linux/drivers/net/hippi/rrunner.c
<<
>>
Prefs
   1/*
   2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   3 *
   4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   5 *
   6 * Thanks to Essential Communication for providing us with hardware
   7 * and very comprehensive documentation without which I would not have
   8 * been able to write this driver. A special thank you to John Gibbon
   9 * for sorting out the legal issues, with the NDA, allowing the code to
  10 * be released under the GPL.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  18 * stupid bugs in my code.
  19 *
  20 * Softnet support and various other patches from Val Henson of
  21 * ODS/Essential.
  22 *
  23 * PCI DMA mapping code partly based on work by Francois Romieu.
  24 */
  25
  26
  27#define DEBUG 1
  28#define RX_DMA_SKBUFF 1
  29#define PKT_COPY_THRESHOLD 512
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/errno.h>
  34#include <linux/ioport.h>
  35#include <linux/pci.h>
  36#include <linux/kernel.h>
  37#include <linux/netdevice.h>
  38#include <linux/hippidevice.h>
  39#include <linux/skbuff.h>
  40#include <linux/delay.h>
  41#include <linux/mm.h>
  42#include <linux/slab.h>
  43#include <net/sock.h>
  44
  45#include <asm/cache.h>
  46#include <asm/byteorder.h>
  47#include <asm/io.h>
  48#include <asm/irq.h>
  49#include <linux/uaccess.h>
  50
  51#define rr_if_busy(dev)     netif_queue_stopped(dev)
  52#define rr_if_running(dev)  netif_running(dev)
  53
  54#include "rrunner.h"
  55
  56#define RUN_AT(x) (jiffies + (x))
  57
  58
  59MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  60MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  61MODULE_LICENSE("GPL");
  62
  63static const char version[] =
  64"rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
  65
  66
  67static const struct net_device_ops rr_netdev_ops = {
  68        .ndo_open               = rr_open,
  69        .ndo_stop               = rr_close,
  70        .ndo_do_ioctl           = rr_ioctl,
  71        .ndo_start_xmit         = rr_start_xmit,
  72        .ndo_set_mac_address    = hippi_mac_addr,
  73};
  74
  75/*
  76 * Implementation notes:
  77 *
  78 * The DMA engine only allows for DMA within physical 64KB chunks of
  79 * memory. The current approach of the driver (and stack) is to use
  80 * linear blocks of memory for the skbuffs. However, as the data block
  81 * is always the first part of the skb and skbs are 2^n aligned so we
  82 * are guarantted to get the whole block within one 64KB align 64KB
  83 * chunk.
  84 *
  85 * On the long term, relying on being able to allocate 64KB linear
  86 * chunks of memory is not feasible and the skb handling code and the
  87 * stack will need to know about I/O vectors or something similar.
  88 */
  89
  90static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  91{
  92        struct net_device *dev;
  93        static int version_disp;
  94        u8 pci_latency;
  95        struct rr_private *rrpriv;
  96        void *tmpptr;
  97        dma_addr_t ring_dma;
  98        int ret = -ENOMEM;
  99
 100        dev = alloc_hippi_dev(sizeof(struct rr_private));
 101        if (!dev)
 102                goto out3;
 103
 104        ret = pci_enable_device(pdev);
 105        if (ret) {
 106                ret = -ENODEV;
 107                goto out2;
 108        }
 109
 110        rrpriv = netdev_priv(dev);
 111
 112        SET_NETDEV_DEV(dev, &pdev->dev);
 113
 114        ret = pci_request_regions(pdev, "rrunner");
 115        if (ret < 0)
 116                goto out;
 117
 118        pci_set_drvdata(pdev, dev);
 119
 120        rrpriv->pci_dev = pdev;
 121
 122        spin_lock_init(&rrpriv->lock);
 123
 124        dev->netdev_ops = &rr_netdev_ops;
 125
 126        /* display version info if adapter is found */
 127        if (!version_disp) {
 128                /* set display flag to TRUE so that */
 129                /* we only display this string ONCE */
 130                version_disp = 1;
 131                printk(version);
 132        }
 133
 134        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 135        if (pci_latency <= 0x58){
 136                pci_latency = 0x58;
 137                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 138        }
 139
 140        pci_set_master(pdev);
 141
 142        printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 143               "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 144               (unsigned long long)pci_resource_start(pdev, 0),
 145               pdev->irq, pci_latency);
 146
 147        /*
 148         * Remap the MMIO regs into kernel space.
