linux/drivers/net/ethernet/intel/i40evf/i40e_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3 *
   4 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
   5 * Copyright(c) 2013 - 2016 Intel Corporation.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 *
  19 * The full GNU General Public License is included in this distribution in
  20 * the file called "COPYING".
  21 *
  22 * Contact Information:
  23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25 *
  26 ******************************************************************************/
  27
  28#include <linux/prefetch.h>
  29#include <net/busy_poll.h>
  30
  31#include "i40evf.h"
  32#include "i40e_trace.h"
  33#include "i40e_prototype.h"
  34
  35static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  36                                u32 td_tag)
  37{
  38        return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  39                           ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  40                           ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  41                           ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  42                           ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  43}
  44
  45#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  46
  47/**
  48 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  49 * @ring:      the ring that owns the buffer
  50 * @tx_buffer: the buffer to free
  51 **/
  52static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  53                                            struct i40e_tx_buffer *tx_buffer)
  54{
  55        if (tx_buffer->skb) {
  56                if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  57                        kfree(tx_buffer->raw_buf);
  58                else
  59                        dev_kfree_skb_any(tx_buffer->skb);
  60                if (dma_unmap_len(tx_buffer, len))
  61                        dma_unmap_single(ring->dev,
  62                                         dma_unmap_addr(tx_buffer, dma),
  63                                         dma_unmap_len(tx_buffer, len),
  64                                         DMA_TO_DEVICE);
  65        } else if (dma_unmap_len(tx_buffer, len)) {
  66                dma_unmap_page(ring->dev,
  67                               dma_unmap_addr(tx_buffer, dma),
  68                               dma_unmap_len(tx_buffer, len),
  69                               DMA_TO_DEVICE);
  70        }
  71
  72        tx_buffer->next_to_watch = NULL;
  73        tx_buffer->skb = NULL;
  74        dma_unmap_len_set(tx_buffer, len, 0);
  75        /* tx_buffer must be completely set up in the transmit path */
  76}
  77
  78/**
  79 * i40evf_clean_tx_ring - Free any empty Tx buffers
  80 * @tx_ring: ring to be cleaned
  81 **/
  82void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
  83{
  84        unsigned long bi_size;
  85        u16 i;
  86
  87        /* ring already cleared, nothing to do */
  88        if (!tx_ring->tx_bi)
  89                return;
  90
  91        /* Free all the Tx ring sk_buffs */
  92        for (i = 0; i < tx_ring->count; i++)
  93                i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  94
  95        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  96        memset(tx_ring->tx_bi, 0, bi_size);
  97
  98        /* Zero out the descriptor ring */
  99        memset(tx_ring->desc, 0, tx_ring->size);
 100
 101        tx_ring->next_to_use = 0;
 102        tx_ring->next_to_clean = 0;
 103
 104        if (!tx_ring->netdev)
 105                return;
 106
 107        /* cleanup Tx queue statistics */
 108        netdev_tx_reset_queue(txring_txq(tx_ring));
 109}
 110
 111/**
 112 * i40evf_free_tx_resources - Free Tx resources per queue
 113 * @tx_ring: Tx descriptor ring for a specific queue
 114 *
 115 * Free all transmit software resources
 116 **/
 117void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
 118{
 119        i40evf_clean_tx_ring(tx_ring);
 120        kfree(tx_ring->tx_bi);
 121        tx_ring->tx_bi = NULL;
 122
 123        if (tx_ring->desc) {
 124                dma_free_coherent(tx_ring->dev, tx_ring->size,
 125                                  tx_ring->desc, tx_ring->dma);
 126                tx_ring->desc = NULL;
 127        }
 128}
 129
 130/**
 131 * i40evf_get_tx_pending - how many Tx descriptors not processed
 132 * @tx_ring: the ring of descriptors
 133 * @in_sw: is tx_pending being checked in SW or HW
 134 *
 135 * Since there is no access to the ring head register
 136 * in XL710, we need to use our local copies
 137 **/
 138u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 139{
 140        u32 head, tail;
 141
 142        head = ring->next_to_clean;
 143        tail = readl(ring->tail);
 144
 145        if (head != tail)
 146                return (head < tail) ?
 147                        tail - head : (tail + ring->count - head);
 148
 149        return 0;
 150}
 151
 152/**
 153 * i40evf_detect_recover_hung - Function to detect and recover hung_queues
 154 * @vsi:  pointer to vsi struct with tx queues
 155 *
 156 * VSI has netdev and netdev has TX queues. This function is to check each of
 157 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 158 **/
 159void i40evf_detect_recover_hung(struct i40e_vsi *vsi)
 160{
 161        struct i40e_ring *tx_ring = NULL;
 162        struct net_device *netdev;
 163        unsigned int i;
 164        int packets;
 165
 166        if (!vsi)
 167                return;
 168
 169        if (test_bit(__I40E_VSI_DOWN, vsi->state))
 170                return;
 171
 172        netdev = vsi->netdev;
 173        if (!netdev)
 174                return;
 175
 176        if (!netif_carrier_ok(netdev))
 177                return;
 178
 179        for (i = 0; i < vsi->back->num_active_queues; i++) {
 180                tx_ring = &vsi->back->tx_rings[i];
 181                if (tx_ring && tx_ring->desc) {
 182                        /* If packet counter has not changed the queue is
 183                         * likely stalled, so force an interrupt for this
 184                         * queue.
 185                         *
 186                         * prev_pkt_ctr would be negative if there was no
 187                         * pending work.
 188                         */
 189                        packets = tx_ring->stats.packets & INT_MAX;
 190                        if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 191                                i40evf_force_wb(vsi, tx_ring->q_vector);
 192                                continue;
 193                        }
 194
 195                        /* Memory barrier between read of packet count and call
 196                         * to i40evf_get_tx_pending()
 197                         */
 198                        smp_rmb();
 199                        tx_ring->tx_stats.prev_pkt_ctr =
 200                          i40evf_get_tx_pending(tx_ring, true) ? packets : -1;
 201                }
 202        }
 203}
 204
 205#define WB_STRIDE 4
 206
 207/**
 208 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 209 * @vsi: the VSI we care about
 210 * @tx_ring: Tx ring to clean
 211 * @napi_budget: Used to determine if we are in netpoll
 212 *
 213 * Returns true if there's any budget left (e.g. the clean is finished)
 214 **/
 215static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 216                              struct i40e_ring *tx_ring, int napi_budget)
 217{
 218        u16 i = tx_ring->next_to_clean;
 219        struct i40e_tx_buffer *tx_buf;
 220        struct i40e_tx_desc *tx_desc;
 221        unsigned int total_bytes = 0, total_packets = 0;
 222        unsigned int budget = vsi->work_limit;
 223
 224        tx_buf = &tx_ring->tx_bi[i];
 225        tx_desc = I40E_TX_DESC(tx_ring, i);
 226        i -= tx_ring->count;
 227
 228        do {
 229                struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 230
 231                /* if next_to_watch is not set then there is no work pending */
 232                if (!eop_desc)
 233                        break;
 234
 235                /* prevent any other reads prior to eop_desc */
 236                smp_rmb();
 237
 238                i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 239                /* if the descriptor isn't done, no work yet to do */
 240                if (!(eop_desc->cmd_type_offset_bsz &
 241                      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
 242                        break;
 243
 244                /* clear next_to_watch to prevent false hangs */
 245                tx_buf->next_to_watch = NULL;
 246
 247                /* update the statistics for this packet */
 248                total_bytes += tx_buf->bytecount;
 249                total_packets += tx_buf->gso_segs;
 250
 251                /* free the skb */
 252                napi_consume_skb(tx_buf->skb, napi_budget);
 253
 254                /* unmap skb header data */
 255                dma_unmap_single(tx_ring->dev,
 256                                 dma_unmap_addr(tx_buf, dma),
 257                                 dma_unmap_len(tx_buf, len),
 258                                 DMA_TO_DEVICE);
 259
 260                /* clear tx_buffer data */
 261                tx_buf->skb = NULL;
 262                dma_unmap_len_set(tx_buf, len, 0);
 263
 264                /* unmap remaining buffers */
 265                while (tx_desc != eop_desc) {
 266                        i40e_trace(clean_tx_irq_unmap,
 267                                   tx_ring, tx_desc, tx_buf);
 268
 269                        tx_buf++;
 270                        tx_desc++;
 271                        i++;
 272                        if (unlikely(!i)) {
 273                                i -= tx_ring->count;
 274                                tx_buf = tx_ring->tx_bi;
 275                                tx_desc = I40E_TX_DESC(tx_ring, 0);
 276                        }
 277
 278                        /* unmap any remaining paged data */
 279                        if (dma_unmap_len(tx_buf, len)) {
 280                                dma_unmap_page(tx_ring->dev,
 281                                               dma_unmap_addr(tx_buf, dma),
 282                                               dma_unmap_len(tx_buf, len),
 283                                               DMA_TO_DEVICE);
 284                                dma_unmap_len_set(tx_buf, len, 0);
 285                        }
 286                }
 287
 288                /* move us one more past the eop_desc for start of next pkt */
 289                tx_buf++;
 290                tx_desc++;
 291                i++;
 292                if (unlikely(!i)) {
 293                        i -= tx_ring->count;
 294                        tx_buf = tx_ring->tx_bi;
 295                        tx_desc = I40E_TX_DESC(tx_ring, 0);
 296                }
 297
 298                prefetch(tx_desc);
 299
 300                /* update budget accounting */
 301                budget--;
 302        } while (likely(budget));
 303
 304        i += tx_ring->count;
 305        tx_ring->next_to_clean = i;
 306        u64_stats_update_begin(&tx_ring->syncp);
 307        tx_ring->stats.bytes += total_bytes;
 308        tx_ring->stats.packets += total_packets;
 309        u64_stats_update_end(&tx_ring->syncp);
 310        tx_ring->q_vector->tx.total_bytes += total_bytes;
 311        tx_ring->q_vector->tx.total_packets += total_packets;
 312
 313        if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 314                /* check to see if there are < 4 descriptors
 315                 * waiting to be written back, then kick the hardware to force
 316                 * them to be written back in case we stay in NAPI.
