linux/drivers/net/ethernet/intel/igb/e1000_mac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel(R) Gigabit Ethernet Linux driver
   3 * Copyright(c) 2007-2014 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * The full GNU General Public License is included in this distribution in
  18 * the file called "COPYING".
  19 *
  20 * Contact Information:
  21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23 */
  24
  25#include <linux/if_ether.h>
  26#include <linux/delay.h>
  27#include <linux/pci.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30
  31#include "e1000_mac.h"
  32
  33#include "igb.h"
  34
  35static s32 igb_set_default_fc(struct e1000_hw *hw);
  36static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
  37
  38/**
  39 *  igb_get_bus_info_pcie - Get PCIe bus information
  40 *  @hw: pointer to the HW structure
  41 *
  42 *  Determines and stores the system bus information for a particular
  43 *  network interface.  The following bus information is determined and stored:
  44 *  bus speed, bus width, type (PCIe), and PCIe function.
  45 **/
  46s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  47{
  48        struct e1000_bus_info *bus = &hw->bus;
  49        s32 ret_val;
  50        u32 reg;
  51        u16 pcie_link_status;
  52
  53        bus->type = e1000_bus_type_pci_express;
  54
  55        ret_val = igb_read_pcie_cap_reg(hw,
  56                                        PCI_EXP_LNKSTA,
  57                                        &pcie_link_status);
  58        if (ret_val) {
  59                bus->width = e1000_bus_width_unknown;
  60                bus->speed = e1000_bus_speed_unknown;
  61        } else {
  62                switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  63                case PCI_EXP_LNKSTA_CLS_2_5GB:
  64                        bus->speed = e1000_bus_speed_2500;
  65                        break;
  66                case PCI_EXP_LNKSTA_CLS_5_0GB:
  67                        bus->speed = e1000_bus_speed_5000;
  68                        break;
  69                default:
  70                        bus->speed = e1000_bus_speed_unknown;
  71                        break;
  72                }
  73
  74                bus->width = (enum e1000_bus_width)((pcie_link_status &
  75                                                     PCI_EXP_LNKSTA_NLW) >>
  76                                                     PCI_EXP_LNKSTA_NLW_SHIFT);
  77        }
  78
  79        reg = rd32(E1000_STATUS);
  80        bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  81
  82        return 0;
  83}
  84
  85/**
  86 *  igb_clear_vfta - Clear VLAN filter table
  87 *  @hw: pointer to the HW structure
  88 *
  89 *  Clears the register array which contains the VLAN filter table by
  90 *  setting all the values to 0.
  91 **/
  92void igb_clear_vfta(struct e1000_hw *hw)
  93{
  94        u32 offset;
  95
  96        for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
  97                hw->mac.ops.write_vfta(hw, offset, 0);
  98}
  99
 100/**
 101 *  igb_write_vfta - Write value to VLAN filter table
 102 *  @hw: pointer to the HW structure
 103 *  @offset: register offset in VLAN filter table
 104 *  @value: register value written to VLAN filter table
 105 *
 106 *  Writes value at the given offset in the register array which stores
 107 *  the VLAN filter table.
 108 **/
 109void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 110{
 111        struct igb_adapter *adapter = hw->back;
 112
 113        array_wr32(E1000_VFTA, offset, value);
 114        wrfl();
 115
 116        adapter->shadow_vfta[offset] = value;
 117}
 118
 119/**
 120 *  igb_init_rx_addrs - Initialize receive address's
 121 *  @hw: pointer to the HW structure
 122 *  @rar_count: receive address registers
 123 *
 124 *  Setups the receive address registers by setting the base receive address
 125 *  register to the devices MAC address and clearing all the other receive
 126 *  address registers to 0.
 127 **/
 128void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 129{
 130        u32 i;
 131        u8 mac_addr[ETH_ALEN] = {0};
 132
 133        /* Setup the receive address */
 134        hw_dbg("Programming MAC Address into RAR[0]\n");
 135
 136        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 137
 138        /* Zero out the other (rar_entry_count - 1) receive addresses */
 139        hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 140        for (i = 1; i < rar_count; i++)
 141                hw->mac.ops.rar_set(hw, mac_addr, i);
 142}
 143
 144/**
 145 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
 146 *  @hw: pointer to hardware structure
 147 *  @vlan: VLAN id to write to VLAN filter
 148 *  @vlvf_bypass: skip VLVF if no match is found
 149 *
 150 *  return the VLVF index where this VLAN id should be placed
 151 *
 152 **/
 153static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
 154{
 155        s32 regindex, first_empty_slot;
 156        u32 bits;
 157
 158        /* short cut the special case */
 159        if (vlan == 0)
 160                return 0;
 161
 162        /* if vlvf_bypass is set we don't want to use an empty slot, we
 163         * will simply bypass the VLVF if there are no entries present in the
 164         * VLVF that contain our VLAN
 165         */
 166        first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
 167
 168        /* Search for the VLAN id in the VLVF entries. Save off the first empty
 169         * slot found along the way.
 170         *
 171         * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
 172         */
 173        for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
 174                bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
 175                if (bits == vlan)
 176                        return regindex;
 177                if (!first_empty_slot && !bits)
 178                        first_empty_slot = regindex;
 179        }
 180
 181        return first_empty_slot ? : -E1000_ERR_NO_SPACE;
 182}
 183
 184/**
 185 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 186 *  @hw: pointer to the HW structure
 187 *  @vlan: VLAN id to add or remove
 188 *  @vind: VMDq output index that maps queue to VLAN id
 189 *  @vlan_on: if true add filter, if false remove
 190 *
 191 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 192 *  and if we are adding or removing the filter
 193 **/
 194s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
 195                 bool vlan_on, bool vlvf_bypass)
 196{
 197        struct igb_adapter *adapter = hw->back;
 198        u32 regidx, vfta_delta, vfta, bits;
 199        s32 vlvf_index;
 200
 201        if ((vlan > 4095) || (vind > 7))
 202                return -E1000_ERR_PARAM;
 203
 204        /* this is a 2 part operation - first the VFTA, then the
 205         * VLVF and VLVFB if VT Mode is set
 206         * We don't write the VFTA until we know the VLVF part succeeded.
 207         */
 208
 209        /* Part 1
 210         * The VFTA is a bitstring made up of 128 32-bit registers
 211         * that enable the particular VLAN id, much like the MTA:
 212         *    bits[11-5]: which register
 213         *    bits[4-0]:  which bit in the register
 214         */
 215        regidx = vlan / 32;
 216        vfta_delta = BIT(vlan % 32);
 217        vfta = adapter->shadow_vfta[regidx];
 218
 219        /* vfta_delta represents the difference between the current value
 220         * of vfta and the value we want in the register.  Since the diff
 221         * is an XOR mask we can just update vfta using an XOR.
