linux/drivers/net/ethernet/intel/igb/igb_ptp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
   3 *
   4 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include <linux/module.h>
  20#include <linux/device.h>
  21#include <linux/pci.h>
  22#include <linux/ptp_classify.h>
  23
  24#include "igb.h"
  25
  26#define INCVALUE_MASK           0x7fffffff
  27#define ISGN                    0x80000000
  28
  29/* The 82580 timesync updates the system timer every 8ns by 8ns,
  30 * and this update value cannot be reprogrammed.
  31 *
  32 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  33 * nanoseconds time values for very long. For the 82580, SYSTIM always
  34 * counts nanoseconds, but the upper 24 bits are not available. The
  35 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  36 * register, TIMINCA.
  37 *
  38 * For the 82576, the SYSTIM register time unit is affect by the
  39 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  40 * field are needed to provide the nominal 16 nanosecond period,
  41 * leaving 19 bits for fractional nanoseconds.
  42 *
  43 * We scale the NIC clock cycle by a large factor so that relatively
  44 * small clock corrections can be added or subtracted at each clock
  45 * tick. The drawbacks of a large factor are a) that the clock
  46 * register overflows more quickly (not such a big deal) and b) that
  47 * the increment per tick has to fit into 24 bits.  As a result we
  48 * need to use a shift of 19 so we can fit a value of 16 into the
  49 * TIMINCA register.
  50 *
  51 *
  52 *             SYSTIMH            SYSTIML
  53 *        +--------------+   +---+---+------+
  54 *  82576 |      32      |   | 8 | 5 |  19  |
  55 *        +--------------+   +---+---+------+
  56 *         \________ 45 bits _______/  fract
  57 *
  58 *        +----------+---+   +--------------+
  59 *  82580 |    24    | 8 |   |      32      |
  60 *        +----------+---+   +--------------+
  61 *          reserved  \______ 40 bits _____/
  62 *
  63 *
  64 * The 45 bit 82576 SYSTIM overflows every
  65 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  66 *
  67 * The 40 bit 82580 SYSTIM overflows every
  68 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  69 */
  70
  71#define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
  72#define IGB_PTP_TX_TIMEOUT              (HZ * 15)
  73#define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
  74#define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  75#define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
  76#define IGB_NBITS_82580                 40
  77
  78static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  79
  80/* SYSTIM read access for the 82576 */
  81static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  82{
  83        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  84        struct e1000_hw *hw = &igb->hw;
  85        u64 val;
  86        u32 lo, hi;
  87
  88        lo = rd32(E1000_SYSTIML);
  89        hi = rd32(E1000_SYSTIMH);
  90
  91        val = ((u64) hi) << 32;
  92        val |= lo;
  93
  94        return val;
  95}
  96
  97/* SYSTIM read access for the 82580 */
  98static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  99{
 100        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
 101        struct e1000_hw *hw = &igb->hw;
 102        u32 lo, hi;
 103        u64 val;
 104
 105        /* The timestamp latches on lowest register read. For the 82580
 106         * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 107         * need to provide nanosecond resolution, so we just ignore it.
 108         */
 109        rd32(E1000_SYSTIMR);
 110        lo = rd32(E1000_SYSTIML);
 111        hi = rd32(E1000_SYSTIMH);
 112
 113        val = ((u64) hi) << 32;
 114        val |= lo;
 115
 116        return val;
 117}
 118
 119/* SYSTIM read access for I210/I211 */
 120static void igb_ptp_read_i210(struct igb_adapter *adapter,
 121                              struct timespec64 *ts)
 122{
 123        struct e1000_hw *hw = &adapter->hw;
 124        u32 sec, nsec;
 125
 126        /* The timestamp latches on lowest register read. For I210/I211, the
 127         * lowest register is SYSTIMR. Since we only need to provide nanosecond
 128         * resolution, we can ignore it.
 129         */
 130        rd32(E1000_SYSTIMR);
 131        nsec = rd32(E1000_SYSTIML);
 132        sec = rd32(E1000_SYSTIMH);
 133
 134        ts->tv_sec = sec;
 135        ts->tv_nsec = nsec;
 136}
 137
 138static void igb_ptp_write_i210(struct igb_adapter *adapter,
 139                               const struct timespec64 *ts)
 140{
 141        struct e1000_hw *hw = &adapter->hw;
 142
 143        /* Writing the SYSTIMR register is not necessary as it only provides
 144         * sub-nanosecond resolution.
 145         */
 146        wr32(E1000_SYSTIML, ts->tv_nsec);
 147        wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 148}
 149
 150/**
 151 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 152 * @adapter: board private structure
 153 * @hwtstamps: timestamp structure to update
 154 * @systim: unsigned 64bit system time value.
 155 *
 156 * We need to convert the system time value stored in the RX/TXSTMP registers
 157 * into a hwtstamp which can be used by the upper level timestamping functions.
 158 *
 159 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 160 * system time value. This is needed because reading the 64 bit time
 161 * value involves reading two (or three) 32 bit registers. The first
 162 * read latches the value. Ditto for writing.
 163 *
 164 * In addition, here have extended the system time with an overflow
 165 * counter in software.
