linux/drivers/net/ethernet/sfc/ptp.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2011-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10/* Theory of operation:
  11 *
  12 * PTP support is assisted by firmware running on the MC, which provides
  13 * the hardware timestamping capabilities.  Both transmitted and received
  14 * PTP event packets are queued onto internal queues for subsequent processing;
  15 * this is because the MC operations are relatively long and would block
  16 * block NAPI/interrupt operation.
  17 *
  18 * Receive event processing:
  19 *      The event contains the packet's UUID and sequence number, together
  20 *      with the hardware timestamp.  The PTP receive packet queue is searched
  21 *      for this UUID/sequence number and, if found, put on a pending queue.
  22 *      Packets not matching are delivered without timestamps (MCDI events will
  23 *      always arrive after the actual packet).
  24 *      It is important for the operation of the PTP protocol that the ordering
  25 *      of packets between the event and general port is maintained.
  26 *
  27 * Work queue processing:
  28 *      If work waiting, synchronise host/hardware time
  29 *
  30 *      Transmit: send packet through MC, which returns the transmission time
  31 *      that is converted to an appropriate timestamp.
  32 *
  33 *      Receive: the packet's reception time is converted to an appropriate
  34 *      timestamp.
  35 */
  36#include <linux/ip.h>
  37#include <linux/udp.h>
  38#include <linux/time.h>
  39#include <linux/ktime.h>
  40#include <linux/module.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/pps_kernel.h>
  43#include <linux/ptp_clock_kernel.h>
  44#include "net_driver.h"
  45#include "efx.h"
  46#include "mcdi.h"
  47#include "mcdi_pcol.h"
  48#include "io.h"
  49#include "farch_regs.h"
  50#include "nic.h"
  51
  52/* Maximum number of events expected to make up a PTP event */
  53#define MAX_EVENT_FRAGS                 3
  54
  55/* Maximum delay, ms, to begin synchronisation */
  56#define MAX_SYNCHRONISE_WAIT_MS         2
  57
  58/* How long, at most, to spend synchronising */
  59#define SYNCHRONISE_PERIOD_NS           250000
  60
  61/* How often to update the shared memory time */
  62#define SYNCHRONISATION_GRANULARITY_NS  200
  63
  64/* Minimum permitted length of a (corrected) synchronisation time */
  65#define DEFAULT_MIN_SYNCHRONISATION_NS  120
  66
  67/* Maximum permitted length of a (corrected) synchronisation time */
  68#define MAX_SYNCHRONISATION_NS          1000
  69
  70/* How many (MC) receive events that can be queued */
  71#define MAX_RECEIVE_EVENTS              8
  72
  73/* Length of (modified) moving average. */
  74#define AVERAGE_LENGTH                  16
  75
  76/* How long an unmatched event or packet can be held */
  77#define PKT_EVENT_LIFETIME_MS           10
  78
  79/* Offsets into PTP packet for identification.  These offsets are from the
  80 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  81 * PTP V2 permit the use of IPV4 options.
  82 */
  83#define PTP_DPORT_OFFSET        22
  84
  85#define PTP_V1_VERSION_LENGTH   2
  86#define PTP_V1_VERSION_OFFSET   28
  87
  88#define PTP_V1_UUID_LENGTH      6
  89#define PTP_V1_UUID_OFFSET      50
  90
  91#define PTP_V1_SEQUENCE_LENGTH  2
  92#define PTP_V1_SEQUENCE_OFFSET  58
  93
  94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  95 * includes IP header.
  96 */
  97#define PTP_V1_MIN_LENGTH       64
  98
  99#define PTP_V2_VERSION_LENGTH   1
 100#define PTP_V2_VERSION_OFFSET   29
 101
 102#define PTP_V2_UUID_LENGTH      8
 103#define PTP_V2_UUID_OFFSET      48
 104
 105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 106 * the MC only captures the last six bytes of the clock identity. These values
 107 * reflect those, not the ones used in the standard.  The standard permits
 108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 109 */
 110#define PTP_V2_MC_UUID_LENGTH   6
 111#define PTP_V2_MC_UUID_OFFSET   50
 112
 113#define PTP_V2_SEQUENCE_LENGTH  2
 114#define PTP_V2_SEQUENCE_OFFSET  58
 115
 116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 117 * includes IP header.
 118 */
 119#define PTP_V2_MIN_LENGTH       63
 120
 121#define PTP_MIN_LENGTH          63
 122
 123#define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 124#define PTP_EVENT_PORT          319
 125#define PTP_GENERAL_PORT        320
 126
 127/* Annoyingly the format of the version numbers are different between
 128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 129 */
 130#define PTP_VERSION_V1          1
 131
 132#define PTP_VERSION_V2          2
 133#define PTP_VERSION_V2_MASK     0x0f
 134
 135enum ptp_packet_state {
 136        PTP_PACKET_STATE_UNMATCHED = 0,
 137        PTP_PACKET_STATE_MATCHED,
 138        PTP_PACKET_STATE_TIMED_OUT,
 139        PTP_PACKET_STATE_MATCH_UNWANTED
 140};
 141
 142/* NIC synchronised with single word of time only comprising
 143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 144 */
 145#define MC_NANOSECOND_BITS      30
 146#define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 147#define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 148
 149/* Maximum parts-per-billion adjustment that is acceptable */
 150#define MAX_PPB                 1000000
 151
 152/* Precalculate scale word to avoid long long division at runtime */
 153/* This is equivalent to 2^66 / 10^9. */
 154#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
 155
 156/* How much to shift down after scaling to convert to FP40 */
 157#define PPB_SHIFT_FP40          26
 158/* ... and FP44. */
 159#define PPB_SHIFT_FP44          22
 160
 161#define PTP_SYNC_ATTEMPTS       4
 162
 163/**
 164 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 165 * @words: UUID and (partial) sequence number
 166 * @expiry: Time after which the packet should be delivered irrespective of
 167 *            event arrival.
 168 * @state: The state of the packet - whether it is ready for processing or
 169 *         whether that is of no interest.
 170 */
 171struct efx_ptp_match {
 172        u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 173        unsigned long expiry;
 174        enum ptp_packet_state state;
 175};
 176
 177/**
 178 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 179 * @seq0: First part of (PTP) UUID
 180 * @seq1: Second part of (PTP) UUID and sequence number
 181 * @hwtimestamp: Event timestamp
 182 */
 183struct efx_ptp_event_rx {
 184        struct list_head link;
 185        u32 seq0;
 186        u32 seq1;
 187        ktime_t hwtimestamp;
 188        unsigned long expiry;
 189};
 190
 191/**
 192 * struct efx_ptp_timeset - Synchronisation between host and MC
 193 * @host_start: Host time immediately before hardware timestamp taken
 194 * @major: Hardware timestamp, major
 195 * @minor: Hardware timestamp, minor
 196 * @host_end: Host time immediately after hardware timestamp taken
 197 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 198 *          host end time being seen
 199 * @window: Difference of host_end and host_start
 200 * @valid: Whether this timeset is valid
 201 */
 202struct efx_ptp_timeset {
 203        u32 host_start;
 204        u32 major;
 205        u32 minor;
 206        u32 host_end;
 207        u32 wait;
 208        u32 window;     /* Derived: end - start, allowing for wrap */
 209};
 210
 211/**
 212 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 213 * @efx: The NIC context
 214 * @channel: The PTP channel (Siena only)
 215 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 216 *      separate events)
 217 * @rxq: Receive SKB queue (awaiting timestamps)
 218 * @txq: Transmit SKB queue
 219 * @evt_list: List of MC receive events awaiting packets
 220 * @evt_free_list: List of free events
 221 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 222 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 223 * @workwq: Work queue for processing pending PTP operations
 224 * @work: Work task
 225 * @reset_required: A serious error has occurred and the PTP task needs to be
 226 *                  reset (disable, enable).
 227 * @rxfilter_event: Receive filter when operating
 228 * @rxfilter_general: Receive filter when operating
 229 * @config: Current timestamp configuration
 230 * @enabled: PTP operation enabled
 231 * @mode: Mode in which PTP operating (PTP version)
 232 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 233 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 234 * @nic_time.minor_max: Wrap point for NIC minor times
 235 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 236 * in packet prefix and last MCDI time sync event i.e. how much earlier than
 237 * the last sync event time a packet timestamp can be.
 238 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 239 * in packet prefix and last MCDI time sync event i.e. how much later than
 240 * the last sync event time a packet timestamp can be.
 241 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 242 * field in MCDI time sync event.
