                 * approach unless Tx is already in bulk rate limiting. We
1099                 * are likely latency driven.
1100                 */
1101                if (packets && packets < 4 && bytes < 9000 &&
1102                    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1103                        itr = I40E_ITR_ADAPTIVE_LATENCY;
1104                        goto adjust_by_size;
1105                }
1106        } else if (packets < 4) {
1107                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1108                 * bulk mode and we are receiving 4 or fewer packets just
1109                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1110                 * that the Rx can relax.
1111                 */
1112                if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1113                    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1114                     I40E_ITR_ADAPTIVE_MAX_USECS)
1115                        goto clear_counts;
1116        } else if (packets > 32) {
1117                /* If we have processed over 32 packets in a single interrupt
1118                 * for Tx assume we need to switch over to "bulk" mode.
1119                 */
1120                rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1121        }
1122
1123        /* We have no packets to actually measure against. This means
1124         * either one of the other queues on this vector is active or
1125         * we are a Tx queue doing TSO with too high of an interrupt rate.
1126         *
1127         * Between 4 and 56 we can assume that our current interrupt delay
1128         * is only slightly too low. As such we should increase it by a small
1129         * fixed amount.
1130         */
1131        if (packets < 56) {
1132                itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1133                if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1134                        itr &= I40E_ITR_ADAPTIVE_LATENCY;
1135                        itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1136                }
1137                goto clear_counts;
1138        }
1139
1140        if (packets <= 256) {
1141                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1142                itr &= I40E_ITR_MASK;
1143
1144                /* Between 56 and 112 is our "goldilocks" zone where we are
1145                 * working out "just right". Just report that our current
1146                 * ITR is good for us.
1147                 */
1148                if (packets <= 112)
1149                        goto clear_counts;
1150
1151                /* If packet count is 128 or greater we are likely looking
1152                 * at a slight overrun of the delay we want. Try halving
1153                 * our delay to see if that will cut the number of packets
1154                 * in half per interrupt.
1155                 */
1156                itr /= 2;
1157                itr &= I40E_ITR_MASK;
1158                if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1159                        itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1160
1161                goto clear_counts;
1162        }
1163
1164        /* The paths below assume we are dealing with a bulk ITR since
1165         * number of packets is greater than 256. We are just going to have
1166         * to compute a value and try to bring the count under control,
1167         * though for smaller packet sizes there isn't much we can do as
1168         * NAPI polling will likely be kicking in sooner rather than later.
1169         */
1170        itr = I40E_ITR_ADAPTIVE_BULK;
1171
1172adjust_by_size:
1173        /* If packet counts are 256 or greater we can assume we have a gross
1174         * overestimation of what the rate should be. Instead of trying to fine
1175         * tune it just use the formula below to try and dial in an exact value
1176         * give the current packet size of the frame.
1177         */
1178        avg_wire_size = bytes / packets;
1179
1180        /* The following is a crude approximation of:
1181         *  wmem_default / (size + overhead) = desired_pkts_per_int
1182         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1183         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1184         *
1185         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1186         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1187         * formula down to
1188         *
1189         *  (170 * (size + 24)) / (size + 640) = ITR
1190         *
1191         * We first do some math on the packet size and then finally bitshift
1192         * by 8 after rounding up. We also have to account for PCIe link speed
1193         * difference as ITR scales based on this.
1194         */
1195        if (avg_wire_size <= 60) {
1196                /* Start at 250k ints/sec */
1197                avg_wire_size = 4096;
1198        } else if (avg_wire_size <= 380) {
1199                /* 250K ints/sec to 60K ints/sec */
1200                avg_wire_size *= 40;
1201                avg_wire_size += 1696;
1202        } else if (avg_wire_size <= 1084) {
1203                /* 60K ints/sec to 36K ints/sec */
1204                avg_wire_size *= 15;
1205                avg_wire_size += 11452;
1206        } else if (avg_wire_size <= 1980) {
1207                /* 36K ints/sec to 30K ints/sec */
1208                avg_wire_size *= 5;
1209                avg_wire_size += 22420;
1210        } else {
1211                /* plateau at a limit of 30K ints/sec */
1212                avg_wire_size = 32256;
1213        }
1214
1215        /* If we are in low latency mode halve our delay which doubles the
1216         * rate to somewhere between 100K to 16K ints/sec
1217         */
1218        if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1219                avg_wire_size /= 2;
1220
1221        /* Resultant value is 256 times larger than it needs to be. This
1222         * gives us room to adjust the value as needed to either increase
1223         * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1224         *
1225         * Use addition as we have already recorded the new latency flag
1226         * for the ITR value.
1227         */
1228        itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1229               I40E_ITR_ADAPTIVE_MIN_INC;
1230
1231        if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1232                itr &= I40E_ITR_ADAPTIVE_LATENCY;
1233                itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1234        }
1235
1236clear_counts:
1237        /* write back value */
1238        rc->target_itr = itr;
1239
1240        /* next update should occur within next jiffy */
1241        rc->next_update = next_update + 1;
1242
1243        rc->total_bytes = 0;
1244        rc->total_packets = 0;
1245}
1246
1247/**
1248 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1249 * @rx_ring: rx descriptor ring to store buffers on
1250 * @old_buff: donor buffer to have page reused
1251 *
1252 * Synchronizes page for reuse by the adapter
1253 **/
1254static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1255                               struct i40e_rx_buffer *old_buff)
1256{
1257        struct i40e_rx_buffer *new_buff;
1258        u16 nta = rx_ring->next_to_alloc;
1259
1260        new_buff = &rx_ring->rx_bi[nta];
1261
1262        /* update, and store next to alloc */
1263        nta++;
1264        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1265
1266        /* transfer page from old buffer to new buffer */
1267        new_buff->dma           = old_buff->dma;
1268        new_buff->page          = old_buff->page;
1269        new_buff->page_offset   = old_buff->page_offset;
1270        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1271}
1272
1273/**
1274 * i40e_rx_is_programming_status - check for programming status descriptor
1275 * @qw: qword representing status_error_len in CPU ordering
1276 *
1277 * The value of in the descriptor length field indicate if this
1278 * is a programming status descriptor for flow director or FCoE
1279 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1280 * it is a packet descriptor.
1281 **/
1282static inline bool i40e_rx_is_programming_status(u64 qw)
1283{
1284        /* The Rx filter programming status and SPH bit occupy the same
1285         * spot in the descriptor. Since we don't support packet split we
1286         * can just reuse the bit as an indication that this is a
1287         * programming status descriptor.
1288         */
1289        return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1290}
1291
1292/**
1293 * i40e_clean_programming_status - clean the programming status descriptor
1294 * @rx_ring: the rx ring that has this descriptor
1295 * @rx_desc: the rx descriptor written back by HW
1296 * @qw: qword representing status_error_len in CPU ordering
1297 *
1298 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1299 * status being successful or not and take actions accordingly. FCoE should
1300 * handle its context/filter programming/invalidation status and take actions.
1301 *
1302 **/
1303static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1304                                          union i40e_rx_desc *rx_desc,
1305                                          u64 qw)
1306{
1307        struct i40e_rx_buffer *rx_buffer;
1308        u32 ntc = rx_ring->next_to_clean;
1309        u8 id;
1310
1311        /* fetch, update, and store next to clean */
1312        rx_buffer = &rx_ring->rx_bi[ntc++];
1313        ntc = (ntc < rx_ring->count) ? ntc : 0;
1314        rx_ring->next_to_clean = ntc;
1315
1316        prefetch(I40E_RX_DESC(rx_ring, ntc));
1317
1318        /* place unused page back on the ring */
1319        i40e_reuse_rx_page(rx_ring, rx_buffer);
1320        rx_ring->rx_stats.page_reuse_count++;
1321
1322        /* clear contents of buffer_info */
1323        rx_buffer->page = NULL;
1324
1325        id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1326                  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1327
1328        if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1329                i40e_fd_handle_status(rx_ring, rx_desc, id);
1330}
1331
1332/**
1333 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1334 * @tx_ring: the tx ring to set up
1335 *
1336 * Return 0 on success, negative on error
1337 **/
1338int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1339{
1340        struct device *dev = tx_ring->dev;
1341        int bi_size;
1342
1343        if (!dev)
1344                return -ENOMEM;
1345
1346        /* warn if we are about to overwrite the pointer */
1347        WARN_ON(tx_ring->tx_bi);
1348        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1349        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1350        if (!tx_ring->tx_bi)
1351                goto err;
1352
1353        u64_stats_init(&tx_ring->syncp);
1354
1355        /* round up to nearest 4K */
1356        tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1357        /* add u32 for head writeback, align after this takes care of
1358         * guaranteeing this is at least one cache line in size
1359         */
1360        tx_ring->size += sizeof(u32);
1361        tx_ring->size = ALIGN(tx_ring->size, 4096);
1362        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1363                                           &tx_ring->dma, GFP_KERNEL);
1364        if (!tx_ring->desc) {
1365                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1366                         tx_ring->size);
1367                goto err;
1368        }
1369
1370        tx_ring->next_to_use = 0;
1371        tx_ring->next_to_clean = 0;
1372        tx_ring->tx_stats.prev_pkt_ctr = -1;
1373        return 0;
1374
1375err:
1376        kfree(tx_ring->tx_bi);
1377        tx_ring->tx_bi = NULL;
1378        return -ENOMEM;
1379}
1380
1381/**
1382 * i40e_clean_rx_ring - Free Rx buffers
1383 * @rx_ring: ring to be cleaned
1384 **/
1385void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1386{
1387        unsigned long bi_size;
1388        u16 i;
1389
1390        /* ring already cleared, nothing to do */
1391        if (!rx_ring->rx_bi)
1392                return;
1393
1394        if (rx_ring->skb) {
1395                dev_kfree_skb(rx_ring->skb);
1396                rx_ring->skb = NULL;
1397        }
1398
1399        /* Free all the Rx ring sk_buffs */
1400        for (i = 0; i < rx_ring->count; i++) {
1401                struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1402
1403                if (!rx_bi->page)
1404                        continue;
1405
1406                /* Invalidate cache lines that may have been written to by
1407                 * device so that we avoid corrupting memory.