 317                 * In this mode on X722 we do not enable Interrupt.
 318                 */
 319                unsigned int j = i40evf_get_tx_pending(tx_ring, false);
 320
 321                if (budget &&
 322                    ((j / WB_STRIDE) == 0) && (j > 0) &&
 323                    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
 324                    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 325                        tx_ring->arm_wb = true;
 326        }
 327
 328        /* notify netdev of completed buffers */
 329        netdev_tx_completed_queue(txring_txq(tx_ring),
 330                                  total_packets, total_bytes);
 331
 332#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 333        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 334                     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 335                /* Make sure that anybody stopping the queue after this
 336                 * sees the new next_to_clean.
 337                 */
 338                smp_mb();
 339                if (__netif_subqueue_stopped(tx_ring->netdev,
 340                                             tx_ring->queue_index) &&
 341                   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 342                        netif_wake_subqueue(tx_ring->netdev,
 343                                            tx_ring->queue_index);
 344                        ++tx_ring->tx_stats.restart_queue;
 345                }
 346        }
 347
 348        return !!budget;
 349}
 350
 351/**
 352 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 353 * @vsi: the VSI we care about
 354 * @q_vector: the vector on which to enable writeback
 355 *
 356 **/
 357static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 358                                  struct i40e_q_vector *q_vector)
 359{
 360        u16 flags = q_vector->tx.ring[0].flags;
 361        u32 val;
 362
 363        if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 364                return;
 365
 366        if (q_vector->arm_wb_state)
 367                return;
 368
 369        val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 370              I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 371
 372        wr32(&vsi->back->hw,
 373             I40E_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
 374        q_vector->arm_wb_state = true;
 375}
 376
 377/**
 378 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 379 * @vsi: the VSI we care about
 380 * @q_vector: the vector  on which to force writeback
 381 *
 382 **/
 383void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 384{
 385        u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
 386                  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 387                  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 388                  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 389                  /* allow 00 to be written to the index */;
 390
 391        wr32(&vsi->back->hw,
 392             I40E_VFINT_DYN_CTLN1(q_vector->reg_idx),
 393             val);
 394}
 395
 396static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
 397                                        struct i40e_ring_container *rc)
 398{
 399        return &q_vector->rx == rc;
 400}
 401
 402static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
 403{
 404        unsigned int divisor;
 405
 406        switch (q_vector->adapter->link_speed) {
 407        case I40E_LINK_SPEED_40GB:
 408                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
 409                break;
 410        case I40E_LINK_SPEED_25GB:
 411        case I40E_LINK_SPEED_20GB:
 412                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
 413                break;
 414        default:
 415        case I40E_LINK_SPEED_10GB:
 416                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
 417                break;
 418        case I40E_LINK_SPEED_1GB:
 419        case I40E_LINK_SPEED_100MB:
 420                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
 421                break;
 422        }
 423
 424        return divisor;
 425}
 426
 427/**
 428 * i40e_update_itr - update the dynamic ITR value based on statistics
 429 * @q_vector: structure containing interrupt and ring information
 430 * @rc: structure containing ring performance data
 431 *
 432 * Stores a new ITR value based on packets and byte
 433 * counts during the last interrupt.  The advantage of per interrupt
 434 * computation is faster updates and more accurate ITR for the current
 435 * traffic pattern.  Constants in this function were computed
 436 * based on theoretical maximum wire speed and thresholds were set based
 437 * on testing data as well as attempting to minimize response time
 438 * while increasing bulk throughput.
 439 **/
 440static void i40e_update_itr(struct i40e_q_vector *q_vector,
 441                            struct i40e_ring_container *rc)
 442{
 443        unsigned int avg_wire_size, packets, bytes, itr;
 444        unsigned long next_update = jiffies;
 445
 446        /* If we don't have any rings just leave ourselves set for maximum
 447         * possible latency so we take ourselves out of the equation.
 448         */
 449        if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
 450                return;
 451
 452        /* For Rx we want to push the delay up and default to low latency.
 453         * for Tx we want to pull the delay down and default to high latency.
 454         */
 455        itr = i40e_container_is_rx(q_vector, rc) ?
 456              I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
 457              I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
 458
 459        /* If we didn't update within up to 1 - 2 jiffies we can assume
 460         * that either packets are coming in so slow there hasn't been
 461         * any work, or that there is so much work that NAPI is dealing
 462         * with interrupt moderation and we don't need to do anything.
 463         */
 464        if (time_after(next_update, rc->next_update))
 465                goto clear_counts;
 466
 467        /* If itr_countdown is set it means we programmed an ITR within
 468         * the last 4 interrupt cycles. This has a side effect of us
 469         * potentially firing an early interrupt. In order to work around
 470         * this we need to throw out any data received for a few
 471         * interrupts following the update.
 472         */
 473        if (q_vector->itr_countdown) {
 474                itr = rc->target_itr;
 475                goto clear_counts;
 476        }
 477
 478        packets = rc->total_packets;
 479        bytes = rc->total_bytes;
 480
 481        if (i40e_container_is_rx(q_vector, rc)) {
 482                /* If Rx there are 1 to 4 packets and bytes are less than
 483                 * 9000 assume insufficient data to use bulk rate limiting
 484                 * approach unless Tx is already in bulk rate limiting. We
 485                 * are likely latency driven.
 486                 */
 487                if (packets && packets < 4 && bytes < 9000 &&
 488                    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
 489                        itr = I40E_ITR_ADAPTIVE_LATENCY;
 490                        goto adjust_by_size;
 491                }
 492        } else if (packets < 4) {
 493                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
 494                 * bulk mode and we are receiving 4 or fewer packets just
 495                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
 496                 * that the Rx can relax.
 497                 */
 498                if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
 499                    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
 500                     I40E_ITR_ADAPTIVE_MAX_USECS)
 501                        goto clear_counts;
 502        } else if (packets > 32) {
 503                /* If we have processed over 32 packets in a single interrupt
 504                 * for Tx assume we need to switch over to "bulk" mode.
 505                 */
 506                rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
 507        }
 508
 509        /* We have no packets to actually measure against. This means
 510         * either one of the other queues on this vector is active or
 511         * we are a Tx queue doing TSO with too high of an interrupt rate.
 512         *
 513         * Between 4 and 56 we can assume that our current interrupt delay
 514         * is only slightly too low. As such we should increase it by a small
 515         * fixed amount.
 516         */
 517        if (packets < 56) {
 518                itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
 519                if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
 520                        itr &= I40E_ITR_ADAPTIVE_LATENCY;
 521                        itr += I40E_ITR_ADAPTIVE_MAX_USECS;
 522                }
 523                goto clear_counts;
 524        }
 525
 526        if (packets <= 256) {
 527                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
 528                itr &= I40E_ITR_MASK;
 529
 530                /* Between 56 and 112 is our "goldilocks" zone where we are
 531                 * working out "just right". Just report that our current
 532                 * ITR is good for us.
 533                 */
 534                if (packets <= 112)
 535                        goto clear_counts;
 536
 537                /* If packet count is 128 or greater we are likely looking
 538                 * at a slight overrun of the delay we want. Try halving
 539                 * our delay to see if that will cut the number of packets
 540                 * in half per interrupt.
 541                 */
 542                itr /= 2;
 543                itr &= I40E_ITR_MASK;
 544                if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
 545                        itr = I40E_ITR_ADAPTIVE_MIN_USECS;
 546
 547                goto clear_counts;
 548        }
 549
 550        /* The paths below assume we are dealing with a bulk ITR since
 551         * number of packets is greater than 256. We are just going to have
 552         * to compute a value and try to bring the count under control,
 553         * though for smaller packet sizes there isn't much we can do as
 554         * NAPI polling will likely be kicking in sooner rather than later.
 555         */
 556        itr = I40E_ITR_ADAPTIVE_BULK;
 557
 558adjust_by_size:
 559        /* If packet counts are 256 or greater we can assume we have a gross
 560         * overestimation of what the rate should be. Instead of trying to fine
 561         * tune it just use the formula below to try and dial in an exact value
 562         * give the current packet size of the frame.
 563         */
 564        avg_wire_size = bytes / packets;
 565
 566        /* The following is a crude approximation of:
 567         *  wmem_default / (size + overhead) = desired_pkts_per_int
 568         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
 569         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 570         *
 571         * Assuming wmem_default is 212992 and overhead is 640 bytes per
 572         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 573         * formula down to
 574         *
 575         *  (170 * (size + 24)) / (size + 640) = ITR
 576         *
 577         * We first do some math on the packet size and then finally bitshift
 578         * by 8 after rounding up. We also have to account for PCIe link speed
 579         * difference as ITR scales based on this.
 580         */
 581        if (avg_wire_size <= 60) {
 582                /* Start at 250k ints/sec */
 583                avg_wire_size = 4096;
 584        } else if (avg_wire_size <= 380) {
 585                /* 250K ints/sec to 60K ints/sec */
 586                avg_wire_size *= 40;
 587                avg_wire_size += 1696;
 588        } else if (avg_wire_size <= 1084) {
 589                /* 60K ints/sec to 36K ints/sec */
 590                avg_wire_size *= 15;
 591                avg_wire_size += 11452;
 592        } else if (avg_wire_size <= 1980) {
 593                /* 36K ints/sec to 30K ints/sec */
 594                avg_wire_size *= 5;
 595                avg_wire_size += 22420;
 596        } else {
 597                /* plateau at a limit of 30K ints/sec */
 598                avg_wire_size = 32256;
 599        }
 600
 601        /* If we are in low latency mode halve our delay which doubles the
 602         * rate to somewhere between 100K to 16K ints/sec
 603         */
 604        if (itr & I40E_ITR_ADAPTIVE_LATENCY)
 605                avg_wire_size /= 2;
 606
 607        /* Resultant value is 256 times larger than it needs to be. This
 608         * gives us room to adjust the value as needed to either increase
 609         * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
 610         *
 611         * Use addition as we have already recorded the new latency flag
 612         * for the ITR value.
