linux/drivers/net/ethernet/sfc/falcon/nic.h
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#ifndef EF4_NIC_H
  12#define EF4_NIC_H
  13
  14#include <linux/net_tstamp.h>
  15#include <linux/i2c-algo-bit.h>
  16#include "net_driver.h"
  17#include "efx.h"
  18
  19enum {
  20        EF4_REV_FALCON_A0 = 0,
  21        EF4_REV_FALCON_A1 = 1,
  22        EF4_REV_FALCON_B0 = 2,
  23};
  24
  25static inline int ef4_nic_rev(struct ef4_nic *efx)
  26{
  27        return efx->type->revision;
  28}
  29
  30u32 ef4_farch_fpga_ver(struct ef4_nic *efx);
  31
  32/* NIC has two interlinked PCI functions for the same port. */
  33static inline bool ef4_nic_is_dual_func(struct ef4_nic *efx)
  34{
  35        return ef4_nic_rev(efx) < EF4_REV_FALCON_B0;
  36}
  37
  38/* Read the current event from the event queue */
  39static inline ef4_qword_t *ef4_event(struct ef4_channel *channel,
  40                                     unsigned int index)
  41{
  42        return ((ef4_qword_t *) (channel->eventq.buf.addr)) +
  43                (index & channel->eventq_mask);
  44}
  45
  46/* See if an event is present
  47 *
  48 * We check both the high and low dword of the event for all ones.  We
  49 * wrote all ones when we cleared the event, and no valid event can
  50 * have all ones in either its high or low dwords.  This approach is
  51 * robust against reordering.
  52 *
  53 * Note that using a single 64-bit comparison is incorrect; even
  54 * though the CPU read will be atomic, the DMA write may not be.
  55 */
  56static inline int ef4_event_present(ef4_qword_t *event)
  57{
  58        return !(EF4_DWORD_IS_ALL_ONES(event->dword[0]) |
  59                  EF4_DWORD_IS_ALL_ONES(event->dword[1]));
  60}
  61
  62/* Returns a pointer to the specified transmit descriptor in the TX
  63 * descriptor queue belonging to the specified channel.
  64 */
  65static inline ef4_qword_t *
  66ef4_tx_desc(struct ef4_tx_queue *tx_queue, unsigned int index)
  67{
  68        return ((ef4_qword_t *) (tx_queue->txd.buf.addr)) + index;
  69}
  70
  71/* Get partner of a TX queue, seen as part of the same net core queue */
  72static inline struct ef4_tx_queue *ef4_tx_queue_partner(struct ef4_tx_queue *tx_queue)
  73{
  74        if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
  75                return tx_queue - EF4_TXQ_TYPE_OFFLOAD;
  76        else
  77                return tx_queue + EF4_TXQ_TYPE_OFFLOAD;
  78}
  79
  80/* Report whether this TX queue would be empty for the given write_count.
  81 * May return false negative.
  82 */
  83static inline bool __ef4_nic_tx_is_empty(struct ef4_tx_queue *tx_queue,
  84                                         unsigned int write_count)
  85{
  86        unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
  87
  88        if (empty_read_count == 0)
  89                return false;
  90
  91        return ((empty_read_count ^ write_count) & ~EF4_EMPTY_COUNT_VALID) == 0;
  92}
  93
  94/* Decide whether to push a TX descriptor to the NIC vs merely writing
  95 * the doorbell.  This can reduce latency when we are adding a single
  96 * descriptor to an empty queue, but is otherwise pointless.  Further,
  97 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
  98 * triggered if we don't check this.
  99 * We use the write_count used for the last doorbell push, to get the
 100 * NIC's view of the tx queue.