 166 **/
 167static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 168                                       struct skb_shared_hwtstamps *hwtstamps,
 169                                       u64 systim)
 170{
 171        unsigned long flags;
 172        u64 ns;
 173
 174        switch (adapter->hw.mac.type) {
 175        case e1000_82576:
 176        case e1000_82580:
 177        case e1000_i354:
 178        case e1000_i350:
 179                spin_lock_irqsave(&adapter->tmreg_lock, flags);
 180
 181                ns = timecounter_cyc2time(&adapter->tc, systim);
 182
 183                spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 184
 185                memset(hwtstamps, 0, sizeof(*hwtstamps));
 186                hwtstamps->hwtstamp = ns_to_ktime(ns);
 187                break;
 188        case e1000_i210:
 189        case e1000_i211:
 190                memset(hwtstamps, 0, sizeof(*hwtstamps));
 191                /* Upper 32 bits contain s, lower 32 bits contain ns. */
 192                hwtstamps->hwtstamp = ktime_set(systim >> 32,
 193                                                systim & 0xFFFFFFFF);
 194                break;
 195        default:
 196                break;
 197        }
 198}
 199
 200/* PTP clock operations */
 201static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 202{
 203        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 204                                               ptp_caps);
 205        struct e1000_hw *hw = &igb->hw;
 206        int neg_adj = 0;
 207        u64 rate;
 208        u32 incvalue;
 209
 210        if (ppb < 0) {
 211                neg_adj = 1;
 212                ppb = -ppb;
 213        }
 214        rate = ppb;
 215        rate <<= 14;
 216        rate = div_u64(rate, 1953125);
 217
 218        incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 219
 220        if (neg_adj)
 221                incvalue -= rate;
 222        else
 223                incvalue += rate;
 224
 225        wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 226
 227        return 0;
 228}
 229
 230static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 231{
 232        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 233                                               ptp_caps);
 234        struct e1000_hw *hw = &igb->hw;
 235        int neg_adj = 0;
 236        u64 rate;
 237        u32 inca;
 238
 239        if (scaled_ppm < 0) {
 240                neg_adj = 1;
 241                scaled_ppm = -scaled_ppm;
 242        }
 243        rate = scaled_ppm;
 244        rate <<= 13;
 245        rate = div_u64(rate, 15625);
 246
 247        inca = rate & INCVALUE_MASK;
 248        if (neg_adj)
 249                inca |= ISGN;
 250
 251        wr32(E1000_TIMINCA, inca);
 252
 253        return 0;
 254}
 255
 256static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 257{
 258        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 259                                               ptp_caps);
 260        unsigned long flags;
 261
 262        spin_lock_irqsave(&igb->tmreg_lock, flags);
 263        timecounter_adjtime(&igb->tc, delta);
 264        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 265
 266        return 0;
 267}
 268
 269static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 270{
 271        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 272                                               ptp_caps);
 273        unsigned long flags;
 274        struct timespec64 now, then = ns_to_timespec64(delta);
 275
 276        spin_lock_irqsave(&igb->tmreg_lock, flags);
 277
 278        igb_ptp_read_i210(igb, &now);
 279        now = timespec64_add(now, then);
 280        igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 281
 282        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 283
 284        return 0;
 285}
 286
 287static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
 288                                 struct timespec64 *ts)
 289{
 290        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 291                                               ptp_caps);
 292        unsigned long flags;
 293        u64 ns;
 294
 295        spin_lock_irqsave(&igb->tmreg_lock, flags);
 296
 297        ns = timecounter_read(&igb->tc);
 298
 299        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 300
 301        *ts = ns_to_timespec64(ns);
 302
 303        return 0;
 304}
 305
 306static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
 307                                struct timespec64 *ts)
 308{
 309        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 310                                               ptp_caps);
 311        unsigned long flags;
 312
 313        spin_lock_irqsave(&igb->tmreg_lock, flags);
 314
 315        igb_ptp_read_i210(igb, ts);
 316
 317        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 318
 319        return 0;
 320}
 321
 322static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 323                                 const struct timespec64 *ts)
 324{
 325        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 326                                               ptp_caps);
 327        unsigned long flags;
 328        u64 ns;
 329
 330        ns = timespec64_to_ns(ts);
 331
 332        spin_lock_irqsave(&igb->tmreg_lock, flags);
 333
 334        timecounter_init(&igb->tc, &igb->cc, ns);
 335
 336        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 337
 338        return 0;
 339}
 340
 341static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 342                                const struct timespec64 *ts)
 343{
 344        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 345                                               ptp_caps);
 346        unsigned long flags;
 347
 348        spin_lock_irqsave(&igb->tmreg_lock, flags);
 349
 350        igb_ptp_write_i210(igb, ts);
 351
 352        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 353
 354        return 0;
 355}
 356
 357static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 358{
 359        u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 360        static const u32 mask[IGB_N_SDP] = {
 361                E1000_CTRL_SDP0_DIR,
 362                E1000_CTRL_SDP1_DIR,
 363                E1000_CTRL_EXT_SDP2_DIR,
 364                E1000_CTRL_EXT_SDP3_DIR,
 365        };
 366
 367        if (input)
 368                *ptr &= ~mask[pin];
 369        else
 370                *ptr |= mask[pin];
 371}
 372
 373static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 374{
