linux/drivers/net/ethernet/sfc/falcon/falcon.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/pci.h>
  14#include <linux/module.h>
  15#include <linux/seq_file.h>
  16#include <linux/i2c.h>
  17#include <linux/mii.h>
  18#include <linux/slab.h>
  19#include <linux/sched/signal.h>
  20
  21#include "net_driver.h"
  22#include "bitfield.h"
  23#include "efx.h"
  24#include "nic.h"
  25#include "farch_regs.h"
  26#include "io.h"
  27#include "phy.h"
  28#include "workarounds.h"
  29#include "selftest.h"
  30#include "mdio_10g.h"
  31
  32/* Hardware control for SFC4000 (aka Falcon). */
  33
  34/**************************************************************************
  35 *
  36 * NIC stats
  37 *
  38 **************************************************************************
  39 */
  40
  41#define FALCON_MAC_STATS_SIZE 0x100
  42
  43#define XgRxOctets_offset 0x0
  44#define XgRxOctets_WIDTH 48
  45#define XgRxOctetsOK_offset 0x8
  46#define XgRxOctetsOK_WIDTH 48
  47#define XgRxPkts_offset 0x10
  48#define XgRxPkts_WIDTH 32
  49#define XgRxPktsOK_offset 0x14
  50#define XgRxPktsOK_WIDTH 32
  51#define XgRxBroadcastPkts_offset 0x18
  52#define XgRxBroadcastPkts_WIDTH 32
  53#define XgRxMulticastPkts_offset 0x1C
  54#define XgRxMulticastPkts_WIDTH 32
  55#define XgRxUnicastPkts_offset 0x20
  56#define XgRxUnicastPkts_WIDTH 32
  57#define XgRxUndersizePkts_offset 0x24
  58#define XgRxUndersizePkts_WIDTH 32
  59#define XgRxOversizePkts_offset 0x28
  60#define XgRxOversizePkts_WIDTH 32
  61#define XgRxJabberPkts_offset 0x2C
  62#define XgRxJabberPkts_WIDTH 32
  63#define XgRxUndersizeFCSerrorPkts_offset 0x30
  64#define XgRxUndersizeFCSerrorPkts_WIDTH 32
  65#define XgRxDropEvents_offset 0x34
  66#define XgRxDropEvents_WIDTH 32
  67#define XgRxFCSerrorPkts_offset 0x38
  68#define XgRxFCSerrorPkts_WIDTH 32
  69#define XgRxAlignError_offset 0x3C
  70#define XgRxAlignError_WIDTH 32
  71#define XgRxSymbolError_offset 0x40
  72#define XgRxSymbolError_WIDTH 32
  73#define XgRxInternalMACError_offset 0x44
  74#define XgRxInternalMACError_WIDTH 32
  75#define XgRxControlPkts_offset 0x48
  76#define XgRxControlPkts_WIDTH 32
  77#define XgRxPausePkts_offset 0x4C
  78#define XgRxPausePkts_WIDTH 32
  79#define XgRxPkts64Octets_offset 0x50
  80#define XgRxPkts64Octets_WIDTH 32
  81#define XgRxPkts65to127Octets_offset 0x54
  82#define XgRxPkts65to127Octets_WIDTH 32
  83#define XgRxPkts128to255Octets_offset 0x58
  84#define XgRxPkts128to255Octets_WIDTH 32
  85#define XgRxPkts256to511Octets_offset 0x5C
  86#define XgRxPkts256to511Octets_WIDTH 32
  87#define XgRxPkts512to1023Octets_offset 0x60
  88#define XgRxPkts512to1023Octets_WIDTH 32
  89#define XgRxPkts1024to15xxOctets_offset 0x64
  90#define XgRxPkts1024to15xxOctets_WIDTH 32
  91#define XgRxPkts15xxtoMaxOctets_offset 0x68
  92#define XgRxPkts15xxtoMaxOctets_WIDTH 32
  93#define XgRxLengthError_offset 0x6C
  94#define XgRxLengthError_WIDTH 32
  95#define XgTxPkts_offset 0x80
  96#define XgTxPkts_WIDTH 32
  97#define XgTxOctets_offset 0x88
  98#define XgTxOctets_WIDTH 48
  99#define XgTxMulticastPkts_offset 0x90
 100#define XgTxMulticastPkts_WIDTH 32
 101#define XgTxBroadcastPkts_offset 0x94
 102#define XgTxBroadcastPkts_WIDTH 32
 103#define XgTxUnicastPkts_offset 0x98
 104#define XgTxUnicastPkts_WIDTH 32
 105#define XgTxControlPkts_offset 0x9C
 106#define XgTxControlPkts_WIDTH 32
 107#define XgTxPausePkts_offset 0xA0
 108#define XgTxPausePkts_WIDTH 32
 109#define XgTxPkts64Octets_offset 0xA4
 110#define XgTxPkts64Octets_WIDTH 32
 111#define XgTxPkts65to127Octets_offset 0xA8
 112#define XgTxPkts65to127Octets_WIDTH 32
 113#define XgTxPkts128to255Octets_offset 0xAC
 114#define XgTxPkts128to255Octets_WIDTH 32
 115#define XgTxPkts256to511Octets_offset 0xB0
 116#define XgTxPkts256to511Octets_WIDTH 32
 117#define XgTxPkts512to1023Octets_offset 0xB4
 118#define XgTxPkts512to1023Octets_WIDTH 32
 119#define XgTxPkts1024to15xxOctets_offset 0xB8
 120#define XgTxPkts1024to15xxOctets_WIDTH 32
 121#define XgTxPkts1519toMaxOctets_offset 0xBC
 122#define XgTxPkts1519toMaxOctets_WIDTH 32
 123#define XgTxUndersizePkts_offset 0xC0
 124#define XgTxUndersizePkts_WIDTH 32
 125#define XgTxOversizePkts_offset 0xC4
 126#define XgTxOversizePkts_WIDTH 32
 127#define XgTxNonTcpUdpPkt_offset 0xC8
 128#define XgTxNonTcpUdpPkt_WIDTH 16
 129#define XgTxMacSrcErrPkt_offset 0xCC
 130#define XgTxMacSrcErrPkt_WIDTH 16
 131#define XgTxIpSrcErrPkt_offset 0xD0
 132#define XgTxIpSrcErrPkt_WIDTH 16
 133#define XgDmaDone_offset 0xD4
 134#define XgDmaDone_WIDTH 32
 135
 136#define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
 137        (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
 138
 139#define FALCON_DMA_STAT(ext_name, hw_name)                              \
 140        [FALCON_STAT_ ## ext_name] =                                    \
 141        { #ext_name,                                                    \
 142          /* 48-bit stats are zero-padded to 64 on DMA */               \
 143          hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
 144          hw_name ## _ ## offset }
 145#define FALCON_OTHER_STAT(ext_name)                                     \
 146        [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 147#define GENERIC_SW_STAT(ext_name)                               \
 148        [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 149
 150static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
 151        FALCON_DMA_STAT(tx_bytes, XgTxOctets),
 152        FALCON_DMA_STAT(tx_packets, XgTxPkts),
 153        FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
 154        FALCON_DMA_STAT(tx_control, XgTxControlPkts),
 155        FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
 156        FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
 157        FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
 158        FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
 159        FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
 160        FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
 161        FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
 162        FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
 163        FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
 164        FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
 165        FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
 166        FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
 167        FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
 168        FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
 169        FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
 170        FALCON_DMA_STAT(rx_bytes, XgRxOctets),
 171        FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
 172        FALCON_OTHER_STAT(rx_bad_bytes),
 173        FALCON_DMA_STAT(rx_packets, XgRxPkts),
 174        FALCON_DMA_STAT(rx_good, XgRxPktsOK),
 175        FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
 176        FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
 177        FALCON_DMA_STAT(rx_control, XgRxControlPkts),
 178        FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
 179        FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
 180        FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
 181        FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
 182        FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
 183        FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
 184        FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
 185        FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
 186        FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
 187        FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
 188        FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
 189        FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
 190        FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
 191        FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
 192        FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
 193        FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
 194        FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
 195        FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
 196        FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
 197        FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
 198        GENERIC_SW_STAT(rx_nodesc_trunc),
 199        GENERIC_SW_STAT(rx_noskb_drops),
 200};
 201static const unsigned long falcon_stat_mask[] = {
 202        [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
 203};
 204
 205/**************************************************************************
 206 *
 207 * Basic SPI command set and bit definitions
 208 *
 209 *************************************************************************/
 210
 211#define SPI_WRSR 0x01           /* Write status register */
 212#define SPI_WRITE 0x02          /* Write data to memory array */
 213#define SPI_READ 0x03           /* Read data from memory array */
 214#define SPI_WRDI 0x04           /* Reset write enable latch */
 215#define SPI_RDSR 0x05           /* Read status register */
 216#define SPI_WREN 0x06           /* Set write enable latch */
 217#define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
 218
 219#define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
 220#define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
 221#define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
 222#define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
 223#define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
 224#define SPI_STATUS_NRDY 0x01    /* Device busy flag */
 225
 226/**************************************************************************
 227 *
 228 * Non-volatile memory layout
 229 *
 230 **************************************************************************
 231 */
 232
 233/* SFC4000 flash is partitioned into:
 234 *     0-0x400       chip and board config (see struct falcon_nvconfig)
 235 *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
 236 *     0x8000-end    boot code (mapped to PCI expansion ROM)
 237 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
 238 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
 239 *     0-0x400       chip and board config
 240 *     configurable  VPD
 241 *     0x800-0x1800  boot config
 242 * Aside from the chip and board config, all of these are optional and may
 243 * be absent or truncated depending on the devices used.