1408                 */
1409                dma_sync_single_range_for_cpu(rx_ring->dev,
1410                                              rx_bi->dma,
1411                                              rx_bi->page_offset,
1412                                              rx_ring->rx_buf_len,
1413                                              DMA_FROM_DEVICE);
1414
1415                /* free resources associated with mapping */
1416                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1417                                     i40e_rx_pg_size(rx_ring),
1418                                     DMA_FROM_DEVICE,
1419                                     I40E_RX_DMA_ATTR);
1420
1421                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1422
1423                rx_bi->page = NULL;
1424                rx_bi->page_offset = 0;
1425        }
1426
1427        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1428        memset(rx_ring->rx_bi, 0, bi_size);
1429
1430        /* Zero out the descriptor ring */
1431        memset(rx_ring->desc, 0, rx_ring->size);
1432
1433        rx_ring->next_to_alloc = 0;
1434        rx_ring->next_to_clean = 0;
1435        rx_ring->next_to_use = 0;
1436}
1437
1438/**
1439 * i40e_free_rx_resources - Free Rx resources
1440 * @rx_ring: ring to clean the resources from
1441 *
1442 * Free all receive software resources
1443 **/
1444void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1445{
1446        i40e_clean_rx_ring(rx_ring);
1447        if (rx_ring->vsi->type == I40E_VSI_MAIN)
1448                xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1449        rx_ring->xdp_prog = NULL;
1450        kfree(rx_ring->rx_bi);
1451        rx_ring->rx_bi = NULL;
1452
1453        if (rx_ring->desc) {
1454                dma_free_coherent(rx_ring->dev, rx_ring->size,
1455                                  rx_ring->desc, rx_ring->dma);
1456                rx_ring->desc = NULL;
1457        }
1458}
1459
1460/**
1461 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1462 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1463 *
1464 * Returns 0 on success, negative on failure
1465 **/
1466int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1467{
1468        struct device *dev = rx_ring->dev;
1469        int err = -ENOMEM;
1470        int bi_size;
1471
1472        /* warn if we are about to overwrite the pointer */
1473        WARN_ON(rx_ring->rx_bi);
1474        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1475        rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1476        if (!rx_ring->rx_bi)
1477                goto err;
1478
1479        u64_stats_init(&rx_ring->syncp);
1480
1481        /* Round up to nearest 4K */
1482        rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1483        rx_ring->size = ALIGN(rx_ring->size, 4096);
1484        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1485                                           &rx_ring->dma, GFP_KERNEL);
1486
1487        if (!rx_ring->desc) {
1488                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1489                         rx_ring->size);
1490                goto err;
1491        }
1492
1493        rx_ring->next_to_alloc = 0;
1494        rx_ring->next_to_clean = 0;
1495        rx_ring->next_to_use = 0;
1496
1497        /* XDP RX-queue info only needed for RX rings exposed to XDP */
1498        if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1499                err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1500                                       rx_ring->queue_index);
1501                if (err < 0)
1502                        goto err;
1503        }
1504
1505        rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1506
1507        return 0;
1508err:
1509        kfree(rx_ring->rx_bi);
1510        rx_ring->rx_bi = NULL;
1511        return err;
1512}
1513
1514/**
1515 * i40e_release_rx_desc - Store the new tail and head values
1516 * @rx_ring: ring to bump
1517 * @val: new head index
1518 **/
1519static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1520{
1521        rx_ring->next_to_use = val;
1522
1523        /* update next to alloc since we have filled the ring */
1524        rx_ring->next_to_alloc = val;
1525
1526        /* Force memory writes to complete before letting h/w
1527         * know there are new descriptors to fetch.  (Only
1528         * applicable for weak-ordered memory model archs,
1529         * such as IA-64).
1530         */
1531        wmb();
1532        writel(val, rx_ring->tail);
1533}
1534
1535/**
1536 * i40e_rx_offset - Return expected offset into page to access data
1537 * @rx_ring: Ring we are requesting offset of
1538 *
1539 * Returns the offset value for ring into the data buffer.
1540 */
1541static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1542{
1543        return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1544}
1545
1546/**
1547 * i40e_alloc_mapped_page - recycle or make a new page
1548 * @rx_ring: ring to use
1549 * @bi: rx_buffer struct to modify
1550 *
1551 * Returns true if the page was successfully allocated or
1552 * reused.
1553 **/
1554static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1555                                   struct i40e_rx_buffer *bi)
1556{
1557        struct page *page = bi->page;
1558        dma_addr_t dma;
1559
1560        /* since we are recycling buffers we should seldom need to alloc */
1561        if (likely(page)) {
1562                rx_ring->rx_stats.page_reuse_count++;
1563                return true;
1564        }
1565
1566        /* alloc new page for storage */
1567        page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1568        if (unlikely(!page)) {
1569                rx_ring->rx_stats.alloc_page_failed++;
1570                return false;
1571        }
1572
1573        /* map page for use */
1574        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1575                                 i40e_rx_pg_size(rx_ring),
1576                                 DMA_FROM_DEVICE,
1577                                 I40E_RX_DMA_ATTR);
1578
1579        /* if mapping failed free memory back to system since
1580         * there isn't much point in holding memory we can't use
1581         */
1582        if (dma_mapping_error(rx_ring->dev, dma)) {
1583                __free_pages(page, i40e_rx_pg_order(rx_ring));
1584                rx_ring->rx_stats.alloc_page_failed++;
1585                return false;
1586        }
1587
1588        bi->dma = dma;
1589        bi->page = page;
1590        bi->page_offset = i40e_rx_offset(rx_ring);
1591        page_ref_add(page, USHRT_MAX - 1);
1592        bi->pagecnt_bias = USHRT_MAX;
1593
1594        return true;
1595}
1596
1597/**
1598 * i40e_receive_skb - Send a completed packet up the stack
1599 * @rx_ring:  rx ring in play
1600 * @skb: packet to send up
1601 * @vlan_tag: vlan tag for packet
1602 **/
1603static void i40e_receive_skb(struct i40e_ring *rx_ring,
1604                             struct sk_buff *skb, u16 vlan_tag)
1605{
1606        struct i40e_q_vector *q_vector = rx_ring->q_vector;
1607
1608        if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1609            (vlan_tag & VLAN_VID_MASK))
1610                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1611
1612        napi_gro_receive(&q_vector->napi, skb);
1613}
1614
1615/**
1616 * i40e_alloc_rx_buffers - Replace used receive buffers
1617 * @rx_ring: ring to place buffers on
1618 * @cleaned_count: number of buffers to replace
1619 *
1620 * Returns false if all allocations were successful, true if any fail
1621 **/
1622bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1623{
1624        u16 ntu = rx_ring->next_to_use;
1625        union i40e_rx_desc *rx_desc;
1626        struct i40e_rx_buffer *bi;
1627
1628        /* do nothing if no valid netdev defined */
1629        if (!rx_ring->netdev || !cleaned_count)
1630                return false;
1631
1632        rx_desc = I40E_RX_DESC(rx_ring, ntu);
1633        bi = &rx_ring->rx_bi[ntu];
1634
1635        do {
1636                if (!i40e_alloc_mapped_page(rx_ring, bi))
1637                        goto no_buffers;
1638
1639                /* sync the buffer for use by the device */
1640                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1641                                                 bi->page_offset,
1642                                                 rx_ring->rx_buf_len,
1643                                                 DMA_FROM_DEVICE);
1644
1645                /* Refresh the desc even if buffer_addrs didn't change
1646                 * because each write-back erases this info.
1647                 */
1648                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1649
1650                rx_desc++;
1651                bi++;
1652                ntu++;
1653                if (unlikely(ntu == rx_ring->count)) {
1654                        rx_desc = I40E_RX_DESC(rx_ring, 0);
1655                        bi = rx_ring->rx_bi;
1656                        ntu = 0;
1657                }
1658
1659                /* clear the status bits for the next_to_use descriptor */
1660                rx_desc->wb.qword1.status_error_len = 0;
1661
1662                cleaned_count--;
1663        } while (cleaned_count);
1664
1665        if (rx_ring->next_to_use != ntu)
1666                i40e_release_rx_desc(rx_ring, ntu);
1667
1668        return false;
1669
1670no_buffers:
1671        if (rx_ring->next_to_use != ntu)
1672                i40e_release_rx_desc(rx_ring, ntu);
1673
1674        /* make sure to come back via polling to try again after
1675         * allocation failure
1676         */
1677        return true;
1678}
1679
1680/**
1681 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1682 * @vsi: the VSI we care about
1683 * @skb: skb currently being received and modified
1684 * @rx_desc: the receive descriptor
1685 **/
1686static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1687                                    struct sk_buff *skb,
1688                                    union i40e_rx_desc *rx_desc)
1689{
1690        struct i40e_rx_ptype_decoded decoded;
1691        u32 rx_error, rx_status;
1692        bool ipv4, ipv6;
1693        u8 ptype;
1694        u64 qword;
1695
1696        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1697        ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1698        rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1699                   I40E_RXD_QW1_ERROR_SHIFT;
1700        rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1701                    I40E_RXD_QW1_STATUS_SHIFT;
1702        decoded = decode_rx_desc_ptype(ptype);
1703
1704        skb->ip_summed = CHECKSUM_NONE;
1705
1706        skb_checksum_none_assert(skb);
1707
1708        /* Rx csum enabled and ip headers found? */
1709        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1710                return;
1711
1712        /* did the hardware decode the packet and checksum? */
1713        if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1714                return;
1715
1716        /* both known and outer_ip must be set for the below code to work */
1717        if (!(decoded.known && decoded.outer_ip))
1718                return;
1719
1720        ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1721               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1722        ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1723               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1724
1725        if (ipv4 &&
1726            (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1727                         BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1728                goto checksum_fail;
1729
1730        /* likely incorrect csum if alternate IP extension headers found */
1731        if (ipv6 &&
1732            rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1733                /* don't increment checksum err here, non-fatal err */
1734                return;
1735
1736        /* there was some L4 error, count error and punt packet to the stack */
1737        if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1738                goto checksum_fail;
1739
1740        /* handle packets that were not able to be checksummed due
1741         * to arrival speed, in this case the stack can compute
1742         * the csum.
1743         */
1744        if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1745                return;
1746
1747        /* If there is an outer header present that might contain a checksum
1748         * we need to bump the checksum level by 1 to reflect the fact that
1749         * we are indicating we validated the inner checksum.