 222         */
 223        vfta_delta &= vlan_on ? ~vfta : vfta;
 224        vfta ^= vfta_delta;
 225
 226        /* Part 2
 227         * If VT Mode is set
 228         *   Either vlan_on
 229         *     make sure the VLAN is in VLVF
 230         *     set the vind bit in the matching VLVFB
 231         *   Or !vlan_on
 232         *     clear the pool bit and possibly the vind
 233         */
 234        if (!adapter->vfs_allocated_count)
 235                goto vfta_update;
 236
 237        vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
 238        if (vlvf_index < 0) {
 239                if (vlvf_bypass)
 240                        goto vfta_update;
 241                return vlvf_index;
 242        }
 243
 244        bits = rd32(E1000_VLVF(vlvf_index));
 245
 246        /* set the pool bit */
 247        bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 248        if (vlan_on)
 249                goto vlvf_update;
 250
 251        /* clear the pool bit */
 252        bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 253
 254        if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
 255                /* Clear VFTA first, then disable VLVF.  Otherwise
 256                 * we run the risk of stray packets leaking into
 257                 * the PF via the default pool
 258                 */
 259                if (vfta_delta)
 260                        hw->mac.ops.write_vfta(hw, regidx, vfta);
 261
 262                /* disable VLVF and clear remaining bit from pool */
 263                wr32(E1000_VLVF(vlvf_index), 0);
 264
 265                return 0;
 266        }
 267
 268        /* If there are still bits set in the VLVFB registers
 269         * for the VLAN ID indicated we need to see if the
 270         * caller is requesting that we clear the VFTA entry bit.
 271         * If the caller has requested that we clear the VFTA
 272         * entry bit but there are still pools/VFs using this VLAN
 273         * ID entry then ignore the request.  We're not worried
 274         * about the case where we're turning the VFTA VLAN ID
 275         * entry bit on, only when requested to turn it off as
 276         * there may be multiple pools and/or VFs using the
 277         * VLAN ID entry.  In that case we cannot clear the
 278         * VFTA bit until all pools/VFs using that VLAN ID have also
 279         * been cleared.  This will be indicated by "bits" being
 280         * zero.
 281         */
 282        vfta_delta = 0;
 283
 284vlvf_update:
 285        /* record pool change and enable VLAN ID if not already enabled */
 286        wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
 287
 288vfta_update:
 289        /* bit was set/cleared before we started */
 290        if (vfta_delta)
 291                hw->mac.ops.write_vfta(hw, regidx, vfta);
 292
 293        return 0;
 294}
 295
 296/**
 297 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 298 *  @hw: pointer to the HW structure
 299 *
 300 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 301 *  can be setup by pre-boot software and must be treated like a permanent
 302 *  address and must override the actual permanent MAC address.  If an
 303 *  alternate MAC address is found it is saved in the hw struct and
 304 *  programmed into RAR0 and the function returns success, otherwise the
 305 *  function returns an error.
 306 **/
 307s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 308{
 309        u32 i;
 310        s32 ret_val = 0;
 311        u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 312        u8 alt_mac_addr[ETH_ALEN];
 313
 314        /* Alternate MAC address is handled by the option ROM for 82580
 315         * and newer. SW support not required.
 316         */
 317        if (hw->mac.type >= e1000_82580)
 318                goto out;
 319
 320        ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 321                                 &nvm_alt_mac_addr_offset);
 322        if (ret_val) {
 323                hw_dbg("NVM Read Error\n");
 324                goto out;
 325        }
 326
 327        if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 328            (nvm_alt_mac_addr_offset == 0x0000))
 329                /* There is no Alternate MAC Address */
 330                goto out;
 331
 332        if (hw->bus.func == E1000_FUNC_1)
 333                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 334        if (hw->bus.func == E1000_FUNC_2)
 335                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 336
 337        if (hw->bus.func == E1000_FUNC_3)
 338                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 339        for (i = 0; i < ETH_ALEN; i += 2) {
 340                offset = nvm_alt_mac_addr_offset + (i >> 1);
 341                ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 342                if (ret_val) {
 343                        hw_dbg("NVM Read Error\n");
 344                        goto out;
 345                }
 346
 347                alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 348                alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 349        }
 350
 351        /* if multicast bit is set, the alternate address will not be used */
 352        if (is_multicast_ether_addr(alt_mac_addr)) {
 353                hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 354                goto out;
 355        }
 356
 357        /* We have a valid alternate MAC address, and we want to treat it the
 358         * same as the normal permanent MAC address stored by the HW into the
 359         * RAR. Do this by mapping this address into RAR0.
 360         */
 361        hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 362
 363out:
 364        return ret_val;
 365}
 366
 367/**
 368 *  igb_rar_set - Set receive address register
 369 *  @hw: pointer to the HW structure
 370 *  @addr: pointer to the receive address
 371 *  @index: receive address array register
 372 *
 373 *  Sets the receive address array register at index to the address passed
 374 *  in by addr.
 375 **/
 376void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 377{
 378        u32 rar_low, rar_high;
 379
 380        /* HW expects these in little endian so we reverse the byte order
 381         * from network order (big endian) to little endian
 382         */
 383        rar_low = ((u32) addr[0] |
 384                   ((u32) addr[1] << 8) |
 385                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 386
 387        rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 388
 389        /* If MAC address zero, no need to set the AV bit */
 390        if (rar_low || rar_high)
 391                rar_high |= E1000_RAH_AV;
 392
 393        /* Some bridges will combine consecutive 32-bit writes into
 394         * a single burst write, which will malfunction on some parts.
 395         * The flushes avoid this.
 396         */
 397        wr32(E1000_RAL(index), rar_low);
 398        wrfl();
 399        wr32(E1000_RAH(index), rar_high);
 400        wrfl();
 401}
 402
 403/**
 404 *  igb_mta_set - Set multicast filter table address
 405 *  @hw: pointer to the HW structure
 406 *  @hash_value: determines the MTA register and bit to set
 407 *
 408 *  The multicast table address is a register array of 32-bit registers.
 409 *  The hash_value is used to determine what register the bit is in, the
 410 *  current value is read, the new bit is OR'd in and the new value is
 411 *  written back into the register.
 412 **/
 413void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 414{
 415        u32 hash_bit, hash_reg, mta;
 416
 417        /* The MTA is a register array of 32-bit registers. It is
 418         * treated like an array of (32*mta_reg_count) bits.  We want to
 419         * set bit BitArray[hash_value]. So we figure out what register
 420         * the bit is in, read it, OR in the new bit, then write
 421         * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 422         * mask to bits 31:5 of the hash value which gives us the
 423         * register we're modifying.  The hash bit within that register
 424         * is determined by the lower 5 bits of the hash value.