 375        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 376                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 377        };
 378        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 379                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 380        };
 381        static const u32 ts_sdp_en[IGB_N_SDP] = {
 382                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 383        };
 384        struct e1000_hw *hw = &igb->hw;
 385        u32 ctrl, ctrl_ext, tssdp = 0;
 386
 387        ctrl = rd32(E1000_CTRL);
 388        ctrl_ext = rd32(E1000_CTRL_EXT);
 389        tssdp = rd32(E1000_TSSDP);
 390
 391        igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 392
 393        /* Make sure this pin is not enabled as an output. */
 394        tssdp &= ~ts_sdp_en[pin];
 395
 396        if (chan == 1) {
 397                tssdp &= ~AUX1_SEL_SDP3;
 398                tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 399        } else {
 400                tssdp &= ~AUX0_SEL_SDP3;
 401                tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 402        }
 403
 404        wr32(E1000_TSSDP, tssdp);
 405        wr32(E1000_CTRL, ctrl);
 406        wr32(E1000_CTRL_EXT, ctrl_ext);
 407}
 408
 409static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 410{
 411        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 412                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 413        };
 414        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 415                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 416        };
 417        static const u32 ts_sdp_en[IGB_N_SDP] = {
 418                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 419        };
 420        static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 421                TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 422                TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 423        };
 424        static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 425                TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 426                TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 427        };
 428        static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 429                TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 430                TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 431        };
 432        static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 433                TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 434                TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 435        };
 436        static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 437                TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 438                TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 439        };
 440        struct e1000_hw *hw = &igb->hw;
 441        u32 ctrl, ctrl_ext, tssdp = 0;
 442
 443        ctrl = rd32(E1000_CTRL);
 444        ctrl_ext = rd32(E1000_CTRL_EXT);
 445        tssdp = rd32(E1000_TSSDP);
 446
 447        igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 448
 449        /* Make sure this pin is not enabled as an input. */
 450        if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 451                tssdp &= ~AUX0_TS_SDP_EN;
 452
 453        if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 454                tssdp &= ~AUX1_TS_SDP_EN;
 455
 456        tssdp &= ~ts_sdp_sel_clr[pin];
 457        if (freq) {
 458                if (chan == 1)
 459                        tssdp |= ts_sdp_sel_fc1[pin];
 460                else
 461                        tssdp |= ts_sdp_sel_fc0[pin];
 462        } else {
 463                if (chan == 1)
 464                        tssdp |= ts_sdp_sel_tt1[pin];
 465                else
 466                        tssdp |= ts_sdp_sel_tt0[pin];
 467        }
 468        tssdp |= ts_sdp_en[pin];
 469
 470        wr32(E1000_TSSDP, tssdp);
 471        wr32(E1000_CTRL, ctrl);
 472        wr32(E1000_CTRL_EXT, ctrl_ext);
 473}
 474
 475static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 476                                       struct ptp_clock_request *rq, int on)
 477{
 478        struct igb_adapter *igb =
 479                container_of(ptp, struct igb_adapter, ptp_caps);
 480        struct e1000_hw *hw = &igb->hw;
 481        u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 482        unsigned long flags;
 483        struct timespec64 ts;
 484        int use_freq = 0, pin = -1;
 485        s64 ns;
 486
 487        switch (rq->type) {
 488        case PTP_CLK_REQ_EXTTS:
 489                if (on) {
 490                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 491                                           rq->extts.index);
 492                        if (pin < 0)
 493                                return -EBUSY;
 494                }
 495                if (rq->extts.index == 1) {
 496                        tsauxc_mask = TSAUXC_EN_TS1;
 497                        tsim_mask = TSINTR_AUTT1;
 498                } else {
 499                        tsauxc_mask = TSAUXC_EN_TS0;
 500                        tsim_mask = TSINTR_AUTT0;
 501                }
 502                spin_lock_irqsave(&igb->tmreg_lock, flags);
 503                tsauxc = rd32(E1000_TSAUXC);
 504                tsim = rd32(E1000_TSIM);
 505                if (on) {
 506                        igb_pin_extts(igb, rq->extts.index, pin);
 507                        tsauxc |= tsauxc_mask;
 508                        tsim |= tsim_mask;
 509                } else {
 510                        tsauxc &= ~tsauxc_mask;
 511                        tsim &= ~tsim_mask;
 512                }
 513                wr32(E1000_TSAUXC, tsauxc);
 514                wr32(E1000_TSIM, tsim);
 515                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 516                return 0;
 517
 518        case PTP_CLK_REQ_PEROUT:
 519                if (on) {
 520                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 521                                           rq->perout.index);
 522                        if (pin < 0)
 523                                return -EBUSY;
 524                }
 525                ts.tv_sec = rq->perout.period.sec;
 526                ts.tv_nsec = rq->perout.period.nsec;
 527                ns = timespec64_to_ns(&ts);
 528                ns = ns >> 1;