 613         */
 614        itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
 615               I40E_ITR_ADAPTIVE_MIN_INC;
 616
 617        if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
 618                itr &= I40E_ITR_ADAPTIVE_LATENCY;
 619                itr += I40E_ITR_ADAPTIVE_MAX_USECS;
 620        }
 621
 622clear_counts:
 623        /* write back value */
 624        rc->target_itr = itr;
 625
 626        /* next update should occur within next jiffy */
 627        rc->next_update = next_update + 1;
 628
 629        rc->total_bytes = 0;
 630        rc->total_packets = 0;
 631}
 632
 633/**
 634 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 635 * @tx_ring: the tx ring to set up
 636 *
 637 * Return 0 on success, negative on error
 638 **/
 639int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
 640{
 641        struct device *dev = tx_ring->dev;
 642        int bi_size;
 643
 644        if (!dev)
 645                return -ENOMEM;
 646
 647        /* warn if we are about to overwrite the pointer */
 648        WARN_ON(tx_ring->tx_bi);
 649        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 650        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 651        if (!tx_ring->tx_bi)
 652                goto err;
 653
 654        /* round up to nearest 4K */
 655        tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 656        tx_ring->size = ALIGN(tx_ring->size, 4096);
 657        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 658                                           &tx_ring->dma, GFP_KERNEL);
 659        if (!tx_ring->desc) {
 660                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 661                         tx_ring->size);
 662                goto err;
 663        }
 664
 665        tx_ring->next_to_use = 0;
 666        tx_ring->next_to_clean = 0;
 667        tx_ring->tx_stats.prev_pkt_ctr = -1;
 668        return 0;
 669
 670err:
 671        kfree(tx_ring->tx_bi);
 672        tx_ring->tx_bi = NULL;
 673        return -ENOMEM;
 674}
 675
 676/**
 677 * i40evf_clean_rx_ring - Free Rx buffers
 678 * @rx_ring: ring to be cleaned
 679 **/
 680void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
 681{
 682        unsigned long bi_size;
 683        u16 i;
 684
 685        /* ring already cleared, nothing to do */
 686        if (!rx_ring->rx_bi)
 687                return;
 688
 689        if (rx_ring->skb) {
 690                dev_kfree_skb(rx_ring->skb);
 691                rx_ring->skb = NULL;
 692        }
 693
 694        /* Free all the Rx ring sk_buffs */
 695        for (i = 0; i < rx_ring->count; i++) {
 696                struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 697
 698                if (!rx_bi->page)
 699                        continue;
 700
 701                /* Invalidate cache lines that may have been written to by
 702                 * device so that we avoid corrupting memory.
 703                 */
 704                dma_sync_single_range_for_cpu(rx_ring->dev,
 705                                              rx_bi->dma,
 706                                              rx_bi->page_offset,
 707                                              rx_ring->rx_buf_len,
 708                                              DMA_FROM_DEVICE);
 709
 710                /* free resources associated with mapping */
 711                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
 712                                     i40e_rx_pg_size(rx_ring),
 713                                     DMA_FROM_DEVICE,
 714                                     I40E_RX_DMA_ATTR);
 715
 716                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
 717
 718                rx_bi->page = NULL;
 719                rx_bi->page_offset = 0;
 720        }
 721
 722        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 723        memset(rx_ring->rx_bi, 0, bi_size);
 724
 725        /* Zero out the descriptor ring */
 726        memset(rx_ring->desc, 0, rx_ring->size);
 727
 728        rx_ring->next_to_alloc = 0;
 729        rx_ring->next_to_clean = 0;
 730        rx_ring->next_to_use = 0;
 731}
 732
 733/**
 734 * i40evf_free_rx_resources - Free Rx resources
 735 * @rx_ring: ring to clean the resources from
 736 *
 737 * Free all receive software resources
 738 **/
 739void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
 740{
 741        i40evf_clean_rx_ring(rx_ring);
 742        kfree(rx_ring->rx_bi);
 743        rx_ring->rx_bi = NULL;
 744
 745        if (rx_ring->desc) {
 746                dma_free_coherent(rx_ring->dev, rx_ring->size,
 747                                  rx_ring->desc, rx_ring->dma);
 748                rx_ring->desc = NULL;
 749        }
 750}
 751
 752/**
 753 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 754 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 755 *
 756 * Returns 0 on success, negative on failure
 757 **/
 758int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
 759{
 760        struct device *dev = rx_ring->dev;
 761        int bi_size;
 762
 763        /* warn if we are about to overwrite the pointer */
 764        WARN_ON(rx_ring->rx_bi);
 765        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 766        rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 767        if (!rx_ring->rx_bi)
 768                goto err;
 769
 770        u64_stats_init(&rx_ring->syncp);
 771
 772        /* Round up to nearest 4K */
 773        rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
 774        rx_ring->size = ALIGN(rx_ring->size, 4096);
 775        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 776                                           &rx_ring->dma, GFP_KERNEL);
 777
 778        if (!rx_ring->desc) {
 779                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 780                         rx_ring->size);
 781                goto err;
 782        }
 783
 784        rx_ring->next_to_alloc = 0;
 785        rx_ring->next_to_clean = 0;
 786        rx_ring->next_to_use = 0;
 787
 788        return 0;
 789err:
 790        kfree(rx_ring->rx_bi);
 791        rx_ring->rx_bi = NULL;
 792        return -ENOMEM;
 793}
 794
 795/**
 796 * i40e_release_rx_desc - Store the new tail and head values
 797 * @rx_ring: ring to bump
 798 * @val: new head index
 799 **/
 800static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
 801{
 802        rx_ring->next_to_use = val;
 803
 804        /* update next to alloc since we have filled the ring */
 805        rx_ring->next_to_alloc = val;
 806
 807        /* Force memory writes to complete before letting h/w
 808         * know there are new descriptors to fetch.  (Only
 809         * applicable for weak-ordered memory model archs,
 810         * such as IA-64).
 811         */
 812        wmb();
 813        writel(val, rx_ring->tail);
 814}
 815
 816/**
 817 * i40e_rx_offset - Return expected offset into page to access data
 818 * @rx_ring: Ring we are requesting offset of
 819 *
 820 * Returns the offset value for ring into the data buffer.
 821 */
 822static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
 823{
 824        return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
 825}
 826
 827/**
 828 * i40e_alloc_mapped_page - recycle or make a new page
 829 * @rx_ring: ring to use
 830 * @bi: rx_buffer struct to modify
 831 *
 832 * Returns true if the page was successfully allocated or
 833 * reused.
 834 **/
 835static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
 836                                   struct i40e_rx_buffer *bi)
 837{
 838        struct page *page = bi->page;
 839        dma_addr_t dma;
 840
 841        /* since we are recycling buffers we should seldom need to alloc */
 842        if (likely(page)) {
 843                rx_ring->rx_stats.page_reuse_count++;
 844                return true;
 845        }
 846
 847        /* alloc new page for storage */
 848        page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
 849        if (unlikely(!page)) {
 850                rx_ring->rx_stats.alloc_page_failed++;
 851                return false;
 852        }
 853
 854        /* map page for use */
 855        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 856                                 i40e_rx_pg_size(rx_ring),
 857                                 DMA_FROM_DEVICE,
 858                                 I40E_RX_DMA_ATTR);
 859
 860        /* if mapping failed free memory back to system since
 861         * there isn't much point in holding memory we can't use
 862         */
 863        if (dma_mapping_error(rx_ring->dev, dma)) {
 864                __free_pages(page, i40e_rx_pg_order(rx_ring));
 865                rx_ring->rx_stats.alloc_page_failed++;
 866                return false;
 867        }
 868
 869        bi->dma = dma;
 870        bi->page = page;
 871        bi->page_offset = i40e_rx_offset(rx_ring);
 872
 873        /* initialize pagecnt_bias to 1 representing we fully own page */
 874        bi->pagecnt_bias = 1;
 875
 876        return true;
 877}
 878
 879/**
 880 * i40e_receive_skb - Send a completed packet up the stack
 881 * @rx_ring:  rx ring in play
 882 * @skb: packet to send up
 883 * @vlan_tag: vlan tag for packet
 884 **/
 885static void i40e_receive_skb(struct i40e_ring *rx_ring,
 886                             struct sk_buff *skb, u16 vlan_tag)
 887{
 888        struct i40e_q_vector *q_vector = rx_ring->q_vector;
 889
 890        if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 891            (vlan_tag & VLAN_VID_MASK))
 892                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 893
 894        napi_gro_receive(&q_vector->napi, skb);
 895}
 896
 897/**
 898 * i40evf_alloc_rx_buffers - Replace used receive buffers
 899 * @rx_ring: ring to place buffers on
 900 * @cleaned_count: number of buffers to replace
 901 *
 902 * Returns false if all allocations were successful, true if any fail
 903 **/
 904bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
 905{
 906        u16 ntu = rx_ring->next_to_use;
 907        union i40e_rx_desc *rx_desc;
 908        struct i40e_rx_buffer *bi;
 909
 910        /* do nothing if no valid netdev defined */
 911        if (!rx_ring->netdev || !cleaned_count)
 912                return false;
 913
 914        rx_desc = I40E_RX_DESC(rx_ring, ntu);
 915        bi = &rx_ring->rx_bi[ntu];
 916
 917        do {
 918                if (!i40e_alloc_mapped_page(rx_ring, bi))
 919                        goto no_buffers;
 920
 921                /* sync the buffer for use by the device */
 922                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 923                                                 bi->page_offset,
 924                                                 rx_ring->rx_buf_len,
 925                                                 DMA_FROM_DEVICE);
 926
 927                /* Refresh the desc even if buffer_addrs didn't change
 928                 * because each write-back erases this info.