 425         */
 426        hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 427        hash_bit = hash_value & 0x1F;
 428
 429        mta = array_rd32(E1000_MTA, hash_reg);
 430
 431        mta |= BIT(hash_bit);
 432
 433        array_wr32(E1000_MTA, hash_reg, mta);
 434        wrfl();
 435}
 436
 437/**
 438 *  igb_hash_mc_addr - Generate a multicast hash value
 439 *  @hw: pointer to the HW structure
 440 *  @mc_addr: pointer to a multicast address
 441 *
 442 *  Generates a multicast address hash value which is used to determine
 443 *  the multicast filter table array address and new table value.  See
 444 *  igb_mta_set()
 445 **/
 446static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 447{
 448        u32 hash_value, hash_mask;
 449        u8 bit_shift = 0;
 450
 451        /* Register count multiplied by bits per register */
 452        hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 453
 454        /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 455         * where 0xFF would still fall within the hash mask.
 456         */
 457        while (hash_mask >> bit_shift != 0xFF)
 458                bit_shift++;
 459
 460        /* The portion of the address that is used for the hash table
 461         * is determined by the mc_filter_type setting.
 462         * The algorithm is such that there is a total of 8 bits of shifting.
 463         * The bit_shift for a mc_filter_type of 0 represents the number of
 464         * left-shifts where the MSB of mc_addr[5] would still fall within
 465         * the hash_mask.  Case 0 does this exactly.  Since there are a total
 466         * of 8 bits of shifting, then mc_addr[4] will shift right the
 467         * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 468         * cases are a variation of this algorithm...essentially raising the
 469         * number of bits to shift mc_addr[5] left, while still keeping the
 470         * 8-bit shifting total.
 471         *
 472         * For example, given the following Destination MAC Address and an
 473         * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 474         * we can see that the bit_shift for case 0 is 4.  These are the hash
 475         * values resulting from each mc_filter_type...
 476         * [0] [1] [2] [3] [4] [5]
 477         * 01  AA  00  12  34  56
 478         * LSB                 MSB
 479         *
 480         * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 481         * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 482         * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 483         * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 484         */
 485        switch (hw->mac.mc_filter_type) {
 486        default:
 487        case 0:
 488                break;
 489        case 1:
 490                bit_shift += 1;
 491                break;
 492        case 2:
 493                bit_shift += 2;
 494                break;
 495        case 3:
 496                bit_shift += 4;
 497                break;
 498        }
 499
 500        hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 501                                  (((u16) mc_addr[5]) << bit_shift)));
 502
 503        return hash_value;
 504}
 505
 506/**
 507 *  igb_update_mc_addr_list - Update Multicast addresses
 508 *  @hw: pointer to the HW structure
 509 *  @mc_addr_list: array of multicast addresses to program
 510 *  @mc_addr_count: number of multicast addresses to program
 511 *
 512 *  Updates entire Multicast Table Array.
 513 *  The caller must have a packed mc_addr_list of multicast addresses.
 514 **/
 515void igb_update_mc_addr_list(struct e1000_hw *hw,
 516                             u8 *mc_addr_list, u32 mc_addr_count)
 517{
 518        u32 hash_value, hash_bit, hash_reg;
 519        int i;
 520
 521        /* clear mta_shadow */
 522        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 523
 524        /* update mta_shadow from mc_addr_list */
 525        for (i = 0; (u32) i < mc_addr_count; i++) {
 526                hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 527
 528                hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 529                hash_bit = hash_value & 0x1F;
 530
 531                hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 532                mc_addr_list += (ETH_ALEN);
 533        }
 534
 535        /* replace the entire MTA table */
 536        for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 537                array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 538        wrfl();
 539}
 540
 541/**
 542 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 543 *  @hw: pointer to the HW structure
 544 *
 545 *  Clears the base hardware counters by reading the counter registers.
 546 **/
 547void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 548{
 549        rd32(E1000_CRCERRS);
 550        rd32(E1000_SYMERRS);
 551        rd32(E1000_MPC);
 552        rd32(E1000_SCC);
 553        rd32(E1000_ECOL);
 554        rd32(E1000_MCC);
 555        rd32(E1000_LATECOL);
 556        rd32(E1000_COLC);
 557        rd32(E1000_DC);
 558        rd32(E1000_SEC);
 559        rd32(E1000_RLEC);
 560        rd32(E1000_XONRXC);
 561        rd32(E1000_XONTXC);
 562        rd32(E1000_XOFFRXC);
 563        rd32(E1000_XOFFTXC);
 564        rd32(E1000_FCRUC);
 565        rd32(E1000_GPRC);
 566        rd32(E1000_BPRC);
 567        rd32(E1000_MPRC);
 568        rd32(E1000_GPTC);
 569        rd32(E1000_GORCL);
 570        rd32(E1000_GORCH);
 571        rd32(E1000_GOTCL);
 572        rd32(E1000_GOTCH);
 573        rd32(E1000_RNBC);
 574        rd32(E1000_RUC);
 575        rd32(E1000_RFC);
 576        rd32(E1000_ROC);
 577        rd32(E1000_RJC);
 578        rd32(E1000_TORL);
 579        rd32(E1000_TORH);
 580        rd32(E1000_TOTL);
 581        rd32(E1000_TOTH);
 582        rd32(E1000_TPR);
 583        rd32(E1000_TPT);
 584        rd32(E1000_MPTC);
 585        rd32(E1000_BPTC);
 586}
 587
 588/**
 589 *  igb_check_for_copper_link - Check for link (Copper)
 590 *  @hw: pointer to the HW structure
 591 *
 592 *  Checks to see of the link status of the hardware has changed.  If a
 593 *  change in link status has been detected, then we read the PHY registers
 594 *  to get the current speed/duplex if link exists.
 595 **/
 596s32 igb_check_for_copper_link(struct e1000_hw *hw)
 597{
 598        struct e1000_mac_info *mac = &hw->mac;
 599        s32 ret_val;
 600        bool link;
 601
 602        /* We only want to go out to the PHY registers to see if Auto-Neg
 603         * has completed and/or if our link status has changed.  The
 604         * get_link_status flag is set upon receiving a Link Status
 605         * Change or Rx Sequence Error interrupt.
 606         */
 607        if (!mac->get_link_status) {
 608                ret_val = 0;
 609                goto out;
 610        }
 611
 612        /* First we want to see if the MII Status Register reports
 613         * link.  If so, then we want to get the current speed/duplex
 614         * of the PHY.
 615         */
 616        ret_val = igb_phy_has_link(hw, 1, 0, &link);
 617        if (ret_val)
 618                goto out;
 619
 620        if (!link)
 621                goto out; /* No link detected */
 622
 623        mac->get_link_status = false;
 624
 625        /* Check if there was DownShift, must be checked
 626         * immediately after link-up
 627         */
 628        igb_check_downshift(hw);
 629
 630        /* If we are forcing speed/duplex, then we simply return since
 631         * we have already determined whether we have link or not.
 632         */
 633        if (!mac->autoneg) {
 634                ret_val = -E1000_ERR_CONFIG;
 635                goto out;
 636        }
 637
 638        /* Auto-Neg is enabled.  Auto Speed Detection takes care
 639         * of MAC speed/duplex configuration.  So we only need to
 640         * configure Collision Distance in the MAC.