 529                if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 530                           (ns == 250000000LL) || (ns == 500000000LL))) {
 531                        if (ns < 8LL)
 532                                return -EINVAL;
 533                        use_freq = 1;
 534                }
 535                ts = ns_to_timespec64(ns);
 536                if (rq->perout.index == 1) {
 537                        if (use_freq) {
 538                                tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 539                                tsim_mask = 0;
 540                        } else {
 541                                tsauxc_mask = TSAUXC_EN_TT1;
 542                                tsim_mask = TSINTR_TT1;
 543                        }
 544                        trgttiml = E1000_TRGTTIML1;
 545                        trgttimh = E1000_TRGTTIMH1;
 546                        freqout = E1000_FREQOUT1;
 547                } else {
 548                        if (use_freq) {
 549                                tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 550                                tsim_mask = 0;
 551                        } else {
 552                                tsauxc_mask = TSAUXC_EN_TT0;
 553                                tsim_mask = TSINTR_TT0;
 554                        }
 555                        trgttiml = E1000_TRGTTIML0;
 556                        trgttimh = E1000_TRGTTIMH0;
 557                        freqout = E1000_FREQOUT0;
 558                }
 559                spin_lock_irqsave(&igb->tmreg_lock, flags);
 560                tsauxc = rd32(E1000_TSAUXC);
 561                tsim = rd32(E1000_TSIM);
 562                if (rq->perout.index == 1) {
 563                        tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 564                        tsim &= ~TSINTR_TT1;
 565                } else {
 566                        tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 567                        tsim &= ~TSINTR_TT0;
 568                }
 569                if (on) {
 570                        int i = rq->perout.index;
 571                        igb_pin_perout(igb, i, pin, use_freq);
 572                        igb->perout[i].start.tv_sec = rq->perout.start.sec;
 573                        igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 574                        igb->perout[i].period.tv_sec = ts.tv_sec;
 575                        igb->perout[i].period.tv_nsec = ts.tv_nsec;
 576                        wr32(trgttimh, rq->perout.start.sec);
 577                        wr32(trgttiml, rq->perout.start.nsec);
 578                        if (use_freq)
 579                                wr32(freqout, ns);
 580                        tsauxc |= tsauxc_mask;
 581                        tsim |= tsim_mask;
 582                }
 583                wr32(E1000_TSAUXC, tsauxc);
 584                wr32(E1000_TSIM, tsim);
 585                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 586                return 0;
 587
 588        case PTP_CLK_REQ_PPS:
 589                spin_lock_irqsave(&igb->tmreg_lock, flags);
 590                tsim = rd32(E1000_TSIM);
 591                if (on)
 592                        tsim |= TSINTR_SYS_WRAP;
 593                else
 594                        tsim &= ~TSINTR_SYS_WRAP;
 595                igb->pps_sys_wrap_on = !!on;
 596                wr32(E1000_TSIM, tsim);
 597                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 598                return 0;
 599        }
 600
 601        return -EOPNOTSUPP;
 602}
 603
 604static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 605                                  struct ptp_clock_request *rq, int on)
 606{
 607        return -EOPNOTSUPP;
 608}
 609
 610static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 611                              enum ptp_pin_function func, unsigned int chan)
 612{
 613        switch (func) {
 614        case PTP_PF_NONE:
 615        case PTP_PF_EXTTS:
 616        case PTP_PF_PEROUT:
 617                break;
 618        case PTP_PF_PHYSYNC:
 619                return -1;
 620        }
 621        return 0;
 622}
 623
 624/**
 625 * igb_ptp_tx_work
 626 * @work: pointer to work struct
 627 *
 628 * This work function polls the TSYNCTXCTL valid bit to determine when a
 629 * timestamp has been taken for the current stored skb.
 630 **/
 631static void igb_ptp_tx_work(struct work_struct *work)
 632{
 633        struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 634                                                   ptp_tx_work);
 635        struct e1000_hw *hw = &adapter->hw;
 636        u32 tsynctxctl;
 637
 638        if (!adapter->ptp_tx_skb)
 639                return;
 640
 641        if (time_is_before_jiffies(adapter->ptp_tx_start +
 642                                   IGB_PTP_TX_TIMEOUT)) {
 643                dev_kfree_skb_any(adapter->ptp_tx_skb);
 644                adapter->ptp_tx_skb = NULL;
 645                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 646                adapter->tx_hwtstamp_timeouts++;
 647                /* Clear the tx valid bit in TSYNCTXCTL register to enable
 648                 * interrupt
 649                 */
 650                rd32(E1000_TXSTMPH);
 651                dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 652                return;
 653        }
 654
 655        tsynctxctl = rd32(E1000_TSYNCTXCTL);
 656        if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 657                igb_ptp_tx_hwtstamp(adapter);
 658        else
 659                /* reschedule to check later */
 660                schedule_work(&adapter->ptp_tx_work);
 661}
 662
 663static void igb_ptp_overflow_check(struct work_struct *work)
 664{
 665        struct igb_adapter *igb =
 666                container_of(work, struct igb_adapter, ptp_overflow_work.work);
 667        struct timespec64 ts;
 668
 669        igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
 670
 671        pr_debug("igb overflow check at %lld.%09lu\n",
 672                 (long long) ts.tv_sec, ts.tv_nsec);
 673
 674        schedule_delayed_work(&igb->ptp_overflow_work,
 675                              IGB_SYSTIM_OVERFLOW_PERIOD);
 676}
 677
 678/**
 679 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 680 * @adapter: private network adapter structure
 681 *
 682 * This watchdog task is scheduled to detect error case where hardware has
 683 * dropped an Rx packet that was timestamped when the ring is full. The
 684 * particular error is rare but leaves the device in a state unable to timestamp
 685 * any future packets.