 149         */
 150        rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 151        if (!rrpriv->regs) {
 152                printk(KERN_ERR "%s:  Unable to map I/O register, "
 153                        "RoadRunner will be disabled.\n", dev->name);
 154                ret = -EIO;
 155                goto out;
 156        }
 157
 158        tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 159        rrpriv->tx_ring = tmpptr;
 160        rrpriv->tx_ring_dma = ring_dma;
 161
 162        if (!tmpptr) {
 163                ret = -ENOMEM;
 164                goto out;
 165        }
 166
 167        tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 168        rrpriv->rx_ring = tmpptr;
 169        rrpriv->rx_ring_dma = ring_dma;
 170
 171        if (!tmpptr) {
 172                ret = -ENOMEM;
 173                goto out;
 174        }
 175
 176        tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
 177        rrpriv->evt_ring = tmpptr;
 178        rrpriv->evt_ring_dma = ring_dma;
 179
 180        if (!tmpptr) {
 181                ret = -ENOMEM;
 182                goto out;
 183        }
 184
 185        /*
 186         * Don't access any register before this point!
 187         */
 188#ifdef __BIG_ENDIAN
 189        writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 190                &rrpriv->regs->HostCtrl);
 191#endif
 192        /*
 193         * Need to add a case for little-endian 64-bit hosts here.
 194         */
 195
 196        rr_init(dev);
 197
 198        ret = register_netdev(dev);
 199        if (ret)
 200                goto out;
 201        return 0;
 202
 203 out:
 204        if (rrpriv->evt_ring)
 205                pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
 206                                    rrpriv->evt_ring_dma);
 207        if (rrpriv->rx_ring)
 208                pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 209                                    rrpriv->rx_ring_dma);
 210        if (rrpriv->tx_ring)
 211                pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 212                                    rrpriv->tx_ring_dma);
 213        if (rrpriv->regs)
 214                pci_iounmap(pdev, rrpriv->regs);
 215        if (pdev)
 216                pci_release_regions(pdev);
 217 out2:
 218        free_netdev(dev);
 219 out3:
 220        return ret;
 221}
 222
 223static void rr_remove_one(struct pci_dev *pdev)
 224{
 225        struct net_device *dev = pci_get_drvdata(pdev);
 226        struct rr_private *rr = netdev_priv(dev);
 227
 228        if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 229                printk(KERN_ERR "%s: trying to unload running NIC\n",
 230                       dev->name);
 231                writel(HALT_NIC, &rr->regs->HostCtrl);
 232        }
 233
 234        unregister_netdev(dev);
 235        pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
 236                            rr->evt_ring_dma);
 237        pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
 238                            rr->rx_ring_dma);
 239        pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
 240                            rr->tx_ring_dma);
 241        pci_iounmap(pdev, rr->regs);
 242        pci_release_regions(pdev);
 243        pci_disable_device(pdev);
 244        free_netdev(dev);
 245}
 246
 247
 248/*
 249 * Commands are considered to be slow, thus there is no reason to
 250 * inline this.
 251 */
 252static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 253{
 254        struct rr_regs __iomem *regs;
 255        u32 idx;
 256
 257        regs = rrpriv->regs;
 258        /*
 259         * This is temporary - it will go away in the final version.
 260         * We probably also want to make this function inline.
 261         */
 262        if (readl(&regs->HostCtrl) & NIC_HALTED){
 263                printk("issuing command for halted NIC, code 0x%x, "
 264                       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 265                if (readl(&regs->Mode) & FATAL_ERR)
 266                        printk("error codes Fail1 %02x, Fail2 %02x\n",
 267                               readl(&regs->Fail1), readl(&regs->Fail2));
 268        }
 269
 270        idx = rrpriv->info->cmd_ctrl.pi;
 271
 272        writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 273        wmb();
 274
 275        idx = (idx - 1) % CMD_RING_ENTRIES;
 276        rrpriv->info->cmd_ctrl.pi = idx;
 277        wmb();
 278
 279        if (readl(&regs->Mode) & FATAL_ERR)
 280                printk("error code %02x\n", readl(&regs->Fail1));
 281}
 282
 283
 284/*
 285 * Reset the board in a sensible manner. The NIC is already halted
 286 * when we get here and a spin-lock is held.