 641         */
 642        igb_config_collision_dist(hw);
 643
 644        /* Configure Flow Control now that Auto-Neg has completed.
 645         * First, we need to restore the desired flow control
 646         * settings because we may have had to re-autoneg with a
 647         * different link partner.
 648         */
 649        ret_val = igb_config_fc_after_link_up(hw);
 650        if (ret_val)
 651                hw_dbg("Error configuring flow control\n");
 652
 653out:
 654        return ret_val;
 655}
 656
 657/**
 658 *  igb_setup_link - Setup flow control and link settings
 659 *  @hw: pointer to the HW structure
 660 *
 661 *  Determines which flow control settings to use, then configures flow
 662 *  control.  Calls the appropriate media-specific link configuration
 663 *  function.  Assuming the adapter has a valid link partner, a valid link
 664 *  should be established.  Assumes the hardware has previously been reset
 665 *  and the transmitter and receiver are not enabled.
 666 **/
 667s32 igb_setup_link(struct e1000_hw *hw)
 668{
 669        s32 ret_val = 0;
 670
 671        /* In the case of the phy reset being blocked, we already have a link.
 672         * We do not need to set it up again.
 673         */
 674        if (igb_check_reset_block(hw))
 675                goto out;
 676
 677        /* If requested flow control is set to default, set flow control
 678         * based on the EEPROM flow control settings.
 679         */
 680        if (hw->fc.requested_mode == e1000_fc_default) {
 681                ret_val = igb_set_default_fc(hw);
 682                if (ret_val)
 683                        goto out;
 684        }
 685
 686        /* We want to save off the original Flow Control configuration just
 687         * in case we get disconnected and then reconnected into a different
 688         * hub or switch with different Flow Control capabilities.
 689         */
 690        hw->fc.current_mode = hw->fc.requested_mode;
 691
 692        hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 693
 694        /* Call the necessary media_type subroutine to configure the link. */
 695        ret_val = hw->mac.ops.setup_physical_interface(hw);
 696        if (ret_val)
 697                goto out;
 698
 699        /* Initialize the flow control address, type, and PAUSE timer
 700         * registers to their default values.  This is done even if flow
 701         * control is disabled, because it does not hurt anything to
 702         * initialize these registers.
 703         */
 704        hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 705        wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 706        wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 707        wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 708
 709        wr32(E1000_FCTTV, hw->fc.pause_time);
 710
 711        ret_val = igb_set_fc_watermarks(hw);
 712
 713out:
 714
 715        return ret_val;
 716}
 717
 718/**
 719 *  igb_config_collision_dist - Configure collision distance
 720 *  @hw: pointer to the HW structure
 721 *
 722 *  Configures the collision distance to the default value and is used
 723 *  during link setup. Currently no func pointer exists and all
 724 *  implementations are handled in the generic version of this function.
 725 **/
 726void igb_config_collision_dist(struct e1000_hw *hw)
 727{
 728        u32 tctl;
 729
 730        tctl = rd32(E1000_TCTL);
 731
 732        tctl &= ~E1000_TCTL_COLD;
 733        tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 734
 735        wr32(E1000_TCTL, tctl);
 736        wrfl();
 737}
 738
 739/**
 740 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 741 *  @hw: pointer to the HW structure
 742 *
 743 *  Sets the flow control high/low threshold (watermark) registers.  If
 744 *  flow control XON frame transmission is enabled, then set XON frame
 745 *  tansmission as well.
 746 **/
 747static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 748{
 749        s32 ret_val = 0;
 750        u32 fcrtl = 0, fcrth = 0;
 751
 752        /* Set the flow control receive threshold registers.  Normally,
 753         * these registers will be set to a default threshold that may be
 754         * adjusted later by the driver's runtime code.  However, if the
 755         * ability to transmit pause frames is not enabled, then these
 756         * registers will be set to 0.
 757         */
 758        if (hw->fc.current_mode & e1000_fc_tx_pause) {
 759                /* We need to set up the Receive Threshold high and low water
 760                 * marks as well as (optionally) enabling the transmission of
 761                 * XON frames.
 762                 */
 763                fcrtl = hw->fc.low_water;
 764                if (hw->fc.send_xon)
 765                        fcrtl |= E1000_FCRTL_XONE;
 766
 767                fcrth = hw->fc.high_water;
 768        }
 769        wr32(E1000_FCRTL, fcrtl);
 770        wr32(E1000_FCRTH, fcrth);
 771
 772        return ret_val;
 773}
 774
 775/**
 776 *  igb_set_default_fc - Set flow control default values
 777 *  @hw: pointer to the HW structure
 778 *
 779 *  Read the EEPROM for the default values for flow control and store the
 780 *  values.
 781 **/
 782static s32 igb_set_default_fc(struct e1000_hw *hw)
 783{
 784        s32 ret_val = 0;
 785        u16 lan_offset;
 786        u16 nvm_data;
 787
 788        /* Read and store word 0x0F of the EEPROM. This word contains bits
 789         * that determine the hardware's default PAUSE (flow control) mode,
 790         * a bit that determines whether the HW defaults to enabling or
 791         * disabling auto-negotiation, and the direction of the
 792         * SW defined pins. If there is no SW over-ride of the flow
 793         * control setting, then the variable hw->fc will
 794         * be initialized based on a value in the EEPROM.
 795         */
 796        if (hw->mac.type == e1000_i350)
 797                lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
 798        else
 799                lan_offset = 0;
 800
 801        ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
 802                                   1, &nvm_data);
 803        if (ret_val) {
 804                hw_dbg("NVM Read Error\n");
 805                goto out;
 806        }
 807
 808        if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 809                hw->fc.requested_mode = e1000_fc_none;
 810        else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 811                hw->fc.requested_mode = e1000_fc_tx_pause;
 812        else
 813                hw->fc.requested_mode = e1000_fc_full;
 814
 815out:
 816        return ret_val;
 817}
 818
 819/**
 820 *  igb_force_mac_fc - Force the MAC's flow control settings
 821 *  @hw: pointer to the HW structure
 822 *
 823 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 824 *  device control register to reflect the adapter settings.  TFCE and RFCE
 825 *  need to be explicitly set by software when a copper PHY is used because
 826 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 827 *  also configure these bits when link is forced on a fiber connection.
 828 **/
 829s32 igb_force_mac_fc(struct e1000_hw *hw)
 830{
 831        u32 ctrl;
 832        s32 ret_val = 0;
 833
 834        ctrl = rd32(E1000_CTRL);
 835
 836        /* Because we didn't get link via the internal auto-negotiation
 837         * mechanism (we either forced link or we got link via PHY
 838         * auto-neg), we have to manually enable/disable transmit an
 839         * receive flow control.
 840         *
 841         * The "Case" statement below enables/disable flow control
 842         * according to the "hw->fc.current_mode" parameter.