 686 **/
 687void igb_ptp_rx_hang(struct igb_adapter *adapter)
 688{
 689        struct e1000_hw *hw = &adapter->hw;
 690        u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 691        unsigned long rx_event;
 692
 693        /* Other hardware uses per-packet timestamps */
 694        if (hw->mac.type != e1000_82576)
 695                return;
 696
 697        /* If we don't have a valid timestamp in the registers, just update the
 698         * timeout counter and exit
 699         */
 700        if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 701                adapter->last_rx_ptp_check = jiffies;
 702                return;
 703        }
 704
 705        /* Determine the most recent watchdog or rx_timestamp event */
 706        rx_event = adapter->last_rx_ptp_check;
 707        if (time_after(adapter->last_rx_timestamp, rx_event))
 708                rx_event = adapter->last_rx_timestamp;
 709
 710        /* Only need to read the high RXSTMP register to clear the lock */
 711        if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 712                rd32(E1000_RXSTMPH);
 713                adapter->last_rx_ptp_check = jiffies;
 714                adapter->rx_hwtstamp_cleared++;
 715                dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 716        }
 717}
 718
 719/**
 720 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 721 * @adapter: private network adapter structure
 722 */
 723void igb_ptp_tx_hang(struct igb_adapter *adapter)
 724{
 725        struct e1000_hw *hw = &adapter->hw;
 726        bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 727                                              IGB_PTP_TX_TIMEOUT);
 728
 729        if (!adapter->ptp_tx_skb)
 730                return;
 731
 732        if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 733                return;
 734
 735        /* If we haven't received a timestamp within the timeout, it is
 736         * reasonable to assume that it will never occur, so we can unlock the
 737         * timestamp bit when this occurs.
 738         */
 739        if (timeout) {
 740                cancel_work_sync(&adapter->ptp_tx_work);
 741                dev_kfree_skb_any(adapter->ptp_tx_skb);
 742                adapter->ptp_tx_skb = NULL;
 743                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 744                adapter->tx_hwtstamp_timeouts++;
 745                /* Clear the tx valid bit in TSYNCTXCTL register to enable
 746                 * interrupt
 747                 */
 748                rd32(E1000_TXSTMPH);
 749                dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 750        }
 751}
 752
 753/**
 754 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 755 * @adapter: Board private structure.
 756 *
 757 * If we were asked to do hardware stamping and such a time stamp is
 758 * available, then it must have been for this skb here because we only
 759 * allow only one such packet into the queue.
 760 **/
 761static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 762{
 763        struct sk_buff *skb = adapter->ptp_tx_skb;
 764        struct e1000_hw *hw = &adapter->hw;
 765        struct skb_shared_hwtstamps shhwtstamps;
 766        u64 regval;
 767        int adjust = 0;
 768
 769        regval = rd32(E1000_TXSTMPL);
 770        regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 771
 772        igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 773        /* adjust timestamp for the TX latency based on link speed */
 774        if (adapter->hw.mac.type == e1000_i210) {
 775                switch (adapter->link_speed) {
 776                case SPEED_10:
 777                        adjust = IGB_I210_TX_LATENCY_10;
 778                        break;
 779                case SPEED_100:
 780                        adjust = IGB_I210_TX_LATENCY_100;
 781                        break;
 782                case SPEED_1000:
 783                        adjust = IGB_I210_TX_LATENCY_1000;
 784                        break;
 785                }
 786        }
 787
 788        shhwtstamps.hwtstamp =
 789                ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 790
 791        /* Clear the lock early before calling skb_tstamp_tx so that
 792         * applications are not woken up before the lock bit is clear. We use
 793         * a copy of the skb pointer to ensure other threads can't change it
 794         * while we're notifying the stack.
 795         */
 796        adapter->ptp_tx_skb = NULL;
 797        clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 798
 799        /* Notify the stack and free the skb after we've unlocked */
 800        skb_tstamp_tx(skb, &shhwtstamps);
 801        dev_kfree_skb_any(skb);
 802}
 803
 804/**
 805 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 806 * @q_vector: Pointer to interrupt specific structure
 807 * @va: Pointer to address containing Rx buffer
 808 * @skb: Buffer containing timestamp and packet
 809 *
 810 * This function is meant to retrieve a timestamp from the first buffer of an
 811 * incoming frame.  The value is stored in little endian format starting on
 812 * byte 8.
 813 **/
 814void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
 815                         struct sk_buff *skb)
 816{
 817        __le64 *regval = (__le64 *)va;
 818        struct igb_adapter *adapter = q_vector->adapter;
 819        int adjust = 0;
 820
 821        /* The timestamp is recorded in little endian format.