 101 */
 102static inline bool ef4_nic_may_push_tx_desc(struct ef4_tx_queue *tx_queue,
 103                                            unsigned int write_count)
 104{
 105        bool was_empty = __ef4_nic_tx_is_empty(tx_queue, write_count);
 106
 107        tx_queue->empty_read_count = 0;
 108        return was_empty && tx_queue->write_count - write_count == 1;
 109}
 110
 111/* Returns a pointer to the specified descriptor in the RX descriptor queue */
 112static inline ef4_qword_t *
 113ef4_rx_desc(struct ef4_rx_queue *rx_queue, unsigned int index)
 114{
 115        return ((ef4_qword_t *) (rx_queue->rxd.buf.addr)) + index;
 116}
 117
 118enum {
 119        PHY_TYPE_NONE = 0,
 120        PHY_TYPE_TXC43128 = 1,
 121        PHY_TYPE_88E1111 = 2,
 122        PHY_TYPE_SFX7101 = 3,
 123        PHY_TYPE_QT2022C2 = 4,
 124        PHY_TYPE_PM8358 = 6,
 125        PHY_TYPE_SFT9001A = 8,
 126        PHY_TYPE_QT2025C = 9,
 127        PHY_TYPE_SFT9001B = 10,
 128};
 129
 130#define FALCON_XMAC_LOOPBACKS                   \
 131        ((1 << LOOPBACK_XGMII) |                \
 132         (1 << LOOPBACK_XGXS) |                 \
 133         (1 << LOOPBACK_XAUI))
 134
 135/* Alignment of PCIe DMA boundaries (4KB) */
 136#define EF4_PAGE_SIZE   4096
 137/* Size and alignment of buffer table entries (same) */
 138#define EF4_BUF_SIZE    EF4_PAGE_SIZE
 139
 140/* NIC-generic software stats */
 141enum {
 142        GENERIC_STAT_rx_noskb_drops,
 143        GENERIC_STAT_rx_nodesc_trunc,
 144        GENERIC_STAT_COUNT
 145};
 146
 147/**
 148 * struct falcon_board_type - board operations and type information
 149 * @id: Board type id, as found in NVRAM
 150 * @init: Allocate resources and initialise peripheral hardware
 151 * @init_phy: Do board-specific PHY initialisation
 152 * @fini: Shut down hardware and free resources
 153 * @set_id_led: Set state of identifying LED or revert to automatic function
 154 * @monitor: Board-specific health check function
 155 */
 156struct falcon_board_type {
 157        u8 id;
 158        int (*init) (struct ef4_nic *nic);
 159        void (*init_phy) (struct ef4_nic *efx);
 160        void (*fini) (struct ef4_nic *nic);
 161        void (*set_id_led) (struct ef4_nic *efx, enum ef4_led_mode mode);
 162        int (*monitor) (struct ef4_nic *nic);
 163};
 164
 165/**
 166 * struct falcon_board - board information
 167 * @type: Type of board
 168 * @major: Major rev. ('A', 'B' ...)
 169 * @minor: Minor rev. (0, 1, ...)
 170 * @i2c_adap: I2C adapter for on-board peripherals
 171 * @i2c_data: Data for bit-banging algorithm
 172 * @hwmon_client: I2C client for hardware monitor
 173 * @ioexp_client: I2C client for power/port control
 174 */
 175struct falcon_board {
 176        const struct falcon_board_type *type;
 177        int major;
 178        int minor;
 179        struct i2c_adapter i2c_adap;
 180        struct i2c_algo_bit_data i2c_data;
 181        struct i2c_client *hwmon_client, *ioexp_client;
 182};
 183
 184/**
 185 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
 186 * @device_id:          Controller's id for the device
 187 * @size:               Size (in bytes)
 188 * @addr_len:           Number of address bytes in read/write commands
 189 * @munge_address:      Flag whether addresses should be munged.
 190 *      Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
 191 *      use bit 3 of the command byte as address bit A8, rather
 192 *      than having a two-byte address.  If this flag is set, then
 193 *      commands should be munged in this way.
 194 * @erase_command:      Erase command (or 0 if sector erase not needed).
 195 * @erase_size:         Erase sector size (in bytes)
 196 *      Erase commands affect sectors with this size and alignment.
 197 *      This must be a power of two.
 198 * @block_size:         Write block size (in bytes).
 199 *      Write commands are limited to blocks with this size and alignment.