 843         *
 844         * The possible values of the "fc" parameter are:
 845         *      0:  Flow control is completely disabled
 846         *      1:  Rx flow control is enabled (we can receive pause
 847         *          frames but not send pause frames).
 848         *      2:  Tx flow control is enabled (we can send pause frames
 849         *          frames but we do not receive pause frames).
 850         *      3:  Both Rx and TX flow control (symmetric) is enabled.
 851         *  other:  No other values should be possible at this point.
 852         */
 853        hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 854
 855        switch (hw->fc.current_mode) {
 856        case e1000_fc_none:
 857                ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 858                break;
 859        case e1000_fc_rx_pause:
 860                ctrl &= (~E1000_CTRL_TFCE);
 861                ctrl |= E1000_CTRL_RFCE;
 862                break;
 863        case e1000_fc_tx_pause:
 864                ctrl &= (~E1000_CTRL_RFCE);
 865                ctrl |= E1000_CTRL_TFCE;
 866                break;
 867        case e1000_fc_full:
 868                ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 869                break;
 870        default:
 871                hw_dbg("Flow control param set incorrectly\n");
 872                ret_val = -E1000_ERR_CONFIG;
 873                goto out;
 874        }
 875
 876        wr32(E1000_CTRL, ctrl);
 877
 878out:
 879        return ret_val;
 880}
 881
 882/**
 883 *  igb_config_fc_after_link_up - Configures flow control after link
 884 *  @hw: pointer to the HW structure
 885 *
 886 *  Checks the status of auto-negotiation after link up to ensure that the
 887 *  speed and duplex were not forced.  If the link needed to be forced, then
 888 *  flow control needs to be forced also.  If auto-negotiation is enabled
 889 *  and did not fail, then we configure flow control based on our link
 890 *  partner.
 891 **/
 892s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 893{
 894        struct e1000_mac_info *mac = &hw->mac;
 895        s32 ret_val = 0;
 896        u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
 897        u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 898        u16 speed, duplex;
 899
 900        /* Check for the case where we have fiber media and auto-neg failed
 901         * so we had to force link.  In this case, we need to force the
 902         * configuration of the MAC to match the "fc" parameter.
 903         */
 904        if (mac->autoneg_failed) {
 905                if (hw->phy.media_type == e1000_media_type_internal_serdes)
 906                        ret_val = igb_force_mac_fc(hw);
 907        } else {
 908                if (hw->phy.media_type == e1000_media_type_copper)
 909                        ret_val = igb_force_mac_fc(hw);
 910        }
 911
 912        if (ret_val) {
 913                hw_dbg("Error forcing flow control settings\n");
 914                goto out;
 915        }
 916
 917        /* Check for the case where we have copper media and auto-neg is
 918         * enabled.  In this case, we need to check and see if Auto-Neg
 919         * has completed, and if so, how the PHY and link partner has
 920         * flow control configured.
 921         */
 922        if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 923                /* Read the MII Status Register and check to see if AutoNeg
 924                 * has completed.  We read this twice because this reg has
 925                 * some "sticky" (latched) bits.
 926                 */
 927                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 928                                                   &mii_status_reg);
 929                if (ret_val)
 930                        goto out;
 931                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 932                                                   &mii_status_reg);
 933                if (ret_val)
 934                        goto out;
 935
 936                if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 937                        hw_dbg("Copper PHY and Auto Neg has not completed.\n");
 938                        goto out;
 939                }
 940
 941                /* The AutoNeg process has completed, so we now need to
 942                 * read both the Auto Negotiation Advertisement
 943                 * Register (Address 4) and the Auto_Negotiation Base
 944                 * Page Ability Register (Address 5) to determine how
 945                 * flow control was negotiated.
 946                 */
 947                ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 948                                            &mii_nway_adv_reg);
 949                if (ret_val)
 950                        goto out;
 951                ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 952                                            &mii_nway_lp_ability_reg);
 953                if (ret_val)
 954                        goto out;
 955
 956                /* Two bits in the Auto Negotiation Advertisement Register
 957                 * (Address 4) and two bits in the Auto Negotiation Base
 958                 * Page Ability Register (Address 5) determine flow control
 959                 * for both the PHY and the link partner.  The following
 960                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 961                 * 1999, describes these PAUSE resolution bits and how flow
 962                 * control is determined based upon these settings.
 963                 * NOTE:  DC = Don't Care
 964                 *
 965                 *   LOCAL DEVICE  |   LINK PARTNER
 966                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 967                 *-------|---------|-------|---------|--------------------
 968                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 969                 *   0   |    1    |   0   |   DC    | e1000_fc_none
 970                 *   0   |    1    |   1   |    0    | e1000_fc_none
 971                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 972                 *   1   |    0    |   0   |   DC    | e1000_fc_none
 973                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 974                 *   1   |    1    |   0   |    0    | e1000_fc_none
 975                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 976                 *
 977                 * Are both PAUSE bits set to 1?  If so, this implies
 978                 * Symmetric Flow Control is enabled at both ends.  The
 979                 * ASM_DIR bits are irrelevant per the spec.
 980                 *
 981                 * For Symmetric Flow Control:
 982                 *
 983                 *   LOCAL DEVICE  |   LINK PARTNER
 984                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 985                 *-------|---------|-------|---------|--------------------
 986                 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 987                 *
 988                 */
 989                if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 990                    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 991                        /* Now we need to check if the user selected RX ONLY
 992                         * of pause frames.  In this case, we had to advertise
 993                         * FULL flow control because we could not advertise RX
 994                         * ONLY. Hence, we must now check to see if we need to
 995                         * turn OFF  the TRANSMISSION of PAUSE frames.
 996                         */
 997                        if (hw->fc.requested_mode == e1000_fc_full) {
 998                                hw->fc.current_mode = e1000_fc_full;
 999                                hw_dbg("Flow Control = FULL.\n");
1000                        } else {
1001                                hw->fc.current_mode = e1000_fc_rx_pause;
1002                                hw_dbg("Flow Control = RX PAUSE frames only.\n");
1003                        }
1004                }
1005                /* For receiving PAUSE frames ONLY.
1006                 *
1007                 *   LOCAL DEVICE  |   LINK PARTNER
1008                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1009                 *-------|---------|-------|---------|--------------------
1010                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1011                 */
1012                else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1013                          (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1014                          (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1015                          (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1016                        hw->fc.current_mode = e1000_fc_tx_pause;
1017                        hw_dbg("Flow Control = TX PAUSE frames only.\n");
1018                }
1019                /* For transmitting PAUSE frames ONLY.