 243 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 244 * @capabilities: Capabilities flags from the NIC
 245 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 246 *                         timestamps
 247 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 248 *                         timestamps
 249 * @ts_corrections.pps_out: PPS output error (information only)
 250 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 251 * @ts_corrections.general_tx: Required driver correction of general packet
 252 *                             transmit timestamps
 253 * @ts_corrections.general_rx: Required driver correction of general packet
 254 *                             receive timestamps
 255 * @evt_frags: Partly assembled PTP events
 256 * @evt_frag_idx: Current fragment number
 257 * @evt_code: Last event code
 258 * @start: Address at which MC indicates ready for synchronisation
 259 * @host_time_pps: Host time at last PPS
 260 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 261 * frequency adjustment into a fixed point fractional nanosecond format.
 262 * @current_adjfreq: Current ppb adjustment.
 263 * @phc_clock: Pointer to registered phc device (if primary function)
 264 * @phc_clock_info: Registration structure for phc device
 265 * @pps_work: pps work task for handling pps events
 266 * @pps_workwq: pps work queue
 267 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 268 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 269 *         allocations in main data path).
 270 * @good_syncs: Number of successful synchronisations.
 271 * @fast_syncs: Number of synchronisations requiring short delay
 272 * @bad_syncs: Number of failed synchronisations.
 273 * @sync_timeouts: Number of synchronisation timeouts
 274 * @no_time_syncs: Number of synchronisations with no good times.
 275 * @invalid_sync_windows: Number of sync windows with bad durations.
 276 * @undersize_sync_windows: Number of corrected sync windows that are too small
 277 * @oversize_sync_windows: Number of corrected sync windows that are too large
 278 * @rx_no_timestamp: Number of packets received without a timestamp.
 279 * @timeset: Last set of synchronisation statistics.
 280 * @xmit_skb: Transmit SKB function.
 281 */
 282struct efx_ptp_data {
 283        struct efx_nic *efx;
 284        struct efx_channel *channel;
 285        bool rx_ts_inline;
 286        struct sk_buff_head rxq;
 287        struct sk_buff_head txq;
 288        struct list_head evt_list;
 289        struct list_head evt_free_list;
 290        spinlock_t evt_lock;
 291        struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 292        struct workqueue_struct *workwq;
 293        struct work_struct work;
 294        bool reset_required;
 295        u32 rxfilter_event;
 296        u32 rxfilter_general;
 297        bool rxfilter_installed;
 298        struct hwtstamp_config config;
 299        bool enabled;
 300        unsigned int mode;
 301        void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 302        ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 303                                      s32 correction);
 304        struct {
 305                u32 minor_max;
 306                u32 sync_event_diff_min;
 307                u32 sync_event_diff_max;
 308                unsigned int sync_event_minor_shift;
 309        } nic_time;
 310        unsigned int min_synchronisation_ns;
 311        unsigned int capabilities;
 312        struct {
 313                s32 ptp_tx;
 314                s32 ptp_rx;
 315                s32 pps_out;
 316                s32 pps_in;
 317                s32 general_tx;
 318                s32 general_rx;
 319        } ts_corrections;
 320        efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 321        int evt_frag_idx;
 322        int evt_code;
 323        struct efx_buffer start;
 324        struct pps_event_time host_time_pps;
 325        unsigned int adjfreq_ppb_shift;
 326        s64 current_adjfreq;
 327        struct ptp_clock *phc_clock;
 328        struct ptp_clock_info phc_clock_info;
 329        struct work_struct pps_work;
 330        struct workqueue_struct *pps_workwq;
 331        bool nic_ts_enabled;
 332        _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
 333
 334        unsigned int good_syncs;
 335        unsigned int fast_syncs;
 336        unsigned int bad_syncs;
 337        unsigned int sync_timeouts;
 338        unsigned int no_time_syncs;
 339        unsigned int invalid_sync_windows;
 340        unsigned int undersize_sync_windows;
 341        unsigned int oversize_sync_windows;
 342        unsigned int rx_no_timestamp;
 343        struct efx_ptp_timeset
 344        timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 345        void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
 346};
 347
 348static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 349static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 350static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 351static int efx_phc_settime(struct ptp_clock_info *ptp,
 352                           const struct timespec64 *e_ts);
 353static int efx_phc_enable(struct ptp_clock_info *ptp,
 354                          struct ptp_clock_request *request, int on);
 355
 356bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
 357{
 358        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 359
 360        return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
 361                (nic_data->datapath_caps2 &
 362                 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
 363                ));
 364}
 365
 366/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 367 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 368 */
 369static bool efx_ptp_want_txqs(struct efx_channel *channel)
 370{
 371        return efx_ptp_use_mac_tx_timestamps(channel->efx);
 372}
 373
 374#define PTP_SW_STAT(ext_name, field_name)                               \
 375        { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 376#define PTP_MC_STAT(ext_name, mcdi_name)                                \
 377        { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 378static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 379        PTP_SW_STAT(ptp_good_syncs, good_syncs),
 380        PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 381        PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 382        PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 383        PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 384        PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 385        PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 386        PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 387        PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 388        PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 389        PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 390        PTP_MC_STAT(ptp_timestamp_packets, TS),
 391        PTP_MC_STAT(ptp_filter_matches, FM),
 392        PTP_MC_STAT(ptp_non_filter_matches, NFM),
 393};
 394#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 395static const unsigned long efx_ptp_stat_mask[] = {
 396        [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 397};
 398
 399size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 400{
 401        if (!efx->ptp_data)
 402                return 0;
 403
 404        return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 405                                      efx_ptp_stat_mask, strings);
 406}
 407
 408size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 409{
 410        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 411        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 412        size_t i;
 413        int rc;
 414
 415        if (!efx->ptp_data)
 416                return 0;
 417
 418        /* Copy software statistics */
 419        for (i = 0; i < PTP_STAT_COUNT; i++) {
 420                if (efx_ptp_stat_desc[i].dma_width)
 421                        continue;
 422                stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 423                                             efx_ptp_stat_desc[i].offset);
 424        }
 425
 426        /* Fetch MC statistics.  We *must* fill in all statistics or
 427         * risk leaking kernel memory to userland, so if the MCDI
 428         * request fails we pretend we got zeroes.
 429         */
 430        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 431        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 432        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 433                          outbuf, sizeof(outbuf), NULL);
 434        if (rc)
 435                memset(outbuf, 0, sizeof(outbuf));
 436        efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 437                             efx_ptp_stat_mask,
 438                             stats, _MCDI_PTR(outbuf, 0), false);
 439
 440        return PTP_STAT_COUNT;
 441}
 442
 443/* For Siena platforms NIC time is s and ns */
 444static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 445{
 446        struct timespec64 ts = ns_to_timespec64(ns);
 447        *nic_major = (u32)ts.tv_sec;
 448        *nic_minor = ts.tv_nsec;
 449}
 450
 451static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 452                                                s32 correction)
 453{
 454        ktime_t kt = ktime_set(nic_major, nic_minor);
 455        if (correction >= 0)
 456                kt = ktime_add_ns(kt, (u64)correction);
 457        else
 458                kt = ktime_sub_ns(kt, (u64)-correction);
 459        return kt;
 460}
 461
 462/* To convert from s27 format to ns we multiply then divide by a power of 2.
 463 * For the conversion from ns to s27, the operation is also converted to a
 464 * multiply and shift.
 465 */
 466#define S27_TO_NS_SHIFT (27)
 467#define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 468#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
 469#define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
 470
 471/* For Huntington platforms NIC time is in seconds and fractions of a second
 472 * where the minor register only uses 27 bits in units of 2^-27s.
 473 */
 474static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 475{
 476        struct timespec64 ts = ns_to_timespec64(ns);
 477        u32 maj = (u32)ts.tv_sec;
 478        u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 479                         (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 480
 481        /* The conversion can result in the minor value exceeding the maximum.
 482         * In this case, round up to the next second.