 287 */
 288static int rr_reset(struct net_device *dev)
 289{
 290        struct rr_private *rrpriv;
 291        struct rr_regs __iomem *regs;
 292        u32 start_pc;
 293        int i;
 294
 295        rrpriv = netdev_priv(dev);
 296        regs = rrpriv->regs;
 297
 298        rr_load_firmware(dev);
 299
 300        writel(0x01000000, &regs->TX_state);
 301        writel(0xff800000, &regs->RX_state);
 302        writel(0, &regs->AssistState);
 303        writel(CLEAR_INTA, &regs->LocalCtrl);
 304        writel(0x01, &regs->BrkPt);
 305        writel(0, &regs->Timer);
 306        writel(0, &regs->TimerRef);
 307        writel(RESET_DMA, &regs->DmaReadState);
 308        writel(RESET_DMA, &regs->DmaWriteState);
 309        writel(0, &regs->DmaWriteHostHi);
 310        writel(0, &regs->DmaWriteHostLo);
 311        writel(0, &regs->DmaReadHostHi);
 312        writel(0, &regs->DmaReadHostLo);
 313        writel(0, &regs->DmaReadLen);
 314        writel(0, &regs->DmaWriteLen);
 315        writel(0, &regs->DmaWriteLcl);
 316        writel(0, &regs->DmaWriteIPchecksum);
 317        writel(0, &regs->DmaReadLcl);
 318        writel(0, &regs->DmaReadIPchecksum);
 319        writel(0, &regs->PciState);
 320#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 321        writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 322#elif (BITS_PER_LONG == 64)
 323        writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 324#else
 325        writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 326#endif
 327
 328#if 0
 329        /*
 330         * Don't worry, this is just black magic.
 331         */
 332        writel(0xdf000, &regs->RxBase);
 333        writel(0xdf000, &regs->RxPrd);
 334        writel(0xdf000, &regs->RxCon);
 335        writel(0xce000, &regs->TxBase);
 336        writel(0xce000, &regs->TxPrd);
 337        writel(0xce000, &regs->TxCon);
 338        writel(0, &regs->RxIndPro);
 339        writel(0, &regs->RxIndCon);
 340        writel(0, &regs->RxIndRef);
 341        writel(0, &regs->TxIndPro);
 342        writel(0, &regs->TxIndCon);
 343        writel(0, &regs->TxIndRef);
 344        writel(0xcc000, &regs->pad10[0]);
 345        writel(0, &regs->DrCmndPro);
 346        writel(0, &regs->DrCmndCon);
 347        writel(0, &regs->DwCmndPro);
 348        writel(0, &regs->DwCmndCon);
 349        writel(0, &regs->DwCmndRef);
 350        writel(0, &regs->DrDataPro);
 351        writel(0, &regs->DrDataCon);
 352        writel(0, &regs->DrDataRef);
 353        writel(0, &regs->DwDataPro);
 354        writel(0, &regs->DwDataCon);
 355        writel(0, &regs->DwDataRef);
 356#endif
 357
 358        writel(0xffffffff, &regs->MbEvent);
 359        writel(0, &regs->Event);
 360
 361        writel(0, &regs->TxPi);
 362        writel(0, &regs->IpRxPi);
 363
 364        writel(0, &regs->EvtCon);
 365        writel(0, &regs->EvtPrd);
 366
 367        rrpriv->info->evt_ctrl.pi = 0;
 368
 369        for (i = 0; i < CMD_RING_ENTRIES; i++)
 370                writel(0, &regs->CmdRing[i]);
 371
 372/*
 373 * Why 32 ? is this not cache line size dependent?