1750         */
1751        if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1752                skb->csum_level = 1;
1753
1754        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1755        switch (decoded.inner_prot) {
1756        case I40E_RX_PTYPE_INNER_PROT_TCP:
1757        case I40E_RX_PTYPE_INNER_PROT_UDP:
1758        case I40E_RX_PTYPE_INNER_PROT_SCTP:
1759                skb->ip_summed = CHECKSUM_UNNECESSARY;
1760                /* fall though */
1761        default:
1762                break;
1763        }
1764
1765        return;
1766
1767checksum_fail:
1768        vsi->back->hw_csum_rx_error++;
1769}
1770
1771/**
1772 * i40e_ptype_to_htype - get a hash type
1773 * @ptype: the ptype value from the descriptor
1774 *
1775 * Returns a hash type to be used by skb_set_hash
1776 **/
1777static inline int i40e_ptype_to_htype(u8 ptype)
1778{
1779        struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1780
1781        if (!decoded.known)
1782                return PKT_HASH_TYPE_NONE;
1783
1784        if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1785            decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1786                return PKT_HASH_TYPE_L4;
1787        else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1788                 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1789                return PKT_HASH_TYPE_L3;
1790        else
1791                return PKT_HASH_TYPE_L2;
1792}
1793
1794/**
1795 * i40e_rx_hash - set the hash value in the skb
1796 * @ring: descriptor ring
1797 * @rx_desc: specific descriptor
1798 **/
1799static inline void i40e_rx_hash(struct i40e_ring *ring,
1800                                union i40e_rx_desc *rx_desc,
1801                                struct sk_buff *skb,
1802                                u8 rx_ptype)
1803{
1804        u32 hash;
1805        const __le64 rss_mask =
1806                cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1807                            I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1808
1809        if (!(ring->netdev->features & NETIF_F_RXHASH))
1810                return;
1811
1812        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1813                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1814                skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1815        }
1816}
1817
1818/**
1819 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1820 * @rx_ring: rx descriptor ring packet is being transacted on
1821 * @rx_desc: pointer to the EOP Rx descriptor
1822 * @skb: pointer to current skb being populated
1823 * @rx_ptype: the packet type decoded by hardware
1824 *
1825 * This function checks the ring, descriptor, and packet information in
1826 * order to populate the hash, checksum, VLAN, protocol, and
1827 * other fields within the skb.
1828 **/
1829static inline
1830void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1831                             union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1832                             u8 rx_ptype)
1833{
1834        u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1835        u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1836                        I40E_RXD_QW1_STATUS_SHIFT;
1837        u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1838        u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1839                   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1840
1841        if (unlikely(tsynvalid))
1842                i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1843
1844        i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1845
1846        i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1847
1848        skb_record_rx_queue(skb, rx_ring->queue_index);
1849
1850        /* modifies the skb - consumes the enet header */
1851        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1852}
1853
1854/**
1855 * i40e_cleanup_headers - Correct empty headers
1856 * @rx_ring: rx descriptor ring packet is being transacted on
1857 * @skb: pointer to current skb being fixed
1858 * @rx_desc: pointer to the EOP Rx descriptor
1859 *
1860 * Also address the case where we are pulling data in on pages only
1861 * and as such no data is present in the skb header.
1862 *
1863 * In addition if skb is not at least 60 bytes we need to pad it so that
1864 * it is large enough to qualify as a valid Ethernet frame.
1865 *
1866 * Returns true if an error was encountered and skb was freed.
1867 **/
1868static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1869                                 union i40e_rx_desc *rx_desc)
1870
1871{
1872        /* XDP packets use error pointer so abort at this point */
1873        if (IS_ERR(skb))
1874                return true;
1875
1876        /* ERR_MASK will only have valid bits if EOP set, and
1877         * what we are doing here is actually checking
1878         * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1879         * the error field
1880         */
1881        if (unlikely(i40e_test_staterr(rx_desc,
1882                                       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1883                dev_kfree_skb_any(skb);
1884                return true;
1885        }
1886
1887        /* if eth_skb_pad returns an error the skb was freed */
1888        if (eth_skb_pad(skb))
1889                return true;
1890
1891        return false;
1892}
1893
1894/**
1895 * i40e_page_is_reusable - check if any reuse is possible
1896 * @page: page struct to check
1897 *
1898 * A page is not reusable if it was allocated under low memory
1899 * conditions, or it's not in the same NUMA node as this CPU.
1900 */
1901static inline bool i40e_page_is_reusable(struct page *page)
1902{
1903        return (page_to_nid(page) == numa_mem_id()) &&
1904                !page_is_pfmemalloc(page);
1905}
1906
1907/**
1908 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1909 * the adapter for another receive
1910 *
1911 * @rx_buffer: buffer containing the page
1912 *
1913 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1914 * an unused region in the page.
1915 *
1916 * For small pages, @truesize will be a constant value, half the size
1917 * of the memory at page.  We'll attempt to alternate between high and
1918 * low halves of the page, with one half ready for use by the hardware
1919 * and the other half being consumed by the stack.  We use the page
1920 * ref count to determine whether the stack has finished consuming the
1921 * portion of this page that was passed up with a previous packet.  If
1922 * the page ref count is >1, we'll assume the "other" half page is
1923 * still busy, and this page cannot be reused.
1924 *
1925 * For larger pages, @truesize will be the actual space used by the
1926 * received packet (adjusted upward to an even multiple of the cache
1927 * line size).  This will advance through the page by the amount
1928 * actually consumed by the received packets while there is still
1929 * space for a buffer.  Each region of larger pages will be used at
1930 * most once, after which the page will not be reused.
1931 *
1932 * In either case, if the page is reusable its refcount is increased.
1933 **/
1934static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1935{
1936        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1937        struct page *page = rx_buffer->page;
1938
1939        /* Is any reuse possible? */
1940        if (unlikely(!i40e_page_is_reusable(page)))
1941                return false;
1942
1943#if (PAGE_SIZE < 8192)
1944        /* if we are only owner of page we can reuse it */
1945        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1946                return false;
1947#else
1948#define I40E_LAST_OFFSET \
1949        (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1950        if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1951                return false;
1952#endif
1953
1954        /* If we have drained the page fragment pool we need to update
1955         * the pagecnt_bias and page count so that we fully restock the
1956         * number of references the driver holds.
1957         */
1958        if (unlikely(pagecnt_bias == 1)) {
1959                page_ref_add(page, USHRT_MAX - 1);
1960                rx_buffer->pagecnt_bias = USHRT_MAX;
1961        }
1962
1963        return true;
1964}
1965
1966/**
1967 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1968 * @rx_ring: rx descriptor ring to transact packets on
1969 * @rx_buffer: buffer containing page to add
1970 * @skb: sk_buff to place the data into
1971 * @size: packet length from rx_desc
1972 *
1973 * This function will add the data contained in rx_buffer->page to the skb.
1974 * It will just attach the page as a frag to the skb.
1975 *
1976 * The function will then update the page offset.
1977 **/
1978static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1979                             struct i40e_rx_buffer *rx_buffer,
1980                             struct sk_buff *skb,
1981                             unsigned int size)
1982{
1983#if (PAGE_SIZE < 8192)
1984        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1985#else
1986        unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1987#endif
1988
1989        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1990                        rx_buffer->page_offset, size, truesize);
1991
1992        /* page is being used so we must update the page offset */
1993#if (PAGE_SIZE < 8192)
1994        rx_buffer->page_offset ^= truesize;
1995#else
1996        rx_buffer->page_offset += truesize;
1997#endif
1998}
1999
2000/**
2001 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2002 * @rx_ring: rx descriptor ring to transact packets on
2003 * @size: size of buffer to add to skb
2004 *
2005 * This function will pull an Rx buffer from the ring and synchronize it
2006 * for use by the CPU.
2007 */
2008static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2009                                                 const unsigned int size)
2010{
2011        struct i40e_rx_buffer *rx_buffer;
2012
2013        rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
2014        prefetchw(rx_buffer->page);
2015
2016        /* we are reusing so sync this buffer for CPU use */
2017        dma_sync_single_range_for_cpu(rx_ring->dev,
2018                                      rx_buffer->dma,
2019                                      rx_buffer->page_offset,
2020                                      size,
2021                                      DMA_FROM_DEVICE);
2022
2023        /* We have pulled a buffer for use, so decrement pagecnt_bias */
2024        rx_buffer->pagecnt_bias--;
2025
2026        return rx_buffer;
2027}
2028
2029/**
2030 * i40e_construct_skb - Allocate skb and populate it
2031 * @rx_ring: rx descriptor ring to transact packets on
2032 * @rx_buffer: rx buffer to pull data from
2033 * @xdp: xdp_buff pointing to the data
2034 *
2035 * This function allocates an skb.  It then populates it with the page
2036 * data from the current receive descriptor, taking care to set up the
2037 * skb correctly.
2038 */
2039static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2040                                          struct i40e_rx_buffer *rx_buffer,
2041                                          struct xdp_buff *xdp)
2042{
2043        unsigned int size = xdp->data_end - xdp->data;
2044#if (PAGE_SIZE < 8192)
2045        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2046#else
2047        unsigned int truesize = SKB_DATA_ALIGN(size);
2048#endif
2049        unsigned int headlen;
2050        struct sk_buff *skb;
2051
2052        /* prefetch first cache line of first page */
2053        prefetch(xdp->data);
2054#if L1_CACHE_BYTES < 128
2055        prefetch(xdp->data + L1_CACHE_BYTES);
2056#endif
2057
2058        /* allocate a skb to store the frags */
2059        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2060                               I40E_RX_HDR_SIZE,
2061                               GFP_ATOMIC | __GFP_NOWARN);
2062        if (unlikely(!skb))
2063                return NULL;
2064
2065        /* Determine available headroom for copy */
2066        headlen = size;
2067        if (headlen > I40E_RX_HDR_SIZE)
2068                headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
2069
2070        /* align pull length to size of long to optimize memcpy performance */
2071        memcpy(__skb_put(skb, headlen), xdp->data,
2072               ALIGN(headlen, sizeof(long)));
2073
2074        /* update all of the pointers */
2075        size -= headlen;
2076        if (size) {
2077                skb_add_rx_frag(skb, 0, rx_buffer->page,
2078                                rx_buffer->page_offset + headlen,
2079                                size, truesize);
2080
2081                /* buffer is used by skb, update page_offset */
2082#if (PAGE_SIZE < 8192)
2083                rx_buffer->page_offset ^= truesize;
2084#else
2085                rx_buffer->page_offset += truesize;
2086#endif
2087        } else {
2088                /* buffer is unused, reset bias back to rx_buffer */
2089                rx_buffer->pagecnt_bias++;
2090        }
2091
2092        return skb;
2093}
2094
2095/**
2096 * i40e_build_skb - Build skb around an existing buffer
2097 * @rx_ring: Rx descriptor ring to transact packets on
2098 * @rx_buffer: Rx buffer to pull data from
2099 * @xdp: xdp_buff pointing to the data
2100 *
2101 * This function builds an skb around an existing Rx buffer, taking care
2102 * to set up the skb correctly and avoid any memcpy overhead.