1020                 *
1021                 *   LOCAL DEVICE  |   LINK PARTNER
1022                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1023                 *-------|---------|-------|---------|--------------------
1024                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1025                 */
1026                else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1027                         (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1028                         !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1029                         (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1030                        hw->fc.current_mode = e1000_fc_rx_pause;
1031                        hw_dbg("Flow Control = RX PAUSE frames only.\n");
1032                }
1033                /* Per the IEEE spec, at this point flow control should be
1034                 * disabled.  However, we want to consider that we could
1035                 * be connected to a legacy switch that doesn't advertise
1036                 * desired flow control, but can be forced on the link
1037                 * partner.  So if we advertised no flow control, that is
1038                 * what we will resolve to.  If we advertised some kind of
1039                 * receive capability (Rx Pause Only or Full Flow Control)
1040                 * and the link partner advertised none, we will configure
1041                 * ourselves to enable Rx Flow Control only.  We can do
1042                 * this safely for two reasons:  If the link partner really
1043                 * didn't want flow control enabled, and we enable Rx, no
1044                 * harm done since we won't be receiving any PAUSE frames
1045                 * anyway.  If the intent on the link partner was to have
1046                 * flow control enabled, then by us enabling RX only, we
1047                 * can at least receive pause frames and process them.
1048                 * This is a good idea because in most cases, since we are
1049                 * predominantly a server NIC, more times than not we will
1050                 * be asked to delay transmission of packets than asking
1051                 * our link partner to pause transmission of frames.
1052                 */
1053                else if ((hw->fc.requested_mode == e1000_fc_none) ||
1054                         (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1055                         (hw->fc.strict_ieee)) {
1056                        hw->fc.current_mode = e1000_fc_none;
1057                        hw_dbg("Flow Control = NONE.\n");
1058                } else {
1059                        hw->fc.current_mode = e1000_fc_rx_pause;
1060                        hw_dbg("Flow Control = RX PAUSE frames only.\n");
1061                }
1062
1063                /* Now we need to do one last check...  If we auto-
1064                 * negotiated to HALF DUPLEX, flow control should not be
1065                 * enabled per IEEE 802.3 spec.
1066                 */
1067                ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1068                if (ret_val) {
1069                        hw_dbg("Error getting link speed and duplex\n");
1070                        goto out;
1071                }
1072
1073                if (duplex == HALF_DUPLEX)
1074                        hw->fc.current_mode = e1000_fc_none;
1075
1076                /* Now we call a subroutine to actually force the MAC
1077                 * controller to use the correct flow control settings.
1078                 */
1079                ret_val = igb_force_mac_fc(hw);
1080                if (ret_val) {
1081                        hw_dbg("Error forcing flow control settings\n");
1082                        goto out;
1083                }
1084        }
1085        /* Check for the case where we have SerDes media and auto-neg is
1086         * enabled.  In this case, we need to check and see if Auto-Neg
1087         * has completed, and if so, how the PHY and link partner has
1088         * flow control configured.
1089         */
1090        if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1091                && mac->autoneg) {
1092                /* Read the PCS_LSTS and check to see if AutoNeg
1093                 * has completed.
1094                 */
1095                pcs_status_reg = rd32(E1000_PCS_LSTAT);
1096
1097                if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1098                        hw_dbg("PCS Auto Neg has not completed.\n");
1099                        return ret_val;
1100                }
1101
1102                /* The AutoNeg process has completed, so we now need to
1103                 * read both the Auto Negotiation Advertisement
1104                 * Register (PCS_ANADV) and the Auto_Negotiation Base
1105                 * Page Ability Register (PCS_LPAB) to determine how
1106                 * flow control was negotiated.
1107                 */
1108                pcs_adv_reg = rd32(E1000_PCS_ANADV);
1109                pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1110
1111                /* Two bits in the Auto Negotiation Advertisement Register
1112                 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1113                 * Page Ability Register (PCS_LPAB) determine flow control
1114                 * for both the PHY and the link partner.  The following
1115                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1116                 * 1999, describes these PAUSE resolution bits and how flow
1117                 * control is determined based upon these settings.
1118                 * NOTE:  DC = Don't Care
1119                 *
1120                 *   LOCAL DEVICE  |   LINK PARTNER
1121                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1122                 *-------|---------|-------|---------|--------------------
1123                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1124                 *   0   |    1    |   0   |   DC    | e1000_fc_none
1125                 *   0   |    1    |   1   |    0    | e1000_fc_none
1126                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1127                 *   1   |    0    |   0   |   DC    | e1000_fc_none
1128                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1129                 *   1   |    1    |   0   |    0    | e1000_fc_none
1130                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1131                 *
1132                 * Are both PAUSE bits set to 1?  If so, this implies
1133                 * Symmetric Flow Control is enabled at both ends.  The
1134                 * ASM_DIR bits are irrelevant per the spec.
1135                 *
1136                 * For Symmetric Flow Control:
1137                 *
1138                 *   LOCAL DEVICE  |   LINK PARTNER
1139                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1140                 *-------|---------|-------|---------|--------------------
1141                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1142                 *
1143                 */
1144                if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1145                    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1146                        /* Now we need to check if the user selected Rx ONLY
1147                         * of pause frames.  In this case, we had to advertise
1148                         * FULL flow control because we could not advertise Rx
1149                         * ONLY. Hence, we must now check to see if we need to
1150                         * turn OFF the TRANSMISSION of PAUSE frames.
1151                         */
1152                        if (hw->fc.requested_mode == e1000_fc_full) {
1153                                hw->fc.current_mode = e1000_fc_full;
1154                                hw_dbg("Flow Control = FULL.\n");
1155                        } else {
1156                                hw->fc.current_mode = e1000_fc_rx_pause;
1157                                hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1158                        }
1159                }
1160                /* For receiving PAUSE frames ONLY.
1161                 *
1162                 *   LOCAL DEVICE  |   LINK PARTNER
1163                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1164                 *-------|---------|-------|---------|--------------------
1165                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1166                 */
1167                else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1168                          (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1169                          (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1170                          (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1171                        hw->fc.current_mode = e1000_fc_tx_pause;
1172                        hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1173                }
1174                /* For transmitting PAUSE frames ONLY.
1175                 *
1176                 *   LOCAL DEVICE  |   LINK PARTNER
1177                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1178                 *-------|---------|-------|---------|--------------------
1179                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1180                 */
1181                else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1182                         (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1183                         !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1184                         (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1185                        hw->fc.current_mode = e1000_fc_rx_pause;
1186                        hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1187                } else {
1188                        /* Per the IEEE spec, at this point flow control
1189                         * should be disabled.
1190                         */
1191                        hw->fc.current_mode = e1000_fc_none;
1192                        hw_dbg("Flow Control = NONE.\n");
1193                }
1194
1195                /* Now we call a subroutine to actually force the MAC
1196                 * controller to use the correct flow control settings.
1197                 */
1198                pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1199                pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1200                wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1201
1202                ret_val = igb_force_mac_fc(hw);
1203                if (ret_val) {
1204                        hw_dbg("Error forcing flow control settings\n");
1205                        return ret_val;
1206                }
1207        }
1208
1209out:
1210        return ret_val;
1211}
1212
1213/**
1214 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1215 *  @hw: pointer to the HW structure
1216 *  @speed: stores the current speed
1217 *  @duplex: stores the current duplex
1218 *
1219 *  Read the status register for the current speed/duplex and store the current
1220 *  speed and duplex for copper connections.