 929                 */
 930                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 931
 932                rx_desc++;
 933                bi++;
 934                ntu++;
 935                if (unlikely(ntu == rx_ring->count)) {
 936                        rx_desc = I40E_RX_DESC(rx_ring, 0);
 937                        bi = rx_ring->rx_bi;
 938                        ntu = 0;
 939                }
 940
 941                /* clear the status bits for the next_to_use descriptor */
 942                rx_desc->wb.qword1.status_error_len = 0;
 943
 944                cleaned_count--;
 945        } while (cleaned_count);
 946
 947        if (rx_ring->next_to_use != ntu)
 948                i40e_release_rx_desc(rx_ring, ntu);
 949
 950        return false;
 951
 952no_buffers:
 953        if (rx_ring->next_to_use != ntu)
 954                i40e_release_rx_desc(rx_ring, ntu);
 955
 956        /* make sure to come back via polling to try again after
 957         * allocation failure
 958         */
 959        return true;
 960}
 961
 962/**
 963 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 964 * @vsi: the VSI we care about
 965 * @skb: skb currently being received and modified
 966 * @rx_desc: the receive descriptor
 967 **/
 968static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
 969                                    struct sk_buff *skb,
 970                                    union i40e_rx_desc *rx_desc)
 971{
 972        struct i40e_rx_ptype_decoded decoded;
 973        u32 rx_error, rx_status;
 974        bool ipv4, ipv6;
 975        u8 ptype;
 976        u64 qword;
 977
 978        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 979        ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
 980        rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
 981                   I40E_RXD_QW1_ERROR_SHIFT;
 982        rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
 983                    I40E_RXD_QW1_STATUS_SHIFT;
 984        decoded = decode_rx_desc_ptype(ptype);
 985
 986        skb->ip_summed = CHECKSUM_NONE;
 987
 988        skb_checksum_none_assert(skb);
 989
 990        /* Rx csum enabled and ip headers found? */
 991        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 992                return;
 993
 994        /* did the hardware decode the packet and checksum? */
 995        if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
 996                return;
 997
 998        /* both known and outer_ip must be set for the below code to work */
 999        if (!(decoded.known && decoded.outer_ip))
1000                return;
1001
1002        ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1003               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1004        ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1005               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1006
1007        if (ipv4 &&
1008            (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1009                         BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1010                goto checksum_fail;
1011
1012        /* likely incorrect csum if alternate IP extension headers found */
1013        if (ipv6 &&
1014            rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1015                /* don't increment checksum err here, non-fatal err */
1016                return;
1017
1018        /* there was some L4 error, count error and punt packet to the stack */
1019        if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1020                goto checksum_fail;
1021
1022        /* handle packets that were not able to be checksummed due
1023         * to arrival speed, in this case the stack can compute
1024         * the csum.
1025         */
1026        if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1027                return;
1028
1029        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1030        switch (decoded.inner_prot) {
1031        case I40E_RX_PTYPE_INNER_PROT_TCP:
1032        case I40E_RX_PTYPE_INNER_PROT_UDP:
1033        case I40E_RX_PTYPE_INNER_PROT_SCTP:
1034                skb->ip_summed = CHECKSUM_UNNECESSARY;
1035                /* fall though */
1036        default:
1037                break;
1038        }
1039
1040        return;
1041
1042checksum_fail:
1043        vsi->back->hw_csum_rx_error++;
1044}
1045
1046/**
1047 * i40e_ptype_to_htype - get a hash type
1048 * @ptype: the ptype value from the descriptor
1049 *
1050 * Returns a hash type to be used by skb_set_hash
1051 **/
1052static inline int i40e_ptype_to_htype(u8 ptype)
1053{
1054        struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1055
1056        if (!decoded.known)
1057                return PKT_HASH_TYPE_NONE;
1058
1059        if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1060            decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1061                return PKT_HASH_TYPE_L4;
1062        else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1063                 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1064                return PKT_HASH_TYPE_L3;
1065        else
1066                return PKT_HASH_TYPE_L2;
1067}
1068
1069/**
1070 * i40e_rx_hash - set the hash value in the skb
1071 * @ring: descriptor ring
1072 * @rx_desc: specific descriptor
1073 **/
1074static inline void i40e_rx_hash(struct i40e_ring *ring,
1075                                union i40e_rx_desc *rx_desc,
1076                                struct sk_buff *skb,
1077                                u8 rx_ptype)
1078{
1079        u32 hash;
1080        const __le64 rss_mask =
1081                cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1082                            I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1083
1084        if (ring->netdev->features & NETIF_F_RXHASH)
1085                return;
1086
1087        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1088                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1089                skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1090        }
1091}
1092
1093/**
1094 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
1095 * @rx_ring: rx descriptor ring packet is being transacted on
1096 * @rx_desc: pointer to the EOP Rx descriptor
1097 * @skb: pointer to current skb being populated
1098 * @rx_ptype: the packet type decoded by hardware
1099 *
1100 * This function checks the ring, descriptor, and packet information in
1101 * order to populate the hash, checksum, VLAN, protocol, and
1102 * other fields within the skb.
1103 **/
1104static inline
1105void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
1106                               union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1107                               u8 rx_ptype)
1108{
1109        i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1110
1111        i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1112
1113        skb_record_rx_queue(skb, rx_ring->queue_index);
1114
1115        /* modifies the skb - consumes the enet header */
1116        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1117}
1118
1119/**
1120 * i40e_cleanup_headers - Correct empty headers
1121 * @rx_ring: rx descriptor ring packet is being transacted on
1122 * @skb: pointer to current skb being fixed
1123 *
1124 * Also address the case where we are pulling data in on pages only
1125 * and as such no data is present in the skb header.
1126 *
1127 * In addition if skb is not at least 60 bytes we need to pad it so that
1128 * it is large enough to qualify as a valid Ethernet frame.
1129 *
1130 * Returns true if an error was encountered and skb was freed.
1131 **/
1132static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
1133{
1134        /* if eth_skb_pad returns an error the skb was freed */
1135        if (eth_skb_pad(skb))
1136                return true;
1137
1138        return false;
1139}
1140
1141/**
1142 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1143 * @rx_ring: rx descriptor ring to store buffers on
1144 * @old_buff: donor buffer to have page reused
1145 *
1146 * Synchronizes page for reuse by the adapter
1147 **/
1148static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1149                               struct i40e_rx_buffer *old_buff)
1150{
1151        struct i40e_rx_buffer *new_buff;
1152        u16 nta = rx_ring->next_to_alloc;
1153
1154        new_buff = &rx_ring->rx_bi[nta];
1155
1156        /* update, and store next to alloc */
1157        nta++;
1158        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1159
1160        /* transfer page from old buffer to new buffer */
1161        new_buff->dma           = old_buff->dma;
1162        new_buff->page          = old_buff->page;
1163        new_buff->page_offset   = old_buff->page_offset;
1164        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1165}
1166
1167/**
1168 * i40e_page_is_reusable - check if any reuse is possible
1169 * @page: page struct to check
1170 *
1171 * A page is not reusable if it was allocated under low memory
1172 * conditions, or it's not in the same NUMA node as this CPU.
1173 */
1174static inline bool i40e_page_is_reusable(struct page *page)
1175{
1176        return (page_to_nid(page) == numa_mem_id()) &&
1177                !page_is_pfmemalloc(page);
1178}
1179
1180/**
1181 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1182 * the adapter for another receive
1183 *
1184 * @rx_buffer: buffer containing the page
1185 *
1186 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1187 * an unused region in the page.
1188 *
1189 * For small pages, @truesize will be a constant value, half the size
1190 * of the memory at page.  We'll attempt to alternate between high and
1191 * low halves of the page, with one half ready for use by the hardware
1192 * and the other half being consumed by the stack.  We use the page
1193 * ref count to determine whether the stack has finished consuming the
1194 * portion of this page that was passed up with a previous packet.  If
1195 * the page ref count is >1, we'll assume the "other" half page is
1196 * still busy, and this page cannot be reused.
1197 *
1198 * For larger pages, @truesize will be the actual space used by the
1199 * received packet (adjusted upward to an even multiple of the cache
1200 * line size).  This will advance through the page by the amount
1201 * actually consumed by the received packets while there is still
1202 * space for a buffer.  Each region of larger pages will be used at
1203 * most once, after which the page will not be reused.
1204 *
1205 * In either case, if the page is reusable its refcount is increased.
1206 **/
1207static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1208{
1209        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1210        struct page *page = rx_buffer->page;
1211
1212        /* Is any reuse possible? */
1213        if (unlikely(!i40e_page_is_reusable(page)))
1214                return false;
1215
1216#if (PAGE_SIZE < 8192)
1217        /* if we are only owner of page we can reuse it */
1218        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1219                return false;
1220#else
1221#define I40E_LAST_OFFSET \
1222        (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1223        if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1224                return false;
1225#endif
1226
1227        /* If we have drained the page fragment pool we need to update
1228         * the pagecnt_bias and page count so that we fully restock the
1229         * number of references the driver holds.
1230         */
1231        if (unlikely(!pagecnt_bias)) {
1232                page_ref_add(page, USHRT_MAX);
1233                rx_buffer->pagecnt_bias = USHRT_MAX;
1234        }
1235
1236        return true;
1237}
1238
1239/**
1240 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1241 * @rx_ring: rx descriptor ring to transact packets on
1242 * @rx_buffer: buffer containing page to add
1243 * @skb: sk_buff to place the data into
1244 * @size: packet length from rx_desc
1245 *
1246 * This function will add the data contained in rx_buffer->page to the skb.
1247 * It will just attach the page as a frag to the skb.
1248 *
1249 * The function will then update the page offset.
1250 **/
1251static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1252                             struct i40e_rx_buffer *rx_buffer,
1253                             struct sk_buff *skb,
1254                             unsigned int size)
1255{
1256#if (PAGE_SIZE < 8192)
1257        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1258#else
1259        unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1260#endif
1261
1262        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1263                        rx_buffer->page_offset, size, truesize);
1264
1265        /* page is being used so we must update the page offset */
1266#if (PAGE_SIZE < 8192)
1267        rx_buffer->page_offset ^= truesize;
1268#else
1269        rx_buffer->page_offset += truesize;
1270#endif
1271}
1272
1273/**
1274 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1275 * @rx_ring: rx descriptor ring to transact packets on
1276 * @size: size of buffer to add to skb
1277 *
1278 * This function will pull an Rx buffer from the ring and synchronize it
1279 * for use by the CPU.