 244 */
 245#define FALCON_NVCONFIG_END 0x400U
 246#define FALCON_FLASH_BOOTCODE_START 0x8000U
 247#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
 248#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
 249
 250/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
 251struct falcon_nvconfig_board_v2 {
 252        __le16 nports;
 253        u8 port0_phy_addr;
 254        u8 port0_phy_type;
 255        u8 port1_phy_addr;
 256        u8 port1_phy_type;
 257        __le16 asic_sub_revision;
 258        __le16 board_revision;
 259} __packed;
 260
 261/* Board configuration v3 extra information */
 262struct falcon_nvconfig_board_v3 {
 263        __le32 spi_device_type[2];
 264} __packed;
 265
 266/* Bit numbers for spi_device_type */
 267#define SPI_DEV_TYPE_SIZE_LBN 0
 268#define SPI_DEV_TYPE_SIZE_WIDTH 5
 269#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
 270#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
 271#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
 272#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
 273#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
 274#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
 275#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
 276#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
 277#define SPI_DEV_TYPE_FIELD(type, field)                                 \
 278        (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
 279
 280#define FALCON_NVCONFIG_OFFSET 0x300
 281
 282#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
 283struct falcon_nvconfig {
 284        ef4_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
 285        u8 mac_address[2][8];                   /* 0x310 */
 286        ef4_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
 287        ef4_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
 288        ef4_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
 289        ef4_oword_t hw_init_reg;                        /* 0x350 */
 290        ef4_oword_t nic_stat_reg;                       /* 0x360 */
 291        ef4_oword_t glb_ctl_reg;                        /* 0x370 */
 292        ef4_oword_t srm_cfg_reg;                        /* 0x380 */
 293        ef4_oword_t spare_reg;                          /* 0x390 */
 294        __le16 board_magic_num;                 /* 0x3A0 */
 295        __le16 board_struct_ver;
 296        __le16 board_checksum;
 297        struct falcon_nvconfig_board_v2 board_v2;
 298        ef4_oword_t ee_base_page_reg;                   /* 0x3B0 */
 299        struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
 300} __packed;
 301
 302/*************************************************************************/
 303
 304static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
 305static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
 306
 307static const unsigned int
 308/* "Large" EEPROM device: Atmel AT25640 or similar
 309 * 8 KB, 16-bit address, 32 B write block */
 310large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
 311                     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 312                     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
 313/* Default flash device: Atmel AT25F1024
 314 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
 315default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
 316                      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 317                      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
 318                      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
 319                      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
 320
 321/**************************************************************************
 322 *
 323 * I2C bus - this is a bit-bashing interface using GPIO pins
 324 * Note that it uses the output enables to tristate the outputs
 325 * SDA is the data pin and SCL is the clock
 326 *
 327 **************************************************************************
 328 */
 329static void falcon_setsda(void *data, int state)
 330{
 331        struct ef4_nic *efx = (struct ef4_nic *)data;
 332        ef4_oword_t reg;
 333
 334        ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
 335        EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
 336        ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
 337}
 338
 339static void falcon_setscl(void *data, int state)
 340{
 341        struct ef4_nic *efx = (struct ef4_nic *)data;
 342        ef4_oword_t reg;
 343
 344        ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
 345        EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
 346        ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
 347}
 348
 349static int falcon_getsda(void *data)
 350{
 351        struct ef4_nic *efx = (struct ef4_nic *)data;
 352        ef4_oword_t reg;
 353
 354        ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
 355        return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
 356}
 357
 358static int falcon_getscl(void *data)
 359{
 360        struct ef4_nic *efx = (struct ef4_nic *)data;
 361        ef4_oword_t reg;
 362
 363        ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
 364        return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
 365}
 366
 367static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 368        .setsda         = falcon_setsda,
 369        .setscl         = falcon_setscl,
 370        .getsda         = falcon_getsda,
 371        .getscl         = falcon_getscl,
 372        .udelay         = 5,
 373        /* Wait up to 50 ms for slave to let us pull SCL high */
 374        .timeout        = DIV_ROUND_UP(HZ, 20),
 375};
 376
 377static void falcon_push_irq_moderation(struct ef4_channel *channel)
 378{
 379        ef4_dword_t timer_cmd;
 380        struct ef4_nic *efx = channel->efx;
 381
 382        /* Set timer register */
 383        if (channel->irq_moderation_us) {
 384                unsigned int ticks;
 385
 386                ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
 387                EF4_POPULATE_DWORD_2(timer_cmd,
 388                                     FRF_AB_TC_TIMER_MODE,
 389                                     FFE_BB_TIMER_MODE_INT_HLDOFF,
 390                                     FRF_AB_TC_TIMER_VAL,
 391                                     ticks - 1);
 392        } else {
 393                EF4_POPULATE_DWORD_2(timer_cmd,
 394                                     FRF_AB_TC_TIMER_MODE,
 395                                     FFE_BB_TIMER_MODE_DIS,
 396                                     FRF_AB_TC_TIMER_VAL, 0);
 397        }
 398        BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
 399        ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
 400                               channel->channel);
 401}
 402
 403static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
 404
 405static void falcon_prepare_flush(struct ef4_nic *efx)
 406{
 407        falcon_deconfigure_mac_wrapper(efx);
 408
 409        /* Wait for the tx and rx fifo's to get to the next packet boundary
 410         * (~1ms without back-pressure), then to drain the remainder of the
 411         * fifo's at data path speeds (negligible), with a healthy margin. */
 412        msleep(10);
 413}
 414
 415/* Acknowledge a legacy interrupt from Falcon
 416 *
 417 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 418 *
 419 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 420 * BIU. Interrupt acknowledge is read sensitive so must write instead
 421 * (then read to ensure the BIU collector is flushed)
 422 *
 423 * NB most hardware supports MSI interrupts
 424 */
 425static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
 426{
 427        ef4_dword_t reg;
 428
 429        EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
 430        ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
 431        ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
 432}
 433
 434static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
 435{
 436        struct ef4_nic *efx = dev_id;
 437        ef4_oword_t *int_ker = efx->irq_status.addr;
 438        int syserr;
 439        int queues;
 440
 441        /* Check to see if this is our interrupt.  If it isn't, we
 442         * exit without having touched the hardware.
 443         */
 444        if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
 445                netif_vdbg(efx, intr, efx->net_dev,
 446                           "IRQ %d on CPU %d not for me\n", irq,
 447                           raw_smp_processor_id());
 448                return IRQ_NONE;
 449        }
 450        efx->last_irq_cpu = raw_smp_processor_id();
 451        netif_vdbg(efx, intr, efx->net_dev,
 452                   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
 453                   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
 454
 455        if (!likely(READ_ONCE(efx->irq_soft_enabled)))
 456                return IRQ_HANDLED;
 457
 458        /* Check to see if we have a serious error condition */
 459        syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 460        if (unlikely(syserr))
 461                return ef4_farch_fatal_interrupt(efx);
 462
 463        /* Determine interrupting queues, clear interrupt status
 464         * register and acknowledge the device interrupt.
 465         */
 466        BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
 467        queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
 468        EF4_ZERO_OWORD(*int_ker);
 469        wmb(); /* Ensure the vector is cleared before interrupt ack */
 470        falcon_irq_ack_a1(efx);
 471
 472        if (queues & 1)
 473                ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
 474        if (queues & 2)
 475                ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
 476        return IRQ_HANDLED;
 477}
 478
 479/**************************************************************************
 480 *
 481 * RSS
 482 *
 483 **************************************************************************
 484 */
 485static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
 486                                    const u32 *rx_indir_table)
 487{
 488        (void) efx;
 489        (void) user;
 490        (void) rx_indir_table;
 491        return -ENOSYS;
 492}
 493
 494static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
 495                                        const u32 *rx_indir_table)
 496{
 497        ef4_oword_t temp;
 498
 499        (void) user;
 500        /* Set hash key for IPv4 */
 501        memcpy(&temp, efx->rx_hash_key, sizeof(temp));
 502        ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
 503
 504        memcpy(efx->rx_indir_table, rx_indir_table,
 505               sizeof(efx->rx_indir_table));
 506        ef4_farch_rx_push_indir_table(efx);
 507        return 0;
 508}
 509
 510/**************************************************************************
 511 *
 512 * EEPROM/flash
 513 *
 514 **************************************************************************
 515 */
 516
 517#define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
 518
 519static int falcon_spi_poll(struct ef4_nic *efx)
 520{
 521        ef4_oword_t reg;
 522        ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
 523        return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
 524}
 525
 526/* Wait for SPI command completion */
 527static int falcon_spi_wait(struct ef4_nic *efx)
 528{
 529        /* Most commands will finish quickly, so we start polling at
 530         * very short intervals.  Sometimes the command may have to
 531         * wait for VPD or expansion ROM access outside of our
 532         * control, so we allow up to 100 ms. */
 533        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
 534        int i;
 535
 536        for (i = 0; i < 10; i++) {
 537                if (!falcon_spi_poll(efx))
 538                        return 0;
 539                udelay(10);
 540        }
 541
 542        for (;;) {
 543                if (!falcon_spi_poll(efx))
 544                        return 0;
 545                if (time_after_eq(jiffies, timeout)) {
 546                        netif_err(efx, hw, efx->net_dev,
 547                                  "timed out waiting for SPI\n");
 548                        return -ETIMEDOUT;
 549                }
 550                schedule_timeout_uninterruptible(1);
 551        }
 552}
 553
 554static int
 555falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
 556               unsigned int command, int address,
 557               const void *in, void *out, size_t len)
 558{
 559        bool addressed = (address >= 0);
 560        bool reading = (out != NULL);
 561        ef4_oword_t reg;
 562        int rc;
 563
 564        /* Input validation */
 565        if (len > FALCON_SPI_MAX_LEN)
 566                return -EINVAL;
 567
 568        /* Check that previous command is not still running */
 569        rc = falcon_spi_poll(efx);
 570        if (rc)
 571                return rc;
 572
 573        /* Program address register, if we have an address */
 574        if (addressed) {
 575                EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
 576                ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
 577        }
 578
 579        /* Program data register, if we have data */
 580        if (in != NULL) {
 581                memcpy(&reg, in, len);
 582                ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
 583        }
 584
 585        /* Issue read/write command */
 586        EF4_POPULATE_OWORD_7(reg,
 587                             FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
 588                             FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
 589                             FRF_AB_EE_SPI_HCMD_DABCNT, len,
 590                             FRF_AB_EE_SPI_HCMD_READ, reading,
 591                             FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
 592                             FRF_AB_EE_SPI_HCMD_ADBCNT,
 593                             (addressed ? spi->addr_len : 0),
 594                             FRF_AB_EE_SPI_HCMD_ENC, command);
 595        ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
 596
 597        /* Wait for read/write to complete */
 598        rc = falcon_spi_wait(efx);
 599        if (rc)
 600                return rc;
 601
 602        /* Read data */
 603        if (out != NULL) {
 604                ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
 605                memcpy(out, &reg, len);
 606        }
 607
 608        return 0;
 609}
 610
 611static inline u8
 612falcon_spi_munge_command(const struct falcon_spi_device *spi,
 613                         const u8 command, const unsigned int address)
 614{
 615        return command | (((address >> 8) & spi->munge_address) << 3);
 616}
 617
 618static int
 619falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
 620                loff_t start, size_t len, size_t *retlen, u8 *buffer)
 621{
 622        size_t block_len, pos = 0;
 623        unsigned int command;
 624        int rc = 0;
 625
 626        while (pos < len) {
 627                block_len = min(len - pos, FALCON_SPI_MAX_LEN);
 628
 629                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 630                rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
 631                                    buffer + pos, block_len);
 632                if (rc)
 633                        break;
 634                pos += block_len;
 635
 636                /* Avoid locking up the system */
 637                cond_resched();
 638                if (signal_pending(current)) {
 639                        rc = -EINTR;
 640                        break;
 641                }
 642        }
 643
 644        if (retlen)
 645                *retlen = pos;
 646        return rc;
 647}
 648
 649#ifdef CONFIG_SFC_FALCON_MTD
 650
 651struct falcon_mtd_partition {
 652        struct ef4_mtd_partition common;
 653        const struct falcon_spi_device *spi;
 654        size_t offset;
 655};
 656
 657#define to_falcon_mtd_partition(mtd)                            \
 658        container_of(mtd, struct falcon_mtd_partition, common.mtd)
 659
 660static size_t
 661falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
 662{
 663        return min(FALCON_SPI_MAX_LEN,
 664                   (spi->block_size - (start & (spi->block_size - 1))));
 665}
 666
 667/* Wait up to 10 ms for buffered write completion */
 668static int
 669falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
 670{
 671        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
 672        u8 status;
 673        int rc;
 674
 675        for (;;) {
 676                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 677                                    &status, sizeof(status));
 678                if (rc)
 679                        return rc;
 680                if (!(status & SPI_STATUS_NRDY))
 681                        return 0;
 682                if (time_after_eq(jiffies, timeout)) {
 683                        netif_err(efx, hw, efx->net_dev,
 684                                  "SPI write timeout on device %d"
 685                                  " last status=0x%02x\n",
 686                                  spi->device_id, status);
 687                        return -ETIMEDOUT;
 688                }
 689                schedule_timeout_uninterruptible(1);
 690        }
 691}
 692
 693static int
 694falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
 695                 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
 696{
 697        u8 verify_buffer[FALCON_SPI_MAX_LEN];
 698        size_t block_len, pos = 0;
 699        unsigned int command;
 700        int rc = 0;
 701
 702        while (pos < len) {
 703                rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 704                if (rc)
 705                        break;
 706
 707                block_len = min(len - pos,
 708                                falcon_spi_write_limit(spi, start + pos));
 709                command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
 710                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 711                                    buffer + pos, NULL, block_len);
 712                if (rc)
 713                        break;
 714
 715                rc = falcon_spi_wait_write(efx, spi);
 716                if (rc)
 717                        break;
 718
 719                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 720                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 721                                    NULL, verify_buffer, block_len);
 722                if (memcmp(verify_buffer, buffer + pos, block_len)) {
 723                        rc = -EIO;
 724                        break;
 725                }
 726
 727                pos += block_len;
 728
 729                /* Avoid locking up the system */
 730                cond_resched();
 731                if (signal_pending(current)) {
 732                        rc = -EINTR;
 733                        break;
 734                }
 735        }
 736
 737        if (retlen)
 738                *retlen = pos;
 739        return rc;
 740}
 741
 742static int
 743falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
 744{
 745        const struct falcon_spi_device *spi = part->spi;
 746        struct ef4_nic *efx = part->common.mtd.priv;
 747        u8 status;
 748        int rc, i;
 749
 750        /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
 751        for (i = 0; i < 40; i++) {
 752                __set_current_state(uninterruptible ?