2103 */
2104static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2105                                      struct i40e_rx_buffer *rx_buffer,
2106                                      struct xdp_buff *xdp)
2107{
2108        unsigned int size = xdp->data_end - xdp->data;
2109#if (PAGE_SIZE < 8192)
2110        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2111#else
2112        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2113                                SKB_DATA_ALIGN(I40E_SKB_PAD + size);
2114#endif
2115        struct sk_buff *skb;
2116
2117        /* prefetch first cache line of first page */
2118        prefetch(xdp->data);
2119#if L1_CACHE_BYTES < 128
2120        prefetch(xdp->data + L1_CACHE_BYTES);
2121#endif
2122        /* build an skb around the page buffer */
2123        skb = build_skb(xdp->data_hard_start, truesize);
2124        if (unlikely(!skb))
2125                return NULL;
2126
2127        /* update pointers within the skb to store the data */
2128        skb_reserve(skb, I40E_SKB_PAD);
2129        __skb_put(skb, size);
2130
2131        /* buffer is used by skb, update page_offset */
2132#if (PAGE_SIZE < 8192)
2133        rx_buffer->page_offset ^= truesize;
2134#else
2135        rx_buffer->page_offset += truesize;
2136#endif
2137
2138        return skb;
2139}
2140
2141/**
2142 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2143 * @rx_ring: rx descriptor ring to transact packets on
2144 * @rx_buffer: rx buffer to pull data from
2145 *
2146 * This function will clean up the contents of the rx_buffer.  It will
2147 * either recycle the buffer or unmap it and free the associated resources.
2148 */
2149static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2150                               struct i40e_rx_buffer *rx_buffer)
2151{
2152        if (i40e_can_reuse_rx_page(rx_buffer)) {
2153                /* hand second half of page back to the ring */
2154                i40e_reuse_rx_page(rx_ring, rx_buffer);
2155                rx_ring->rx_stats.page_reuse_count++;
2156        } else {
2157                /* we are not reusing the buffer so unmap it */
2158                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2159                                     i40e_rx_pg_size(rx_ring),
2160                                     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2161                __page_frag_cache_drain(rx_buffer->page,
2162                                        rx_buffer->pagecnt_bias);
2163        }
2164
2165        /* clear contents of buffer_info */
2166        rx_buffer->page = NULL;
2167}
2168
2169/**
2170 * i40e_is_non_eop - process handling of non-EOP buffers
2171 * @rx_ring: Rx ring being processed
2172 * @rx_desc: Rx descriptor for current buffer
2173 * @skb: Current socket buffer containing buffer in progress
2174 *
2175 * This function updates next to clean.  If the buffer is an EOP buffer
2176 * this function exits returning false, otherwise it will place the
2177 * sk_buff in the next buffer to be chained and return true indicating
2178 * that this is in fact a non-EOP buffer.
2179 **/
2180static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2181                            union i40e_rx_desc *rx_desc,
2182                            struct sk_buff *skb)
2183{
2184        u32 ntc = rx_ring->next_to_clean + 1;
2185
2186        /* fetch, update, and store next to clean */
2187        ntc = (ntc < rx_ring->count) ? ntc : 0;
2188        rx_ring->next_to_clean = ntc;
2189
2190        prefetch(I40E_RX_DESC(rx_ring, ntc));
2191
2192        /* if we are the last buffer then there is nothing else to do */
2193#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2194        if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2195                return false;
2196
2197        rx_ring->rx_stats.non_eop_descs++;
2198
2199        return true;
2200}
2201
2202#define I40E_XDP_PASS 0
2203#define I40E_XDP_CONSUMED 1
2204#define I40E_XDP_TX 2
2205
2206static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
2207                              struct i40e_ring *xdp_ring);
2208
2209/**
2210 * i40e_run_xdp - run an XDP program
2211 * @rx_ring: Rx ring being processed
2212 * @xdp: XDP buffer containing the frame
2213 **/
2214static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2215                                    struct xdp_buff *xdp)
2216{
2217        int err, result = I40E_XDP_PASS;
2218        struct i40e_ring *xdp_ring;
2219        struct bpf_prog *xdp_prog;
2220        u32 act;
2221
2222        rcu_read_lock();
2223        xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2224
2225        if (!xdp_prog)
2226                goto xdp_out;
2227
2228        act = bpf_prog_run_xdp(xdp_prog, xdp);
2229        switch (act) {
2230        case XDP_PASS:
2231                break;
2232        case XDP_TX:
2233                xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2234                result = i40e_xmit_xdp_ring(xdp, xdp_ring);
2235                break;
2236        case XDP_REDIRECT:
2237                err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2238                result = !err ? I40E_XDP_TX : I40E_XDP_CONSUMED;
2239                break;
2240        default:
2241                bpf_warn_invalid_xdp_action(act);
2242        case XDP_ABORTED:
2243                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2244                /* fallthrough -- handle aborts by dropping packet */
2245        case XDP_DROP:
2246                result = I40E_XDP_CONSUMED;
2247                break;
2248        }
2249xdp_out:
2250        rcu_read_unlock();
2251        return ERR_PTR(-result);
2252}
2253
2254/**
2255 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2256 * @rx_ring: Rx ring
2257 * @rx_buffer: Rx buffer to adjust
2258 * @size: Size of adjustment
2259 **/
2260static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2261                                struct i40e_rx_buffer *rx_buffer,
2262                                unsigned int size)
2263{
2264#if (PAGE_SIZE < 8192)
2265        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2266
2267        rx_buffer->page_offset ^= truesize;
2268#else
2269        unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2270
2271        rx_buffer->page_offset += truesize;
2272#endif
2273}
2274
2275static inline void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2276{
2277        /* Force memory writes to complete before letting h/w
2278         * know there are new descriptors to fetch.
2279         */
2280        wmb();
2281        writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2282}
2283
2284/**
2285 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2286 * @rx_ring: rx descriptor ring to transact packets on
2287 * @budget: Total limit on number of packets to process
2288 *
2289 * This function provides a "bounce buffer" approach to Rx interrupt
2290 * processing.  The advantage to this is that on systems that have
2291 * expensive overhead for IOMMU access this provides a means of avoiding
2292 * it by maintaining the mapping of the page to the system.
2293 *
2294 * Returns amount of work completed
2295 **/
2296static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2297{
2298        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2299        struct sk_buff *skb = rx_ring->skb;
2300        u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2301        bool failure = false, xdp_xmit = false;
2302        struct xdp_buff xdp;
2303
2304        xdp.rxq = &rx_ring->xdp_rxq;
2305
2306        while (likely(total_rx_packets < (unsigned int)budget)) {
2307                struct i40e_rx_buffer *rx_buffer;
2308                union i40e_rx_desc *rx_desc;
2309                unsigned int size;
2310                u16 vlan_tag;
2311                u8 rx_ptype;
2312                u64 qword;
2313
2314                /* return some buffers to hardware, one at a time is too slow */
2315                if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2316                        failure = failure ||
2317                                  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2318                        cleaned_count = 0;
2319                }
2320
2321                rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2322
2323                /* status_error_len will always be zero for unused descriptors
2324                 * because it's cleared in cleanup, and overlaps with hdr_addr
2325                 * which is always zero because packet split isn't used, if the
2326                 * hardware wrote DD then the length will be non-zero
2327                 */
2328                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2329
2330                /* This memory barrier is needed to keep us from reading
2331                 * any other fields out of the rx_desc until we have
2332                 * verified the descriptor has been written back.
2333                 */
2334                dma_rmb();
2335
2336                if (unlikely(i40e_rx_is_programming_status(qword))) {
2337                        i40e_clean_programming_status(rx_ring, rx_desc, qword);
2338                        cleaned_count++;
2339                        continue;
2340                }
2341                size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2342                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2343                if (!size)
2344                        break;
2345
2346                i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2347                rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2348
2349                /* retrieve a buffer from the ring */
2350                if (!skb) {
2351                        xdp.data = page_address(rx_buffer->page) +
2352                                   rx_buffer->page_offset;
2353                        xdp_set_data_meta_invalid(&xdp);
2354                        xdp.data_hard_start = xdp.data -
2355                                              i40e_rx_offset(rx_ring);
2356                        xdp.data_end = xdp.data + size;
2357
2358                        skb = i40e_run_xdp(rx_ring, &xdp);
2359                }
2360
2361                if (IS_ERR(skb)) {
2362                        if (PTR_ERR(skb) == -I40E_XDP_TX) {
2363                                xdp_xmit = true;
2364                                i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2365                        } else {
2366                                rx_buffer->pagecnt_bias++;
2367                        }
2368                        total_rx_bytes += size;
2369                        total_rx_packets++;
2370                } else if (skb) {
2371                        i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2372                } else if (ring_uses_build_skb(rx_ring)) {
2373                        skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2374                } else {
2375                        skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2376                }
2377
2378                /* exit if we failed to retrieve a buffer */
2379                if (!skb) {
2380                        rx_ring->rx_stats.alloc_buff_failed++;
2381                        rx_buffer->pagecnt_bias++;
2382                        break;
2383                }
2384
2385                i40e_put_rx_buffer(rx_ring, rx_buffer);
2386                cleaned_count++;
2387
2388                if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2389                        continue;
2390
2391                if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2392                        skb = NULL;
2393                        continue;
2394                }
2395
2396                /* probably a little skewed due to removing CRC */
2397                total_rx_bytes += skb->len;
2398
2399                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2400                rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2401                           I40E_RXD_QW1_PTYPE_SHIFT;
2402
2403                /* populate checksum, VLAN, and protocol */
2404                i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2405
2406                vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2407                           le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2408
2409                i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2410                i40e_receive_skb(rx_ring, skb, vlan_tag);
2411                skb = NULL;
2412
2413                /* update budget accounting */
2414                total_rx_packets++;
2415        }
2416
2417        if (xdp_xmit) {
2418                struct i40e_ring *xdp_ring =
2419                        rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2420
2421                i40e_xdp_ring_update_tail(xdp_ring);
2422                xdp_do_flush_map();
2423        }
2424
2425        rx_ring->skb = skb;
2426
2427        u64_stats_update_begin(&rx_ring->syncp);
2428        rx_ring->stats.packets += total_rx_packets;
2429        rx_ring->stats.bytes += total_rx_bytes;
2430        u64_stats_update_end(&rx_ring->syncp);
2431        rx_ring->q_vector->rx.total_packets += total_rx_packets;
2432        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2433
2434        /* guarantee a trip back through this routine if there was a failure */
2435        return failure ? budget : (int)total_rx_packets;
2436}
2437
2438static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2439{
2440        u32 val;
2441
2442        /* We don't bother with setting the CLEARPBA bit as the data sheet
2443         * points out doing so is "meaningless since it was already
2444         * auto-cleared". The auto-clearing happens when the interrupt is
2445         * asserted.