 822         * DWORD: 0        1        2        3
 823         * Field: Reserved Reserved SYSTIML  SYSTIMH
 824         */
 825        igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
 826                                   le64_to_cpu(regval[1]));
 827
 828        /* adjust timestamp for the RX latency based on link speed */
 829        if (adapter->hw.mac.type == e1000_i210) {
 830                switch (adapter->link_speed) {
 831                case SPEED_10:
 832                        adjust = IGB_I210_RX_LATENCY_10;
 833                        break;
 834                case SPEED_100:
 835                        adjust = IGB_I210_RX_LATENCY_100;
 836                        break;
 837                case SPEED_1000:
 838                        adjust = IGB_I210_RX_LATENCY_1000;
 839                        break;
 840                }
 841        }
 842        skb_hwtstamps(skb)->hwtstamp =
 843                ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 844}
 845
 846/**
 847 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 848 * @q_vector: Pointer to interrupt specific structure
 849 * @skb: Buffer containing timestamp and packet
 850 *
 851 * This function is meant to retrieve a timestamp from the internal registers
 852 * of the adapter and store it in the skb.
 853 **/
 854void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 855                         struct sk_buff *skb)
 856{
 857        struct igb_adapter *adapter = q_vector->adapter;
 858        struct e1000_hw *hw = &adapter->hw;
 859        u64 regval;
 860        int adjust = 0;
 861
 862        /* If this bit is set, then the RX registers contain the time stamp. No
 863         * other packet will be time stamped until we read these registers, so
 864         * read the registers to make them available again. Because only one
 865         * packet can be time stamped at a time, we know that the register
 866         * values must belong to this one here and therefore we don't need to
 867         * compare any of the additional attributes stored for it.
 868         *
 869         * If nothing went wrong, then it should have a shared tx_flags that we
 870         * can turn into a skb_shared_hwtstamps.
 871         */
 872        if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 873                return;
 874
 875        regval = rd32(E1000_RXSTMPL);
 876        regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 877
 878        igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 879
 880        /* adjust timestamp for the RX latency based on link speed */
 881        if (adapter->hw.mac.type == e1000_i210) {
 882                switch (adapter->link_speed) {
 883                case SPEED_10:
 884                        adjust = IGB_I210_RX_LATENCY_10;
 885                        break;
 886                case SPEED_100:
 887                        adjust = IGB_I210_RX_LATENCY_100;
 888                        break;
 889                case SPEED_1000:
 890                        adjust = IGB_I210_RX_LATENCY_1000;
 891                        break;
 892                }
 893        }
 894        skb_hwtstamps(skb)->hwtstamp =
 895                ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 896
 897        /* Update the last_rx_timestamp timer in order to enable watchdog check
 898         * for error case of latched timestamp on a dropped packet.
 899         */
 900        adapter->last_rx_timestamp = jiffies;
 901}
 902
 903/**
 904 * igb_ptp_get_ts_config - get hardware time stamping config
 905 * @netdev:
 906 * @ifreq:
 907 *
 908 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 909 * to deconstruct the settings from the registers, just return a shadow copy
 910 * of the last known settings.
 911 **/
 912int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 913{
 914        struct igb_adapter *adapter = netdev_priv(netdev);
 915        struct hwtstamp_config *config = &adapter->tstamp_config;
 916
 917        return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 918                -EFAULT : 0;
 919}
 920
 921/**
 922 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 923 * @adapter: networking device structure
 924 * @config: hwtstamp configuration
 925 *
 926 * Outgoing time stamping can be enabled and disabled. Play nice and
 927 * disable it when requested, although it shouldn't case any overhead
 928 * when no packet needs it. At most one packet in the queue may be
 929 * marked for time stamping, otherwise it would be impossible to tell
 930 * for sure to which packet the hardware time stamp belongs.
 931 *
 932 * Incoming time stamping has to be configured via the hardware
 933 * filters. Not all combinations are supported, in particular event
 934 * type has to be specified. Matching the kind of event packet is
 935 * not supported, with the exception of "all V2 events regardless of
 936 * level 2 or 4".
 937 */
 938static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 939                                      struct hwtstamp_config *config)
 940{
 941        struct e1000_hw *hw = &adapter->hw;
 942        u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 943        u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 944        u32 tsync_rx_cfg = 0;
 945        bool is_l4 = false;
 946        bool is_l2 = false;
 947        u32 regval;
 948
 949        /* reserved for future extensions */
 950        if (config->flags)
 951                return -EINVAL;
 952
 953        switch (config->tx_type) {
 954        case HWTSTAMP_TX_OFF:
 955                tsync_tx_ctl = 0;
 956        case HWTSTAMP_TX_ON:
 957                break;
 958        default:
 959                return -ERANGE;
 960        }
 961
 962        switch (config->rx_filter) {
 963        case HWTSTAMP_FILTER_NONE:
 964                tsync_rx_ctl = 0;
 965                break;
 966        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 967                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 968                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
 969                is_l4 = true;
 970                break;
 971        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 972                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 973                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
 974                is_l4 = true;
 975                break;
 976        case HWTSTAMP_FILTER_PTP_V2_EVENT:
 977        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 978        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 979        case HWTSTAMP_FILTER_PTP_V2_SYNC:
 980        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 981        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 982        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 983        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 984        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 985                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
 986                config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 987                is_l2 = true;
 988                is_l4 = true;
 989                break;
 990        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 991        case HWTSTAMP_FILTER_NTP_ALL:
 992        case HWTSTAMP_FILTER_ALL:
 993                /* 82576 cannot timestamp all packets, which it needs to do to
 994                 * support both V1 Sync and Delay_Req messages
 995                 */
 996                if (hw->mac.type != e1000_82576) {
 997                        tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 998                        config->rx_filter = HWTSTAMP_FILTER_ALL;
 999                        break;
1000                }
1001                /* fall through */
1002        default:
1003                config->rx_filter = HWTSTAMP_FILTER_NONE;
1004                return -ERANGE;
1005        }
1006
1007        if (hw->mac.type == e1000_82575) {
1008                if (tsync_rx_ctl | tsync_tx_ctl)
1009                        return -EINVAL;
1010                return 0;
1011        }
1012
1013        /* Per-packet timestamping only works if all packets are
1014         * timestamped, so enable timestamping in all packets as
1015         * long as one Rx filter was configured.