 483         */
 484        if (min >= S27_MINOR_MAX) {
 485                min -= S27_MINOR_MAX;
 486                maj++;
 487        }
 488
 489        *nic_major = maj;
 490        *nic_minor = min;
 491}
 492
 493static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 494{
 495        u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 496                        (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 497        return ktime_set(nic_major, ns);
 498}
 499
 500static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 501                                               s32 correction)
 502{
 503        /* Apply the correction and deal with carry */
 504        nic_minor += correction;
 505        if ((s32)nic_minor < 0) {
 506                nic_minor += S27_MINOR_MAX;
 507                nic_major--;
 508        } else if (nic_minor >= S27_MINOR_MAX) {
 509                nic_minor -= S27_MINOR_MAX;
 510                nic_major++;
 511        }
 512
 513        return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 514}
 515
 516/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
 517static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
 518{
 519        struct timespec64 ts = ns_to_timespec64(ns);
 520
 521        *nic_major = (u32)ts.tv_sec;
 522        *nic_minor = ts.tv_nsec * 4;
 523}
 524
 525static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 526                                                 s32 correction)
 527{
 528        ktime_t kt;
 529
 530        nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
 531        correction = DIV_ROUND_CLOSEST(correction, 4);
 532
 533        kt = ktime_set(nic_major, nic_minor);
 534
 535        if (correction >= 0)
 536                kt = ktime_add_ns(kt, (u64)correction);
 537        else
 538                kt = ktime_sub_ns(kt, (u64)-correction);
 539        return kt;
 540}
 541
 542struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
 543{
 544        return efx->ptp_data ? efx->ptp_data->channel : NULL;
 545}
 546
 547static u32 last_sync_timestamp_major(struct efx_nic *efx)
 548{
 549        struct efx_channel *channel = efx_ptp_channel(efx);
 550        u32 major = 0;
 551
 552        if (channel)
 553                major = channel->sync_timestamp_major;
 554        return major;
 555}
 556
 557/* The 8000 series and later can provide the time from the MAC, which is only
 558 * 48 bits long and provides meta-information in the top 2 bits.
 559 */
 560static ktime_t
 561efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
 562                                    struct efx_ptp_data *ptp,
 563                                    u32 nic_major, u32 nic_minor,
 564                                    s32 correction)
 565{
 566        ktime_t kt = { 0 };
 567
 568        if (!(nic_major & 0x80000000)) {
 569                WARN_ON_ONCE(nic_major >> 16);
 570                /* Use the top bits from the latest sync event. */
 571                nic_major &= 0xffff;
 572                nic_major |= (last_sync_timestamp_major(efx) & 0xffff0000);
 573
 574                kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
 575                                             correction);
 576        }
 577        return kt;
 578}
 579
 580ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
 581{
 582        struct efx_nic *efx = tx_queue->efx;
 583        struct efx_ptp_data *ptp = efx->ptp_data;
 584        ktime_t kt;
 585
 586        if (efx_ptp_use_mac_tx_timestamps(efx))
 587                kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
 588                                tx_queue->completed_timestamp_major,
 589                                tx_queue->completed_timestamp_minor,
 590                                ptp->ts_corrections.general_tx);
 591        else
 592                kt = ptp->nic_to_kernel_time(
 593                                tx_queue->completed_timestamp_major,
 594                                tx_queue->completed_timestamp_minor,
 595                                ptp->ts_corrections.general_tx);
 596        return kt;
 597}
 598
 599/* Get PTP attributes and set up time conversions */
 600static int efx_ptp_get_attributes(struct efx_nic *efx)
 601{
 602        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 603        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 604        struct efx_ptp_data *ptp = efx->ptp_data;
 605        int rc;
 606        u32 fmt;
 607        size_t out_len;
 608
 609        /* Get the PTP attributes. If the NIC doesn't support the operation we
 610         * use the default format for compatibility with older NICs i.e.
 611         * seconds and nanoseconds.
 612         */
 613        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 614        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 615        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 616                                outbuf, sizeof(outbuf), &out_len);
 617        if (rc == 0) {
 618                fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 619        } else if (rc == -EINVAL) {
 620                fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 621        } else if (rc == -EPERM) {
 622                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 623                return rc;
 624        } else {
 625                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 626                                       outbuf, sizeof(outbuf), rc);
 627                return rc;
 628        }
 629
 630        switch (fmt) {
 631        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
 632                ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 633                ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 634                ptp->nic_time.minor_max = 1 << 27;
 635                ptp->nic_time.sync_event_minor_shift = 19;
 636                break;
 637        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
 638                ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 639                ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 640                ptp->nic_time.minor_max = 1000000000;
 641                ptp->nic_time.sync_event_minor_shift = 22;
 642                break;
 643        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
 644                ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
 645                ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
 646                ptp->nic_time.minor_max = 4000000000UL;
 647                ptp->nic_time.sync_event_minor_shift = 24;
 648                break;
 649        default:
 650                return -ERANGE;
 651        }
 652
 653        /* Precalculate acceptable difference between the minor time in the
 654         * packet prefix and the last MCDI time sync event. We expect the
 655         * packet prefix timestamp to be after of sync event by up to one
 656         * sync event interval (0.25s) but we allow it to exceed this by a
 657         * fuzz factor of (0.1s)
 658         */
 659        ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
 660                - (ptp->nic_time.minor_max / 10);
 661        ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
 662                + (ptp->nic_time.minor_max / 10);
 663
 664        /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
 665         * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
 666         * a value to use for the minimum acceptable corrected synchronization
 667         * window and may return further capabilities.
 668         * If we have the extra information store it. For older firmware that
 669         * does not implement the extended command use the default value.
 670         */
 671        if (rc == 0 &&
 672            out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
 673                ptp->min_synchronisation_ns =
 674                        MCDI_DWORD(outbuf,
 675                                   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 676        else
 677                ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 678
 679        if (rc == 0 &&
 680            out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 681                ptp->capabilities = MCDI_DWORD(outbuf,
 682                                        PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
 683        else
 684                ptp->capabilities = 0;
 685
 686        /* Set up the shift for conversion between frequency
 687         * adjustments in parts-per-billion and the fixed-point
 688         * fractional ns format that the adapter uses.
 689         */
 690        if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
 691                ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
 692        else
 693                ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
 694
 695        return 0;
 696}
 697
 698/* Get PTP timestamp corrections */
 699static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 700{
 701        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 702        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
 703        int rc;
 704        size_t out_len;
 705
 706        /* Get the timestamp corrections from the NIC. If this operation is
 707         * not supported (older NICs) then no correction is required.
 708         */
 709        MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 710                       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 711        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 712
 713        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 714                                outbuf, sizeof(outbuf), &out_len);
 715        if (rc == 0) {
 716                efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
 717                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 718                efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
 719                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 720                efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 721                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 722                efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 723                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 724
 725                if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
 726                        efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
 727                                outbuf,
 728                                PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
 729                        efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
 730                                outbuf,
 731                                PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
 732                } else {
 733                        efx->ptp_data->ts_corrections.general_tx =
 734                                efx->ptp_data->ts_corrections.ptp_tx;
 735                        efx->ptp_data->ts_corrections.general_rx =
 736                                efx->ptp_data->ts_corrections.ptp_rx;
 737                }
 738        } else if (rc == -EINVAL) {
 739                efx->ptp_data->ts_corrections.ptp_tx = 0;
 740                efx->ptp_data->ts_corrections.ptp_rx = 0;
 741                efx->ptp_data->ts_corrections.pps_out = 0;
 742                efx->ptp_data->ts_corrections.pps_in = 0;
 743                efx->ptp_data->ts_corrections.general_tx = 0;
 744                efx->ptp_data->ts_corrections.general_rx = 0;
 745        } else {
 746                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 747                                       sizeof(outbuf), rc);
 748                return rc;
 749        }
 750
 751        return 0;
 752}
 753
 754/* Enable MCDI PTP support. */
 755static int efx_ptp_enable(struct efx_nic *efx)
 756{
 757        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 758        MCDI_DECLARE_BUF_ERR(outbuf);
 759        int rc;
 760
 761        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 762        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 763        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 764                       efx->ptp_data->channel ?
 765                       efx->ptp_data->channel->channel : 0);
 766        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 767
 768        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 769                                outbuf, sizeof(outbuf), NULL);
 770        rc = (rc == -EALREADY) ? 0 : rc;
 771        if (rc)
 772                efx_mcdi_display_error(efx, MC_CMD_PTP,
 773                                       MC_CMD_PTP_IN_ENABLE_LEN,
 774                                       outbuf, sizeof(outbuf), rc);
 775        return rc;
 776}
 777
 778/* Disable MCDI PTP support.
 779 *
 780 * Note that this function should never rely on the presence of ptp_data -
 781 * may be called before that exists.
 782 */
 783static int efx_ptp_disable(struct efx_nic *efx)
 784{
 785        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 786        MCDI_DECLARE_BUF_ERR(outbuf);
 787        int rc;
 788
 789        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 790        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 791        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 792                                outbuf, sizeof(outbuf), NULL);
 793        rc = (rc == -EALREADY) ? 0 : rc;
 794        /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 795         * should only have been called during probe.
 796         */
 797        if (rc == -ENOSYS || rc == -EPERM)
 798                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 799        else if (rc)
 800                efx_mcdi_display_error(efx, MC_CMD_PTP,
 801                                       MC_CMD_PTP_IN_DISABLE_LEN,
 802                                       outbuf, sizeof(outbuf), rc);
 803        return rc;
 804}
 805
 806static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 807{
 808        struct sk_buff *skb;
 809
 810        while ((skb = skb_dequeue(q))) {
 811                local_bh_disable();
 812                netif_receive_skb(skb);
 813                local_bh_enable();
 814        }
 815}
 816
 817static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 818{
 819        netif_err(efx, drv, efx->net_dev,
 820                  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 821                  "vector. PTP disabled\n");
 822}
 823
 824/* Repeatedly send the host time to the MC which will capture the hardware
 825 * time.