2446         *
2447         * Hardware errata 28 for also indicates that writing to a
2448         * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2449         * an event in the PBA anyway so we need to rely on the automask
2450         * to hold pending events for us until the interrupt is re-enabled
2451         *
2452         * The itr value is reported in microseconds, and the register
2453         * value is recorded in 2 microsecond units. For this reason we
2454         * only need to shift by the interval shift - 1 instead of the
2455         * full value.
2456         */
2457        itr &= I40E_ITR_MASK;
2458
2459        val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2460              (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2461              (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2462
2463        return val;
2464}
2465
2466/* a small macro to shorten up some long lines */
2467#define INTREG I40E_PFINT_DYN_CTLN
2468
2469/* The act of updating the ITR will cause it to immediately trigger. In order
2470 * to prevent this from throwing off adaptive update statistics we defer the
2471 * update so that it can only happen so often. So after either Tx or Rx are
2472 * updated we make the adaptive scheme wait until either the ITR completely
2473 * expires via the next_update expiration or we have been through at least
2474 * 3 interrupts.
2475 */
2476#define ITR_COUNTDOWN_START 3
2477
2478/**
2479 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2480 * @vsi: the VSI we care about
2481 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2482 *
2483 **/
2484static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2485                                          struct i40e_q_vector *q_vector)
2486{
2487        struct i40e_hw *hw = &vsi->back->hw;
2488        u32 intval;
2489
2490        /* If we don't have MSIX, then we only need to re-enable icr0 */
2491        if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2492                i40e_irq_dynamic_enable_icr0(vsi->back);
2493                return;
2494        }
2495
2496        /* These will do nothing if dynamic updates are not enabled */
2497        i40e_update_itr(q_vector, &q_vector->tx);
2498        i40e_update_itr(q_vector, &q_vector->rx);
2499
2500        /* This block of logic allows us to get away with only updating
2501         * one ITR value with each interrupt. The idea is to perform a
2502         * pseudo-lazy update with the following criteria.
2503         *
2504         * 1. Rx is given higher priority than Tx if both are in same state
2505         * 2. If we must reduce an ITR that is given highest priority.
2506         * 3. We then give priority to increasing ITR based on amount.
2507         */
2508        if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2509                /* Rx ITR needs to be reduced, this is highest priority */
2510                intval = i40e_buildreg_itr(I40E_RX_ITR,
2511                                           q_vector->rx.target_itr);
2512                q_vector->rx.current_itr = q_vector->rx.target_itr;
2513                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2514        } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2515                   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2516                    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2517                /* Tx ITR needs to be reduced, this is second priority
2518                 * Tx ITR needs to be increased more than Rx, fourth priority
2519                 */
2520                intval = i40e_buildreg_itr(I40E_TX_ITR,
2521                                           q_vector->tx.target_itr);
2522                q_vector->tx.current_itr = q_vector->tx.target_itr;
2523                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2524        } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2525                /* Rx ITR needs to be increased, third priority */
2526                intval = i40e_buildreg_itr(I40E_RX_ITR,
2527                                           q_vector->rx.target_itr);
2528                q_vector->rx.current_itr = q_vector->rx.target_itr;
2529                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2530        } else {
2531                /* No ITR update, lowest priority */
2532                intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2533                if (q_vector->itr_countdown)
2534                        q_vector->itr_countdown--;
2535        }
2536
2537        if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2538                wr32(hw, INTREG(q_vector->reg_idx), intval);
2539}
2540
2541/**
2542 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2543 * @napi: napi struct with our devices info in it
2544 * @budget: amount of work driver is allowed to do this pass, in packets
2545 *
2546 * This function will clean all queues associated with a q_vector.
2547 *
2548 * Returns the amount of work done
2549 **/
2550int i40e_napi_poll(struct napi_struct *napi, int budget)
2551{
2552        struct i40e_q_vector *q_vector =
2553                               container_of(napi, struct i40e_q_vector, napi);
2554        struct i40e_vsi *vsi = q_vector->vsi;
2555        struct i40e_ring *ring;
2556        bool clean_complete = true;
2557        bool arm_wb = false;
2558        int budget_per_ring;
2559        int work_done = 0;
2560
2561        if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2562                napi_complete(napi);
2563                return 0;
2564        }
2565
2566        /* Since the actual Tx work is minimal, we can give the Tx a larger
2567         * budget and be more aggressive about cleaning up the Tx descriptors.
2568         */
2569        i40e_for_each_ring(ring, q_vector->tx) {
2570                if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2571                        clean_complete = false;
2572                        continue;
2573                }
2574                arm_wb |= ring->arm_wb;
2575                ring->arm_wb = false;
2576        }
2577
2578        /* Handle case where we are called by netpoll with a budget of 0 */
2579        if (budget <= 0)
2580                goto tx_only;
2581
2582        /* We attempt to distribute budget to each Rx queue fairly, but don't
2583         * allow the budget to go below 1 because that would exit polling early.
2584         */
2585        budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2586
2587        i40e_for_each_ring(ring, q_vector->rx) {
2588                int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2589
2590                work_done += cleaned;
2591                /* if we clean as many as budgeted, we must not be done */
2592                if (cleaned >= budget_per_ring)
2593                        clean_complete = false;
2594        }
2595
2596        /* If work not completed, return budget and polling will return */
2597        if (!clean_complete) {
2598                int cpu_id = smp_processor_id();
2599
2600                /* It is possible that the interrupt affinity has changed but,
2601                 * if the cpu is pegged at 100%, polling will never exit while
2602                 * traffic continues and the interrupt will be stuck on this
2603                 * cpu.  We check to make sure affinity is correct before we
2604                 * continue to poll, otherwise we must stop polling so the
2605                 * interrupt can move to the correct cpu.
2606                 */
2607                if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2608                        /* Tell napi that we are done polling */
2609                        napi_complete_done(napi, work_done);
2610
2611                        /* Force an interrupt */
2612                        i40e_force_wb(vsi, q_vector);
2613
2614                        /* Return budget-1 so that polling stops */
2615                        return budget - 1;
2616                }
2617tx_only:
2618                if (arm_wb) {
2619                        q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2620                        i40e_enable_wb_on_itr(vsi, q_vector);
2621                }
2622                return budget;
2623        }
2624
2625        if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2626                q_vector->arm_wb_state = false;
2627
2628        /* Work is done so exit the polling mode and re-enable the interrupt */
2629        napi_complete_done(napi, work_done);
2630
2631        i40e_update_enable_itr(vsi, q_vector);
2632
2633        return min(work_done, budget - 1);
2634}
2635
2636/**
2637 * i40e_atr - Add a Flow Director ATR filter
2638 * @tx_ring:  ring to add programming descriptor to
2639 * @skb:      send buffer
2640 * @tx_flags: send tx flags
2641 **/
2642static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2643                     u32 tx_flags)
2644{
2645        struct i40e_filter_program_desc *fdir_desc;
2646        struct i40e_pf *pf = tx_ring->vsi->back;
2647        union {
2648                unsigned char *network;
2649                struct iphdr *ipv4;
2650                struct ipv6hdr *ipv6;
2651        } hdr;
2652        struct tcphdr *th;
2653        unsigned int hlen;
2654        u32 flex_ptype, dtype_cmd;
2655        int l4_proto;
2656        u16 i;
2657
2658        /* make sure ATR is enabled */
2659        if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2660                return;
2661
2662        if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2663                return;
2664
2665        /* if sampling is disabled do nothing */
2666        if (!tx_ring->atr_sample_rate)
2667                return;
2668
2669        /* Currently only IPv4/IPv6 with TCP is supported */
2670        if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2671                return;
2672
2673        /* snag network header to get L4 type and address */
2674        hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2675                      skb_inner_network_header(skb) : skb_network_header(skb);
2676
2677        /* Note: tx_flags gets modified to reflect inner protocols in
2678         * tx_enable_csum function if encap is enabled.
2679         */
2680        if (tx_flags & I40E_TX_FLAGS_IPV4) {
2681                /* access ihl as u8 to avoid unaligned access on ia64 */
2682                hlen = (hdr.network[0] & 0x0F) << 2;
2683                l4_proto = hdr.ipv4->protocol;
2684        } else {
2685                /* find the start of the innermost ipv6 header */
2686                unsigned int inner_hlen = hdr.network - skb->data;
2687                unsigned int h_offset = inner_hlen;
2688
2689                /* this function updates h_offset to the end of the header */
2690                l4_proto =
2691                  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2692                /* hlen will contain our best estimate of the tcp header */
2693                hlen = h_offset - inner_hlen;
2694        }
2695
2696        if (l4_proto != IPPROTO_TCP)
2697                return;
2698
2699        th = (struct tcphdr *)(hdr.network + hlen);
2700
2701        /* Due to lack of space, no more new filters can be programmed */
2702        if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2703                return;
2704        if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2705                /* HW ATR eviction will take care of removing filters on FIN
2706                 * and RST packets.