1016         */
1017        if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1018                tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1019                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1020                config->rx_filter = HWTSTAMP_FILTER_ALL;
1021                is_l2 = true;
1022                is_l4 = true;
1023
1024                if ((hw->mac.type == e1000_i210) ||
1025                    (hw->mac.type == e1000_i211)) {
1026                        regval = rd32(E1000_RXPBS);
1027                        regval |= E1000_RXPBS_CFG_TS_EN;
1028                        wr32(E1000_RXPBS, regval);
1029                }
1030        }
1031
1032        /* enable/disable TX */
1033        regval = rd32(E1000_TSYNCTXCTL);
1034        regval &= ~E1000_TSYNCTXCTL_ENABLED;
1035        regval |= tsync_tx_ctl;
1036        wr32(E1000_TSYNCTXCTL, regval);
1037
1038        /* enable/disable RX */
1039        regval = rd32(E1000_TSYNCRXCTL);
1040        regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1041        regval |= tsync_rx_ctl;
1042        wr32(E1000_TSYNCRXCTL, regval);
1043
1044        /* define which PTP packets are time stamped */
1045        wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1046
1047        /* define ethertype filter for timestamped packets */
1048        if (is_l2)
1049                wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1050                     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1051                      E1000_ETQF_1588 | /* enable timestamping */
1052                      ETH_P_1588));     /* 1588 eth protocol type */
1053        else
1054                wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1055
1056        /* L4 Queue Filter[3]: filter by destination port and protocol */
1057        if (is_l4) {
1058                u32 ftqf = (IPPROTO_UDP /* UDP */
1059                        | E1000_FTQF_VF_BP /* VF not compared */
1060                        | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1061                        | E1000_FTQF_MASK); /* mask all inputs */
1062                ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1063
1064                wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1065                wr32(E1000_IMIREXT(3),
1066                     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1067                if (hw->mac.type == e1000_82576) {
1068                        /* enable source port check */
1069                        wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1070                        ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1071                }
1072                wr32(E1000_FTQF(3), ftqf);
1073        } else {
1074                wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1075        }
1076        wrfl();
1077
1078        /* clear TX/RX time stamp registers, just to be sure */
1079        regval = rd32(E1000_TXSTMPL);
1080        regval = rd32(E1000_TXSTMPH);
1081        regval = rd32(E1000_RXSTMPL);
1082        regval = rd32(E1000_RXSTMPH);
1083
1084        return 0;
1085}
1086
1087/**
1088 * igb_ptp_set_ts_config - set hardware time stamping config
1089 * @netdev:
1090 * @ifreq:
1091 *
1092 **/
1093int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1094{
1095        struct igb_adapter *adapter = netdev_priv(netdev);
1096        struct hwtstamp_config config;
1097        int err;
1098
1099        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1100                return -EFAULT;
1101
1102        err = igb_ptp_set_timestamp_mode(adapter, &config);
1103        if (err)
1104                return err;
1105
1106        /* save these settings for future reference */
1107        memcpy(&adapter->tstamp_config, &config,
1108               sizeof(adapter->tstamp_config));
1109
1110        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1111                -EFAULT : 0;
1112}
1113
1114/**
1115 * igb_ptp_init - Initialize PTP functionality
1116 * @adapter: Board private structure
1117 *
1118 * This function is called at device probe to initialize the PTP
1119 * functionality.