 200 */
 201struct falcon_spi_device {
 202        int device_id;
 203        unsigned int size;
 204        unsigned int addr_len;
 205        unsigned int munge_address:1;
 206        u8 erase_command;
 207        unsigned int erase_size;
 208        unsigned int block_size;
 209};
 210
 211static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
 212{
 213        return spi->size != 0;
 214}
 215
 216enum {
 217        FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
 218        FALCON_STAT_tx_packets,
 219        FALCON_STAT_tx_pause,
 220        FALCON_STAT_tx_control,
 221        FALCON_STAT_tx_unicast,
 222        FALCON_STAT_tx_multicast,
 223        FALCON_STAT_tx_broadcast,
 224        FALCON_STAT_tx_lt64,
 225        FALCON_STAT_tx_64,
 226        FALCON_STAT_tx_65_to_127,
 227        FALCON_STAT_tx_128_to_255,
 228        FALCON_STAT_tx_256_to_511,
 229        FALCON_STAT_tx_512_to_1023,
 230        FALCON_STAT_tx_1024_to_15xx,
 231        FALCON_STAT_tx_15xx_to_jumbo,
 232        FALCON_STAT_tx_gtjumbo,
 233        FALCON_STAT_tx_non_tcpudp,
 234        FALCON_STAT_tx_mac_src_error,
 235        FALCON_STAT_tx_ip_src_error,
 236        FALCON_STAT_rx_bytes,
 237        FALCON_STAT_rx_good_bytes,
 238        FALCON_STAT_rx_bad_bytes,
 239        FALCON_STAT_rx_packets,
 240        FALCON_STAT_rx_good,
 241        FALCON_STAT_rx_bad,
 242        FALCON_STAT_rx_pause,
 243        FALCON_STAT_rx_control,
 244        FALCON_STAT_rx_unicast,
 245        FALCON_STAT_rx_multicast,
 246        FALCON_STAT_rx_broadcast,
 247        FALCON_STAT_rx_lt64,
 248        FALCON_STAT_rx_64,
 249        FALCON_STAT_rx_65_to_127,
 250        FALCON_STAT_rx_128_to_255,
 251        FALCON_STAT_rx_256_to_511,
 252        FALCON_STAT_rx_512_to_1023,
 253        FALCON_STAT_rx_1024_to_15xx,
 254        FALCON_STAT_rx_15xx_to_jumbo,
 255        FALCON_STAT_rx_gtjumbo,
 256        FALCON_STAT_rx_bad_lt64,
 257        FALCON_STAT_rx_bad_gtjumbo,
 258        FALCON_STAT_rx_overflow,
 259        FALCON_STAT_rx_symbol_error,
 260        FALCON_STAT_rx_align_error,
 261        FALCON_STAT_rx_length_error,
 262        FALCON_STAT_rx_internal_error,
 263        FALCON_STAT_rx_nodesc_drop_cnt,
 264        FALCON_STAT_COUNT
 265};
 266
 267/**
 268 * struct falcon_nic_data - Falcon NIC state
 269 * @pci_dev2: Secondary function of Falcon A
 270 * @efx: ef4_nic pointer
 271 * @board: Board state and functions
 272 * @stats: Hardware statistics
 273 * @stats_disable_count: Nest count for disabling statistics fetches
 274 * @stats_pending: Is there a pending DMA of MAC statistics.
 275 * @stats_timer: A timer for regularly fetching MAC statistics.
 276 * @spi_flash: SPI flash device
 277 * @spi_eeprom: SPI EEPROM device
 278 * @spi_lock: SPI bus lock
 279 * @mdio_lock: MDIO bus lock
 280 * @xmac_poll_required: XMAC link state needs polling
 281 */
 282struct falcon_nic_data {
 283        struct pci_dev *pci_dev2;
 284        struct ef4_nic *efx;
 285        struct falcon_board board;
 286        u64 stats[FALCON_STAT_COUNT];
 287        unsigned int stats_disable_count;
 288        bool stats_pending;
 289        struct timer_list stats_timer;
 290        struct falcon_spi_device spi_flash;
 291        struct falcon_spi_device spi_eeprom;
 292        struct mutex spi_lock;
 293        struct mutex mdio_lock;
 294        bool xmac_poll_required;
 295};
 296
 297static inline struct falcon_board *falcon_board(struct ef4_nic *efx)
 298{
 299        struct falcon_nic_data *data = efx->nic_data;
 300        return &data->board;
 301}
 302
 303struct ethtool_ts_info;
 304
 305extern const struct ef4_nic_type falcon_a1_nic_type;
 306extern const struct ef4_nic_type falcon_b0_nic_type;
 307
 308/**************************************************************************
 309 *
 310 * Externs
 311 *
 312 **************************************************************************
 313 */
 314
 315int falcon_probe_board(struct ef4_nic *efx, u16 revision_info);
 316
 317/* TX data path */
 318static inline int ef4_nic_probe_tx(struct ef4_tx_queue *tx_queue)
 319{
 320        return tx_queue->efx->type->tx_probe(tx_queue);
 321}
 322static inline void ef4_nic_init_tx(struct ef4_tx_queue *tx_queue)
 323{
 324        tx_queue->efx->type->tx_init(tx_queue);
 325}
 326static inline void ef4_nic_remove_tx(struct ef4_tx_queue *tx_queue)
 327{
 328        tx_queue->efx->type->tx_remove(tx_queue);
 329}
 330static inline void ef4_nic_push_buffers(struct ef4_tx_queue *tx_queue)
 331{
 332        tx_queue->efx->type->tx_write(tx_queue);
 333}
 334
 335/* RX data path */
 336static inline int ef4_nic_probe_rx(struct ef4_rx_queue *rx_queue)
 337{
 338        return rx_queue->efx->type->rx_probe(rx_queue);
 339}
 340static inline void ef4_nic_init_rx(struct ef4_rx_queue *rx_queue)
 341{
 342        rx_queue->efx->type->rx_init(rx_queue);