 826 */
 827static void efx_ptp_send_times(struct efx_nic *efx,
 828                               struct pps_event_time *last_time)
 829{
 830        struct pps_event_time now;
 831        struct timespec64 limit;
 832        struct efx_ptp_data *ptp = efx->ptp_data;
 833        int *mc_running = ptp->start.addr;
 834
 835        pps_get_ts(&now);
 836        limit = now.ts_real;
 837        timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 838
 839        /* Write host time for specified period or until MC is done */
 840        while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 841               READ_ONCE(*mc_running)) {
 842                struct timespec64 update_time;
 843                unsigned int host_time;
 844
 845                /* Don't update continuously to avoid saturating the PCIe bus */
 846                update_time = now.ts_real;
 847                timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 848                do {
 849                        pps_get_ts(&now);
 850                } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 851                         READ_ONCE(*mc_running));
 852
 853                /* Synchronise NIC with single word of time only */
 854                host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 855                             now.ts_real.tv_nsec);
 856                /* Update host time in NIC memory */
 857                efx->type->ptp_write_host_time(efx, host_time);
 858        }
 859        *last_time = now;
 860}
 861
 862/* Read a timeset from the MC's results and partial process. */
 863static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 864                                 struct efx_ptp_timeset *timeset)
 865{
 866        unsigned start_ns, end_ns;
 867
 868        timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 869        timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 870        timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 871        timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 872        timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 873
 874        /* Ignore seconds */
 875        start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 876        end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 877        /* Allow for rollover */
 878        if (end_ns < start_ns)
 879                end_ns += NSEC_PER_SEC;
 880        /* Determine duration of operation */
 881        timeset->window = end_ns - start_ns;
 882}
 883
 884/* Process times received from MC.
 885 *
 886 * Extract times from returned results, and establish the minimum value
 887 * seen.  The minimum value represents the "best" possible time and events
 888 * too much greater than this are rejected - the machine is, perhaps, too
 889 * busy. A number of readings are taken so that, hopefully, at least one good
 890 * synchronisation will be seen in the results.
 891 */
 892static int
 893efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 894                      size_t response_length,
 895                      const struct pps_event_time *last_time)
 896{
 897        unsigned number_readings =
 898                MCDI_VAR_ARRAY_LEN(response_length,
 899                                   PTP_OUT_SYNCHRONIZE_TIMESET);
 900        unsigned i;
 901        unsigned ngood = 0;
 902        unsigned last_good = 0;
 903        struct efx_ptp_data *ptp = efx->ptp_data;
 904        u32 last_sec;
 905        u32 start_sec;
 906        struct timespec64 delta;
 907        ktime_t mc_time;
 908
 909        if (number_readings == 0)
 910                return -EAGAIN;
 911
 912        /* Read the set of results and find the last good host-MC
 913         * synchronization result. The MC times when it finishes reading the
 914         * host time so the corrected window time should be fairly constant
 915         * for a given platform. Increment stats for any results that appear
 916         * to be erroneous.
 917         */
 918        for (i = 0; i < number_readings; i++) {
 919                s32 window, corrected;
 920                struct timespec64 wait;
 921
 922                efx_ptp_read_timeset(
 923                        MCDI_ARRAY_STRUCT_PTR(synch_buf,
 924                                              PTP_OUT_SYNCHRONIZE_TIMESET, i),
 925                        &ptp->timeset[i]);
 926
 927                wait = ktime_to_timespec64(
 928                        ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 929                window = ptp->timeset[i].window;
 930                corrected = window - wait.tv_nsec;
 931
 932                /* We expect the uncorrected synchronization window to be at
 933                 * least as large as the interval between host start and end
 934                 * times. If it is smaller than this then this is mostly likely
 935                 * to be a consequence of the host's time being adjusted.
 936                 * Check that the corrected sync window is in a reasonable
 937                 * range. If it is out of range it is likely to be because an
 938                 * interrupt or other delay occurred between reading the system
 939                 * time and writing it to MC memory.
 940                 */
 941                if (window < SYNCHRONISATION_GRANULARITY_NS) {
 942                        ++ptp->invalid_sync_windows;
 943                } else if (corrected >= MAX_SYNCHRONISATION_NS) {
 944                        ++ptp->oversize_sync_windows;
 945                } else if (corrected < ptp->min_synchronisation_ns) {
 946                        ++ptp->undersize_sync_windows;
 947                } else {
 948                        ngood++;
 949                        last_good = i;
 950                }
 951        }
 952
 953        if (ngood == 0) {
 954                netif_warn(efx, drv, efx->net_dev,
 955                           "PTP no suitable synchronisations\n");
 956                return -EAGAIN;
 957        }
 958
 959        /* Calculate delay from last good sync (host time) to last_time.
 960         * It is possible that the seconds rolled over between taking
 961         * the start reading and the last value written by the host.  The
 962         * timescales are such that a gap of more than one second is never
 963         * expected.  delta is *not* normalised.
 964         */
 965        start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 966        last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 967        if (start_sec != last_sec &&
 968            ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 969                netif_warn(efx, hw, efx->net_dev,
 970                           "PTP bad synchronisation seconds\n");
 971                return -EAGAIN;
 972        }
 973        delta.tv_sec = (last_sec - start_sec) & 1;
 974        delta.tv_nsec =
 975                last_time->ts_real.tv_nsec -
 976                (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 977
 978        /* Convert the NIC time at last good sync into kernel time.
 979         * No correction is required - this time is the output of a
 980         * firmware process.
 981         */
 982        mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
 983                                          ptp->timeset[last_good].minor, 0);
 984
 985        /* Calculate delay from NIC top of second to last_time */
 986        delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
 987
 988        /* Set PPS timestamp to match NIC top of second */
 989        ptp->host_time_pps = *last_time;
 990        pps_sub_ts(&ptp->host_time_pps, delta);
 991
 992        return 0;
 993}
 994
 995/* Synchronize times between the host and the MC */
 996static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
 997{
 998        struct efx_ptp_data *ptp = efx->ptp_data;
 999        MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1000        size_t response_length;
1001        int rc;
1002        unsigned long timeout;
1003        struct pps_event_time last_time = {};
1004        unsigned int loops = 0;
1005        int *start = ptp->start.addr;
1006
1007        MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1008        MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1009        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1010                       num_readings);
1011        MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1012                       ptp->start.dma_addr);
1013
1014        /* Clear flag that signals MC ready */
1015        WRITE_ONCE(*start, 0);
1016        rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1017                                MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1018        EFX_WARN_ON_ONCE_PARANOID(rc);
1019
1020        /* Wait for start from MCDI (or timeout) */
1021        timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1022        while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1023                udelay(20);     /* Usually start MCDI execution quickly */
1024                loops++;
1025        }
1026
1027        if (loops <= 1)
1028                ++ptp->fast_syncs;
1029        if (!time_before(jiffies, timeout))
1030                ++ptp->sync_timeouts;
1031
1032        if (READ_ONCE(*start))
1033                efx_ptp_send_times(efx, &last_time);
1034
1035        /* Collect results */
1036        rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1037                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1038                                 synch_buf, sizeof(synch_buf),
1039                                 &response_length);
1040        if (rc == 0) {
1041                rc = efx_ptp_process_times(efx, synch_buf, response_length,
1042                                           &last_time);
1043                if (rc == 0)
1044                        ++ptp->good_syncs;
1045                else
1046                        ++ptp->no_time_syncs;
1047        }
1048
1049        /* Increment the bad syncs counter if the synchronize fails, whatever
1050         * the reason.