1280 */
1281static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1282                                                 const unsigned int size)
1283{
1284        struct i40e_rx_buffer *rx_buffer;
1285
1286        rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1287        prefetchw(rx_buffer->page);
1288
1289        /* we are reusing so sync this buffer for CPU use */
1290        dma_sync_single_range_for_cpu(rx_ring->dev,
1291                                      rx_buffer->dma,
1292                                      rx_buffer->page_offset,
1293                                      size,
1294                                      DMA_FROM_DEVICE);
1295
1296        /* We have pulled a buffer for use, so decrement pagecnt_bias */
1297        rx_buffer->pagecnt_bias--;
1298
1299        return rx_buffer;
1300}
1301
1302/**
1303 * i40e_construct_skb - Allocate skb and populate it
1304 * @rx_ring: rx descriptor ring to transact packets on
1305 * @rx_buffer: rx buffer to pull data from
1306 * @size: size of buffer to add to skb
1307 *
1308 * This function allocates an skb.  It then populates it with the page
1309 * data from the current receive descriptor, taking care to set up the
1310 * skb correctly.
1311 */
1312static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1313                                          struct i40e_rx_buffer *rx_buffer,
1314                                          unsigned int size)
1315{
1316        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1317#if (PAGE_SIZE < 8192)
1318        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1319#else
1320        unsigned int truesize = SKB_DATA_ALIGN(size);
1321#endif
1322        unsigned int headlen;
1323        struct sk_buff *skb;
1324
1325        /* prefetch first cache line of first page */
1326        prefetch(va);
1327#if L1_CACHE_BYTES < 128
1328        prefetch(va + L1_CACHE_BYTES);
1329#endif
1330
1331        /* allocate a skb to store the frags */
1332        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1333                               I40E_RX_HDR_SIZE,
1334                               GFP_ATOMIC | __GFP_NOWARN);
1335        if (unlikely(!skb))
1336                return NULL;
1337
1338        /* Determine available headroom for copy */
1339        headlen = size;
1340        if (headlen > I40E_RX_HDR_SIZE)
1341                headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1342
1343        /* align pull length to size of long to optimize memcpy performance */
1344        memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1345
1346        /* update all of the pointers */
1347        size -= headlen;
1348        if (size) {
1349                skb_add_rx_frag(skb, 0, rx_buffer->page,
1350                                rx_buffer->page_offset + headlen,
1351                                size, truesize);
1352
1353                /* buffer is used by skb, update page_offset */
1354#if (PAGE_SIZE < 8192)
1355                rx_buffer->page_offset ^= truesize;
1356#else
1357                rx_buffer->page_offset += truesize;
1358#endif
1359        } else {
1360                /* buffer is unused, reset bias back to rx_buffer */
1361                rx_buffer->pagecnt_bias++;
1362        }
1363
1364        return skb;
1365}
1366
1367/**
1368 * i40e_build_skb - Build skb around an existing buffer
1369 * @rx_ring: Rx descriptor ring to transact packets on
1370 * @rx_buffer: Rx buffer to pull data from
1371 * @size: size of buffer to add to skb
1372 *
1373 * This function builds an skb around an existing Rx buffer, taking care
1374 * to set up the skb correctly and avoid any memcpy overhead.
1375 */
1376static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1377                                      struct i40e_rx_buffer *rx_buffer,
1378                                      unsigned int size)
1379{
1380        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1381#if (PAGE_SIZE < 8192)
1382        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1383#else
1384        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1385                                SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1386#endif
1387        struct sk_buff *skb;
1388
1389        /* prefetch first cache line of first page */
1390        prefetch(va);
1391#if L1_CACHE_BYTES < 128
1392        prefetch(va + L1_CACHE_BYTES);
1393#endif
1394        /* build an skb around the page buffer */
1395        skb = build_skb(va - I40E_SKB_PAD, truesize);
1396        if (unlikely(!skb))
1397                return NULL;
1398
1399        /* update pointers within the skb to store the data */
1400        skb_reserve(skb, I40E_SKB_PAD);
1401        __skb_put(skb, size);
1402
1403        /* buffer is used by skb, update page_offset */
1404#if (PAGE_SIZE < 8192)
1405        rx_buffer->page_offset ^= truesize;
1406#else
1407        rx_buffer->page_offset += truesize;
1408#endif
1409
1410        return skb;
1411}
1412
1413/**
1414 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1415 * @rx_ring: rx descriptor ring to transact packets on
1416 * @rx_buffer: rx buffer to pull data from
1417 *
1418 * This function will clean up the contents of the rx_buffer.  It will
1419 * either recycle the buffer or unmap it and free the associated resources.
1420 */
1421static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1422                               struct i40e_rx_buffer *rx_buffer)
1423{
1424        if (i40e_can_reuse_rx_page(rx_buffer)) {
1425                /* hand second half of page back to the ring */
1426                i40e_reuse_rx_page(rx_ring, rx_buffer);
1427                rx_ring->rx_stats.page_reuse_count++;
1428        } else {
1429                /* we are not reusing the buffer so unmap it */
1430                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1431                                     i40e_rx_pg_size(rx_ring),
1432                                     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1433                __page_frag_cache_drain(rx_buffer->page,
1434                                        rx_buffer->pagecnt_bias);
1435        }
1436
1437        /* clear contents of buffer_info */
1438        rx_buffer->page = NULL;
1439}
1440
1441/**
1442 * i40e_is_non_eop - process handling of non-EOP buffers
1443 * @rx_ring: Rx ring being processed
1444 * @rx_desc: Rx descriptor for current buffer
1445 * @skb: Current socket buffer containing buffer in progress
1446 *
1447 * This function updates next to clean.  If the buffer is an EOP buffer
1448 * this function exits returning false, otherwise it will place the
1449 * sk_buff in the next buffer to be chained and return true indicating
1450 * that this is in fact a non-EOP buffer.
1451 **/
1452static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1453                            union i40e_rx_desc *rx_desc,
1454                            struct sk_buff *skb)
1455{
1456        u32 ntc = rx_ring->next_to_clean + 1;
1457
1458        /* fetch, update, and store next to clean */
1459        ntc = (ntc < rx_ring->count) ? ntc : 0;
1460        rx_ring->next_to_clean = ntc;
1461
1462        prefetch(I40E_RX_DESC(rx_ring, ntc));
1463
1464        /* if we are the last buffer then there is nothing else to do */
1465#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1466        if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1467                return false;
1468
1469        rx_ring->rx_stats.non_eop_descs++;
1470
1471        return true;
1472}
1473
1474/**
1475 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1476 * @rx_ring: rx descriptor ring to transact packets on
1477 * @budget: Total limit on number of packets to process
1478 *
1479 * This function provides a "bounce buffer" approach to Rx interrupt
1480 * processing.  The advantage to this is that on systems that have
1481 * expensive overhead for IOMMU access this provides a means of avoiding
1482 * it by maintaining the mapping of the page to the system.
1483 *
1484 * Returns amount of work completed
1485 **/
1486static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1487{
1488        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1489        struct sk_buff *skb = rx_ring->skb;
1490        u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1491        bool failure = false;
1492
1493        while (likely(total_rx_packets < (unsigned int)budget)) {
1494                struct i40e_rx_buffer *rx_buffer;
1495                union i40e_rx_desc *rx_desc;
1496                unsigned int size;
1497                u16 vlan_tag;
1498                u8 rx_ptype;
1499                u64 qword;
1500
1501                /* return some buffers to hardware, one at a time is too slow */
1502                if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1503                        failure = failure ||
1504                                  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1505                        cleaned_count = 0;
1506                }
1507
1508                rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1509
1510                /* status_error_len will always be zero for unused descriptors
1511                 * because it's cleared in cleanup, and overlaps with hdr_addr
1512                 * which is always zero because packet split isn't used, if the
1513                 * hardware wrote DD then the length will be non-zero
1514                 */
1515                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1516
1517                /* This memory barrier is needed to keep us from reading
1518                 * any other fields out of the rx_desc until we have
1519                 * verified the descriptor has been written back.
1520                 */
1521                dma_rmb();
1522
1523                size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1524                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1525                if (!size)
1526                        break;
1527
1528                i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1529                rx_buffer = i40e_get_rx_buffer(rx_ring, size);
1530
1531                /* retrieve a buffer from the ring */
1532                if (skb)
1533                        i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
1534                else if (ring_uses_build_skb(rx_ring))
1535                        skb = i40e_build_skb(rx_ring, rx_buffer, size);
1536                else
1537                        skb = i40e_construct_skb(rx_ring, rx_buffer, size);
1538
1539                /* exit if we failed to retrieve a buffer */
1540                if (!skb) {
1541                        rx_ring->rx_stats.alloc_buff_failed++;
1542                        rx_buffer->pagecnt_bias++;
1543                        break;
1544                }
1545
1546                i40e_put_rx_buffer(rx_ring, rx_buffer);
1547                cleaned_count++;
1548
1549                if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1550                        continue;
1551
1552                /* ERR_MASK will only have valid bits if EOP set, and
1553                 * what we are doing here is actually checking
1554                 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1555                 * the error field
1556                 */
1557                if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1558                        dev_kfree_skb_any(skb);
1559                        skb = NULL;
1560                        continue;
1561                }
1562
1563                if (i40e_cleanup_headers(rx_ring, skb)) {
1564                        skb = NULL;
1565                        continue;
1566                }
1567
1568                /* probably a little skewed due to removing CRC */
1569                total_rx_bytes += skb->len;
1570
1571                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1572                rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1573                           I40E_RXD_QW1_PTYPE_SHIFT;
1574
1575                /* populate checksum, VLAN, and protocol */
1576                i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1577
1578
1579                vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1580                           le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1581
1582                i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1583                i40e_receive_skb(rx_ring, skb, vlan_tag);
1584                skb = NULL;
1585
1586                /* update budget accounting */
1587                total_rx_packets++;
1588        }
1589
1590        rx_ring->skb = skb;
1591
1592        u64_stats_update_begin(&rx_ring->syncp);
1593        rx_ring->stats.packets += total_rx_packets;
1594        rx_ring->stats.bytes += total_rx_bytes;
1595        u64_stats_update_end(&rx_ring->syncp);
1596        rx_ring->q_vector->rx.total_packets += total_rx_packets;
1597        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1598
1599        /* guarantee a trip back through this routine if there was a failure */
1600        return failure ? budget : (int)total_rx_packets;
1601}
1602
1603static inline u32 i40e_buildreg_itr(const int type, u16 itr)
1604{
1605        u32 val;
1606
1607        /* We don't bother with setting the CLEARPBA bit as the data sheet
1608         * points out doing so is "meaningless since it was already
1609         * auto-cleared". The auto-clearing happens when the interrupt is
1610         * asserted.