 753                                    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
 754                schedule_timeout(HZ / 10);
 755                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 756                                    &status, sizeof(status));
 757                if (rc)
 758                        return rc;
 759                if (!(status & SPI_STATUS_NRDY))
 760                        return 0;
 761                if (signal_pending(current))
 762                        return -EINTR;
 763        }
 764        pr_err("%s: timed out waiting for %s\n",
 765               part->common.name, part->common.dev_type_name);
 766        return -ETIMEDOUT;
 767}
 768
 769static int
 770falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
 771{
 772        const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
 773                                SPI_STATUS_BP0);
 774        u8 status;
 775        int rc;
 776
 777        rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 778                            &status, sizeof(status));
 779        if (rc)
 780                return rc;
 781
 782        if (!(status & unlock_mask))
 783                return 0; /* already unlocked */
 784
 785        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 786        if (rc)
 787                return rc;
 788        rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
 789        if (rc)
 790                return rc;
 791
 792        status &= ~unlock_mask;
 793        rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
 794                            NULL, sizeof(status));
 795        if (rc)
 796                return rc;
 797        rc = falcon_spi_wait_write(efx, spi);
 798        if (rc)
 799                return rc;
 800
 801        return 0;
 802}
 803
 804#define FALCON_SPI_VERIFY_BUF_LEN 16
 805
 806static int
 807falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
 808{
 809        const struct falcon_spi_device *spi = part->spi;
 810        struct ef4_nic *efx = part->common.mtd.priv;
 811        unsigned pos, block_len;
 812        u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
 813        u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
 814        int rc;
 815
 816        if (len != spi->erase_size)
 817                return -EINVAL;
 818
 819        if (spi->erase_command == 0)
 820                return -EOPNOTSUPP;
 821
 822        rc = falcon_spi_unlock(efx, spi);
 823        if (rc)
 824                return rc;
 825        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 826        if (rc)
 827                return rc;
 828        rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
 829                            NULL, 0);
 830        if (rc)
 831                return rc;
 832        rc = falcon_spi_slow_wait(part, false);
 833
 834        /* Verify the entire region has been wiped */
 835        memset(empty, 0xff, sizeof(empty));
 836        for (pos = 0; pos < len; pos += block_len) {
 837                block_len = min(len - pos, sizeof(buffer));
 838                rc = falcon_spi_read(efx, spi, start + pos, block_len,
 839                                     NULL, buffer);
 840                if (rc)
 841                        return rc;
 842                if (memcmp(empty, buffer, block_len))
 843                        return -EIO;
 844
 845                /* Avoid locking up the system */
 846                cond_resched();
 847                if (signal_pending(current))
 848                        return -EINTR;
 849        }
 850
 851        return rc;
 852}
 853
 854static void falcon_mtd_rename(struct ef4_mtd_partition *part)
 855{
 856        struct ef4_nic *efx = part->mtd.priv;
 857
 858        snprintf(part->name, sizeof(part->name), "%s %s",
 859                 efx->name, part->type_name);
 860}
 861
 862static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
 863                           size_t len, size_t *retlen, u8 *buffer)
 864{
 865        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 866        struct ef4_nic *efx = mtd->priv;
 867        struct falcon_nic_data *nic_data = efx->nic_data;
 868        int rc;
 869
 870        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 871        if (rc)
 872                return rc;
 873        rc = falcon_spi_read(efx, part->spi, part->offset + start,
 874                             len, retlen, buffer);
 875        mutex_unlock(&nic_data->spi_lock);
 876        return rc;
 877}
 878
 879static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
 880{
 881        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 882        struct ef4_nic *efx = mtd->priv;
 883        struct falcon_nic_data *nic_data = efx->nic_data;
 884        int rc;
 885
 886        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 887        if (rc)
 888                return rc;
 889        rc = falcon_spi_erase(part, part->offset + start, len);
 890        mutex_unlock(&nic_data->spi_lock);
 891        return rc;
 892}
 893
 894static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
 895                            size_t len, size_t *retlen, const u8 *buffer)
 896{
 897        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 898        struct ef4_nic *efx = mtd->priv;
 899        struct falcon_nic_data *nic_data = efx->nic_data;
 900        int rc;
 901
 902        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 903        if (rc)
 904                return rc;
 905        rc = falcon_spi_write(efx, part->spi, part->offset + start,
 906                              len, retlen, buffer);
 907        mutex_unlock(&nic_data->spi_lock);
 908        return rc;
 909}
 910
 911static int falcon_mtd_sync(struct mtd_info *mtd)
 912{
 913        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 914        struct ef4_nic *efx = mtd->priv;
 915        struct falcon_nic_data *nic_data = efx->nic_data;
 916        int rc;
 917
 918        mutex_lock(&nic_data->spi_lock);
 919        rc = falcon_spi_slow_wait(part, true);
 920        mutex_unlock(&nic_data->spi_lock);
 921        return rc;
 922}
 923
 924static int falcon_mtd_probe(struct ef4_nic *efx)
 925{
 926        struct falcon_nic_data *nic_data = efx->nic_data;
 927        struct falcon_mtd_partition *parts;
 928        struct falcon_spi_device *spi;
 929        size_t n_parts;
 930        int rc = -ENODEV;
 931
 932        ASSERT_RTNL();
 933
 934        /* Allocate space for maximum number of partitions */
 935        parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
 936        if (!parts)
 937                return -ENOMEM;
 938        n_parts = 0;
 939
 940        spi = &nic_data->spi_flash;
 941        if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
 942                parts[n_parts].spi = spi;
 943                parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
 944                parts[n_parts].common.dev_type_name = "flash";
 945                parts[n_parts].common.type_name = "sfc_flash_bootrom";
 946                parts[n_parts].common.mtd.type = MTD_NORFLASH;
 947                parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
 948                parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
 949                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 950                n_parts++;
 951        }
 952
 953        spi = &nic_data->spi_eeprom;
 954        if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
 955                parts[n_parts].spi = spi;
 956                parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
 957                parts[n_parts].common.dev_type_name = "EEPROM";
 958                parts[n_parts].common.type_name = "sfc_bootconfig";
 959                parts[n_parts].common.mtd.type = MTD_RAM;
 960                parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
 961                parts[n_parts].common.mtd.size =
 962                        min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
 963                        FALCON_EEPROM_BOOTCONFIG_START;
 964                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 965                n_parts++;
 966        }
 967
 968        rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
 969        if (rc)
 970                kfree(parts);
 971        return rc;
 972}
 973
 974#endif /* CONFIG_SFC_FALCON_MTD */
 975
 976/**************************************************************************
 977 *
 978 * XMAC operations
 979 *
 980 **************************************************************************
 981 */
 982
 983/* Configure the XAUI driver that is an output from Falcon */
 984static void falcon_setup_xaui(struct ef4_nic *efx)
 985{
 986        ef4_oword_t sdctl, txdrv;
 987
 988        /* Move the XAUI into low power, unless there is no PHY, in
 989         * which case the XAUI will have to drive a cable. */
 990        if (efx->phy_type == PHY_TYPE_NONE)
 991                return;
 992
 993        ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
 994        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 995        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 996        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 997        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 998        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 999        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
1000        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1001        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1002        ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1003
1004        EF4_POPULATE_OWORD_8(txdrv,
1005                             FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1006                             FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1007                             FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1008                             FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1009                             FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1010                             FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1011                             FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1012                             FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1013        ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1014}
1015
1016int falcon_reset_xaui(struct ef4_nic *efx)
1017{
1018        struct falcon_nic_data *nic_data = efx->nic_data;
1019        ef4_oword_t reg;
1020        int count;
1021
1022        /* Don't fetch MAC statistics over an XMAC reset */
1023        WARN_ON(nic_data->stats_disable_count == 0);
1024
1025        /* Start reset sequence */
1026        EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1027        ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1028
1029        /* Wait up to 10 ms for completion, then reinitialise */
1030        for (count = 0; count < 1000; count++) {
1031                ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1032                if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1033                    EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1034                        falcon_setup_xaui(efx);
1035                        return 0;
1036                }
1037                udelay(10);
1038        }
1039        netif_err(efx, hw, efx->net_dev,
1040                  "timed out waiting for XAUI/XGXS reset\n");
1041        return -ETIMEDOUT;
1042}
1043
1044static void falcon_ack_status_intr(struct ef4_nic *efx)
1045{
1046        struct falcon_nic_data *nic_data = efx->nic_data;
1047        ef4_oword_t reg;
1048
1049        if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1050                return;
1051
1052        /* We expect xgmii faults if the wireside link is down */
1053        if (!efx->link_state.up)
1054                return;
1055
1056        /* We can only use this interrupt to signal the negative edge of
1057         * xaui_align [we have to poll the positive edge]. */
1058        if (nic_data->xmac_poll_required)
1059                return;
1060
1061        ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1062}
1063
1064static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1065{
1066        ef4_oword_t reg;
1067        bool align_done, link_ok = false;
1068        int sync_status;
1069
1070        /* Read link status */
1071        ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1072
1073        align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1074        sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1075        if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1076                link_ok = true;
1077
1078        /* Clear link status ready for next read */
1079        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1080        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1081        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1082        ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1083
1084        return link_ok;
1085}
1086
1087static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1088{
1089        /*
1090         * Check MAC's XGXS link status except when using XGMII loopback
1091         * which bypasses the XGXS block.
1092         * If possible, check PHY's XGXS link status except when using
1093         * MAC loopback.