2707                 */
2708                if (th->fin || th->rst)
2709                        return;
2710        }
2711
2712        tx_ring->atr_count++;
2713
2714        /* sample on all syn/fin/rst packets or once every atr sample rate */
2715        if (!th->fin &&
2716            !th->syn &&
2717            !th->rst &&
2718            (tx_ring->atr_count < tx_ring->atr_sample_rate))
2719                return;
2720
2721        tx_ring->atr_count = 0;
2722
2723        /* grab the next descriptor */
2724        i = tx_ring->next_to_use;
2725        fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2726
2727        i++;
2728        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2729
2730        flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2731                      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2732        flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2733                      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2734                       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2735                      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2736                       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2737
2738        flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2739
2740        dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2741
2742        dtype_cmd |= (th->fin || th->rst) ?
2743                     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2744                      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2745                     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2746                      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2747
2748        dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2749                     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2750
2751        dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2752                     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2753
2754        dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2755        if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2756                dtype_cmd |=
2757                        ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2758                        I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2759                        I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2760        else
2761                dtype_cmd |=
2762                        ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2763                        I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2764                        I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2765
2766        if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2767                dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2768
2769        fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2770        fdir_desc->rsvd = cpu_to_le32(0);
2771        fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2772        fdir_desc->fd_id = cpu_to_le32(0);
2773}
2774
2775/**
2776 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2777 * @skb:     send buffer
2778 * @tx_ring: ring to send buffer on
2779 * @flags:   the tx flags to be set
2780 *
2781 * Checks the skb and set up correspondingly several generic transmit flags
2782 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2783 *
2784 * Returns error code indicate the frame should be dropped upon error and the
2785 * otherwise  returns 0 to indicate the flags has been set properly.
2786 **/
2787static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2788                                             struct i40e_ring *tx_ring,
2789                                             u32 *flags)
2790{
2791        __be16 protocol = skb->protocol;
2792        u32  tx_flags = 0;
2793
2794        if (protocol == htons(ETH_P_8021Q) &&
2795            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2796                /* When HW VLAN acceleration is turned off by the user the
2797                 * stack sets the protocol to 8021q so that the driver
2798                 * can take any steps required to support the SW only
2799                 * VLAN handling.  In our case the driver doesn't need
2800                 * to take any further steps so just set the protocol
2801                 * to the encapsulated ethertype.
2802                 */
2803                skb->protocol = vlan_get_protocol(skb);
2804                goto out;
2805        }
2806
2807        /* if we have a HW VLAN tag being added, default to the HW one */
2808        if (skb_vlan_tag_present(skb)) {
2809                tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2810                tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2811        /* else if it is a SW VLAN, check the next protocol and store the tag */
2812        } else if (protocol == htons(ETH_P_8021Q)) {
2813                struct vlan_hdr *vhdr, _vhdr;
2814
2815                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2816                if (!vhdr)
2817                        return -EINVAL;
2818
2819                protocol = vhdr->h_vlan_encapsulated_proto;
2820                tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2821                tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2822        }
2823
2824        if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2825                goto out;
2826
2827        /* Insert 802.1p priority into VLAN header */
2828        if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2829            (skb->priority != TC_PRIO_CONTROL)) {
2830                tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2831                tx_flags |= (skb->priority & 0x7) <<
2832                                I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2833                if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2834                        struct vlan_ethhdr *vhdr;
2835                        int rc;
2836
2837                        rc = skb_cow_head(skb, 0);
2838                        if (rc < 0)
2839                                return rc;
2840                        vhdr = (struct vlan_ethhdr *)skb->data;
2841                        vhdr->h_vlan_TCI = htons(tx_flags >>
2842                                                 I40E_TX_FLAGS_VLAN_SHIFT);
2843                } else {
2844                        tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2845                }
2846        }
2847
2848out:
2849        *flags = tx_flags;
2850        return 0;
2851}
2852
2853/**
2854 * i40e_tso - set up the tso context descriptor
2855 * @first:    pointer to first Tx buffer for xmit
2856 * @hdr_len:  ptr to the size of the packet header
2857 * @cd_type_cmd_tso_mss: Quad Word 1
2858 *
2859 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2860 **/
2861static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2862                    u64 *cd_type_cmd_tso_mss)
2863{
2864        struct sk_buff *skb = first->skb;
2865        u64 cd_cmd, cd_tso_len, cd_mss;
2866        union {
2867                struct iphdr *v4;
2868                struct ipv6hdr *v6;
2869                unsigned char *hdr;
2870        } ip;
2871        union {
2872                struct tcphdr *tcp;
2873                struct udphdr *udp;
2874                unsigned char *hdr;
2875        } l4;
2876        u32 paylen, l4_offset;
2877        u16 gso_segs, gso_size;
2878        int err;
2879
2880        if (skb->ip_summed != CHECKSUM_PARTIAL)
2881                return 0;
2882
2883        if (!skb_is_gso(skb))
2884                return 0;
2885
2886        err = skb_cow_head(skb, 0);
2887        if (err < 0)
2888                return err;
2889
2890        ip.hdr = skb_network_header(skb);
2891        l4.hdr = skb_transport_header(skb);
2892
2893        /* initialize outer IP header fields */
2894        if (ip.v4->version == 4) {
2895                ip.v4->tot_len = 0;
2896                ip.v4->check = 0;
2897        } else {
2898                ip.v6->payload_len = 0;
2899        }
2900
2901        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2902                                         SKB_GSO_GRE_CSUM |
2903                                         SKB_GSO_IPXIP4 |
2904                                         SKB_GSO_IPXIP6 |
2905                                         SKB_GSO_UDP_TUNNEL |
2906                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
2907                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2908                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2909                        l4.udp->len = 0;
2910
2911                        /* determine offset of outer transport header */
2912                        l4_offset = l4.hdr - skb->data;
2913
2914                        /* remove payload length from outer checksum */
2915                        paylen = skb->len - l4_offset;
2916                        csum_replace_by_diff(&l4.udp->check,
2917                                             (__force __wsum)htonl(paylen));
2918                }
2919
2920                /* reset pointers to inner headers */
2921                ip.hdr = skb_inner_network_header(skb);
2922                l4.hdr = skb_inner_transport_header(skb);
2923
2924                /* initialize inner IP header fields */
2925                if (ip.v4->version == 4) {
2926                        ip.v4->tot_len = 0;
2927                        ip.v4->check = 0;
2928                } else {
2929                        ip.v6->payload_len = 0;
2930                }
2931        }
2932
2933        /* determine offset of inner transport header */
2934        l4_offset = l4.hdr - skb->data;
2935
2936        /* remove payload length from inner checksum */
2937        paylen = skb->len - l4_offset;
2938        csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2939
2940        /* compute length of segmentation header */
2941        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2942
2943        /* pull values out of skb_shinfo */
2944        gso_size = skb_shinfo(skb)->gso_size;
2945        gso_segs = skb_shinfo(skb)->gso_segs;
2946
2947        /* update GSO size and bytecount with header size */
2948        first->gso_segs = gso_segs;
2949        first->bytecount += (first->gso_segs - 1) * *hdr_len;
2950
2951        /* find the field values */
2952        cd_cmd = I40E_TX_CTX_DESC_TSO;
2953        cd_tso_len = skb->len - *hdr_len;
2954        cd_mss = gso_size;
2955        *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2956                                (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2957                                (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2958        return 1;
2959}
2960
2961/**
2962 * i40e_tsyn - set up the tsyn context descriptor
2963 * @tx_ring:  ptr to the ring to send
2964 * @skb:      ptr to the skb we're sending
2965 * @tx_flags: the collected send information
2966 * @cd_type_cmd_tso_mss: Quad Word 1
2967 *
2968 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2969 **/
2970static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2971                     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2972{
2973        struct i40e_pf *pf;
2974
2975        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2976                return 0;
2977
2978        /* Tx timestamps cannot be sampled when doing TSO */
2979        if (tx_flags & I40E_TX_FLAGS_TSO)
2980                return 0;
2981
2982        /* only timestamp the outbound packet if the user has requested it and
2983         * we are not already transmitting a packet to be timestamped
2984         */
2985        pf = i40e_netdev_to_pf(tx_ring->netdev);
2986        if (!(pf->flags & I40E_FLAG_PTP))
2987                return 0;
2988
2989        if (pf->ptp_tx &&
2990            !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2991                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2992                pf->ptp_tx_start = jiffies;
2993                pf->ptp_tx_skb = skb_get(skb);
2994        } else {
2995                pf->tx_hwtstamp_skipped++;
2996                return 0;
2997        }
2998
2999        *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3000                                I40E_TXD_CTX_QW1_CMD_SHIFT;
3001
3002        return 1;
3003}
3004
3005/**
3006 * i40e_tx_enable_csum - Enable Tx checksum offloads
3007 * @skb: send buffer
3008 * @tx_flags: pointer to Tx flags currently set
3009 * @td_cmd: Tx descriptor command bits to set
3010 * @td_offset: Tx descriptor header offsets to set
3011 * @tx_ring: Tx descriptor ring
3012 * @cd_tunneling: ptr to context desc bits
3013 **/
3014static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3015                               u32 *td_cmd, u32 *td_offset,
3016                               struct i40e_ring *tx_ring,
3017                               u32 *cd_tunneling)
3018{
3019        union {
3020                struct iphdr *v4;
3021                struct ipv6hdr *v6;
3022                unsigned char *hdr;
3023        } ip;
3024        union {
3025                struct tcphdr *tcp;
3026                struct udphdr *udp;
3027                unsigned char *hdr;
3028        } l4;
3029        unsigned char *exthdr;
3030        u32 offset, cmd = 0;
3031        __be16 frag_off;
3032        u8 l4_proto = 0;
3033
3034        if (skb->ip_summed != CHECKSUM_PARTIAL)
3035                return 0;
3036
3037        ip.hdr = skb_network_header(skb);
3038        l4.hdr = skb_transport_header(skb);
3039
3040        /* compute outer L2 header size */
3041        offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3042
3043        if (skb->encapsulation) {
3044                u32 tunnel = 0;
3045                /* define outer network header type */
3046                if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3047                        tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3048                                  I40E_TX_CTX_EXT_IP_IPV4 :
3049                                  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3050
3051                        l4_proto = ip.v4->protocol;
3052                } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3053                        tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3054
3055                        exthdr = ip.hdr + sizeof(*ip.v6);
3056                        l4_proto = ip.v6->nexthdr;
3057                        if (l4.hdr != exthdr)
3058                                ipv6_skip_exthdr(skb, exthdr - skb->data,
3059                                                 &l4_proto, &frag_off);
3060                }
3061
3062                /* define outer transport */
3063                switch (l4_proto) {
3064                case IPPROTO_UDP:
3065                        tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3066                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3067                        break;
3068                case IPPROTO_GRE:
3069                        tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3070                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3071                        break;
3072                case IPPROTO_IPIP:
3073                case IPPROTO_IPV6:
3074                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3075                        l4.hdr = skb_inner_network_header(skb);
3076                        break;
3077                default:
3078                        if (*tx_flags & I40E_TX_FLAGS_TSO)
3079                                return -1;
3080
3081                        skb_checksum_help(skb);
3082                        return 0;
3083                }
3084
3085                /* compute outer L3 header size */
3086                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3087                          I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3088
3089                /* switch IP header pointer from outer to inner header */
3090                ip.hdr = skb_inner_network_header(skb);
3091
3092                /* compute tunnel header size */
3093                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3094                          I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3095
3096                /* indicate if we need to offload outer UDP header */
3097                if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3098                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3099                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3100                        tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3101
3102                /* record tunnel offload values */
3103                *cd_tunneling |= tunnel;
3104
3105                /* switch L4 header pointer from outer to inner */
3106                l4.hdr = skb_inner_transport_header(skb);
3107                l4_proto = 0;
3108
3109                /* reset type as we transition from outer to inner headers */
3110                *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3111                if (ip.v4->version == 4)
3112                        *tx_flags |= I40E_TX_FLAGS_IPV4;
3113                if (ip.v6->version == 6)
3114                        *tx_flags |= I40E_TX_FLAGS_IPV6;
3115        }
3116
3117        /* Enable IP checksum offloads */
3118        if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3119                l4_proto = ip.v4->protocol;
3120                /* the stack computes the IP header already, the only time we
3121                 * need the hardware to recompute it is in the case of TSO.