1051         */
1052        if (rc != 0)
1053                ++ptp->bad_syncs;
1054
1055        return rc;
1056}
1057
1058/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1059static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1060{
1061        struct efx_ptp_data *ptp_data = efx->ptp_data;
1062        struct efx_tx_queue *tx_queue;
1063        u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
1064
1065        tx_queue = &ptp_data->channel->tx_queue[type];
1066        if (tx_queue && tx_queue->timestamping) {
1067                efx_enqueue_skb(tx_queue, skb);
1068        } else {
1069                WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1070                dev_kfree_skb_any(skb);
1071        }
1072}
1073
1074/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1075static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1076{
1077        struct efx_ptp_data *ptp_data = efx->ptp_data;
1078        struct skb_shared_hwtstamps timestamps;
1079        int rc = -EIO;
1080        MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1081        size_t len;
1082
1083        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1084        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1085        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1086        if (skb_shinfo(skb)->nr_frags != 0) {
1087                rc = skb_linearize(skb);
1088                if (rc != 0)
1089                        goto fail;
1090        }
1091
1092        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1093                rc = skb_checksum_help(skb);
1094                if (rc != 0)
1095                        goto fail;
1096        }
1097        skb_copy_from_linear_data(skb,
1098                                  MCDI_PTR(ptp_data->txbuf,
1099                                           PTP_IN_TRANSMIT_PACKET),
1100                                  skb->len);
1101        rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1102                          ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1103                          txtime, sizeof(txtime), &len);
1104        if (rc != 0)
1105                goto fail;
1106
1107        memset(&timestamps, 0, sizeof(timestamps));
1108        timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1109                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1110                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1111                ptp_data->ts_corrections.ptp_tx);
1112
1113        skb_tstamp_tx(skb, &timestamps);
1114
1115        rc = 0;
1116
1117fail:
1118        dev_kfree_skb_any(skb);
1119
1120        return;
1121}
1122
1123static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1124{
1125        struct efx_ptp_data *ptp = efx->ptp_data;
1126        struct list_head *cursor;
1127        struct list_head *next;
1128
1129        if (ptp->rx_ts_inline)
1130                return;
1131
1132        /* Drop time-expired events */
1133        spin_lock_bh(&ptp->evt_lock);
1134        if (!list_empty(&ptp->evt_list)) {
1135                list_for_each_safe(cursor, next, &ptp->evt_list) {
1136                        struct efx_ptp_event_rx *evt;
1137
1138                        evt = list_entry(cursor, struct efx_ptp_event_rx,
1139                                         link);
1140                        if (time_after(jiffies, evt->expiry)) {
1141                                list_move(&evt->link, &ptp->evt_free_list);
1142                                netif_warn(efx, hw, efx->net_dev,
1143                                           "PTP rx event dropped\n");
1144                        }
1145                }
1146        }
1147        spin_unlock_bh(&ptp->evt_lock);
1148}
1149
1150static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1151                                              struct sk_buff *skb)
1152{
1153        struct efx_ptp_data *ptp = efx->ptp_data;
1154        bool evts_waiting;
1155        struct list_head *cursor;
1156        struct list_head *next;
1157        struct efx_ptp_match *match;
1158        enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1159
1160        WARN_ON_ONCE(ptp->rx_ts_inline);
1161
1162        spin_lock_bh(&ptp->evt_lock);
1163        evts_waiting = !list_empty(&ptp->evt_list);
1164        spin_unlock_bh(&ptp->evt_lock);
1165
1166        if (!evts_waiting)
1167                return PTP_PACKET_STATE_UNMATCHED;
1168
1169        match = (struct efx_ptp_match *)skb->cb;
1170        /* Look for a matching timestamp in the event queue */
1171        spin_lock_bh(&ptp->evt_lock);
1172        list_for_each_safe(cursor, next, &ptp->evt_list) {
1173                struct efx_ptp_event_rx *evt;
1174
1175                evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1176                if ((evt->seq0 == match->words[0]) &&
1177                    (evt->seq1 == match->words[1])) {
1178                        struct skb_shared_hwtstamps *timestamps;
1179
1180                        /* Match - add in hardware timestamp */
1181                        timestamps = skb_hwtstamps(skb);
1182                        timestamps->hwtstamp = evt->hwtimestamp;
1183
1184                        match->state = PTP_PACKET_STATE_MATCHED;
1185                        rc = PTP_PACKET_STATE_MATCHED;
1186                        list_move(&evt->link, &ptp->evt_free_list);
1187                        break;
1188                }
1189        }
1190        spin_unlock_bh(&ptp->evt_lock);
1191
1192        return rc;
1193}
1194
1195/* Process any queued receive events and corresponding packets
1196 *
1197 * q is returned with all the packets that are ready for delivery.
1198 */
1199static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1200{
1201        struct efx_ptp_data *ptp = efx->ptp_data;
1202        struct sk_buff *skb;
1203
1204        while ((skb = skb_dequeue(&ptp->rxq))) {
1205                struct efx_ptp_match *match;
1206
1207                match = (struct efx_ptp_match *)skb->cb;
1208                if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1209                        __skb_queue_tail(q, skb);
1210                } else if (efx_ptp_match_rx(efx, skb) ==
1211                           PTP_PACKET_STATE_MATCHED) {
1212                        __skb_queue_tail(q, skb);
1213                } else if (time_after(jiffies, match->expiry)) {
1214                        match->state = PTP_PACKET_STATE_TIMED_OUT;
1215                        ++ptp->rx_no_timestamp;
1216                        __skb_queue_tail(q, skb);
1217                } else {
1218                        /* Replace unprocessed entry and stop */
1219                        skb_queue_head(&ptp->rxq, skb);
1220                        break;
1221                }
1222        }
1223}
1224
1225/* Complete processing of a received packet */
1226static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1227{
1228        local_bh_disable();
1229        netif_receive_skb(skb);
1230        local_bh_enable();
1231}
1232
1233static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1234{
1235        struct efx_ptp_data *ptp = efx->ptp_data;
1236
1237        if (ptp->rxfilter_installed) {
1238                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1239                                          ptp->rxfilter_general);
1240                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1241                                          ptp->rxfilter_event);
1242                ptp->rxfilter_installed = false;
1243        }
1244}
1245
1246static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1247{
1248        struct efx_ptp_data *ptp = efx->ptp_data;
1249        struct efx_filter_spec rxfilter;
1250        int rc;
1251
1252        if (!ptp->channel || ptp->rxfilter_installed)
1253                return 0;
1254
1255        /* Must filter on both event and general ports to ensure
1256         * that there is no packet re-ordering.
1257         */
1258        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1259                           efx_rx_queue_index(
1260                                   efx_channel_get_rx_queue(ptp->channel)));
1261        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1262                                       htonl(PTP_ADDRESS),
1263                                       htons(PTP_EVENT_PORT));
1264        if (rc != 0)
1265                return rc;
1266
1267        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1268        if (rc < 0)
1269                return rc;
1270        ptp->rxfilter_event = rc;
1271
1272        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1273                           efx_rx_queue_index(
1274                                   efx_channel_get_rx_queue(ptp->channel)));
1275        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1276                                       htonl(PTP_ADDRESS),
1277                                       htons(PTP_GENERAL_PORT));
1278        if (rc != 0)
1279                goto fail;
1280
1281        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1282        if (rc < 0)
1283                goto fail;
1284        ptp->rxfilter_general = rc;
1285
1286        ptp->rxfilter_installed = true;
1287        return 0;
1288
1289fail:
1290        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1291                                  ptp->rxfilter_event);
1292        return rc;
1293}
1294
1295static int efx_ptp_start(struct efx_nic *efx)
1296{
1297        struct efx_ptp_data *ptp = efx->ptp_data;
1298        int rc;
1299
1300        ptp->reset_required = false;
1301
1302        rc = efx_ptp_insert_multicast_filters(efx);
1303        if (rc)
1304                return rc;
1305
1306        rc = efx_ptp_enable(efx);
1307        if (rc != 0)
1308                goto fail;
1309
1310        ptp->evt_frag_idx = 0;
1311        ptp->current_adjfreq = 0;
1312
1313        return 0;
1314
1315fail:
1316        efx_ptp_remove_multicast_filters(efx);
1317        return rc;
1318}
1319
1320static int efx_ptp_stop(struct efx_nic *efx)
1321{
1322        struct efx_ptp_data *ptp = efx->ptp_data;
1323        struct list_head *cursor;
1324        struct list_head *next;
1325        int rc;
1326
1327        if (ptp == NULL)
1328                return 0;
1329
1330        rc = efx_ptp_disable(efx);
1331
1332        efx_ptp_remove_multicast_filters(efx);
1333
1334        /* Make sure RX packets are really delivered */
1335        efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1336        skb_queue_purge(&efx->ptp_data->txq);
1337
1338        /* Drop any pending receive events */
1339        spin_lock_bh(&efx->ptp_data->evt_lock);
1340        list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1341                list_move(cursor, &efx->ptp_data->evt_free_list);