1094         */
1095        return (efx->loopback_mode == LOOPBACK_XGMII ||
1096                falcon_xgxs_link_ok(efx)) &&
1097                (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1098                 LOOPBACK_INTERNAL(efx) ||
1099                 ef4_mdio_phyxgxs_lane_sync(efx));
1100}
1101
1102static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1103{
1104        unsigned int max_frame_len;
1105        ef4_oword_t reg;
1106        bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1107        bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1108
1109        /* Configure MAC  - cut-thru mode is hard wired on */
1110        EF4_POPULATE_OWORD_3(reg,
1111                             FRF_AB_XM_RX_JUMBO_MODE, 1,
1112                             FRF_AB_XM_TX_STAT_EN, 1,
1113                             FRF_AB_XM_RX_STAT_EN, 1);
1114        ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1115
1116        /* Configure TX */
1117        EF4_POPULATE_OWORD_6(reg,
1118                             FRF_AB_XM_TXEN, 1,
1119                             FRF_AB_XM_TX_PRMBL, 1,
1120                             FRF_AB_XM_AUTO_PAD, 1,
1121                             FRF_AB_XM_TXCRC, 1,
1122                             FRF_AB_XM_FCNTL, tx_fc,
1123                             FRF_AB_XM_IPG, 0x3);
1124        ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1125
1126        /* Configure RX */
1127        EF4_POPULATE_OWORD_5(reg,
1128                             FRF_AB_XM_RXEN, 1,
1129                             FRF_AB_XM_AUTO_DEPAD, 0,
1130                             FRF_AB_XM_ACPT_ALL_MCAST, 1,
1131                             FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1132                             FRF_AB_XM_PASS_CRC_ERR, 1);
1133        ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1134
1135        /* Set frame length */
1136        max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1137        EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1138        ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1139        EF4_POPULATE_OWORD_2(reg,
1140                             FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1141                             FRF_AB_XM_TX_JUMBO_MODE, 1);
1142        ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1143
1144        EF4_POPULATE_OWORD_2(reg,
1145                             FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1146                             FRF_AB_XM_DIS_FCNTL, !rx_fc);
1147        ef4_writeo(efx, &reg, FR_AB_XM_FC);
1148
1149        /* Set MAC address */
1150        memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1151        ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1152        memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1153        ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1154}
1155
1156static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1157{
1158        ef4_oword_t reg;
1159        bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1160        bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1161        bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1162        bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1163
1164        /* XGXS block is flaky and will need to be reset if moving
1165         * into our out of XGMII, XGXS or XAUI loopbacks. */
1166        ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1167        old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1168        old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1169
1170        ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1171        old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1172
1173        /* The PHY driver may have turned XAUI off */
1174        if ((xgxs_loopback != old_xgxs_loopback) ||
1175            (xaui_loopback != old_xaui_loopback) ||
1176            (xgmii_loopback != old_xgmii_loopback))
1177                falcon_reset_xaui(efx);
1178
1179        ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1180        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1181                            (xgxs_loopback || xaui_loopback) ?
1182                            FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1183        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1184        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1185        ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1186
1187        ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1188        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1189        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1190        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1191        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1192        ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1193}
1194
1195
1196/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1197static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1198{
1199        bool mac_up = falcon_xmac_link_ok(efx);
1200
1201        if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1202            ef4_phy_mode_disabled(efx->phy_mode))
1203                /* XAUI link is expected to be down */
1204                return mac_up;
1205
1206        falcon_stop_nic_stats(efx);
1207
1208        while (!mac_up && tries) {
1209                netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1210                falcon_reset_xaui(efx);
1211                udelay(200);
1212
1213                mac_up = falcon_xmac_link_ok(efx);
1214                --tries;
1215        }
1216
1217        falcon_start_nic_stats(efx);
1218
1219        return mac_up;
1220}
1221
1222static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1223{
1224        return !falcon_xmac_link_ok_retry(efx, 5);
1225}
1226
1227static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1228{
1229        struct falcon_nic_data *nic_data = efx->nic_data;
1230
1231        ef4_farch_filter_sync_rx_mode(efx);
1232
1233        falcon_reconfigure_xgxs_core(efx);
1234        falcon_reconfigure_xmac_core(efx);
1235
1236        falcon_reconfigure_mac_wrapper(efx);
1237
1238        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1239        falcon_ack_status_intr(efx);
1240
1241        return 0;
1242}
1243
1244static void falcon_poll_xmac(struct ef4_nic *efx)
1245{
1246        struct falcon_nic_data *nic_data = efx->nic_data;
1247
1248        /* We expect xgmii faults if the wireside link is down */
1249        if (!efx->link_state.up || !nic_data->xmac_poll_required)
1250                return;
1251
1252        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1253        falcon_ack_status_intr(efx);
1254}
1255
1256/**************************************************************************
1257 *
1258 * MAC wrapper
1259 *
1260 **************************************************************************
1261 */
1262
1263static void falcon_push_multicast_hash(struct ef4_nic *efx)
1264{
1265        union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1266
1267        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1268
1269        ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1270        ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1271}
1272
1273static void falcon_reset_macs(struct ef4_nic *efx)
1274{
1275        struct falcon_nic_data *nic_data = efx->nic_data;
1276        ef4_oword_t reg, mac_ctrl;
1277        int count;
1278
1279        if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1280                /* It's not safe to use GLB_CTL_REG to reset the
1281                 * macs, so instead use the internal MAC resets
1282                 */
1283                EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1284                ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1285
1286                for (count = 0; count < 10000; count++) {
1287                        ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1288                        if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1289                            0)
1290                                return;
1291                        udelay(10);
1292                }
1293
1294                netif_err(efx, hw, efx->net_dev,
1295                          "timed out waiting for XMAC core reset\n");
1296        }
1297
1298        /* Mac stats will fail whist the TX fifo is draining */
1299        WARN_ON(nic_data->stats_disable_count == 0);
1300
1301        ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1302        EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1303        ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1304
1305        ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1306        EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1307        EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1308        EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1309        ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1310
1311        count = 0;
1312        while (1) {
1313                ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1314                if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1315                    !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1316                    !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1317                        netif_dbg(efx, hw, efx->net_dev,
1318                                  "Completed MAC reset after %d loops\n",
1319                                  count);
1320                        break;
1321                }
1322                if (count > 20) {
1323                        netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1324                        break;
1325                }
1326                count++;
1327                udelay(10);
1328        }
1329
1330        /* Ensure the correct MAC is selected before statistics
1331         * are re-enabled by the caller */
1332        ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1333
1334        falcon_setup_xaui(efx);
1335}
1336
1337static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1338{
1339        ef4_oword_t reg;
1340
1341        if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1342            (efx->loopback_mode != LOOPBACK_NONE))
1343                return;
1344
1345        ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1346        /* There is no point in draining more than once */
1347        if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1348                return;
1349
1350        falcon_reset_macs(efx);
1351}
1352
1353static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1354{
1355        ef4_oword_t reg;
1356
1357        if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1358                return;
1359
1360        /* Isolate the MAC -> RX */
1361        ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1362        EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1363        ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1364
1365        /* Isolate TX -> MAC */
1366        falcon_drain_tx_fifo(efx);
1367}
1368
1369static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1370{
1371        struct ef4_link_state *link_state = &efx->link_state;
1372        ef4_oword_t reg;
1373        int link_speed, isolate;
1374
1375        isolate = !!READ_ONCE(efx->reset_pending);
1376
1377        switch (link_state->speed) {
1378        case 10000: link_speed = 3; break;
1379        case 1000:  link_speed = 2; break;
1380        case 100:   link_speed = 1; break;
1381        default:    link_speed = 0; break;
1382        }
1383
1384        /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1385         * as advertised.  Disable to ensure packets are not
1386         * indefinitely held and TX queue can be flushed at any point
1387         * while the link is down. */
1388        EF4_POPULATE_OWORD_5(reg,
1389                             FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1390                             FRF_AB_MAC_BCAD_ACPT, 1,
1391                             FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1392                             FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1393                             FRF_AB_MAC_SPEED, link_speed);
1394        /* On B0, MAC backpressure can be disabled and packets get
1395         * discarded. */
1396        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1397                EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1398                                    !link_state->up || isolate);
1399        }
1400
1401        ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1402
1403        /* Restore the multicast hash registers. */
1404        falcon_push_multicast_hash(efx);
1405
1406        ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1407        /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1408         * initialisation but it may read back as 0) */
1409        EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1410        /* Unisolate the MAC -> RX */
1411        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1412                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1413        ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1414}
1415
1416static void falcon_stats_request(struct ef4_nic *efx)
1417{
1418        struct falcon_nic_data *nic_data = efx->nic_data;
1419        ef4_oword_t reg;
1420
1421        WARN_ON(nic_data->stats_pending);
1422        WARN_ON(nic_data->stats_disable_count);
1423
1424        FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1425        nic_data->stats_pending = true;
1426        wmb(); /* ensure done flag is clear */
1427
1428        /* Initiate DMA transfer of stats */
1429        EF4_POPULATE_OWORD_2(reg,
1430                             FRF_AB_MAC_STAT_DMA_CMD, 1,
1431                             FRF_AB_MAC_STAT_DMA_ADR,
1432                             efx->stats_buffer.dma_addr);
1433        ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1434
1435        mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1436}
1437
1438static void falcon_stats_complete(struct ef4_nic *efx)
1439{
1440        struct falcon_nic_data *nic_data = efx->nic_data;
1441
1442        if (!nic_data->stats_pending)
1443                return;
1444
1445        nic_data->stats_pending = false;
1446        if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1447                rmb(); /* read the done flag before the stats */
1448                ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1449                                     falcon_stat_mask, nic_data->stats,
1450                                     efx->stats_buffer.addr, true);
1451        } else {
1452                netif_err(efx, hw, efx->net_dev,
1453                          "timed out waiting for statistics\n");
1454        }
1455}
1456
1457static void falcon_stats_timer_func(struct timer_list *t)
1458{
1459        struct falcon_nic_data *nic_data = from_timer(nic_data, t,
1460                                                      stats_timer);
1461        struct ef4_nic *efx = nic_data->efx;
1462
1463        spin_lock(&efx->stats_lock);
1464
1465        falcon_stats_complete(efx);
1466        if (nic_data->stats_disable_count == 0)
1467                falcon_stats_request(efx);
1468
1469        spin_unlock(&efx->stats_lock);
1470}
1471
1472static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1473{
1474        struct ef4_link_state old_state = efx->link_state;
1475
1476        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1477        WARN_ON(!LOOPBACK_INTERNAL(efx));
1478
1479        efx->link_state.fd = true;
1480        efx->link_state.fc = efx->wanted_fc;
1481        efx->link_state.up = true;
1482        efx->link_state.speed = 10000;
1483
1484        return !ef4_link_state_equal(&efx->link_state, &old_state);
1485}
1486
1487static int falcon_reconfigure_port(struct ef4_nic *efx)
1488{
1489        int rc;
1490
1491        WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1492
1493        /* Poll the PHY link state *before* reconfiguring it. This means we
1494         * will pick up the correct speed (in loopback) to select the correct
1495         * MAC.
1496         */
1497        if (LOOPBACK_INTERNAL(efx))
1498                falcon_loopback_link_poll(efx);
1499        else
1500                efx->phy_op->poll(efx);
1501
1502        falcon_stop_nic_stats(efx);
1503        falcon_deconfigure_mac_wrapper(efx);
1504
1505        falcon_reset_macs(efx);
1506
1507        efx->phy_op->reconfigure(efx);
1508        rc = falcon_reconfigure_xmac(efx);
1509        BUG_ON(rc);
1510
1511        falcon_start_nic_stats(efx);
1512
1513        /* Synchronise efx->link_state with the kernel */
1514        ef4_link_status_changed(efx);
1515
1516        return 0;
1517}
1518
1519/* TX flow control may automatically turn itself off if the link
1520 * partner (intermittently) stops responding to pause frames. There
1521 * isn't any indication that this has happened, so the best we do is
1522 * leave it up to the user to spot this and fix it by cycling transmit
1523 * flow control on this end.