1120 */
1121void igb_ptp_init(struct igb_adapter *adapter)
1122{
1123        struct e1000_hw *hw = &adapter->hw;
1124        struct net_device *netdev = adapter->netdev;
1125        int i;
1126
1127        switch (hw->mac.type) {
1128        case e1000_82576:
1129                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1130                adapter->ptp_caps.owner = THIS_MODULE;
1131                adapter->ptp_caps.max_adj = 999999881;
1132                adapter->ptp_caps.n_ext_ts = 0;
1133                adapter->ptp_caps.pps = 0;
1134                adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1135                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1136                adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1137                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1138                adapter->ptp_caps.enable = igb_ptp_feature_enable;
1139                adapter->cc.read = igb_ptp_read_82576;
1140                adapter->cc.mask = CYCLECOUNTER_MASK(64);
1141                adapter->cc.mult = 1;
1142                adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1143                adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1144                break;
1145        case e1000_82580:
1146        case e1000_i354:
1147        case e1000_i350:
1148                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1149                adapter->ptp_caps.owner = THIS_MODULE;
1150                adapter->ptp_caps.max_adj = 62499999;
1151                adapter->ptp_caps.n_ext_ts = 0;
1152                adapter->ptp_caps.pps = 0;
1153                adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1154                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1155                adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1156                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1157                adapter->ptp_caps.enable = igb_ptp_feature_enable;
1158                adapter->cc.read = igb_ptp_read_82580;
1159                adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1160                adapter->cc.mult = 1;
1161                adapter->cc.shift = 0;
1162                adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1163                break;
1164        case e1000_i210:
1165        case e1000_i211:
1166                for (i = 0; i < IGB_N_SDP; i++) {
1167                        struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1168
1169                        snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1170                        ppd->index = i;
1171                        ppd->func = PTP_PF_NONE;
1172                }
1173                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1174                adapter->ptp_caps.owner = THIS_MODULE;
1175                adapter->ptp_caps.max_adj = 62499999;
1176                adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1177                adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1178                adapter->ptp_caps.n_pins = IGB_N_SDP;
1179                adapter->ptp_caps.pps = 1;
1180                adapter->ptp_caps.pin_config = adapter->sdp_config;
1181                adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1182                adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1183                adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1184                adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1185                adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1186                adapter->ptp_caps.verify = igb_ptp_verify_pin;
1187                break;
1188        default:
1189                adapter->ptp_clock = NULL;
1190                return;
1191        }
1192
1193        spin_lock_init(&adapter->tmreg_lock);
1194        INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1195
1196        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1197                INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1198                                  igb_ptp_overflow_check);
1199
1200        adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1201        adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1202
1203        igb_ptp_reset(adapter);
1204
1205        adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1206                                                &adapter->pdev->dev);
1207        if (IS_ERR(adapter->ptp_clock)) {
1208                adapter->ptp_clock = NULL;
1209                dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1210        } else if (adapter->ptp_clock) {
1211                dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1212                         adapter->netdev->name);
1213                adapter->ptp_flags |= IGB_PTP_ENABLED;
1214        }
1215}
1216
1217/**
1218 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1219 * @adapter: Board private structure
1220 *
1221 * This function stops the overflow check work and PTP Tx timestamp work, and
1222 * will prepare the device for OS suspend.
1223 */
1224void igb_ptp_suspend(struct igb_adapter *adapter)
1225{
1226        if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1227                return;
1228
1229        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1230                cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1231
1232        cancel_work_sync(&adapter->ptp_tx_work);
1233        if (adapter->ptp_tx_skb) {
1234                dev_kfree_skb_any(adapter->ptp_tx_skb);
1235                adapter->ptp_tx_skb = NULL;
1236                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1237        }
1238}
1239
1240/**
1241 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1242 * @adapter: Board private structure.
1243 *
1244 * This function stops the PTP support and cancels the delayed work.
1245 **/
1246void igb_ptp_stop(struct igb_adapter *adapter)
1247{
1248        igb_ptp_suspend(adapter);
1249
1250        if (adapter->ptp_clock) {
1251                ptp_clock_unregister(adapter->ptp_clock);
1252                dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1253                         adapter->netdev->name);
1254                adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1255        }
1256}
1257
1258/**
1259 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1260 * @adapter: Board private structure.
1261 *
1262 * This function handles the reset work required to re-enable the PTP device.
1263 **/
1264void igb_ptp_reset(struct igb_adapter *adapter)
1265{
1266        struct e1000_hw *hw = &adapter->hw;
1267        unsigned long flags;
1268
1269        /* reset the tstamp_config */
1270        igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1271
1272        spin_lock_irqsave(&adapter->tmreg_lock, flags);
1273
1274        switch (adapter->hw.mac.type) {
1275        case e1000_82576:
1276                /* Dial the nominal frequency. */
1277                wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1278                break;
1279        case e1000_82580:
1280        case e1000_i354:
1281        case e1000_i350:
1282        case e1000_i210:
1283        case e1000_i211:
1284                wr32(E1000_TSAUXC, 0x0);
1285                wr32(E1000_TSSDP, 0x0);
1286                wr32(E1000_TSIM,
1287                     TSYNC_INTERRUPTS |
1288                     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1289                wr32(E1000_IMS, E1000_IMS_TS);
1290                break;
1291        default:
1292                /* No work to do. */
1293                goto out;
1294        }
1295
1296        /* Re-initialize the timer. */
1297        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1298                struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1299
1300                igb_ptp_write_i210(adapter, &ts);
1301        } else {
1302                timecounter_init(&adapter->tc, &adapter->cc,
1303                                 ktime_to_ns(ktime_get_real()));
1304        }
1305out:
1306        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1307
1308        wrfl();
1309
1310        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1311                schedule_delayed_work(&adapter->ptp_overflow_work,
1312                                      IGB_SYSTIM_OVERFLOW_PERIOD);
1313}
1314