1342        }
1343        spin_unlock_bh(&efx->ptp_data->evt_lock);
1344
1345        return rc;
1346}
1347
1348static int efx_ptp_restart(struct efx_nic *efx)
1349{
1350        if (efx->ptp_data && efx->ptp_data->enabled)
1351                return efx_ptp_start(efx);
1352        return 0;
1353}
1354
1355static void efx_ptp_pps_worker(struct work_struct *work)
1356{
1357        struct efx_ptp_data *ptp =
1358                container_of(work, struct efx_ptp_data, pps_work);
1359        struct efx_nic *efx = ptp->efx;
1360        struct ptp_clock_event ptp_evt;
1361
1362        if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1363                return;
1364
1365        ptp_evt.type = PTP_CLOCK_PPSUSR;
1366        ptp_evt.pps_times = ptp->host_time_pps;
1367        ptp_clock_event(ptp->phc_clock, &ptp_evt);
1368}
1369
1370static void efx_ptp_worker(struct work_struct *work)
1371{
1372        struct efx_ptp_data *ptp_data =
1373                container_of(work, struct efx_ptp_data, work);
1374        struct efx_nic *efx = ptp_data->efx;
1375        struct sk_buff *skb;
1376        struct sk_buff_head tempq;
1377
1378        if (ptp_data->reset_required) {
1379                efx_ptp_stop(efx);
1380                efx_ptp_start(efx);
1381                return;
1382        }
1383
1384        efx_ptp_drop_time_expired_events(efx);
1385
1386        __skb_queue_head_init(&tempq);
1387        efx_ptp_process_events(efx, &tempq);
1388
1389        while ((skb = skb_dequeue(&ptp_data->txq)))
1390                ptp_data->xmit_skb(efx, skb);
1391
1392        while ((skb = __skb_dequeue(&tempq)))
1393                efx_ptp_process_rx(efx, skb);
1394}
1395
1396static const struct ptp_clock_info efx_phc_clock_info = {
1397        .owner          = THIS_MODULE,
1398        .name           = "sfc",
1399        .max_adj        = MAX_PPB,
1400        .n_alarm        = 0,
1401        .n_ext_ts       = 0,
1402        .n_per_out      = 0,
1403        .n_pins         = 0,
1404        .pps            = 1,
1405        .adjfreq        = efx_phc_adjfreq,
1406        .adjtime        = efx_phc_adjtime,
1407        .gettime64      = efx_phc_gettime,
1408        .settime64      = efx_phc_settime,
1409        .enable         = efx_phc_enable,
1410};
1411
1412/* Initialise PTP state. */
1413int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1414{
1415        struct efx_ptp_data *ptp;
1416        int rc = 0;
1417        unsigned int pos;
1418
1419        ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1420        efx->ptp_data = ptp;
1421        if (!efx->ptp_data)
1422                return -ENOMEM;
1423
1424        ptp->efx = efx;
1425        ptp->channel = channel;
1426        ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1427
1428        rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1429        if (rc != 0)
1430                goto fail1;
1431
1432        skb_queue_head_init(&ptp->rxq);
1433        skb_queue_head_init(&ptp->txq);
1434        ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1435        if (!ptp->workwq) {
1436                rc = -ENOMEM;
1437                goto fail2;
1438        }
1439
1440        if (efx_ptp_use_mac_tx_timestamps(efx)) {
1441                ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1442                /* Request sync events on this channel. */
1443                channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1444        } else {
1445                ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1446        }
1447
1448        INIT_WORK(&ptp->work, efx_ptp_worker);
1449        ptp->config.flags = 0;
1450        ptp->config.tx_type = HWTSTAMP_TX_OFF;
1451        ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1452        INIT_LIST_HEAD(&ptp->evt_list);
1453        INIT_LIST_HEAD(&ptp->evt_free_list);
1454        spin_lock_init(&ptp->evt_lock);
1455        for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1456                list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1457
1458        /* Get the NIC PTP attributes and set up time conversions */
1459        rc = efx_ptp_get_attributes(efx);
1460        if (rc < 0)
1461                goto fail3;
1462
1463        /* Get the timestamp corrections */
1464        rc = efx_ptp_get_timestamp_corrections(efx);
1465        if (rc < 0)
1466                goto fail3;
1467
1468        if (efx->mcdi->fn_flags &
1469            (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1470                ptp->phc_clock_info = efx_phc_clock_info;
1471                ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1472                                                    &efx->pci_dev->dev);
1473                if (IS_ERR(ptp->phc_clock)) {
1474                        rc = PTR_ERR(ptp->phc_clock);
1475                        goto fail3;
1476                } else if (ptp->phc_clock) {
1477                        INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1478                        ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1479                        if (!ptp->pps_workwq) {
1480                                rc = -ENOMEM;
1481                                goto fail4;
1482                        }
1483                }
1484        }
1485        ptp->nic_ts_enabled = false;
1486
1487        return 0;
1488fail4:
1489        ptp_clock_unregister(efx->ptp_data->phc_clock);
1490
1491fail3:
1492        destroy_workqueue(efx->ptp_data->workwq);
1493
1494fail2:
1495        efx_nic_free_buffer(efx, &ptp->start);
1496
1497fail1:
1498        kfree(efx->ptp_data);
1499        efx->ptp_data = NULL;
1500
1501        return rc;
1502}
1503
1504/* Initialise PTP channel.
1505 *
1506 * Setting core_index to zero causes the queue to be initialised and doesn't
1507 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1508 */
1509static int efx_ptp_probe_channel(struct efx_channel *channel)
1510{
1511        struct efx_nic *efx = channel->efx;
1512        int rc;
1513
1514        channel->irq_moderation_us = 0;
1515        channel->rx_queue.core_index = 0;
1516
1517        rc = efx_ptp_probe(efx, channel);
1518        /* Failure to probe PTP is not fatal; this channel will just not be
1519         * used for anything.
1520         * In the case of EPERM, efx_ptp_probe will print its own message (in
1521         * efx_ptp_get_attributes()), so we don't need to.
1522         */
1523        if (rc && rc != -EPERM)
1524                netif_warn(efx, drv, efx->net_dev,
1525                           "Failed to probe PTP, rc=%d\n", rc);
1526        return 0;
1527}
1528
1529void efx_ptp_remove(struct efx_nic *efx)
1530{
1531        if (!efx->ptp_data)
1532                return;
1533
1534        (void)efx_ptp_disable(efx);
1535
1536        cancel_work_sync(&efx->ptp_data->work);
1537        cancel_work_sync(&efx->ptp_data->pps_work);
1538
1539        skb_queue_purge(&efx->ptp_data->rxq);
1540        skb_queue_purge(&efx->ptp_data->txq);
1541
1542        if (efx->ptp_data->phc_clock) {
1543                destroy_workqueue(efx->ptp_data->pps_workwq);
1544                ptp_clock_unregister(efx->ptp_data->phc_clock);
1545        }
1546
1547        destroy_workqueue(efx->ptp_data->workwq);
1548
1549        efx_nic_free_buffer(efx, &efx->ptp_data->start);
1550        kfree(efx->ptp_data);
1551        efx->ptp_data = NULL;
1552}
1553
1554static void efx_ptp_remove_channel(struct efx_channel *channel)
1555{
1556        efx_ptp_remove(channel->efx);
1557}
1558
1559static void efx_ptp_get_channel_name(struct efx_channel *channel,
1560                                     char *buf, size_t len)
1561{
1562        snprintf(buf, len, "%s-ptp", channel->efx->name);
1563}
1564
1565/* Determine whether this packet should be processed by the PTP module
1566 * or transmitted conventionally.
1567 */
1568bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1569{
1570        return efx->ptp_data &&
1571                efx->ptp_data->enabled &&
1572                skb->len >= PTP_MIN_LENGTH &&
1573                skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1574                likely(skb->protocol == htons(ETH_P_IP)) &&
1575                skb_transport_header_was_set(skb) &&
1576                skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1577                ip_hdr(skb)->protocol == IPPROTO_UDP &&
1578                skb_headlen(skb) >=
1579                skb_transport_offset(skb) + sizeof(struct udphdr) &&
1580                udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1581}
1582
1583/* Receive a PTP packet.  Packets are queued until the arrival of
1584 * the receive timestamp from the MC - this will probably occur after the
1585 * packet arrival because of the processing in the MC.
1586 */
1587static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1588{
1589        struct efx_nic *efx = channel->efx;
1590        struct efx_ptp_data *ptp = efx->ptp_data;
1591        struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1592        u8 *match_data_012, *match_data_345;
1593        unsigned int version;
1594        u8 *data;
1595
1596        match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1597
1598        /* Correct version? */
1599        if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1600                if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1601                        return false;
1602                }
1603                data = skb->data;
1604                version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1605                if (version != PTP_VERSION_V1) {
1606                        return false;
1607                }
1608
1609                /* PTP V1 uses all six bytes of the UUID to match the packet
1610                 * to the timestamp
1611                 */
1612                match_data_012 = data + PTP_V1_UUID_OFFSET;
1613                match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1614        } else {
1615                if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1616                        return false;
1617                }
1618                data = skb->data;
1619                version = data[PTP_V2_VERSION_OFFSET];
1620                if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1621                        return false;
1622                }
1623
1624                /* The original V2 implementation uses bytes 2-7 of
1625                 * the UUID to match the packet to the timestamp. This
1626                 * discards two of the bytes of the MAC address used
1627                 * to create the UUID (SF bug 33070).  The PTP V2
1628                 * enhanced mode fixes this issue and uses bytes 0-2
1629                 * and byte 5-7 of the UUID.