1524 */
1525
1526static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1527{
1528        /* Schedule a reset to recover */
1529        ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1530}
1531
1532static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1533{
1534        /* Recover by resetting the EM block */
1535        falcon_stop_nic_stats(efx);
1536        falcon_drain_tx_fifo(efx);
1537        falcon_reconfigure_xmac(efx);
1538        falcon_start_nic_stats(efx);
1539}
1540
1541/**************************************************************************
1542 *
1543 * PHY access via GMII
1544 *
1545 **************************************************************************
1546 */
1547
1548/* Wait for GMII access to complete */
1549static int falcon_gmii_wait(struct ef4_nic *efx)
1550{
1551        ef4_oword_t md_stat;
1552        int count;
1553
1554        /* wait up to 50ms - taken max from datasheet */
1555        for (count = 0; count < 5000; count++) {
1556                ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1557                if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1558                        if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1559                            EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1560                                netif_err(efx, hw, efx->net_dev,
1561                                          "error from GMII access "
1562                                          EF4_OWORD_FMT"\n",
1563                                          EF4_OWORD_VAL(md_stat));
1564                                return -EIO;
1565                        }
1566                        return 0;
1567                }
1568                udelay(10);
1569        }
1570        netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1571        return -ETIMEDOUT;
1572}
1573
1574/* Write an MDIO register of a PHY connected to Falcon. */
1575static int falcon_mdio_write(struct net_device *net_dev,
1576                             int prtad, int devad, u16 addr, u16 value)
1577{
1578        struct ef4_nic *efx = netdev_priv(net_dev);
1579        struct falcon_nic_data *nic_data = efx->nic_data;
1580        ef4_oword_t reg;
1581        int rc;
1582
1583        netif_vdbg(efx, hw, efx->net_dev,
1584                   "writing MDIO %d register %d.%d with 0x%04x\n",
1585                    prtad, devad, addr, value);
1586
1587        mutex_lock(&nic_data->mdio_lock);
1588
1589        /* Check MDIO not currently being accessed */
1590        rc = falcon_gmii_wait(efx);
1591        if (rc)
1592                goto out;
1593
1594        /* Write the address/ID register */
1595        EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1596        ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1597
1598        EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1599                             FRF_AB_MD_DEV_ADR, devad);
1600        ef4_writeo(efx, &reg, FR_AB_MD_ID);
1601
1602        /* Write data */
1603        EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1604        ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1605
1606        EF4_POPULATE_OWORD_2(reg,
1607                             FRF_AB_MD_WRC, 1,
1608                             FRF_AB_MD_GC, 0);
1609        ef4_writeo(efx, &reg, FR_AB_MD_CS);
1610
1611        /* Wait for data to be written */
1612        rc = falcon_gmii_wait(efx);
1613        if (rc) {
1614                /* Abort the write operation */
1615                EF4_POPULATE_OWORD_2(reg,
1616                                     FRF_AB_MD_WRC, 0,
1617                                     FRF_AB_MD_GC, 1);
1618                ef4_writeo(efx, &reg, FR_AB_MD_CS);
1619                udelay(10);
1620        }
1621
1622out:
1623        mutex_unlock(&nic_data->mdio_lock);
1624        return rc;
1625}
1626
1627/* Read an MDIO register of a PHY connected to Falcon. */
1628static int falcon_mdio_read(struct net_device *net_dev,
1629                            int prtad, int devad, u16 addr)
1630{
1631        struct ef4_nic *efx = netdev_priv(net_dev);
1632        struct falcon_nic_data *nic_data = efx->nic_data;
1633        ef4_oword_t reg;
1634        int rc;
1635
1636        mutex_lock(&nic_data->mdio_lock);
1637
1638        /* Check MDIO not currently being accessed */
1639        rc = falcon_gmii_wait(efx);
1640        if (rc)
1641                goto out;
1642
1643        EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1644        ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1645
1646        EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1647                             FRF_AB_MD_DEV_ADR, devad);
1648        ef4_writeo(efx, &reg, FR_AB_MD_ID);
1649
1650        /* Request data to be read */
1651        EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1652        ef4_writeo(efx, &reg, FR_AB_MD_CS);
1653
1654        /* Wait for data to become available */
1655        rc = falcon_gmii_wait(efx);
1656        if (rc == 0) {
1657                ef4_reado(efx, &reg, FR_AB_MD_RXD);
1658                rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1659                netif_vdbg(efx, hw, efx->net_dev,
1660                           "read from MDIO %d register %d.%d, got %04x\n",
1661                           prtad, devad, addr, rc);
1662        } else {
1663                /* Abort the read operation */
1664                EF4_POPULATE_OWORD_2(reg,
1665                                     FRF_AB_MD_RIC, 0,
1666                                     FRF_AB_MD_GC, 1);
1667                ef4_writeo(efx, &reg, FR_AB_MD_CS);
1668
1669                netif_dbg(efx, hw, efx->net_dev,
1670                          "read from MDIO %d register %d.%d, got error %d\n",
1671                          prtad, devad, addr, rc);
1672        }
1673
1674out:
1675        mutex_unlock(&nic_data->mdio_lock);
1676        return rc;
1677}
1678
1679/* This call is responsible for hooking in the MAC and PHY operations */
1680static int falcon_probe_port(struct ef4_nic *efx)
1681{
1682        struct falcon_nic_data *nic_data = efx->nic_data;
1683        int rc;
1684
1685        switch (efx->phy_type) {
1686        case PHY_TYPE_SFX7101:
1687                efx->phy_op = &falcon_sfx7101_phy_ops;
1688                break;
1689        case PHY_TYPE_QT2022C2:
1690        case PHY_TYPE_QT2025C:
1691                efx->phy_op = &falcon_qt202x_phy_ops;
1692                break;
1693        case PHY_TYPE_TXC43128:
1694                efx->phy_op = &falcon_txc_phy_ops;
1695                break;
1696        default:
1697                netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1698                          efx->phy_type);
1699                return -ENODEV;
1700        }
1701
1702        /* Fill out MDIO structure and loopback modes */
1703        mutex_init(&nic_data->mdio_lock);
1704        efx->mdio.mdio_read = falcon_mdio_read;
1705        efx->mdio.mdio_write = falcon_mdio_write;
1706        rc = efx->phy_op->probe(efx);
1707        if (rc != 0)
1708                return rc;
1709
1710        /* Initial assumption */
1711        efx->link_state.speed = 10000;
1712        efx->link_state.fd = true;
1713
1714        /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1715        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1716                efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1717        else
1718                efx->wanted_fc = EF4_FC_RX;
1719        if (efx->mdio.mmds & MDIO_DEVS_AN)
1720                efx->wanted_fc |= EF4_FC_AUTO;
1721
1722        /* Allocate buffer for stats */
1723        rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1724                                  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1725        if (rc)
1726                return rc;
1727        netif_dbg(efx, probe, efx->net_dev,
1728                  "stats buffer at %llx (virt %p phys %llx)\n",
1729                  (u64)efx->stats_buffer.dma_addr,
1730                  efx->stats_buffer.addr,
1731                  (u64)virt_to_phys(efx->stats_buffer.addr));
1732
1733        return 0;
1734}
1735
1736static void falcon_remove_port(struct ef4_nic *efx)
1737{
1738        efx->phy_op->remove(efx);
1739        ef4_nic_free_buffer(efx, &efx->stats_buffer);
1740}
1741
1742/* Global events are basically PHY events */
1743static bool
1744falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1745{
1746        struct ef4_nic *efx = channel->efx;
1747        struct falcon_nic_data *nic_data = efx->nic_data;
1748
1749        if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1750            EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1751            EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1752                /* Ignored */
1753                return true;
1754
1755        if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1756            EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1757                nic_data->xmac_poll_required = true;
1758                return true;
1759        }
1760
1761        if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1762            EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1763            EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1764                netif_err(efx, rx_err, efx->net_dev,
1765                          "channel %d seen global RX_RESET event. Resetting.\n",
1766                          channel->channel);
1767
1768                atomic_inc(&efx->rx_reset);
1769                ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1770                                   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1771                return true;
1772        }
1773
1774        return false;
1775}
1776
1777/**************************************************************************
1778 *
1779 * Falcon test code
1780 *
1781 **************************************************************************/
1782
1783static int
1784falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1785{
1786        struct falcon_nic_data *nic_data = efx->nic_data;
1787        struct falcon_nvconfig *nvconfig;
1788        struct falcon_spi_device *spi;
1789        void *region;
1790        int rc, magic_num, struct_ver;
1791        __le16 *word, *limit;
1792        u32 csum;
1793
1794        if (falcon_spi_present(&nic_data->spi_flash))
1795                spi = &nic_data->spi_flash;
1796        else if (falcon_spi_present(&nic_data->spi_eeprom))
1797                spi = &nic_data->spi_eeprom;
1798        else
1799                return -EINVAL;
1800
1801        region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1802        if (!region)
1803                return -ENOMEM;
1804        nvconfig = region + FALCON_NVCONFIG_OFFSET;
1805
1806        mutex_lock(&nic_data->spi_lock);
1807        rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1808        mutex_unlock(&nic_data->spi_lock);
1809        if (rc) {
1810                netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1811                          falcon_spi_present(&nic_data->spi_flash) ?
1812                          "flash" : "EEPROM");
1813                rc = -EIO;
1814                goto out;
1815        }
1816
1817        magic_num = le16_to_cpu(nvconfig->board_magic_num);
1818        struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1819
1820        rc = -EINVAL;
1821        if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1822                netif_err(efx, hw, efx->net_dev,
1823                          "NVRAM bad magic 0x%x\n", magic_num);
1824                goto out;
1825        }
1826        if (struct_ver < 2) {
1827                netif_err(efx, hw, efx->net_dev,
1828                          "NVRAM has ancient version 0x%x\n", struct_ver);
1829                goto out;
1830        } else if (struct_ver < 4) {
1831                word = &nvconfig->board_magic_num;
1832                limit = (__le16 *) (nvconfig + 1);
1833        } else {
1834                word = region;
1835                limit = region + FALCON_NVCONFIG_END;
1836        }
1837        for (csum = 0; word < limit; ++word)
1838                csum += le16_to_cpu(*word);
1839
1840        if (~csum & 0xffff) {
1841                netif_err(efx, hw, efx->net_dev,
1842                          "NVRAM has incorrect checksum\n");
1843                goto out;
1844        }
1845
1846        rc = 0;
1847        if (nvconfig_out)
1848                memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1849
1850 out:
1851        kfree(region);
1852        return rc;
1853}
1854
1855static int falcon_test_nvram(struct ef4_nic *efx)
1856{
1857        return falcon_read_nvram(efx, NULL);
1858}
1859
1860static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1861        { FR_AZ_ADR_REGION,
1862          EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1863        { FR_AZ_RX_CFG,
1864          EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1865        { FR_AZ_TX_CFG,
1866          EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1867        { FR_AZ_TX_RESERVED,
1868          EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1869        { FR_AB_MAC_CTRL,
1870          EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1871        { FR_AZ_SRM_TX_DC_CFG,
1872          EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1873        { FR_AZ_RX_DC_CFG,
1874          EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1875        { FR_AZ_RX_DC_PF_WM,
1876          EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1877        { FR_BZ_DP_CTRL,
1878          EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1879        { FR_AB_GM_CFG2,
1880          EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1881        { FR_AB_GMF_CFG0,
1882          EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1883        { FR_AB_XM_GLB_CFG,
1884          EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1885        { FR_AB_XM_TX_CFG,
1886          EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1887        { FR_AB_XM_RX_CFG,
1888          EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1889        { FR_AB_XM_RX_PARAM,
1890          EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1891        { FR_AB_XM_FC,
1892          EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1893        { FR_AB_XM_ADR_LO,
1894          EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1895        { FR_AB_XX_SD_CTL,
1896          EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1897};
1898
1899static int
1900falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1901{
1902        enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1903        int rc, rc2;
1904
1905        mutex_lock(&efx->mac_lock);
1906        if (efx->loopback_modes) {
1907                /* We need the 312 clock from the PHY to test the XMAC
1908                 * registers, so move into XGMII loopback if available */
1909                if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1910                        efx->loopback_mode = LOOPBACK_XGMII;
1911                else
1912                        efx->loopback_mode = __ffs(efx->loopback_modes);
1913        }
1914        __ef4_reconfigure_port(efx);
1915        mutex_unlock(&efx->mac_lock);
1916
1917        ef4_reset_down(efx, reset_method);
1918
1919        tests->registers =
1920                ef4_farch_test_registers(efx, falcon_b0_register_tests,
1921                                         ARRAY_SIZE(falcon_b0_register_tests))
1922                ? -1 : 1;
1923
1924        rc = falcon_reset_hw(efx, reset_method);
1925        rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1926        return rc ? rc : rc2;
1927}
1928
1929/**************************************************************************
1930 *
1931 * Device reset
1932 *
1933 **************************************************************************
1934 */
1935
1936static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1937{
1938        switch (reason) {
1939        case RESET_TYPE_RX_RECOVERY:
1940        case RESET_TYPE_DMA_ERROR:
1941        case RESET_TYPE_TX_SKIP:
1942                /* These can occasionally occur due to hardware bugs.