1611         *
1612         * Hardware errata 28 for also indicates that writing to a
1613         * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1614         * an event in the PBA anyway so we need to rely on the automask
1615         * to hold pending events for us until the interrupt is re-enabled
1616         *
1617         * The itr value is reported in microseconds, and the register
1618         * value is recorded in 2 microsecond units. For this reason we
1619         * only need to shift by the interval shift - 1 instead of the
1620         * full value.
1621         */
1622        itr &= I40E_ITR_MASK;
1623
1624        val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1625              (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1626              (itr << (I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1627
1628        return val;
1629}
1630
1631/* a small macro to shorten up some long lines */
1632#define INTREG I40E_VFINT_DYN_CTLN1
1633
1634/* The act of updating the ITR will cause it to immediately trigger. In order
1635 * to prevent this from throwing off adaptive update statistics we defer the
1636 * update so that it can only happen so often. So after either Tx or Rx are
1637 * updated we make the adaptive scheme wait until either the ITR completely
1638 * expires via the next_update expiration or we have been through at least
1639 * 3 interrupts.
1640 */
1641#define ITR_COUNTDOWN_START 3
1642
1643/**
1644 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1645 * @vsi: the VSI we care about
1646 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1647 *
1648 **/
1649static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1650                                          struct i40e_q_vector *q_vector)
1651{
1652        struct i40e_hw *hw = &vsi->back->hw;
1653        u32 intval;
1654
1655        /* These will do nothing if dynamic updates are not enabled */
1656        i40e_update_itr(q_vector, &q_vector->tx);
1657        i40e_update_itr(q_vector, &q_vector->rx);
1658
1659        /* This block of logic allows us to get away with only updating
1660         * one ITR value with each interrupt. The idea is to perform a
1661         * pseudo-lazy update with the following criteria.
1662         *
1663         * 1. Rx is given higher priority than Tx if both are in same state
1664         * 2. If we must reduce an ITR that is given highest priority.
1665         * 3. We then give priority to increasing ITR based on amount.
1666         */
1667        if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1668                /* Rx ITR needs to be reduced, this is highest priority */
1669                intval = i40e_buildreg_itr(I40E_RX_ITR,
1670                                           q_vector->rx.target_itr);
1671                q_vector->rx.current_itr = q_vector->rx.target_itr;
1672                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1673        } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1674                   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1675                    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1676                /* Tx ITR needs to be reduced, this is second priority
1677                 * Tx ITR needs to be increased more than Rx, fourth priority
1678                 */
1679                intval = i40e_buildreg_itr(I40E_TX_ITR,
1680                                           q_vector->tx.target_itr);
1681                q_vector->tx.current_itr = q_vector->tx.target_itr;
1682                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1683        } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1684                /* Rx ITR needs to be increased, third priority */
1685                intval = i40e_buildreg_itr(I40E_RX_ITR,
1686                                           q_vector->rx.target_itr);
1687                q_vector->rx.current_itr = q_vector->rx.target_itr;
1688                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1689        } else {
1690                /* No ITR update, lowest priority */
1691                intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1692                if (q_vector->itr_countdown)
1693                        q_vector->itr_countdown--;
1694        }
1695
1696        if (!test_bit(__I40E_VSI_DOWN, vsi->state))
1697                wr32(hw, INTREG(q_vector->reg_idx), intval);
1698}
1699
1700/**
1701 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1702 * @napi: napi struct with our devices info in it
1703 * @budget: amount of work driver is allowed to do this pass, in packets
1704 *
1705 * This function will clean all queues associated with a q_vector.
1706 *
1707 * Returns the amount of work done
1708 **/
1709int i40evf_napi_poll(struct napi_struct *napi, int budget)
1710{
1711        struct i40e_q_vector *q_vector =
1712                               container_of(napi, struct i40e_q_vector, napi);
1713        struct i40e_vsi *vsi = q_vector->vsi;
1714        struct i40e_ring *ring;
1715        bool clean_complete = true;
1716        bool arm_wb = false;
1717        int budget_per_ring;
1718        int work_done = 0;
1719
1720        if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
1721                napi_complete(napi);
1722                return 0;
1723        }
1724
1725        /* Since the actual Tx work is minimal, we can give the Tx a larger
1726         * budget and be more aggressive about cleaning up the Tx descriptors.
1727         */
1728        i40e_for_each_ring(ring, q_vector->tx) {
1729                if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1730                        clean_complete = false;
1731                        continue;
1732                }
1733                arm_wb |= ring->arm_wb;
1734                ring->arm_wb = false;
1735        }
1736
1737        /* Handle case where we are called by netpoll with a budget of 0 */
1738        if (budget <= 0)
1739                goto tx_only;
1740
1741        /* We attempt to distribute budget to each Rx queue fairly, but don't
1742         * allow the budget to go below 1 because that would exit polling early.
1743         */
1744        budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1745
1746        i40e_for_each_ring(ring, q_vector->rx) {
1747                int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1748
1749                work_done += cleaned;
1750                /* if we clean as many as budgeted, we must not be done */
1751                if (cleaned >= budget_per_ring)
1752                        clean_complete = false;
1753        }
1754
1755        /* If work not completed, return budget and polling will return */
1756        if (!clean_complete) {
1757                int cpu_id = smp_processor_id();
1758
1759                /* It is possible that the interrupt affinity has changed but,
1760                 * if the cpu is pegged at 100%, polling will never exit while
1761                 * traffic continues and the interrupt will be stuck on this
1762                 * cpu.  We check to make sure affinity is correct before we
1763                 * continue to poll, otherwise we must stop polling so the
1764                 * interrupt can move to the correct cpu.
1765                 */
1766                if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1767                        /* Tell napi that we are done polling */
1768                        napi_complete_done(napi, work_done);
1769
1770                        /* Force an interrupt */
1771                        i40evf_force_wb(vsi, q_vector);
1772
1773                        /* Return budget-1 so that polling stops */
1774                        return budget - 1;
1775                }
1776tx_only:
1777                if (arm_wb) {
1778                        q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1779                        i40e_enable_wb_on_itr(vsi, q_vector);
1780                }
1781                return budget;
1782        }
1783
1784        if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1785                q_vector->arm_wb_state = false;
1786
1787        /* Work is done so exit the polling mode and re-enable the interrupt */
1788        napi_complete_done(napi, work_done);
1789
1790        i40e_update_enable_itr(vsi, q_vector);
1791
1792        return min(work_done, budget - 1);
1793}
1794
1795/**
1796 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1797 * @skb:     send buffer
1798 * @tx_ring: ring to send buffer on
1799 * @flags:   the tx flags to be set
1800 *
1801 * Checks the skb and set up correspondingly several generic transmit flags
1802 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1803 *
1804 * Returns error code indicate the frame should be dropped upon error and the
1805 * otherwise  returns 0 to indicate the flags has been set properly.
1806 **/
1807static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1808                                               struct i40e_ring *tx_ring,
1809                                               u32 *flags)
1810{
1811        __be16 protocol = skb->protocol;
1812        u32  tx_flags = 0;
1813
1814        if (protocol == htons(ETH_P_8021Q) &&
1815            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1816                /* When HW VLAN acceleration is turned off by the user the
1817                 * stack sets the protocol to 8021q so that the driver
1818                 * can take any steps required to support the SW only
1819                 * VLAN handling.  In our case the driver doesn't need
1820                 * to take any further steps so just set the protocol
1821                 * to the encapsulated ethertype.