3122                 */
3123                cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3124                       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3125                       I40E_TX_DESC_CMD_IIPT_IPV4;
3126        } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3127                cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3128
3129                exthdr = ip.hdr + sizeof(*ip.v6);
3130                l4_proto = ip.v6->nexthdr;
3131                if (l4.hdr != exthdr)
3132                        ipv6_skip_exthdr(skb, exthdr - skb->data,
3133                                         &l4_proto, &frag_off);
3134        }
3135
3136        /* compute inner L3 header size */
3137        offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3138
3139        /* Enable L4 checksum offloads */
3140        switch (l4_proto) {
3141        case IPPROTO_TCP:
3142                /* enable checksum offloads */
3143                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3144                offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3145                break;
3146        case IPPROTO_SCTP:
3147                /* enable SCTP checksum offload */
3148                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3149                offset |= (sizeof(struct sctphdr) >> 2) <<
3150                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3151                break;
3152        case IPPROTO_UDP:
3153                /* enable UDP checksum offload */
3154                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3155                offset |= (sizeof(struct udphdr) >> 2) <<
3156                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3157                break;
3158        default:
3159                if (*tx_flags & I40E_TX_FLAGS_TSO)
3160                        return -1;
3161                skb_checksum_help(skb);
3162                return 0;
3163        }
3164
3165        *td_cmd |= cmd;
3166        *td_offset |= offset;
3167
3168        return 1;
3169}
3170
3171/**
3172 * i40e_create_tx_ctx Build the Tx context descriptor
3173 * @tx_ring:  ring to create the descriptor on
3174 * @cd_type_cmd_tso_mss: Quad Word 1
3175 * @cd_tunneling: Quad Word 0 - bits 0-31
3176 * @cd_l2tag2: Quad Word 0 - bits 32-63
3177 **/
3178static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3179                               const u64 cd_type_cmd_tso_mss,
3180                               const u32 cd_tunneling, const u32 cd_l2tag2)
3181{
3182        struct i40e_tx_context_desc *context_desc;
3183        int i = tx_ring->next_to_use;
3184
3185        if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3186            !cd_tunneling && !cd_l2tag2)
3187                return;
3188
3189        /* grab the next descriptor */
3190        context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3191
3192        i++;
3193        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3194
3195        /* cpu_to_le32 and assign to struct fields */
3196        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3197        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3198        context_desc->rsvd = cpu_to_le16(0);
3199        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3200}
3201
3202/**
3203 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3204 * @tx_ring: the ring to be checked
3205 * @size:    the size buffer we want to assure is available
3206 *
3207 * Returns -EBUSY if a stop is needed, else 0
3208 **/
3209int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3210{
3211        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3212        /* Memory barrier before checking head and tail */
3213        smp_mb();
3214
3215        /* Check again in a case another CPU has just made room available. */
3216        if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3217                return -EBUSY;
3218
3219        /* A reprieve! - use start_queue because it doesn't call schedule */
3220        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3221        ++tx_ring->tx_stats.restart_queue;
3222        return 0;
3223}
3224
3225/**
3226 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3227 * @skb:      send buffer
3228 *
3229 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3230 * and so we need to figure out the cases where we need to linearize the skb.
3231 *
3232 * For TSO we need to count the TSO header and segment payload separately.
3233 * As such we need to check cases where we have 7 fragments or more as we
3234 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3235 * the segment payload in the first descriptor, and another 7 for the
3236 * fragments.
3237 **/
3238bool __i40e_chk_linearize(struct sk_buff *skb)
3239{
3240        const struct skb_frag_struct *frag, *stale;
3241        int nr_frags, sum;
3242
3243        /* no need to check if number of frags is less than 7 */
3244        nr_frags = skb_shinfo(skb)->nr_frags;
3245        if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3246                return false;
3247
3248        /* We need to walk through the list and validate that each group
3249         * of 6 fragments totals at least gso_size.
3250         */
3251        nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3252        frag = &skb_shinfo(skb)->frags[0];
3253
3254        /* Initialize size to the negative value of gso_size minus 1.  We
3255         * use this as the worst case scenerio in which the frag ahead
3256         * of us only provides one byte which is why we are limited to 6
3257         * descriptors for a single transmit as the header and previous
3258         * fragment are already consuming 2 descriptors.
3259         */
3260        sum = 1 - skb_shinfo(skb)->gso_size;
3261
3262        /* Add size of frags 0 through 4 to create our initial sum */
3263        sum += skb_frag_size(frag++);
3264        sum += skb_frag_size(frag++);
3265        sum += skb_frag_size(frag++);
3266        sum += skb_frag_size(frag++);
3267        sum += skb_frag_size(frag++);
3268
3269        /* Walk through fragments adding latest fragment, testing it, and
3270         * then removing stale fragments from the sum.
3271         */
3272        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3273                int stale_size = skb_frag_size(stale);
3274
3275                sum += skb_frag_size(frag++);
3276
3277                /* The stale fragment may present us with a smaller
3278                 * descriptor than the actual fragment size. To account
3279                 * for that we need to remove all the data on the front and
3280                 * figure out what the remainder would be in the last
3281                 * descriptor associated with the fragment.
3282                 */
3283                if (stale_size > I40E_MAX_DATA_PER_TXD) {
3284                        int align_pad = -(stale->page_offset) &
3285                                        (I40E_MAX_READ_REQ_SIZE - 1);
3286
3287                        sum -= align_pad;
3288                        stale_size -= align_pad;
3289
3290                        do {
3291                                sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3292                                stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3293                        } while (stale_size > I40E_MAX_DATA_PER_TXD);
3294                }
3295
3296                /* if sum is negative we failed to make sufficient progress */
3297                if (sum < 0)
3298                        return true;
3299
3300                if (!nr_frags--)
3301                        break;
3302
3303                sum -= stale_size;
3304        }
3305
3306        return false;
3307}
3308
3309/**
3310 * i40e_tx_map - Build the Tx descriptor
3311 * @tx_ring:  ring to send buffer on
3312 * @skb:      send buffer
3313 * @first:    first buffer info buffer to use
3314 * @tx_flags: collected send information
3315 * @hdr_len:  size of the packet header
3316 * @td_cmd:   the command field in the descriptor
3317 * @td_offset: offset for checksum or crc
3318 *
3319 * Returns 0 on success, -1 on failure to DMA
3320 **/
3321static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3322                              struct i40e_tx_buffer *first, u32 tx_flags,
3323                              const u8 hdr_len, u32 td_cmd, u32 td_offset)
3324{
3325        unsigned int data_len = skb->data_len;
3326        unsigned int size = skb_headlen(skb);
3327        struct skb_frag_struct *frag;
3328        struct i40e_tx_buffer *tx_bi;
3329        struct i40e_tx_desc *tx_desc;
3330        u16 i = tx_ring->next_to_use;
3331        u32 td_tag = 0;
3332        dma_addr_t dma;
3333        u16 desc_count = 1;
3334
3335        if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3336                td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3337                td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3338                         I40E_TX_FLAGS_VLAN_SHIFT;
3339        }
3340
3341        first->tx_flags = tx_flags;
3342
3343        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3344
3345        tx_desc = I40E_TX_DESC(tx_ring, i);
3346        tx_bi = first;
3347
3348        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3349                unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3350
3351                if (dma_mapping_error(tx_ring->dev, dma))
3352                        goto dma_error;
3353
3354                /* record length, and DMA address */
3355                dma_unmap_len_set(tx_bi, len, size);
3356                dma_unmap_addr_set(tx_bi, dma, dma);
3357
3358                /* align size to end of page */
3359                max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3360                tx_desc->buffer_addr = cpu_to_le64(dma);
3361
3362                while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3363                        tx_desc->cmd_type_offset_bsz =
3364                                build_ctob(td_cmd, td_offset,
3365                                           max_data, td_tag);
3366
3367                        tx_desc++;
3368                        i++;
3369                        desc_count++;
3370
3371                        if (i == tx_ring->count) {
3372                                tx_desc = I40E_TX_DESC(tx_ring, 0);
3373                                i = 0;
3374                        }
3375
3376                        dma += max_data;
3377                        size -= max_data;
3378
3379                        max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3380                        tx_desc->buffer_addr = cpu_to_le64(dma);
3381                }
3382
3383                if (likely(!data_len))
3384                        break;
3385
3386                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3387                                                          size, td_tag);
3388
3389                tx_desc++;
3390                i++;
3391                desc_count++;
3392
3393                if (i == tx_ring->count) {
3394                        tx_desc = I40E_TX_DESC(tx_ring, 0);
3395                        i = 0;
3396                }
3397
3398                size = skb_frag_size(frag);
3399                data_len -= size;
3400
3401                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3402                                       DMA_TO_DEVICE);
3403
3404                tx_bi = &tx_ring->tx_bi[i];
3405        }
3406
3407        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3408
3409        i++;
3410        if (i == tx_ring->count)
3411                i = 0;
3412
3413        tx_ring->next_to_use = i;
3414
3415        i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3416
3417        /* write last descriptor with EOP bit */
3418        td_cmd |= I40E_TX_DESC_CMD_EOP;
3419
3420        /* We OR these values together to check both against 4 (WB_STRIDE)
3421         * below. This is safe since we don't re-use desc_count afterwards.