1943                 * We try to reset without disrupting the link.
1944                 */
1945                return RESET_TYPE_INVISIBLE;
1946        default:
1947                return RESET_TYPE_ALL;
1948        }
1949}
1950
1951static int falcon_map_reset_flags(u32 *flags)
1952{
1953        enum {
1954                FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1955                                          ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1956                FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1957                FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1958        };
1959
1960        if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1961                *flags &= ~FALCON_RESET_WORLD;
1962                return RESET_TYPE_WORLD;
1963        }
1964
1965        if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1966                *flags &= ~FALCON_RESET_ALL;
1967                return RESET_TYPE_ALL;
1968        }
1969
1970        if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1971                *flags &= ~FALCON_RESET_INVISIBLE;
1972                return RESET_TYPE_INVISIBLE;
1973        }
1974
1975        return -EINVAL;
1976}
1977
1978/* Resets NIC to known state.  This routine must be called in process
1979 * context and is allowed to sleep. */
1980static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1981{
1982        struct falcon_nic_data *nic_data = efx->nic_data;
1983        ef4_oword_t glb_ctl_reg_ker;
1984        int rc;
1985
1986        netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1987                  RESET_TYPE(method));
1988
1989        /* Initiate device reset */
1990        if (method == RESET_TYPE_WORLD) {
1991                rc = pci_save_state(efx->pci_dev);
1992                if (rc) {
1993                        netif_err(efx, drv, efx->net_dev,
1994                                  "failed to backup PCI state of primary "
1995                                  "function prior to hardware reset\n");
1996                        goto fail1;
1997                }
1998                if (ef4_nic_is_dual_func(efx)) {
1999                        rc = pci_save_state(nic_data->pci_dev2);
2000                        if (rc) {
2001                                netif_err(efx, drv, efx->net_dev,
2002                                          "failed to backup PCI state of "
2003                                          "secondary function prior to "
2004                                          "hardware reset\n");
2005                                goto fail2;
2006                        }
2007                }
2008
2009                EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2010                                     FRF_AB_EXT_PHY_RST_DUR,
2011                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
2012                                     FRF_AB_SWRST, 1);
2013        } else {
2014                EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2015                                     /* exclude PHY from "invisible" reset */
2016                                     FRF_AB_EXT_PHY_RST_CTL,
2017                                     method == RESET_TYPE_INVISIBLE,
2018                                     /* exclude EEPROM/flash and PCIe */
2019                                     FRF_AB_PCIE_CORE_RST_CTL, 1,
2020                                     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2021                                     FRF_AB_PCIE_SD_RST_CTL, 1,
2022                                     FRF_AB_EE_RST_CTL, 1,
2023                                     FRF_AB_EXT_PHY_RST_DUR,
2024                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
2025                                     FRF_AB_SWRST, 1);
2026        }
2027        ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2028
2029        netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2030        schedule_timeout_uninterruptible(HZ / 20);
2031
2032        /* Restore PCI configuration if needed */
2033        if (method == RESET_TYPE_WORLD) {
2034                if (ef4_nic_is_dual_func(efx))
2035                        pci_restore_state(nic_data->pci_dev2);
2036                pci_restore_state(efx->pci_dev);
2037                netif_dbg(efx, drv, efx->net_dev,
2038                          "successfully restored PCI config\n");
2039        }
2040
2041        /* Assert that reset complete */
2042        ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2043        if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2044                rc = -ETIMEDOUT;
2045                netif_err(efx, hw, efx->net_dev,
2046                          "timed out waiting for hardware reset\n");
2047                goto fail3;
2048        }
2049        netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2050
2051        return 0;
2052
2053        /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2054fail2:
2055        pci_restore_state(efx->pci_dev);
2056fail1:
2057fail3:
2058        return rc;
2059}
2060
2061static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2062{
2063        struct falcon_nic_data *nic_data = efx->nic_data;
2064        int rc;
2065
2066        mutex_lock(&nic_data->spi_lock);
2067        rc = __falcon_reset_hw(efx, method);
2068        mutex_unlock(&nic_data->spi_lock);
2069
2070        return rc;
2071}
2072
2073static void falcon_monitor(struct ef4_nic *efx)
2074{
2075        bool link_changed;
2076        int rc;
2077
2078        BUG_ON(!mutex_is_locked(&efx->mac_lock));
2079
2080        rc = falcon_board(efx)->type->monitor(efx);
2081        if (rc) {
2082                netif_err(efx, hw, efx->net_dev,
2083                          "Board sensor %s; shutting down PHY\n",
2084                          (rc == -ERANGE) ? "reported fault" : "failed");
2085                efx->phy_mode |= PHY_MODE_LOW_POWER;
2086                rc = __ef4_reconfigure_port(efx);
2087                WARN_ON(rc);
2088        }
2089
2090        if (LOOPBACK_INTERNAL(efx))
2091                link_changed = falcon_loopback_link_poll(efx);
2092        else
2093                link_changed = efx->phy_op->poll(efx);
2094
2095        if (link_changed) {
2096                falcon_stop_nic_stats(efx);
2097                falcon_deconfigure_mac_wrapper(efx);
2098
2099                falcon_reset_macs(efx);
2100                rc = falcon_reconfigure_xmac(efx);
2101                BUG_ON(rc);
2102
2103                falcon_start_nic_stats(efx);
2104
2105                ef4_link_status_changed(efx);
2106        }
2107
2108        falcon_poll_xmac(efx);
2109}
2110
2111/* Zeroes out the SRAM contents.  This routine must be called in
2112 * process context and is allowed to sleep.
2113 */
2114static int falcon_reset_sram(struct ef4_nic *efx)
2115{
2116        ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2117        int count;
2118
2119        /* Set the SRAM wake/sleep GPIO appropriately. */
2120        ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121        EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2122        EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2123        ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2124
2125        /* Initiate SRAM reset */
2126        EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2127                             FRF_AZ_SRM_INIT_EN, 1,
2128                             FRF_AZ_SRM_NB_SZ, 0);
2129        ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2130
2131        /* Wait for SRAM reset to complete */
2132        count = 0;
2133        do {
2134                netif_dbg(efx, hw, efx->net_dev,
2135                          "waiting for SRAM reset (attempt %d)...\n", count);
2136
2137                /* SRAM reset is slow; expect around 16ms */
2138                schedule_timeout_uninterruptible(HZ / 50);
2139
2140                /* Check for reset complete */
2141                ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2142                if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2143                        netif_dbg(efx, hw, efx->net_dev,
2144                                  "SRAM reset complete\n");
2145
2146                        return 0;
2147                }
2148        } while (++count < 20); /* wait up to 0.4 sec */
2149
2150        netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2151        return -ETIMEDOUT;
2152}
2153
2154static void falcon_spi_device_init(struct ef4_nic *efx,
2155                                  struct falcon_spi_device *spi_device,
2156                                  unsigned int device_id, u32 device_type)
2157{
2158        if (device_type != 0) {
2159                spi_device->device_id = device_id;
2160                spi_device->size =
2161                        1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2162                spi_device->addr_len =
2163                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2164                spi_device->munge_address = (spi_device->size == 1 << 9 &&
2165                                             spi_device->addr_len == 1);
2166                spi_device->erase_command =
2167                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2168                spi_device->erase_size =
2169                        1 << SPI_DEV_TYPE_FIELD(device_type,
2170                                                SPI_DEV_TYPE_ERASE_SIZE);
2171                spi_device->block_size =
2172                        1 << SPI_DEV_TYPE_FIELD(device_type,
2173                                                SPI_DEV_TYPE_BLOCK_SIZE);
2174        } else {
2175                spi_device->size = 0;
2176        }
2177}
2178
2179/* Extract non-volatile configuration */
2180static int falcon_probe_nvconfig(struct ef4_nic *efx)
2181{
2182        struct falcon_nic_data *nic_data = efx->nic_data;
2183        struct falcon_nvconfig *nvconfig;
2184        int rc;
2185
2186        nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2187        if (!nvconfig)
2188                return -ENOMEM;
2189
2190        rc = falcon_read_nvram(efx, nvconfig);
2191        if (rc)
2192                goto out;
2193
2194        efx->phy_type = nvconfig->board_v2.port0_phy_type;
2195        efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2196
2197        if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2198                falcon_spi_device_init(
2199                        efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2200                        le32_to_cpu(nvconfig->board_v3
2201                                    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2202                falcon_spi_device_init(
2203                        efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2204                        le32_to_cpu(nvconfig->board_v3
2205                                    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2206        }
2207
2208        /* Read the MAC addresses */
2209        ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2210
2211        netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2212                  efx->phy_type, efx->mdio.prtad);
2213
2214        rc = falcon_probe_board(efx,
2215                                le16_to_cpu(nvconfig->board_v2.board_revision));
2216out:
2217        kfree(nvconfig);
2218        return rc;
2219}
2220
2221static int falcon_dimension_resources(struct ef4_nic *efx)
2222{
2223        efx->rx_dc_base = 0x20000;
2224        efx->tx_dc_base = 0x26000;
2225        return 0;
2226}
2227
2228/* Probe all SPI devices on the NIC */
2229static void falcon_probe_spi_devices(struct ef4_nic *efx)
2230{
2231        struct falcon_nic_data *nic_data = efx->nic_data;
2232        ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2233        int boot_dev;
2234
2235        ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2236        ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2237        ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2238
2239        if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2240                boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2241                            FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2242                netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2243                          boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2244                          "flash" : "EEPROM");
2245        } else {
2246                /* Disable VPD and set clock dividers to safe
2247                 * values for initial programming. */
2248                boot_dev = -1;
2249                netif_dbg(efx, probe, efx->net_dev,
2250                          "Booted from internal ASIC settings;"
2251                          " setting SPI config\n");
2252                EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2253                                     /* 125 MHz / 7 ~= 20 MHz */
2254                                     FRF_AB_EE_SF_CLOCK_DIV, 7,
2255                                     /* 125 MHz / 63 ~= 2 MHz */
2256                                     FRF_AB_EE_EE_CLOCK_DIV, 63);
2257                ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2258        }
2259
2260        mutex_init(&nic_data->spi_lock);
2261
2262        if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2263                falcon_spi_device_init(efx, &nic_data->spi_flash,
2264                                       FFE_AB_SPI_DEVICE_FLASH,
2265                                       default_flash_type);
2266        if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2267                falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2268                                       FFE_AB_SPI_DEVICE_EEPROM,
2269                                       large_eeprom_type);
2270}
2271
2272static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2273{
2274        return 0x20000;
2275}
2276
2277static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2278{
2279        /* Map everything up to and including the RSS indirection table.