1630                 */
1631                match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1632                if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1633                        match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1634                } else {
1635                        match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1636                        BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1637                }
1638        }
1639
1640        /* Does this packet require timestamping? */
1641        if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1642                match->state = PTP_PACKET_STATE_UNMATCHED;
1643
1644                /* We expect the sequence number to be in the same position in
1645                 * the packet for PTP V1 and V2
1646                 */
1647                BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1648                BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1649
1650                /* Extract UUID/Sequence information */
1651                match->words[0] = (match_data_012[0]         |
1652                                   (match_data_012[1] << 8)  |
1653                                   (match_data_012[2] << 16) |
1654                                   (match_data_345[0] << 24));
1655                match->words[1] = (match_data_345[1]         |
1656                                   (match_data_345[2] << 8)  |
1657                                   (data[PTP_V1_SEQUENCE_OFFSET +
1658                                         PTP_V1_SEQUENCE_LENGTH - 1] <<
1659                                    16));
1660        } else {
1661                match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1662        }
1663
1664        skb_queue_tail(&ptp->rxq, skb);
1665        queue_work(ptp->workwq, &ptp->work);
1666
1667        return true;
1668}
1669
1670/* Transmit a PTP packet.  This has to be transmitted by the MC
1671 * itself, through an MCDI call.  MCDI calls aren't permitted
1672 * in the transmit path so defer the actual transmission to a suitable worker.
1673 */
1674int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1675{
1676        struct efx_ptp_data *ptp = efx->ptp_data;
1677
1678        skb_queue_tail(&ptp->txq, skb);
1679
1680        if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1681            (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1682                efx_xmit_hwtstamp_pending(skb);
1683        queue_work(ptp->workwq, &ptp->work);
1684
1685        return NETDEV_TX_OK;
1686}
1687
1688int efx_ptp_get_mode(struct efx_nic *efx)
1689{
1690        return efx->ptp_data->mode;
1691}
1692
1693int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1694                        unsigned int new_mode)
1695{
1696        if ((enable_wanted != efx->ptp_data->enabled) ||
1697            (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1698                int rc = 0;
1699
1700                if (enable_wanted) {
1701                        /* Change of mode requires disable */
1702                        if (efx->ptp_data->enabled &&
1703                            (efx->ptp_data->mode != new_mode)) {
1704                                efx->ptp_data->enabled = false;
1705                                rc = efx_ptp_stop(efx);
1706                                if (rc != 0)
1707                                        return rc;
1708                        }
1709
1710                        /* Set new operating mode and establish
1711                         * baseline synchronisation, which must
1712                         * succeed.
1713                         */
1714                        efx->ptp_data->mode = new_mode;
1715                        if (netif_running(efx->net_dev))
1716                                rc = efx_ptp_start(efx);
1717                        if (rc == 0) {
1718                                rc = efx_ptp_synchronize(efx,
1719                                                         PTP_SYNC_ATTEMPTS * 2);
1720                                if (rc != 0)
1721                                        efx_ptp_stop(efx);
1722                        }
1723                } else {
1724                        rc = efx_ptp_stop(efx);
1725                }
1726
1727                if (rc != 0)
1728                        return rc;
1729
1730                efx->ptp_data->enabled = enable_wanted;
1731        }
1732
1733        return 0;
1734}
1735
1736static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1737{
1738        int rc;
1739
1740        if (init->flags)
1741                return -EINVAL;
1742
1743        if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1744            (init->tx_type != HWTSTAMP_TX_ON))
1745                return -ERANGE;
1746
1747        rc = efx->type->ptp_set_ts_config(efx, init);
1748        if (rc)
1749                return rc;
1750
1751        efx->ptp_data->config = *init;
1752        return 0;
1753}
1754
1755void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1756{
1757        struct efx_ptp_data *ptp = efx->ptp_data;
1758        struct efx_nic *primary = efx->primary;
1759
1760        ASSERT_RTNL();
1761
1762        if (!ptp)
1763                return;
1764
1765        ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1766                                     SOF_TIMESTAMPING_RX_HARDWARE |
1767                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1768        /* Check licensed features.  If we don't have the license for TX
1769         * timestamps, the NIC will not support them.
1770         */
1771        if (efx_ptp_use_mac_tx_timestamps(efx)) {
1772                struct efx_ef10_nic_data *nic_data = efx->nic_data;
1773
1774                if (!(nic_data->licensed_features &
1775                      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1776                        ts_info->so_timestamping &=
1777                                ~SOF_TIMESTAMPING_TX_HARDWARE;
1778        }
1779        if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1780                ts_info->phc_index =
1781                        ptp_clock_index(primary->ptp_data->phc_clock);
1782        ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1783        ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1784}
1785
1786int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1787{
1788        struct hwtstamp_config config;
1789        int rc;
1790
1791        /* Not a PTP enabled port */
1792        if (!efx->ptp_data)
1793                return -EOPNOTSUPP;
1794
1795        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1796                return -EFAULT;
1797
1798        rc = efx_ptp_ts_init(efx, &config);
1799        if (rc != 0)
1800                return rc;
1801
1802        return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1803                ? -EFAULT : 0;
1804}
1805
1806int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1807{
1808        if (!efx->ptp_data)
1809                return -EOPNOTSUPP;
1810
1811        return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1812                            sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1813}
1814
1815static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1816{
1817        struct efx_ptp_data *ptp = efx->ptp_data;
1818
1819        netif_err(efx, hw, efx->net_dev,
1820                "PTP unexpected event length: got %d expected %d\n",
1821                ptp->evt_frag_idx, expected_frag_len);
1822        ptp->reset_required = true;
1823        queue_work(ptp->workwq, &ptp->work);
1824}
1825
1826/* Process a completed receive event.  Put it on the event queue and
1827 * start worker thread.  This is required because event and their
1828 * correspoding packets may come in either order.
1829 */
1830static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1831{
1832        struct efx_ptp_event_rx *evt = NULL;
1833
1834        if (WARN_ON_ONCE(ptp->rx_ts_inline))
1835                return;
1836
1837        if (ptp->evt_frag_idx != 3) {
1838                ptp_event_failure(efx, 3);
1839                return;
1840        }
1841
1842        spin_lock_bh(&ptp->evt_lock);
1843        if (!list_empty(&ptp->evt_free_list)) {
1844                evt = list_first_entry(&ptp->evt_free_list,
1845                                       struct efx_ptp_event_rx, link);
1846                list_del(&evt->link);
1847
1848                evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1849                evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1850                                             MCDI_EVENT_SRC)        |
1851                             (EFX_QWORD_FIELD(ptp->evt_frags[1],
1852                                              MCDI_EVENT_SRC) << 8) |
1853                             (EFX_QWORD_FIELD(ptp->evt_frags[0],
1854                                              MCDI_EVENT_SRC) << 16));
1855                evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1856                        EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1857                        EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1858                        ptp->ts_corrections.ptp_rx);
1859                evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1860                list_add_tail(&evt->link, &ptp->evt_list);
1861
1862                queue_work(ptp->workwq, &ptp->work);
1863        } else if (net_ratelimit()) {
1864                /* Log a rate-limited warning message. */
1865                netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1866        }
1867        spin_unlock_bh(&ptp->evt_lock);
1868}
1869
1870static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1871{
1872        int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1873        if (ptp->evt_frag_idx != 1) {
1874                ptp_event_failure(efx, 1);
1875                return;
1876        }
1877
1878        netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1879}
1880
1881static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1882{
1883        if (ptp->nic_ts_enabled)
1884                queue_work(ptp->pps_workwq, &ptp->pps_work);
1885}
1886
1887void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1888{
1889        struct efx_ptp_data *ptp = efx->ptp_data;
1890        int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1891
1892        if (!ptp) {
1893                if (!efx->ptp_warned) {
1894                        netif_warn(efx, drv, efx->net_dev,
1895                                   "Received PTP event but PTP not set up\n");
1896                        efx->ptp_warned = true;
1897                }
1898                return;
1899        }
1900
1901        if (!ptp->enabled)
1902                return;
1903
1904        if (ptp->evt_frag_idx == 0) {
1905                ptp->evt_code = code;
1906        } else if (ptp->evt_code != code) {
1907                netif_err(efx, hw, efx->net_dev,
1908                          "PTP out of sequence event %d\n", code);
1909                ptp->evt_frag_idx = 0;
1910        }
1911
1912        ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1913        if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1914                /* Process resulting event */
1915                switch (code) {
1916                case MCDI_EVENT_CODE_PTP_RX:
1917                        ptp_event_rx(efx, ptp);
1918                        break;
1919                case MCDI_EVENT_CODE_PTP_FAULT:
1920                        ptp_event_fault(efx, ptp);
1921                        break;
1922                case MCDI_EVENT_CODE_PTP_PPS:
1923                        ptp_event_pps(efx, ptp);
1924                        break;
1925                default:
1926                        netif_err(efx, hw, efx->net_dev,
1927                                  "PTP unknown event %d\n", code);
1928                        break;
1929                }
1930                ptp->evt_frag_idx = 0;
1931        } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1932                netif_err(efx, hw, efx->net_dev,
1933                          "PTP too many event fragments\n");
1934                ptp->evt_frag_idx = 0;
1935        }
1936}
1937
1938void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1939{
1940        struct efx_nic *efx = channel->efx;
1941        struct efx_ptp_data *ptp = efx->ptp_data;
1942
1943        /* When extracting the sync timestamp minor value, we should discard
1944         * the least significant two bits. These are not required in order
1945         * to reconstruct full-range timestamps and they are optionally used
1946         * to report status depending on the options supplied when subscribing
1947         * for sync events.