1822                 */
1823                skb->protocol = vlan_get_protocol(skb);
1824                goto out;
1825        }
1826
1827        /* if we have a HW VLAN tag being added, default to the HW one */
1828        if (skb_vlan_tag_present(skb)) {
1829                tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1830                tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1831        /* else if it is a SW VLAN, check the next protocol and store the tag */
1832        } else if (protocol == htons(ETH_P_8021Q)) {
1833                struct vlan_hdr *vhdr, _vhdr;
1834
1835                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1836                if (!vhdr)
1837                        return -EINVAL;
1838
1839                protocol = vhdr->h_vlan_encapsulated_proto;
1840                tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1841                tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1842        }
1843
1844out:
1845        *flags = tx_flags;
1846        return 0;
1847}
1848
1849/**
1850 * i40e_tso - set up the tso context descriptor
1851 * @first:    pointer to first Tx buffer for xmit
1852 * @hdr_len:  ptr to the size of the packet header
1853 * @cd_type_cmd_tso_mss: Quad Word 1
1854 *
1855 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1856 **/
1857static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
1858                    u64 *cd_type_cmd_tso_mss)
1859{
1860        struct sk_buff *skb = first->skb;
1861        u64 cd_cmd, cd_tso_len, cd_mss;
1862        union {
1863                struct iphdr *v4;
1864                struct ipv6hdr *v6;
1865                unsigned char *hdr;
1866        } ip;
1867        union {
1868                struct tcphdr *tcp;
1869                struct udphdr *udp;
1870                unsigned char *hdr;
1871        } l4;
1872        u32 paylen, l4_offset;
1873        u16 gso_segs, gso_size;
1874        int err;
1875
1876        if (skb->ip_summed != CHECKSUM_PARTIAL)
1877                return 0;
1878
1879        if (!skb_is_gso(skb))
1880                return 0;
1881
1882        err = skb_cow_head(skb, 0);
1883        if (err < 0)
1884                return err;
1885
1886        ip.hdr = skb_network_header(skb);
1887        l4.hdr = skb_transport_header(skb);
1888
1889        /* initialize outer IP header fields */
1890        if (ip.v4->version == 4) {
1891                ip.v4->tot_len = 0;
1892                ip.v4->check = 0;
1893        } else {
1894                ip.v6->payload_len = 0;
1895        }
1896
1897        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1898                                         SKB_GSO_GRE_CSUM |
1899                                         SKB_GSO_IPXIP4 |
1900                                         SKB_GSO_IPXIP6 |
1901                                         SKB_GSO_UDP_TUNNEL |
1902                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
1903                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1904                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1905                        l4.udp->len = 0;
1906
1907                        /* determine offset of outer transport header */
1908                        l4_offset = l4.hdr - skb->data;
1909
1910                        /* remove payload length from outer checksum */
1911                        paylen = skb->len - l4_offset;
1912                        csum_replace_by_diff(&l4.udp->check,
1913                                             (__force __wsum)htonl(paylen));
1914                }
1915
1916                /* reset pointers to inner headers */
1917                ip.hdr = skb_inner_network_header(skb);
1918                l4.hdr = skb_inner_transport_header(skb);
1919
1920                /* initialize inner IP header fields */
1921                if (ip.v4->version == 4) {
1922                        ip.v4->tot_len = 0;
1923                        ip.v4->check = 0;
1924                } else {
1925                        ip.v6->payload_len = 0;
1926                }
1927        }
1928
1929        /* determine offset of inner transport header */
1930        l4_offset = l4.hdr - skb->data;
1931
1932        /* remove payload length from inner checksum */
1933        paylen = skb->len - l4_offset;
1934        csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1935
1936        /* compute length of segmentation header */
1937        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1938
1939        /* pull values out of skb_shinfo */
1940        gso_size = skb_shinfo(skb)->gso_size;
1941        gso_segs = skb_shinfo(skb)->gso_segs;
1942
1943        /* update GSO size and bytecount with header size */
1944        first->gso_segs = gso_segs;
1945        first->bytecount += (first->gso_segs - 1) * *hdr_len;
1946
1947        /* find the field values */
1948        cd_cmd = I40E_TX_CTX_DESC_TSO;
1949        cd_tso_len = skb->len - *hdr_len;
1950        cd_mss = gso_size;
1951        *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1952                                (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1953                                (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1954        return 1;
1955}
1956
1957/**
1958 * i40e_tx_enable_csum - Enable Tx checksum offloads
1959 * @skb: send buffer
1960 * @tx_flags: pointer to Tx flags currently set
1961 * @td_cmd: Tx descriptor command bits to set
1962 * @td_offset: Tx descriptor header offsets to set
1963 * @tx_ring: Tx descriptor ring
1964 * @cd_tunneling: ptr to context desc bits
1965 **/
1966static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1967                               u32 *td_cmd, u32 *td_offset,
1968                               struct i40e_ring *tx_ring,
1969                               u32 *cd_tunneling)
1970{
1971        union {
1972                struct iphdr *v4;
1973                struct ipv6hdr *v6;
1974                unsigned char *hdr;
1975        } ip;
1976        union {
1977                struct tcphdr *tcp;
1978                struct udphdr *udp;
1979                unsigned char *hdr;
1980        } l4;
1981        unsigned char *exthdr;
1982        u32 offset, cmd = 0;
1983        __be16 frag_off;
1984        u8 l4_proto = 0;
1985
1986        if (skb->ip_summed != CHECKSUM_PARTIAL)
1987                return 0;
1988
1989        ip.hdr = skb_network_header(skb);
1990        l4.hdr = skb_transport_header(skb);
1991
1992        /* compute outer L2 header size */
1993        offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1994
1995        if (skb->encapsulation) {
1996                u32 tunnel = 0;
1997                /* define outer network header type */
1998                if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1999                        tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2000                                  I40E_TX_CTX_EXT_IP_IPV4 :
2001                                  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2002
2003                        l4_proto = ip.v4->protocol;
2004                } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2005                        tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2006
2007                        exthdr = ip.hdr + sizeof(*ip.v6);
2008                        l4_proto = ip.v6->nexthdr;
2009                        if (l4.hdr != exthdr)
2010                                ipv6_skip_exthdr(skb, exthdr - skb->data,
2011                                                 &l4_proto, &frag_off);
2012                }
2013
2014                /* define outer transport */
2015                switch (l4_proto) {
2016                case IPPROTO_UDP:
2017                        tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2018                        *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2019                        break;
2020                case IPPROTO_GRE:
2021                        tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2022                        *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2023                        break;
2024                case IPPROTO_IPIP:
2025                case IPPROTO_IPV6:
2026                        *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2027                        l4.hdr = skb_inner_network_header(skb);
2028                        break;
2029                default:
2030                        if (*tx_flags & I40E_TX_FLAGS_TSO)
2031                                return -1;
2032
2033                        skb_checksum_help(skb);
2034                        return 0;
2035                }
2036
2037                /* compute outer L3 header size */
2038                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2039                          I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2040
2041                /* switch IP header pointer from outer to inner header */
2042                ip.hdr = skb_inner_network_header(skb);
2043
2044                /* compute tunnel header size */
2045                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2046                          I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2047
2048                /* indicate if we need to offload outer UDP header */
2049                if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2050                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2051                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2052                        tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2053
2054                /* record tunnel offload values */
2055                *cd_tunneling |= tunnel;
2056
2057                /* switch L4 header pointer from outer to inner */
2058                l4.hdr = skb_inner_transport_header(skb);
2059                l4_proto = 0;
2060
2061                /* reset type as we transition from outer to inner headers */
2062                *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2063                if (ip.v4->version == 4)
2064                        *tx_flags |= I40E_TX_FLAGS_IPV4;
2065                if (ip.v6->version == 6)
2066                        *tx_flags |= I40E_TX_FLAGS_IPV6;
2067        }
2068
2069        /* Enable IP checksum offloads */
2070        if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2071                l4_proto = ip.v4->protocol;
2072                /* the stack computes the IP header already, the only time we
2073                 * need the hardware to recompute it is in the case of TSO.
2074                 */
2075                cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2076                       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2077                       I40E_TX_DESC_CMD_IIPT_IPV4;
2078        } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2079                cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2080
2081                exthdr = ip.hdr + sizeof(*ip.v6);
2082                l4_proto = ip.v6->nexthdr;
2083                if (l4.hdr != exthdr)
2084                        ipv6_skip_exthdr(skb, exthdr - skb->data,
2085                                         &l4_proto, &frag_off);
2086        }
2087
2088        /* compute inner L3 header size */
2089        offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2090
2091        /* Enable L4 checksum offloads */
2092        switch (l4_proto) {
2093        case IPPROTO_TCP:
2094                /* enable checksum offloads */
2095                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2096                offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2097                break;
2098        case IPPROTO_SCTP:
2099                /* enable SCTP checksum offload */
2100                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2101                offset |= (sizeof(struct sctphdr) >> 2) <<
2102                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2103                break;
2104        case IPPROTO_UDP:
2105                /* enable UDP checksum offload */
2106                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2107                offset |= (sizeof(struct udphdr) >> 2) <<
2108                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2109                break;
2110        default:
2111                if (*tx_flags & I40E_TX_FLAGS_TSO)
2112                        return -1;
2113                skb_checksum_help(skb);
2114                return 0;
2115        }
2116
2117        *td_cmd |= cmd;
2118        *td_offset |= offset;
2119
2120        return 1;
2121}
2122
2123/**
2124 * i40e_create_tx_ctx Build the Tx context descriptor
2125 * @tx_ring:  ring to create the descriptor on
2126 * @cd_type_cmd_tso_mss: Quad Word 1
2127 * @cd_tunneling: Quad Word 0 - bits 0-31
2128 * @cd_l2tag2: Quad Word 0 - bits 32-63
2129 **/
2130static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2131                               const u64 cd_type_cmd_tso_mss,
2132                               const u32 cd_tunneling, const u32 cd_l2tag2)
2133{
2134        struct i40e_tx_context_desc *context_desc;
2135        int i = tx_ring->next_to_use;
2136
2137        if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2138            !cd_tunneling && !cd_l2tag2)
2139                return;
2140
2141        /* grab the next descriptor */
2142        context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2143
2144        i++;
2145        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2146
2147        /* cpu_to_le32 and assign to struct fields */
2148        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2149        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2150        context_desc->rsvd = cpu_to_le16(0);
2151        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2152}
2153
2154/**
2155 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
2156 * @skb:      send buffer
2157 *
2158 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2159 * and so we need to figure out the cases where we need to linearize the skb.
2160 *
2161 * For TSO we need to count the TSO header and segment payload separately.
2162 * As such we need to check cases where we have 7 fragments or more as we
2163 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2164 * the segment payload in the first descriptor, and another 7 for the
2165 * fragments.
2166 **/
2167bool __i40evf_chk_linearize(struct sk_buff *skb)
2168{
2169        const struct skb_frag_struct *frag, *stale;
2170        int nr_frags, sum;
2171
2172        /* no need to check if number of frags is less than 7 */
2173        nr_frags = skb_shinfo(skb)->nr_frags;
2174        if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2175                return false;
2176
2177        /* We need to walk through the list and validate that each group
2178         * of 6 fragments totals at least gso_size.
2179         */
2180        nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2181        frag = &skb_shinfo(skb)->frags[0];
2182
2183        /* Initialize size to the negative value of gso_size minus 1.  We
2184         * use this as the worst case scenerio in which the frag ahead
2185         * of us only provides one byte which is why we are limited to 6
2186         * descriptors for a single transmit as the header and previous
2187         * fragment are already consuming 2 descriptors.
2188         */
2189        sum = 1 - skb_shinfo(skb)->gso_size;
2190
2191        /* Add size of frags 0 through 4 to create our initial sum */
2192        sum += skb_frag_size(frag++);
2193        sum += skb_frag_size(frag++);
2194        sum += skb_frag_size(frag++);
2195        sum += skb_frag_size(frag++);
2196        sum += skb_frag_size(frag++);
2197
2198        /* Walk through fragments adding latest fragment, testing it, and
2199         * then removing stale fragments from the sum.