1221 **/
1222s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1223                                      u16 *duplex)
1224{
1225        u32 status;
1226
1227        status = rd32(E1000_STATUS);
1228        if (status & E1000_STATUS_SPEED_1000) {
1229                *speed = SPEED_1000;
1230                hw_dbg("1000 Mbs, ");
1231        } else if (status & E1000_STATUS_SPEED_100) {
1232                *speed = SPEED_100;
1233                hw_dbg("100 Mbs, ");
1234        } else {
1235                *speed = SPEED_10;
1236                hw_dbg("10 Mbs, ");
1237        }
1238
1239        if (status & E1000_STATUS_FD) {
1240                *duplex = FULL_DUPLEX;
1241                hw_dbg("Full Duplex\n");
1242        } else {
1243                *duplex = HALF_DUPLEX;
1244                hw_dbg("Half Duplex\n");
1245        }
1246
1247        return 0;
1248}
1249
1250/**
1251 *  igb_get_hw_semaphore - Acquire hardware semaphore
1252 *  @hw: pointer to the HW structure
1253 *
1254 *  Acquire the HW semaphore to access the PHY or NVM
1255 **/
1256s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1257{
1258        u32 swsm;
1259        s32 ret_val = 0;
1260        s32 timeout = hw->nvm.word_size + 1;
1261        s32 i = 0;
1262
1263        /* Get the SW semaphore */
1264        while (i < timeout) {
1265                swsm = rd32(E1000_SWSM);
1266                if (!(swsm & E1000_SWSM_SMBI))
1267                        break;
1268
1269                udelay(50);
1270                i++;
1271        }
1272
1273        if (i == timeout) {
1274                hw_dbg("Driver can't access device - SMBI bit is set.\n");
1275                ret_val = -E1000_ERR_NVM;
1276                goto out;
1277        }
1278
1279        /* Get the FW semaphore. */
1280        for (i = 0; i < timeout; i++) {
1281                swsm = rd32(E1000_SWSM);
1282                wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1283
1284                /* Semaphore acquired if bit latched */
1285                if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1286                        break;
1287
1288                udelay(50);
1289        }
1290
1291        if (i == timeout) {
1292                /* Release semaphores */
1293                igb_put_hw_semaphore(hw);
1294                hw_dbg("Driver can't access the NVM\n");
1295                ret_val = -E1000_ERR_NVM;
1296                goto out;
1297        }
1298
1299out:
1300        return ret_val;
1301}
1302
1303/**
1304 *  igb_put_hw_semaphore - Release hardware semaphore
1305 *  @hw: pointer to the HW structure
1306 *
1307 *  Release hardware semaphore used to access the PHY or NVM
1308 **/
1309void igb_put_hw_semaphore(struct e1000_hw *hw)
1310{
1311        u32 swsm;
1312
1313        swsm = rd32(E1000_SWSM);
1314
1315        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1316
1317        wr32(E1000_SWSM, swsm);
1318}
1319
1320/**
1321 *  igb_get_auto_rd_done - Check for auto read completion
1322 *  @hw: pointer to the HW structure
1323 *
1324 *  Check EEPROM for Auto Read done bit.
1325 **/
1326s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1327{
1328        s32 i = 0;
1329        s32 ret_val = 0;
1330
1331
1332        while (i < AUTO_READ_DONE_TIMEOUT) {
1333                if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1334                        break;
1335                usleep_range(1000, 2000);
1336                i++;
1337        }
1338
1339        if (i == AUTO_READ_DONE_TIMEOUT) {
1340                hw_dbg("Auto read by HW from NVM has not completed.\n");
1341                ret_val = -E1000_ERR_RESET;
1342                goto out;
1343        }
1344
1345out:
1346        return ret_val;
1347}
1348
1349/**
1350 *  igb_valid_led_default - Verify a valid default LED config
1351 *  @hw: pointer to the HW structure
1352 *  @data: pointer to the NVM (EEPROM)
1353 *
1354 *  Read the EEPROM for the current default LED configuration.  If the
1355 *  LED configuration is not valid, set to a valid LED configuration.
1356 **/
1357static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1358{
1359        s32 ret_val;
1360
1361        ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1362        if (ret_val) {
1363                hw_dbg("NVM Read Error\n");
1364                goto out;
1365        }
1366
1367        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1368                switch (hw->phy.media_type) {
1369                case e1000_media_type_internal_serdes:
1370                        *data = ID_LED_DEFAULT_82575_SERDES;
1371                        break;
1372                case e1000_media_type_copper:
1373                default:
1374                        *data = ID_LED_DEFAULT;
1375                        break;
1376                }
1377        }
1378out:
1379        return ret_val;
1380}
1381
1382/**
1383 *  igb_id_led_init -
1384 *  @hw: pointer to the HW structure
1385 *
1386 **/
1387s32 igb_id_led_init(struct e1000_hw *hw)
1388{
1389        struct e1000_mac_info *mac = &hw->mac;
1390        s32 ret_val;
1391        const u32 ledctl_mask = 0x000000FF;
1392        const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1393        const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1394        u16 data, i, temp;
1395        const u16 led_mask = 0x0F;
1396
1397        /* i210 and i211 devices have different LED mechanism */
1398        if ((hw->mac.type == e1000_i210) ||
1399            (hw->mac.type == e1000_i211))
1400                ret_val = igb_valid_led_default_i210(hw, &data);
1401        else
1402                ret_val = igb_valid_led_default(hw, &data);
1403
1404        if (ret_val)
1405                goto out;
1406
1407        mac->ledctl_default = rd32(E1000_LEDCTL);
1408        mac->ledctl_mode1 = mac->ledctl_default;
1409        mac->ledctl_mode2 = mac->ledctl_default;
1410
1411        for (i = 0; i < 4; i++) {
1412                temp = (data >> (i << 2)) & led_mask;
1413                switch (temp) {
1414                case ID_LED_ON1_DEF2:
1415                case ID_LED_ON1_ON2:
1416                case ID_LED_ON1_OFF2:
1417                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1418                        mac->ledctl_mode1 |= ledctl_on << (i << 3);
1419                        break;
1420                case ID_LED_OFF1_DEF2:
1421                case ID_LED_OFF1_ON2:
1422                case ID_LED_OFF1_OFF2:
1423                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1424                        mac->ledctl_mode1 |= ledctl_off << (i << 3);
1425                        break;
1426                default:
1427                        /* Do nothing */
1428                        break;
1429                }
1430                switch (temp) {
1431                case ID_LED_DEF1_ON2:
1432                case ID_LED_ON1_ON2:
1433                case ID_LED_OFF1_ON2:
1434                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1435                        mac->ledctl_mode2 |= ledctl_on << (i << 3);
1436                        break;
1437                case ID_LED_DEF1_OFF2:
1438                case ID_LED_ON1_OFF2:
1439                case ID_LED_OFF1_OFF2:
1440                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1441                        mac->ledctl_mode2 |= ledctl_off << (i << 3);
1442                        break;
1443                default:
1444                        /* Do nothing */
1445                        break;
1446                }
1447        }
1448
1449out:
1450        return ret_val;
1451}
1452
1453/**
1454 *  igb_cleanup_led - Set LED config to default operation
1455 *  @hw: pointer to the HW structure
1456 *
1457 *  Remove the current LED configuration and set the LED configuration
1458 *  to the default value, saved from the EEPROM.