 343}
 344static inline void ef4_nic_remove_rx(struct ef4_rx_queue *rx_queue)
 345{
 346        rx_queue->efx->type->rx_remove(rx_queue);
 347}
 348static inline void ef4_nic_notify_rx_desc(struct ef4_rx_queue *rx_queue)
 349{
 350        rx_queue->efx->type->rx_write(rx_queue);
 351}
 352static inline void ef4_nic_generate_fill_event(struct ef4_rx_queue *rx_queue)
 353{
 354        rx_queue->efx->type->rx_defer_refill(rx_queue);
 355}
 356
 357/* Event data path */
 358static inline int ef4_nic_probe_eventq(struct ef4_channel *channel)
 359{
 360        return channel->efx->type->ev_probe(channel);
 361}
 362static inline int ef4_nic_init_eventq(struct ef4_channel *channel)
 363{
 364        return channel->efx->type->ev_init(channel);
 365}
 366static inline void ef4_nic_fini_eventq(struct ef4_channel *channel)
 367{
 368        channel->efx->type->ev_fini(channel);
 369}
 370static inline void ef4_nic_remove_eventq(struct ef4_channel *channel)
 371{
 372        channel->efx->type->ev_remove(channel);
 373}
 374static inline int
 375ef4_nic_process_eventq(struct ef4_channel *channel, int quota)
 376{
 377        return channel->efx->type->ev_process(channel, quota);
 378}
 379static inline void ef4_nic_eventq_read_ack(struct ef4_channel *channel)
 380{
 381        channel->efx->type->ev_read_ack(channel);
 382}
 383void ef4_nic_event_test_start(struct ef4_channel *channel);
 384
 385/* queue operations */
 386int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue);
 387void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue);
 388void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue);
 389void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue);
 390void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue);
 391unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
 392                                    dma_addr_t dma_addr, unsigned int len);
 393int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue);
 394void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue);
 395void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue);
 396void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue);
 397void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue);
 398void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue);
 399int ef4_farch_ev_probe(struct ef4_channel *channel);
 400int ef4_farch_ev_init(struct ef4_channel *channel);
 401void ef4_farch_ev_fini(struct ef4_channel *channel);
 402void ef4_farch_ev_remove(struct ef4_channel *channel);
 403int ef4_farch_ev_process(struct ef4_channel *channel, int quota);
 404void ef4_farch_ev_read_ack(struct ef4_channel *channel);
 405void ef4_farch_ev_test_generate(struct ef4_channel *channel);
 406
 407/* filter operations */
 408int ef4_farch_filter_table_probe(struct ef4_nic *efx);
 409void ef4_farch_filter_table_restore(struct ef4_nic *efx);
 410void ef4_farch_filter_table_remove(struct ef4_nic *efx);
 411void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx);
 412s32 ef4_farch_filter_insert(struct ef4_nic *efx, struct ef4_filter_spec *spec,
 413                            bool replace);
 414int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
 415                                 enum ef4_filter_priority priority,
 416                                 u32 filter_id);
 417int ef4_farch_filter_get_safe(struct ef4_nic *efx,
 418                              enum ef4_filter_priority priority, u32 filter_id,
 419                              struct ef4_filter_spec *);
 420int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
 421                              enum ef4_filter_priority priority);
 422u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
 423                                   enum ef4_filter_priority priority);
 424u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx);
 425s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
 426                                enum ef4_filter_priority priority, u32 *buf,
 427                                u32 size);
 428#ifdef CONFIG_RFS_ACCEL
 429s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
 430                                struct ef4_filter_spec *spec);
 431bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
 432                                     unsigned int index);
 433#endif
 434void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx);
 435
 436bool ef4_nic_event_present(struct ef4_channel *channel);
 437
 438/* Some statistics are computed as A - B where A and B each increase
 439 * linearly with some hardware counter(s) and the counters are read
 440 * asynchronously.  If the counters contributing to B are always read
 441 * after those contributing to A, the computed value may be lower than
 442 * the true value by some variable amount, and may decrease between
 443 * subsequent computations.