2200         */
2201        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2202                int stale_size = skb_frag_size(stale);
2203
2204                sum += skb_frag_size(frag++);
2205
2206                /* The stale fragment may present us with a smaller
2207                 * descriptor than the actual fragment size. To account
2208                 * for that we need to remove all the data on the front and
2209                 * figure out what the remainder would be in the last
2210                 * descriptor associated with the fragment.
2211                 */
2212                if (stale_size > I40E_MAX_DATA_PER_TXD) {
2213                        int align_pad = -(stale->page_offset) &
2214                                        (I40E_MAX_READ_REQ_SIZE - 1);
2215
2216                        sum -= align_pad;
2217                        stale_size -= align_pad;
2218
2219                        do {
2220                                sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
2221                                stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
2222                        } while (stale_size > I40E_MAX_DATA_PER_TXD);
2223                }
2224
2225                /* if sum is negative we failed to make sufficient progress */
2226                if (sum < 0)
2227                        return true;
2228
2229                if (!nr_frags--)
2230                        break;
2231
2232                sum -= stale_size;
2233        }
2234
2235        return false;
2236}
2237
2238/**
2239 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
2240 * @tx_ring: the ring to be checked
2241 * @size:    the size buffer we want to assure is available
2242 *
2243 * Returns -EBUSY if a stop is needed, else 0
2244 **/
2245int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2246{
2247        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2248        /* Memory barrier before checking head and tail */
2249        smp_mb();
2250
2251        /* Check again in a case another CPU has just made room available. */
2252        if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2253                return -EBUSY;
2254
2255        /* A reprieve! - use start_queue because it doesn't call schedule */
2256        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2257        ++tx_ring->tx_stats.restart_queue;
2258        return 0;
2259}
2260
2261/**
2262 * i40evf_tx_map - Build the Tx descriptor
2263 * @tx_ring:  ring to send buffer on
2264 * @skb:      send buffer
2265 * @first:    first buffer info buffer to use
2266 * @tx_flags: collected send information
2267 * @hdr_len:  size of the packet header
2268 * @td_cmd:   the command field in the descriptor
2269 * @td_offset: offset for checksum or crc
2270 **/
2271static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2272                                 struct i40e_tx_buffer *first, u32 tx_flags,
2273                                 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2274{
2275        unsigned int data_len = skb->data_len;
2276        unsigned int size = skb_headlen(skb);
2277        struct skb_frag_struct *frag;
2278        struct i40e_tx_buffer *tx_bi;
2279        struct i40e_tx_desc *tx_desc;
2280        u16 i = tx_ring->next_to_use;
2281        u32 td_tag = 0;
2282        dma_addr_t dma;
2283
2284        if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2285                td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2286                td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2287                         I40E_TX_FLAGS_VLAN_SHIFT;
2288        }
2289
2290        first->tx_flags = tx_flags;
2291
2292        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2293
2294        tx_desc = I40E_TX_DESC(tx_ring, i);
2295        tx_bi = first;
2296
2297        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2298                unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2299
2300                if (dma_mapping_error(tx_ring->dev, dma))
2301                        goto dma_error;
2302
2303                /* record length, and DMA address */
2304                dma_unmap_len_set(tx_bi, len, size);
2305                dma_unmap_addr_set(tx_bi, dma, dma);
2306
2307                /* align size to end of page */
2308                max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2309                tx_desc->buffer_addr = cpu_to_le64(dma);
2310
2311                while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2312                        tx_desc->cmd_type_offset_bsz =
2313                                build_ctob(td_cmd, td_offset,
2314                                           max_data, td_tag);
2315
2316                        tx_desc++;
2317                        i++;
2318
2319                        if (i == tx_ring->count) {
2320                                tx_desc = I40E_TX_DESC(tx_ring, 0);
2321                                i = 0;
2322                        }
2323
2324                        dma += max_data;
2325                        size -= max_data;
2326
2327                        max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2328                        tx_desc->buffer_addr = cpu_to_le64(dma);
2329                }
2330
2331                if (likely(!data_len))
2332                        break;
2333
2334                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2335                                                          size, td_tag);
2336
2337                tx_desc++;
2338                i++;
2339
2340                if (i == tx_ring->count) {
2341                        tx_desc = I40E_TX_DESC(tx_ring, 0);
2342                        i = 0;
2343                }
2344
2345                size = skb_frag_size(frag);
2346                data_len -= size;
2347
2348                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2349                                       DMA_TO_DEVICE);
2350
2351                tx_bi = &tx_ring->tx_bi[i];
2352        }
2353
2354        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2355
2356        i++;
2357        if (i == tx_ring->count)
2358                i = 0;
2359
2360        tx_ring->next_to_use = i;
2361
2362        i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2363
2364        /* write last descriptor with RS and EOP bits */
2365        td_cmd |= I40E_TXD_CMD;
2366        tx_desc->cmd_type_offset_bsz =
2367                        build_ctob(td_cmd, td_offset, size, td_tag);
2368
2369        /* Force memory writes to complete before letting h/w know there
2370         * are new descriptors to fetch.
2371         *
2372         * We also use this memory barrier to make certain all of the
2373         * status bits have been updated before next_to_watch is written.
2374         */
2375        wmb();
2376
2377        /* set next_to_watch value indicating a packet is present */
2378        first->next_to_watch = tx_desc;
2379
2380        /* notify HW of packet */
2381        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2382                writel(i, tx_ring->tail);
2383
2384                /* we need this if more than one processor can write to our tail
2385                 * at a time, it synchronizes IO on IA64/Altix systems
2386                 */
2387                mmiowb();
2388        }
2389
2390        return;
2391
2392dma_error:
2393        dev_info(tx_ring->dev, "TX DMA map failed\n");
2394
2395        /* clear dma mappings for failed tx_bi map */
2396        for (;;) {
2397                tx_bi = &tx_ring->tx_bi[i];
2398                i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2399                if (tx_bi == first)
2400                        break;
2401                if (i == 0)
2402                        i = tx_ring->count;
2403                i--;
2404        }
2405
2406        tx_ring->next_to_use = i;
2407}
2408
2409/**
2410 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2411 * @skb:     send buffer
2412 * @tx_ring: ring to send buffer on
2413 *
2414 * Returns NETDEV_TX_OK if sent, else an error code
2415 **/
2416static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2417                                        struct i40e_ring *tx_ring)
2418{
2419        u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2420        u32 cd_tunneling = 0, cd_l2tag2 = 0;
2421        struct i40e_tx_buffer *first;
2422        u32 td_offset = 0;
2423        u32 tx_flags = 0;
2424        __be16 protocol;
2425        u32 td_cmd = 0;
2426        u8 hdr_len = 0;
2427        int tso, count;
2428
2429        /* prefetch the data, we'll need it later */
2430        prefetch(skb->data);
2431
2432        i40e_trace(xmit_frame_ring, skb, tx_ring);
2433
2434        count = i40e_xmit_descriptor_count(skb);
2435        if (i40e_chk_linearize(skb, count)) {
2436                if (__skb_linearize(skb)) {
2437                        dev_kfree_skb_any(skb);
2438                        return NETDEV_TX_OK;
2439                }
2440                count = i40e_txd_use_count(skb->len);
2441                tx_ring->tx_stats.tx_linearize++;
2442        }
2443
2444        /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2445         *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2446         *       + 4 desc gap to avoid the cache line where head is,
2447         *       + 1 desc for context descriptor,
2448         * otherwise try next time
2449         */
2450        if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2451                tx_ring->tx_stats.tx_busy++;
2452                return NETDEV_TX_BUSY;
2453        }
2454
2455        /* record the location of the first descriptor for this packet */
2456        first = &tx_ring->tx_bi[tx_ring->next_to_use];
2457        first->skb = skb;
2458        first->bytecount = skb->len;
2459        first->gso_segs = 1;
2460
2461        /* prepare the xmit flags */
2462        if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2463                goto out_drop;
2464
2465        /* obtain protocol of skb */
2466        protocol = vlan_get_protocol(skb);
2467
2468        /* setup IPv4/IPv6 offloads */
2469        if (protocol == htons(ETH_P_IP))
2470                tx_flags |= I40E_TX_FLAGS_IPV4;
2471        else if (protocol == htons(ETH_P_IPV6))
2472                tx_flags |= I40E_TX_FLAGS_IPV6;
2473
2474        tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2475
2476        if (tso < 0)
2477                goto out_drop;
2478        else if (tso)
2479                tx_flags |= I40E_TX_FLAGS_TSO;
2480
2481        /* Always offload the checksum, since it's in the data descriptor */
2482        tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2483                                  tx_ring, &cd_tunneling);
2484        if (tso < 0)
2485                goto out_drop;
2486
2487        skb_tx_timestamp(skb);
2488
2489        /* always enable CRC insertion offload */
2490        td_cmd |= I40E_TX_DESC_CMD_ICRC;
2491
2492        i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2493                           cd_tunneling, cd_l2tag2);
2494
2495        i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2496                      td_cmd, td_offset);
2497
2498        return NETDEV_TX_OK;
2499
2500out_drop:
2501        i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2502        dev_kfree_skb_any(first->skb);
2503        first->skb = NULL;
2504        return NETDEV_TX_OK;
2505}
2506
2507/**
2508 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2509 * @skb:    send buffer
2510 * @netdev: network interface device structure
2511 *
2512 * Returns NETDEV_TX_OK if sent, else an error code
2513 **/
2514netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2515{
2516        struct i40evf_adapter *adapter = netdev_priv(netdev);
2517        struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2518
2519        /* hardware can't handle really short frames, hardware padding works
2520         * beyond this point
2521         */
2522        if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2523                if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2524                        return NETDEV_TX_OK;
2525                skb->len = I40E_MIN_TX_LEN;
2526                skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2527        }
2528
2529        return i40e_xmit_frame_ring(skb, tx_ring);
2530}
2531