1459 **/
1460s32 igb_cleanup_led(struct e1000_hw *hw)
1461{
1462        wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1463        return 0;
1464}
1465
1466/**
1467 *  igb_blink_led - Blink LED
1468 *  @hw: pointer to the HW structure
1469 *
1470 *  Blink the led's which are set to be on.
1471 **/
1472s32 igb_blink_led(struct e1000_hw *hw)
1473{
1474        u32 ledctl_blink = 0;
1475        u32 i;
1476
1477        if (hw->phy.media_type == e1000_media_type_fiber) {
1478                /* always blink LED0 for PCI-E fiber */
1479                ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1480                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1481        } else {
1482                /* Set the blink bit for each LED that's "on" (0x0E)
1483                 * (or "off" if inverted) in ledctl_mode2.  The blink
1484                 * logic in hardware only works when mode is set to "on"
1485                 * so it must be changed accordingly when the mode is
1486                 * "off" and inverted.
1487                 */
1488                ledctl_blink = hw->mac.ledctl_mode2;
1489                for (i = 0; i < 32; i += 8) {
1490                        u32 mode = (hw->mac.ledctl_mode2 >> i) &
1491                            E1000_LEDCTL_LED0_MODE_MASK;
1492                        u32 led_default = hw->mac.ledctl_default >> i;
1493
1494                        if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1495                             (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1496                            ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1497                             (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1498                                ledctl_blink &=
1499                                    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1500                                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1501                                                 E1000_LEDCTL_MODE_LED_ON) << i;
1502                        }
1503                }
1504        }
1505
1506        wr32(E1000_LEDCTL, ledctl_blink);
1507
1508        return 0;
1509}
1510
1511/**
1512 *  igb_led_off - Turn LED off
1513 *  @hw: pointer to the HW structure
1514 *
1515 *  Turn LED off.
1516 **/
1517s32 igb_led_off(struct e1000_hw *hw)
1518{
1519        switch (hw->phy.media_type) {
1520        case e1000_media_type_copper:
1521                wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1522                break;
1523        default:
1524                break;
1525        }
1526
1527        return 0;
1528}
1529
1530/**
1531 *  igb_disable_pcie_master - Disables PCI-express master access
1532 *  @hw: pointer to the HW structure
1533 *
1534 *  Returns 0 (0) if successful, else returns -10
1535 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1536 *  the master requests to be disabled.
1537 *
1538 *  Disables PCI-Express master access and verifies there are no pending
1539 *  requests.
1540 **/
1541s32 igb_disable_pcie_master(struct e1000_hw *hw)
1542{
1543        u32 ctrl;
1544        s32 timeout = MASTER_DISABLE_TIMEOUT;
1545        s32 ret_val = 0;
1546
1547        if (hw->bus.type != e1000_bus_type_pci_express)
1548                goto out;
1549
1550        ctrl = rd32(E1000_CTRL);
1551        ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1552        wr32(E1000_CTRL, ctrl);
1553
1554        while (timeout) {
1555                if (!(rd32(E1000_STATUS) &
1556                      E1000_STATUS_GIO_MASTER_ENABLE))
1557                        break;
1558                udelay(100);
1559                timeout--;
1560        }
1561
1562        if (!timeout) {
1563                hw_dbg("Master requests are pending.\n");
1564                ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1565                goto out;
1566        }
1567
1568out:
1569        return ret_val;
1570}
1571
1572/**
1573 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1574 *  @hw: pointer to the HW structure
1575 *
1576 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1577 *  set, which is forced to MDI mode only.
1578 **/
1579s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1580{
1581        s32 ret_val = 0;
1582
1583        /* All MDI settings are supported on 82580 and newer. */
1584        if (hw->mac.type >= e1000_82580)
1585                goto out;
1586
1587        if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1588                hw_dbg("Invalid MDI setting detected\n");
1589                hw->phy.mdix = 1;
1590                ret_val = -E1000_ERR_CONFIG;
1591                goto out;
1592        }
1593
1594out:
1595        return ret_val;
1596}
1597
1598/**
1599 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1600 *  @hw: pointer to the HW structure
1601 *  @reg: 32bit register offset such as E1000_SCTL
1602 *  @offset: register offset to write to
1603 *  @data: data to write at register offset
1604 *
1605 *  Writes an address/data control type register.  There are several of these
1606 *  and they all have the format address << 8 | data and bit 31 is polled for
1607 *  completion.
1608 **/
1609s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1610                              u32 offset, u8 data)
1611{
1612        u32 i, regvalue = 0;
1613        s32 ret_val = 0;
1614
1615        /* Set up the address and data */
1616        regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1617        wr32(reg, regvalue);
1618
1619        /* Poll the ready bit to see if the MDI read completed */
1620        for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1621                udelay(5);
1622                regvalue = rd32(reg);
1623                if (regvalue & E1000_GEN_CTL_READY)
1624                        break;
1625        }
1626        if (!(regvalue & E1000_GEN_CTL_READY)) {
1627                hw_dbg("Reg %08x did not indicate ready\n", reg);
1628                ret_val = -E1000_ERR_PHY;
1629                goto out;
1630        }
1631
1632out:
1633        return ret_val;
1634}
1635
1636/**
1637 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1638 *  @hw: pointer to the HW structure
1639 *
1640 *  Verifies the hardware needs to leave interface enabled so that frames can
1641 *  be directed to and from the management interface.
1642 **/
1643bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1644{
1645        u32 manc;
1646        u32 fwsm, factps;
1647        bool ret_val = false;
1648
1649        if (!hw->mac.asf_firmware_present)
1650                goto out;
1651
1652        manc = rd32(E1000_MANC);
1653
1654        if (!(manc & E1000_MANC_RCV_TCO_EN))
1655                goto out;
1656
1657        if (hw->mac.arc_subsystem_valid) {
1658                fwsm = rd32(E1000_FWSM);
1659                factps = rd32(E1000_FACTPS);
1660
1661                if (!(factps & E1000_FACTPS_MNGCG) &&
1662                    ((fwsm & E1000_FWSM_MODE_MASK) ==
1663                     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1664                        ret_val = true;
1665                        goto out;
1666                }
1667        } else {
1668                if ((manc & E1000_MANC_SMBUS_EN) &&
1669                    !(manc & E1000_MANC_ASF_EN)) {
1670                        ret_val = true;
1671                        goto out;
1672                }
1673        }
1674
1675out:
1676        return ret_val;
1677}
1678