 444 *
 445 * We should never allow statistics to decrease or to exceed the true
 446 * value.  Since the computed value will never be greater than the
 447 * true value, we can achieve this by only storing the computed value
 448 * when it increases.
 449 */
 450static inline void ef4_update_diff_stat(u64 *stat, u64 diff)
 451{
 452        if ((s64)(diff - *stat) > 0)
 453                *stat = diff;
 454}
 455
 456/* Interrupts */
 457int ef4_nic_init_interrupt(struct ef4_nic *efx);
 458int ef4_nic_irq_test_start(struct ef4_nic *efx);
 459void ef4_nic_fini_interrupt(struct ef4_nic *efx);
 460void ef4_farch_irq_enable_master(struct ef4_nic *efx);
 461int ef4_farch_irq_test_generate(struct ef4_nic *efx);
 462void ef4_farch_irq_disable_master(struct ef4_nic *efx);
 463irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id);
 464irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id);
 465irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx);
 466
 467static inline int ef4_nic_event_test_irq_cpu(struct ef4_channel *channel)
 468{
 469        return READ_ONCE(channel->event_test_cpu);
 470}
 471static inline int ef4_nic_irq_test_irq_cpu(struct ef4_nic *efx)
 472{
 473        return READ_ONCE(efx->last_irq_cpu);
 474}
 475
 476/* Global Resources */
 477int ef4_nic_flush_queues(struct ef4_nic *efx);
 478int ef4_farch_fini_dmaq(struct ef4_nic *efx);
 479void ef4_farch_finish_flr(struct ef4_nic *efx);
 480void falcon_start_nic_stats(struct ef4_nic *efx);
 481void falcon_stop_nic_stats(struct ef4_nic *efx);
 482int falcon_reset_xaui(struct ef4_nic *efx);
 483void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw);
 484void ef4_farch_init_common(struct ef4_nic *efx);
 485void ef4_farch_rx_push_indir_table(struct ef4_nic *efx);
 486
 487int ef4_nic_alloc_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer,
 488                         unsigned int len, gfp_t gfp_flags);
 489void ef4_nic_free_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer);
 490
 491/* Tests */
 492struct ef4_farch_register_test {
 493        unsigned address;
 494        ef4_oword_t mask;
 495};
 496int ef4_farch_test_registers(struct ef4_nic *efx,
 497                             const struct ef4_farch_register_test *regs,
 498                             size_t n_regs);
 499
 500size_t ef4_nic_get_regs_len(struct ef4_nic *efx);
 501void ef4_nic_get_regs(struct ef4_nic *efx, void *buf);
 502
 503size_t ef4_nic_describe_stats(const struct ef4_hw_stat_desc *desc, size_t count,
 504                              const unsigned long *mask, u8 *names);
 505void ef4_nic_update_stats(const struct ef4_hw_stat_desc *desc, size_t count,
 506                          const unsigned long *mask, u64 *stats,
 507                          const void *dma_buf, bool accumulate);
 508void ef4_nic_fix_nodesc_drop_stat(struct ef4_nic *efx, u64 *stat);
 509
 510#define EF4_MAX_FLUSH_TIME 5000
 511
 512void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
 513                              ef4_qword_t *event);
 514
 515#endif /* EF4_NIC_H */
 516