2280         * The PCI core takes care of mapping the MSI-X tables.
2281         */
2282        return FR_BZ_RX_INDIRECTION_TBL +
2283                FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2284}
2285
2286static int falcon_probe_nic(struct ef4_nic *efx)
2287{
2288        struct falcon_nic_data *nic_data;
2289        struct falcon_board *board;
2290        int rc;
2291
2292        efx->primary = efx; /* only one usable function per controller */
2293
2294        /* Allocate storage for hardware specific data */
2295        nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2296        if (!nic_data)
2297                return -ENOMEM;
2298        efx->nic_data = nic_data;
2299        nic_data->efx = efx;
2300
2301        rc = -ENODEV;
2302
2303        if (ef4_farch_fpga_ver(efx) != 0) {
2304                netif_err(efx, probe, efx->net_dev,
2305                          "Falcon FPGA not supported\n");
2306                goto fail1;
2307        }
2308
2309        if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2310                ef4_oword_t nic_stat;
2311                struct pci_dev *dev;
2312                u8 pci_rev = efx->pci_dev->revision;
2313
2314                if ((pci_rev == 0xff) || (pci_rev == 0)) {
2315                        netif_err(efx, probe, efx->net_dev,
2316                                  "Falcon rev A0 not supported\n");
2317                        goto fail1;
2318                }
2319                ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2320                if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2321                        netif_err(efx, probe, efx->net_dev,
2322                                  "Falcon rev A1 1G not supported\n");
2323                        goto fail1;
2324                }
2325                if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2326                        netif_err(efx, probe, efx->net_dev,
2327                                  "Falcon rev A1 PCI-X not supported\n");
2328                        goto fail1;
2329                }
2330
2331                dev = pci_dev_get(efx->pci_dev);
2332                while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2333                                             PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2334                                             dev))) {
2335                        if (dev->bus == efx->pci_dev->bus &&
2336                            dev->devfn == efx->pci_dev->devfn + 1) {
2337                                nic_data->pci_dev2 = dev;
2338                                break;
2339                        }
2340                }
2341                if (!nic_data->pci_dev2) {
2342                        netif_err(efx, probe, efx->net_dev,
2343                                  "failed to find secondary function\n");
2344                        rc = -ENODEV;
2345                        goto fail2;
2346                }
2347        }
2348
2349        /* Now we can reset the NIC */
2350        rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2351        if (rc) {
2352                netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2353                goto fail3;
2354        }
2355
2356        /* Allocate memory for INT_KER */
2357        rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2358                                  GFP_KERNEL);
2359        if (rc)
2360                goto fail4;
2361        BUG_ON(efx->irq_status.dma_addr & 0x0f);
2362
2363        netif_dbg(efx, probe, efx->net_dev,
2364                  "INT_KER at %llx (virt %p phys %llx)\n",
2365                  (u64)efx->irq_status.dma_addr,
2366                  efx->irq_status.addr,
2367                  (u64)virt_to_phys(efx->irq_status.addr));
2368
2369        falcon_probe_spi_devices(efx);
2370
2371        /* Read in the non-volatile configuration */
2372        rc = falcon_probe_nvconfig(efx);
2373        if (rc) {
2374                if (rc == -EINVAL)
2375                        netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2376                goto fail5;
2377        }
2378
2379        efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2380                             EF4_MAX_CHANNELS);
2381        efx->max_tx_channels = efx->max_channels;
2382        efx->timer_quantum_ns = 4968; /* 621 cycles */
2383        efx->timer_max_ns = efx->type->timer_period_max *
2384                            efx->timer_quantum_ns;
2385
2386        /* Initialise I2C adapter */
2387        board = falcon_board(efx);
2388        board->i2c_adap.owner = THIS_MODULE;
2389        board->i2c_data = falcon_i2c_bit_operations;
2390        board->i2c_data.data = efx;
2391        board->i2c_adap.algo_data = &board->i2c_data;
2392        board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2393        strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2394                sizeof(board->i2c_adap.name));
2395        rc = i2c_bit_add_bus(&board->i2c_adap);
2396        if (rc)
2397                goto fail5;
2398
2399        rc = falcon_board(efx)->type->init(efx);
2400        if (rc) {
2401                netif_err(efx, probe, efx->net_dev,
2402                          "failed to initialise board\n");
2403                goto fail6;
2404        }
2405
2406        nic_data->stats_disable_count = 1;
2407        timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0);
2408
2409        return 0;
2410
2411 fail6:
2412        i2c_del_adapter(&board->i2c_adap);
2413        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2414 fail5:
2415        ef4_nic_free_buffer(efx, &efx->irq_status);
2416 fail4:
2417 fail3:
2418        if (nic_data->pci_dev2) {
2419                pci_dev_put(nic_data->pci_dev2);
2420                nic_data->pci_dev2 = NULL;
2421        }
2422 fail2:
2423 fail1:
2424        kfree(efx->nic_data);
2425        return rc;
2426}
2427
2428static void falcon_init_rx_cfg(struct ef4_nic *efx)
2429{
2430        /* RX control FIFO thresholds (32 entries) */
2431        const unsigned ctrl_xon_thr = 20;
2432        const unsigned ctrl_xoff_thr = 25;
2433        ef4_oword_t reg;
2434
2435        ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2436        if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2437                /* Data FIFO size is 5.5K.  The RX DMA engine only
2438                 * supports scattering for user-mode queues, but will
2439                 * split DMA writes at intervals of RX_USR_BUF_SIZE
2440                 * (32-byte units) even for kernel-mode queues.  We
2441                 * set it to be so large that that never happens.
2442                 */
2443                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2444                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2445                                    (3 * 4096) >> 5);
2446                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2447                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2448                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2449                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2450        } else {
2451                /* Data FIFO size is 80K; register fields moved */
2452                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2453                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2454                                    EF4_RX_USR_BUF_SIZE >> 5);
2455                /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2456                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2457                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2458                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2459                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2460                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2461
2462                /* Enable hash insertion. This is broken for the
2463                 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2464                 * IPv4 hashes. */
2465                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2466                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2467                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2468        }
2469        /* Always enable XOFF signal from RX FIFO.  We enable
2470         * or disable transmission of pause frames at the MAC. */
2471        EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2472        ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2473}
2474
2475/* This call performs hardware-specific global initialisation, such as
2476 * defining the descriptor cache sizes and number of RSS channels.
2477 * It does not set up any buffers, descriptor rings or event queues.
2478 */
2479static int falcon_init_nic(struct ef4_nic *efx)
2480{
2481        ef4_oword_t temp;
2482        int rc;
2483
2484        /* Use on-chip SRAM */
2485        ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2486        EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2487        ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2488
2489        rc = falcon_reset_sram(efx);
2490        if (rc)
2491                return rc;
2492
2493        /* Clear the parity enables on the TX data fifos as
2494         * they produce false parity errors because of timing issues
2495         */
2496        if (EF4_WORKAROUND_5129(efx)) {
2497                ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2498                EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2499                ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2500        }
2501
2502        if (EF4_WORKAROUND_7244(efx)) {
2503                ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2504                EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2505                EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2506                EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2507                EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2508                ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2509        }
2510
2511        /* XXX This is documented only for Falcon A0/A1 */
2512        /* Setup RX.  Wait for descriptor is broken and must
2513         * be disabled.  RXDP recovery shouldn't be needed, but is.
2514         */
2515        ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2516        EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2517        EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2518        if (EF4_WORKAROUND_5583(efx))
2519                EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2520        ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2521
2522        /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2523         * descriptors (which is bad).
2524         */
2525        ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2526        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2527        ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2528
2529        falcon_init_rx_cfg(efx);
2530
2531        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2532                falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2533
2534                /* Set destination of both TX and RX Flush events */
2535                EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2536                ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2537        }
2538
2539        ef4_farch_init_common(efx);
2540
2541        return 0;
2542}
2543
2544static void falcon_remove_nic(struct ef4_nic *efx)
2545{
2546        struct falcon_nic_data *nic_data = efx->nic_data;
2547        struct falcon_board *board = falcon_board(efx);
2548
2549        board->type->fini(efx);
2550
2551        /* Remove I2C adapter and clear it in preparation for a retry */
2552        i2c_del_adapter(&board->i2c_adap);
2553        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2554
2555        ef4_nic_free_buffer(efx, &efx->irq_status);
2556
2557        __falcon_reset_hw(efx, RESET_TYPE_ALL);
2558
2559        /* Release the second function after the reset */
2560        if (nic_data->pci_dev2) {
2561                pci_dev_put(nic_data->pci_dev2);
2562                nic_data->pci_dev2 = NULL;
2563        }
2564
2565        /* Tear down the private nic state */
2566        kfree(efx->nic_data);
2567        efx->nic_data = NULL;
2568}
2569
2570static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2571{
2572        return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2573                                      falcon_stat_mask, names);
2574}
2575
2576static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2577                                      struct rtnl_link_stats64 *core_stats)
2578{
2579        struct falcon_nic_data *nic_data = efx->nic_data;
2580        u64 *stats = nic_data->stats;
2581        ef4_oword_t cnt;
2582
2583        if (!nic_data->stats_disable_count) {
2584                ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2585                stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2586                        EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2587
2588                if (nic_data->stats_pending &&
2589                    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2590                        nic_data->stats_pending = false;
2591                        rmb(); /* read the done flag before the stats */
2592                        ef4_nic_update_stats(
2593                                falcon_stat_desc, FALCON_STAT_COUNT,
2594                                falcon_stat_mask,
2595                                stats, efx->stats_buffer.addr, true);
2596                }
2597
2598                /* Update derived statistic */