3422         */
3423        desc_count |= ++tx_ring->packet_stride;
3424
3425        if (desc_count >= WB_STRIDE) {
3426                /* write last descriptor with RS bit set */
3427                td_cmd |= I40E_TX_DESC_CMD_RS;
3428                tx_ring->packet_stride = 0;
3429        }
3430
3431        tx_desc->cmd_type_offset_bsz =
3432                        build_ctob(td_cmd, td_offset, size, td_tag);
3433
3434        /* Force memory writes to complete before letting h/w know there
3435         * are new descriptors to fetch.
3436         *
3437         * We also use this memory barrier to make certain all of the
3438         * status bits have been updated before next_to_watch is written.
3439         */
3440        wmb();
3441
3442        /* set next_to_watch value indicating a packet is present */
3443        first->next_to_watch = tx_desc;
3444
3445        /* notify HW of packet */
3446        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3447                writel(i, tx_ring->tail);
3448
3449                /* we need this if more than one processor can write to our tail
3450                 * at a time, it synchronizes IO on IA64/Altix systems
3451                 */
3452                mmiowb();
3453        }
3454
3455        return 0;
3456
3457dma_error:
3458        dev_info(tx_ring->dev, "TX DMA map failed\n");
3459
3460        /* clear dma mappings for failed tx_bi map */
3461        for (;;) {
3462                tx_bi = &tx_ring->tx_bi[i];
3463                i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3464                if (tx_bi == first)
3465                        break;
3466                if (i == 0)
3467                        i = tx_ring->count;
3468                i--;
3469        }
3470
3471        tx_ring->next_to_use = i;
3472
3473        return -1;
3474}
3475
3476/**
3477 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3478 * @xdp: data to transmit
3479 * @xdp_ring: XDP Tx ring
3480 **/
3481static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3482                              struct i40e_ring *xdp_ring)
3483{
3484        u32 size = xdp->data_end - xdp->data;
3485        u16 i = xdp_ring->next_to_use;
3486        struct i40e_tx_buffer *tx_bi;
3487        struct i40e_tx_desc *tx_desc;
3488        dma_addr_t dma;
3489
3490        if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3491                xdp_ring->tx_stats.tx_busy++;
3492                return I40E_XDP_CONSUMED;
3493        }
3494
3495        dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3496        if (dma_mapping_error(xdp_ring->dev, dma))
3497                return I40E_XDP_CONSUMED;
3498
3499        tx_bi = &xdp_ring->tx_bi[i];
3500        tx_bi->bytecount = size;
3501        tx_bi->gso_segs = 1;
3502        tx_bi->raw_buf = xdp->data;
3503
3504        /* record length, and DMA address */
3505        dma_unmap_len_set(tx_bi, len, size);
3506        dma_unmap_addr_set(tx_bi, dma, dma);
3507
3508        tx_desc = I40E_TX_DESC(xdp_ring, i);
3509        tx_desc->buffer_addr = cpu_to_le64(dma);
3510        tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3511                                                  | I40E_TXD_CMD,
3512                                                  0, size, 0);
3513
3514        /* Make certain all of the status bits have been updated
3515         * before next_to_watch is written.
3516         */
3517        smp_wmb();
3518
3519        i++;
3520        if (i == xdp_ring->count)
3521                i = 0;
3522
3523        tx_bi->next_to_watch = tx_desc;
3524        xdp_ring->next_to_use = i;
3525
3526        return I40E_XDP_TX;
3527}
3528
3529/**
3530 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3531 * @skb:     send buffer
3532 * @tx_ring: ring to send buffer on
3533 *
3534 * Returns NETDEV_TX_OK if sent, else an error code
3535 **/
3536static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3537                                        struct i40e_ring *tx_ring)
3538{
3539        u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3540        u32 cd_tunneling = 0, cd_l2tag2 = 0;
3541        struct i40e_tx_buffer *first;
3542        u32 td_offset = 0;
3543        u32 tx_flags = 0;
3544        __be16 protocol;
3545        u32 td_cmd = 0;
3546        u8 hdr_len = 0;
3547        int tso, count;
3548        int tsyn;
3549
3550        /* prefetch the data, we'll need it later */
3551        prefetch(skb->data);
3552
3553        i40e_trace(xmit_frame_ring, skb, tx_ring);
3554
3555        count = i40e_xmit_descriptor_count(skb);
3556        if (i40e_chk_linearize(skb, count)) {
3557                if (__skb_linearize(skb)) {
3558                        dev_kfree_skb_any(skb);
3559                        return NETDEV_TX_OK;
3560                }
3561                count = i40e_txd_use_count(skb->len);
3562                tx_ring->tx_stats.tx_linearize++;
3563        }
3564
3565        /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3566         *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3567         *       + 4 desc gap to avoid the cache line where head is,
3568         *       + 1 desc for context descriptor,
3569         * otherwise try next time
3570         */
3571        if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3572                tx_ring->tx_stats.tx_busy++;
3573                return NETDEV_TX_BUSY;
3574        }
3575
3576        /* record the location of the first descriptor for this packet */
3577        first = &tx_ring->tx_bi[tx_ring->next_to_use];
3578        first->skb = skb;
3579        first->bytecount = skb->len;
3580        first->gso_segs = 1;
3581
3582        /* prepare the xmit flags */
3583        if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3584                goto out_drop;
3585
3586        /* obtain protocol of skb */
3587        protocol = vlan_get_protocol(skb);
3588
3589        /* setup IPv4/IPv6 offloads */
3590        if (protocol == htons(ETH_P_IP))
3591                tx_flags |= I40E_TX_FLAGS_IPV4;
3592        else if (protocol == htons(ETH_P_IPV6))
3593                tx_flags |= I40E_TX_FLAGS_IPV6;
3594
3595        tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3596
3597        if (tso < 0)
3598                goto out_drop;
3599        else if (tso)
3600                tx_flags |= I40E_TX_FLAGS_TSO;
3601
3602        /* Always offload the checksum, since it's in the data descriptor */
3603        tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3604                                  tx_ring, &cd_tunneling);
3605        if (tso < 0)
3606                goto out_drop;
3607
3608        tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3609
3610        if (tsyn)
3611                tx_flags |= I40E_TX_FLAGS_TSYN;
3612
3613        skb_tx_timestamp(skb);
3614
3615        /* always enable CRC insertion offload */
3616        td_cmd |= I40E_TX_DESC_CMD_ICRC;
3617
3618        i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3619                           cd_tunneling, cd_l2tag2);
3620
3621        /* Add Flow Director ATR if it's enabled.
3622         *
3623         * NOTE: this must always be directly before the data descriptor.
3624         */
3625        i40e_atr(tx_ring, skb, tx_flags);
3626
3627        if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3628                        td_cmd, td_offset))
3629                goto cleanup_tx_tstamp;
3630
3631        return NETDEV_TX_OK;
3632
3633out_drop:
3634        i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3635        dev_kfree_skb_any(first->skb);
3636        first->skb = NULL;
3637cleanup_tx_tstamp:
3638        if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3639                struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3640
3641                dev_kfree_skb_any(pf->ptp_tx_skb);
3642                pf->ptp_tx_skb = NULL;
3643                clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3644        }
3645
3646        return NETDEV_TX_OK;
3647}
3648
3649/**
3650 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3651 * @skb:    send buffer
3652 * @netdev: network interface device structure
3653 *
3654 * Returns NETDEV_TX_OK if sent, else an error code
3655 **/
3656netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3657{
3658        struct i40e_netdev_priv *np = netdev_priv(netdev);
3659        struct i40e_vsi *vsi = np->vsi;
3660        struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3661
3662        /* hardware can't handle really short frames, hardware padding works
3663         * beyond this point
3664         */
3665        if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3666                return NETDEV_TX_OK;
3667
3668        return i40e_xmit_frame_ring(skb, tx_ring);
3669}
3670
3671/**
3672 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3673 * @dev: netdev
3674 * @xdp: XDP buffer
3675 *
3676 * Returns Zero if sent, else an error code
3677 **/
3678int i40e_xdp_xmit(struct net_device *dev, struct xdp_buff *xdp)
3679{
3680        struct i40e_netdev_priv *np = netdev_priv(dev);
3681        unsigned int queue_index = smp_processor_id();
3682        struct i40e_vsi *vsi = np->vsi;
3683        int err;
3684
3685        if (test_bit(__I40E_VSI_DOWN, vsi->state))
3686                return -ENETDOWN;
3687
3688        if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
3689                return -ENXIO;
3690
3691        err = i40e_xmit_xdp_ring(xdp, vsi->xdp_rings[queue_index]);
3692        if (err != I40E_XDP_TX)
3693                return -ENOSPC;
3694
3695        return 0;
3696}
3697
3698/**
3699 * i40e_xdp_flush - Implements ndo_xdp_flush
3700 * @dev: netdev
3701 **/
3702void i40e_xdp_flush(struct net_device *dev)
3703{
3704        struct i40e_netdev_priv *np = netdev_priv(dev);
3705        unsigned int queue_index = smp_processor_id();
3706        struct i40e_vsi *vsi = np->vsi;
3707
3708        if (test_bit(__I40E_VSI_DOWN, vsi->state))
3709                return;
3710
3711        if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
3712                return;
3713
3714        i40e_xdp_ring_update_tail(vsi->xdp_rings[queue_index]);
3715}
3716