1948         */
1949        channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1950        channel->sync_timestamp_minor =
1951                (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1952                        << ptp->nic_time.sync_event_minor_shift;
1953
1954        /* if sync events have been disabled then we want to silently ignore
1955         * this event, so throw away result.
1956         */
1957        (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1958                       SYNC_EVENTS_VALID);
1959}
1960
1961static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1962{
1963#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1964        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1965#else
1966        const u8 *data = eh + efx->rx_packet_ts_offset;
1967        return (u32)data[0]       |
1968               (u32)data[1] << 8  |
1969               (u32)data[2] << 16 |
1970               (u32)data[3] << 24;
1971#endif
1972}
1973
1974void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1975                                   struct sk_buff *skb)
1976{
1977        struct efx_nic *efx = channel->efx;
1978        struct efx_ptp_data *ptp = efx->ptp_data;
1979        u32 pkt_timestamp_major, pkt_timestamp_minor;
1980        u32 diff, carry;
1981        struct skb_shared_hwtstamps *timestamps;
1982
1983        if (channel->sync_events_state != SYNC_EVENTS_VALID)
1984                return;
1985
1986        pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
1987
1988        /* get the difference between the packet and sync timestamps,
1989         * modulo one second
1990         */
1991        diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
1992        if (pkt_timestamp_minor < channel->sync_timestamp_minor)
1993                diff += ptp->nic_time.minor_max;
1994
1995        /* do we roll over a second boundary and need to carry the one? */
1996        carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
1997                1 : 0;
1998
1999        if (diff <= ptp->nic_time.sync_event_diff_max) {
2000                /* packet is ahead of the sync event by a quarter of a second or
2001                 * less (allowing for fuzz)
2002                 */
2003                pkt_timestamp_major = channel->sync_timestamp_major + carry;
2004        } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2005                /* packet is behind the sync event but within the fuzz factor.
2006                 * This means the RX packet and sync event crossed as they were
2007                 * placed on the event queue, which can sometimes happen.
2008                 */
2009                pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2010        } else {
2011                /* it's outside tolerance in both directions. this might be
2012                 * indicative of us missing sync events for some reason, so
2013                 * we'll call it an error rather than risk giving a bogus
2014                 * timestamp.
2015                 */
2016                netif_vdbg(efx, drv, efx->net_dev,
2017                          "packet timestamp %x too far from sync event %x:%x\n",
2018                          pkt_timestamp_minor, channel->sync_timestamp_major,
2019                          channel->sync_timestamp_minor);
2020                return;
2021        }
2022
2023        /* attach the timestamps to the skb */
2024        timestamps = skb_hwtstamps(skb);
2025        timestamps->hwtstamp =
2026                ptp->nic_to_kernel_time(pkt_timestamp_major,
2027                                        pkt_timestamp_minor,
2028                                        ptp->ts_corrections.general_rx);
2029}
2030
2031static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2032{
2033        struct efx_ptp_data *ptp_data = container_of(ptp,
2034                                                     struct efx_ptp_data,
2035                                                     phc_clock_info);
2036        struct efx_nic *efx = ptp_data->efx;
2037        MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2038        s64 adjustment_ns;
2039        int rc;
2040
2041        if (delta > MAX_PPB)
2042                delta = MAX_PPB;
2043        else if (delta < -MAX_PPB)
2044                delta = -MAX_PPB;
2045
2046        /* Convert ppb to fixed point ns taking care to round correctly. */
2047        adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2048                         (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2049                        ptp_data->adjfreq_ppb_shift;
2050
2051        MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2052        MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2053        MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2054        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2055        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2056        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2057                          NULL, 0, NULL);
2058        if (rc != 0)
2059                return rc;
2060
2061        ptp_data->current_adjfreq = adjustment_ns;
2062        return 0;
2063}
2064
2065static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2066{
2067        u32 nic_major, nic_minor;
2068        struct efx_ptp_data *ptp_data = container_of(ptp,
2069                                                     struct efx_ptp_data,
2070                                                     phc_clock_info);
2071        struct efx_nic *efx = ptp_data->efx;
2072        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2073
2074        efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2075
2076        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2077        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2078        MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2079        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2080        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2081        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2082                            NULL, 0, NULL);
2083}
2084
2085static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2086{
2087        struct efx_ptp_data *ptp_data = container_of(ptp,
2088                                                     struct efx_ptp_data,
2089                                                     phc_clock_info);
2090        struct efx_nic *efx = ptp_data->efx;
2091        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2092        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2093        int rc;
2094        ktime_t kt;
2095
2096        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2097        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2098
2099        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2100                          outbuf, sizeof(outbuf), NULL);
2101        if (rc != 0)
2102                return rc;
2103
2104        kt = ptp_data->nic_to_kernel_time(
2105                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2106                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2107        *ts = ktime_to_timespec64(kt);
2108        return 0;
2109}
2110
2111static int efx_phc_settime(struct ptp_clock_info *ptp,
2112                           const struct timespec64 *e_ts)
2113{
2114        /* Get the current NIC time, efx_phc_gettime.
2115         * Subtract from the desired time to get the offset
2116         * call efx_phc_adjtime with the offset
2117         */
2118        int rc;
2119        struct timespec64 time_now;
2120        struct timespec64 delta;
2121
2122        rc = efx_phc_gettime(ptp, &time_now);
2123        if (rc != 0)
2124                return rc;
2125
2126        delta = timespec64_sub(*e_ts, time_now);
2127
2128        rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2129        if (rc != 0)
2130                return rc;
2131
2132        return 0;
2133}
2134
2135static int efx_phc_enable(struct ptp_clock_info *ptp,
2136                          struct ptp_clock_request *request,
2137                          int enable)
2138{
2139        struct efx_ptp_data *ptp_data = container_of(ptp,
2140                                                     struct efx_ptp_data,
2141                                                     phc_clock_info);
2142        if (request->type != PTP_CLK_REQ_PPS)
2143                return -EOPNOTSUPP;
2144
2145        ptp_data->nic_ts_enabled = !!enable;
2146        return 0;
2147}
2148
2149static const struct efx_channel_type efx_ptp_channel_type = {
2150        .handle_no_channel      = efx_ptp_handle_no_channel,
2151        .pre_probe              = efx_ptp_probe_channel,
2152        .post_remove            = efx_ptp_remove_channel,
2153        .get_name               = efx_ptp_get_channel_name,
2154        /* no copy operation; there is no need to reallocate this channel */
2155        .receive_skb            = efx_ptp_rx,
2156        .want_txqs              = efx_ptp_want_txqs,
2157        .keep_eventq            = false,
2158};
2159
2160void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2161{
2162        /* Check whether PTP is implemented on this NIC.  The DISABLE
2163         * operation will succeed if and only if it is implemented.
2164         */
2165        if (efx_ptp_disable(efx) == 0)
2166                efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2167                        &efx_ptp_channel_type;
2168}
2169
2170void efx_ptp_start_datapath(struct efx_nic *efx)
2171{
2172        if (efx_ptp_restart(efx))
2173                netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2174        /* re-enable timestamping if it was previously enabled */
2175        if (efx->type->ptp_set_ts_sync_events)
2176                efx->type->ptp_set_ts_sync_events(efx, true, true);
2177}
2178
2179void efx_ptp_stop_datapath(struct efx_nic *efx)
2180{
2181        /* temporarily disable timestamping */
2182        if (efx->type->ptp_set_ts_sync_events)
2183                efx->type->ptp_set_ts_sync_events(efx, false, true);
2184        efx_ptp_stop(efx);
2185}
2186