2599                ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2600                                     stats[FALCON_STAT_rx_bytes] -
2601                                     stats[FALCON_STAT_rx_good_bytes] -
2602                                     stats[FALCON_STAT_rx_control] * 64);
2603                ef4_update_sw_stats(efx, stats);
2604        }
2605
2606        if (full_stats)
2607                memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2608
2609        if (core_stats) {
2610                core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2611                core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2612                core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2613                core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2614                core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2615                                         stats[GENERIC_STAT_rx_nodesc_trunc] +
2616                                         stats[GENERIC_STAT_rx_noskb_drops];
2617                core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2618                core_stats->rx_length_errors =
2619                        stats[FALCON_STAT_rx_gtjumbo] +
2620                        stats[FALCON_STAT_rx_length_error];
2621                core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2622                core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2623                core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2624
2625                core_stats->rx_errors = (core_stats->rx_length_errors +
2626                                         core_stats->rx_crc_errors +
2627                                         core_stats->rx_frame_errors +
2628                                         stats[FALCON_STAT_rx_symbol_error]);
2629        }
2630
2631        return FALCON_STAT_COUNT;
2632}
2633
2634void falcon_start_nic_stats(struct ef4_nic *efx)
2635{
2636        struct falcon_nic_data *nic_data = efx->nic_data;
2637
2638        spin_lock_bh(&efx->stats_lock);
2639        if (--nic_data->stats_disable_count == 0)
2640                falcon_stats_request(efx);
2641        spin_unlock_bh(&efx->stats_lock);
2642}
2643
2644/* We don't acutally pull stats on falcon. Wait 10ms so that
2645 * they arrive when we call this just after start_stats
2646 */
2647static void falcon_pull_nic_stats(struct ef4_nic *efx)
2648{
2649        msleep(10);
2650}
2651
2652void falcon_stop_nic_stats(struct ef4_nic *efx)
2653{
2654        struct falcon_nic_data *nic_data = efx->nic_data;
2655        int i;
2656
2657        might_sleep();
2658
2659        spin_lock_bh(&efx->stats_lock);
2660        ++nic_data->stats_disable_count;
2661        spin_unlock_bh(&efx->stats_lock);
2662
2663        del_timer_sync(&nic_data->stats_timer);
2664
2665        /* Wait enough time for the most recent transfer to
2666         * complete. */
2667        for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2668                if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2669                        break;
2670                msleep(1);
2671        }
2672
2673        spin_lock_bh(&efx->stats_lock);
2674        falcon_stats_complete(efx);
2675        spin_unlock_bh(&efx->stats_lock);
2676}
2677
2678static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2679{
2680        falcon_board(efx)->type->set_id_led(efx, mode);
2681}
2682
2683/**************************************************************************
2684 *
2685 * Wake on LAN
2686 *
2687 **************************************************************************
2688 */
2689
2690static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2691{
2692        wol->supported = 0;
2693        wol->wolopts = 0;
2694        memset(&wol->sopass, 0, sizeof(wol->sopass));
2695}
2696
2697static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2698{
2699        if (type != 0)
2700                return -EINVAL;
2701        return 0;
2702}
2703
2704/**************************************************************************
2705 *
2706 * Revision-dependent attributes used by efx.c and nic.c
2707 *
2708 **************************************************************************
2709 */
2710
2711const struct ef4_nic_type falcon_a1_nic_type = {
2712        .mem_bar = EF4_MEM_BAR,
2713        .mem_map_size = falcon_a1_mem_map_size,
2714        .probe = falcon_probe_nic,
2715        .remove = falcon_remove_nic,
2716        .init = falcon_init_nic,
2717        .dimension_resources = falcon_dimension_resources,
2718        .fini = falcon_irq_ack_a1,
2719        .monitor = falcon_monitor,
2720        .map_reset_reason = falcon_map_reset_reason,
2721        .map_reset_flags = falcon_map_reset_flags,
2722        .reset = falcon_reset_hw,
2723        .probe_port = falcon_probe_port,
2724        .remove_port = falcon_remove_port,
2725        .handle_global_event = falcon_handle_global_event,
2726        .fini_dmaq = ef4_farch_fini_dmaq,
2727        .prepare_flush = falcon_prepare_flush,
2728        .finish_flush = ef4_port_dummy_op_void,
2729        .prepare_flr = ef4_port_dummy_op_void,
2730        .finish_flr = ef4_farch_finish_flr,
2731        .describe_stats = falcon_describe_nic_stats,
2732        .update_stats = falcon_update_nic_stats,
2733        .start_stats = falcon_start_nic_stats,
2734        .pull_stats = falcon_pull_nic_stats,
2735        .stop_stats = falcon_stop_nic_stats,
2736        .set_id_led = falcon_set_id_led,
2737        .push_irq_moderation = falcon_push_irq_moderation,
2738        .reconfigure_port = falcon_reconfigure_port,
2739        .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2740        .reconfigure_mac = falcon_reconfigure_xmac,
2741        .check_mac_fault = falcon_xmac_check_fault,
2742        .get_wol = falcon_get_wol,
2743        .set_wol = falcon_set_wol,
2744        .resume_wol = ef4_port_dummy_op_void,
2745        .test_nvram = falcon_test_nvram,
2746        .irq_enable_master = ef4_farch_irq_enable_master,
2747        .irq_test_generate = ef4_farch_irq_test_generate,
2748        .irq_disable_non_ev = ef4_farch_irq_disable_master,
2749        .irq_handle_msi = ef4_farch_msi_interrupt,
2750        .irq_handle_legacy = falcon_legacy_interrupt_a1,
2751        .tx_probe = ef4_farch_tx_probe,
2752        .tx_init = ef4_farch_tx_init,
2753        .tx_remove = ef4_farch_tx_remove,
2754        .tx_write = ef4_farch_tx_write,
2755        .tx_limit_len = ef4_farch_tx_limit_len,
2756        .rx_push_rss_config = dummy_rx_push_rss_config,
2757        .rx_probe = ef4_farch_rx_probe,
2758        .rx_init = ef4_farch_rx_init,
2759        .rx_remove = ef4_farch_rx_remove,
2760        .rx_write = ef4_farch_rx_write,
2761        .rx_defer_refill = ef4_farch_rx_defer_refill,
2762        .ev_probe = ef4_farch_ev_probe,
2763        .ev_init = ef4_farch_ev_init,
2764        .ev_fini = ef4_farch_ev_fini,
2765        .ev_remove = ef4_farch_ev_remove,
2766        .ev_process = ef4_farch_ev_process,
2767        .ev_read_ack = ef4_farch_ev_read_ack,
2768        .ev_test_generate = ef4_farch_ev_test_generate,
2769
2770        /* We don't expose the filter table on Falcon A1 as it is not
2771         * mapped into function 0, but these implementations still
2772         * work with a degenerate case of all tables set to size 0.
2773         */
2774        .filter_table_probe = ef4_farch_filter_table_probe,
2775        .filter_table_restore = ef4_farch_filter_table_restore,
2776        .filter_table_remove = ef4_farch_filter_table_remove,
2777        .filter_insert = ef4_farch_filter_insert,
2778        .filter_remove_safe = ef4_farch_filter_remove_safe,
2779        .filter_get_safe = ef4_farch_filter_get_safe,
2780        .filter_clear_rx = ef4_farch_filter_clear_rx,
2781        .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2782        .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2783        .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2784
2785#ifdef CONFIG_SFC_FALCON_MTD
2786        .mtd_probe = falcon_mtd_probe,
2787        .mtd_rename = falcon_mtd_rename,
2788        .mtd_read = falcon_mtd_read,
2789        .mtd_erase = falcon_mtd_erase,
2790        .mtd_write = falcon_mtd_write,
2791        .mtd_sync = falcon_mtd_sync,
2792#endif
2793
2794        .revision = EF4_REV_FALCON_A1,
2795        .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2796        .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2797        .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2798        .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2799        .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2800        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2801        .rx_buffer_padding = 0x24,
2802        .can_rx_scatter = false,
2803        .max_interrupt_mode = EF4_INT_MODE_MSI,
2804        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2805        .offload_features = NETIF_F_IP_CSUM,
2806};
2807
2808const struct ef4_nic_type falcon_b0_nic_type = {
2809        .mem_bar = EF4_MEM_BAR,
2810        .mem_map_size = falcon_b0_mem_map_size,
2811        .probe = falcon_probe_nic,
2812        .remove = falcon_remove_nic,
2813        .init = falcon_init_nic,
2814        .dimension_resources = falcon_dimension_resources,
2815        .fini = ef4_port_dummy_op_void,
2816        .monitor = falcon_monitor,
2817        .map_reset_reason = falcon_map_reset_reason,
2818        .map_reset_flags = falcon_map_reset_flags,
2819        .reset = falcon_reset_hw,
2820        .probe_port = falcon_probe_port,
2821        .remove_port = falcon_remove_port,
2822        .handle_global_event = falcon_handle_global_event,
2823        .fini_dmaq = ef4_farch_fini_dmaq,
2824        .prepare_flush = falcon_prepare_flush,
2825        .finish_flush = ef4_port_dummy_op_void,
2826        .prepare_flr = ef4_port_dummy_op_void,
2827        .finish_flr = ef4_farch_finish_flr,
2828        .describe_stats = falcon_describe_nic_stats,
2829        .update_stats = falcon_update_nic_stats,
2830        .start_stats = falcon_start_nic_stats,
2831        .pull_stats = falcon_pull_nic_stats,
2832        .stop_stats = falcon_stop_nic_stats,
2833        .set_id_led = falcon_set_id_led,
2834        .push_irq_moderation = falcon_push_irq_moderation,
2835        .reconfigure_port = falcon_reconfigure_port,
2836        .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2837        .reconfigure_mac = falcon_reconfigure_xmac,
2838        .check_mac_fault = falcon_xmac_check_fault,
2839        .get_wol = falcon_get_wol,
2840        .set_wol = falcon_set_wol,
2841        .resume_wol = ef4_port_dummy_op_void,
2842        .test_chip = falcon_b0_test_chip,
2843        .test_nvram = falcon_test_nvram,
2844        .irq_enable_master = ef4_farch_irq_enable_master,
2845        .irq_test_generate = ef4_farch_irq_test_generate,
2846        .irq_disable_non_ev = ef4_farch_irq_disable_master,
2847        .irq_handle_msi = ef4_farch_msi_interrupt,
2848        .irq_handle_legacy = ef4_farch_legacy_interrupt,
2849        .tx_probe = ef4_farch_tx_probe,
2850        .tx_init = ef4_farch_tx_init,
2851        .tx_remove = ef4_farch_tx_remove,
2852        .tx_write = ef4_farch_tx_write,
2853        .tx_limit_len = ef4_farch_tx_limit_len,
2854        .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2855        .rx_probe = ef4_farch_rx_probe,
2856        .rx_init = ef4_farch_rx_init,
2857        .rx_remove = ef4_farch_rx_remove,
2858        .rx_write = ef4_farch_rx_write,
2859        .rx_defer_refill = ef4_farch_rx_defer_refill,
2860        .ev_probe = ef4_farch_ev_probe,
2861        .ev_init = ef4_farch_ev_init,
2862        .ev_fini = ef4_farch_ev_fini,
2863        .ev_remove = ef4_farch_ev_remove,
2864        .ev_process = ef4_farch_ev_process,
2865        .ev_read_ack = ef4_farch_ev_read_ack,
2866        .ev_test_generate = ef4_farch_ev_test_generate,
2867        .filter_table_probe = ef4_farch_filter_table_probe,
2868        .filter_table_restore = ef4_farch_filter_table_restore,
2869        .filter_table_remove = ef4_farch_filter_table_remove,
2870        .filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2871        .filter_insert = ef4_farch_filter_insert,
2872        .filter_remove_safe = ef4_farch_filter_remove_safe,
2873        .filter_get_safe = ef4_farch_filter_get_safe,
2874        .filter_clear_rx = ef4_farch_filter_clear_rx,
2875        .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2876        .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2877        .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2878#ifdef CONFIG_RFS_ACCEL
2879        .filter_rfs_insert = ef4_farch_filter_rfs_insert,
2880        .filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2881#endif
2882#ifdef CONFIG_SFC_FALCON_MTD
2883        .mtd_probe = falcon_mtd_probe,
2884        .mtd_rename = falcon_mtd_rename,
2885        .mtd_read = falcon_mtd_read,
2886        .mtd_erase = falcon_mtd_erase,
2887        .mtd_write = falcon_mtd_write,
2888        .mtd_sync = falcon_mtd_sync,
2889#endif
2890
2891        .revision = EF4_REV_FALCON_B0,
2892        .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2893        .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2894        .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2895        .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2896        .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2897        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2898        .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2899        .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2900        .rx_buffer_padding = 0,
2901        .can_rx_scatter = true,
2902        .max_interrupt_mode = EF4_INT_MODE_MSIX,
2903        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2904        .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2905        .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2906};
2907