 374 */
 375        writel(RBURST_64|WBURST_64, &regs->PciState);
 376        wmb();
 377
 378        start_pc = rr_read_eeprom_word(rrpriv,
 379                        offsetof(struct eeprom, rncd_info.FwStart));
 380
 381#if (DEBUG > 1)
 382        printk("%s: Executing firmware at address 0x%06x\n",
 383               dev->name, start_pc);
 384#endif
 385
 386        writel(start_pc + 0x800, &regs->Pc);
 387        wmb();
 388        udelay(5);
 389
 390        writel(start_pc, &regs->Pc);
 391        wmb();
 392
 393        return 0;
 394}
 395
 396
 397/*
 398 * Read a string from the EEPROM.
 399 */
 400static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 401                                unsigned long offset,
 402                                unsigned char *buf,
 403                                unsigned long length)
 404{
 405        struct rr_regs __iomem *regs = rrpriv->regs;
 406        u32 misc, io, host, i;
 407
 408        io = readl(&regs->ExtIo);
 409        writel(0, &regs->ExtIo);
 410        misc = readl(&regs->LocalCtrl);
 411        writel(0, &regs->LocalCtrl);
 412        host = readl(&regs->HostCtrl);
 413        writel(host | HALT_NIC, &regs->HostCtrl);
 414        mb();
 415
 416        for (i = 0; i < length; i++){
 417                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 418                mb();
 419                buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 420                mb();
 421        }
 422
 423        writel(host, &regs->HostCtrl);
 424        writel(misc, &regs->LocalCtrl);
 425        writel(io, &regs->ExtIo);
 426        mb();
 427        return i;
 428}
 429
 430
 431/*
 432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 433 * it to our CPU byte-order.
 434 */
 435static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 436                            size_t offset)
 437{
 438        __be32 word;
 439
 440        if ((rr_read_eeprom(rrpriv, offset,
 441                            (unsigned char *)&word, 4) == 4))
 442                return be32_to_cpu(word);
 443        return 0;
 444}
 445
 446
 447/*
 448 * Write a string to the EEPROM.
 449 *
 450 * This is only called when the firmware is not running.
 451 */
 452static unsigned int write_eeprom(struct rr_private *rrpriv,
 453                                 unsigned long offset,
 454                                 unsigned char *buf,
 455                                 unsigned long length)
 456{
 457        struct rr_regs __iomem *regs = rrpriv->regs;
 458        u32 misc, io, data, i, j, ready, error = 0;
 459
 460        io = readl(&regs->ExtIo);
 461        writel(0, &regs->ExtIo);
 462        misc = readl(&regs->LocalCtrl);
 463        writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 464        mb();
 465
 466        for (i = 0; i < length; i++){
 467                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 468                mb();
 469                data = buf[i] << 24;
 470                /*
 471                 * Only try to write the data if it is not the same
 472                 * value already.
 473                 */
 474                if ((readl(&regs->WinData) & 0xff000000) != data){
 475                        writel(data, &regs->WinData);
 476                        ready = 0;
 477                        j = 0;
 478                        mb();
 479                        while(!ready){
 480                                udelay(20);
 481                                if ((readl(&regs->WinData) & 0xff000000) ==
 482                                    data)
 483                                        ready = 1;
 484                                mb();
 485                                if (j++ > 5000){
 486                                        printk("data mismatch: %08x, "
 487                                               "WinData %08x\n", data,
 488                                               readl(&regs->WinData));
 489                                        ready = 1;
 490                                        error = 1;
 491                                }
 492                        }
 493                }
 494        }
 495
 496        writel(misc, &regs->LocalCtrl);
 497        writel(io, &regs->ExtIo);
 498        mb();
 499
 500        return error;
 501}
 502
 503
 504static int rr_init(struct net_device *dev)
 505{
 506        struct rr_private *rrpriv;
 507        struct rr_regs __iomem *regs;
 508        u32 sram_size, rev;
 509
 510        rrpriv = netdev_priv(dev);
 511        regs = rrpriv->regs;
 512
 513        rev = readl(&regs->FwRev);
 514        rrpriv->fw_rev = rev;
 515        if (rev > 0x00020024)
 516                printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 517                       ((rev >> 8) & 0xff), (rev & 0xff));
 518        else if (rev >= 0x00020000) {
 519                printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 520                       "later is recommended)\n", (rev >> 16),
 521                       ((rev >> 8) & 0xff), (rev & 0xff));
 522        }else{
 523                printk("  Firmware revision too old: %i.%i.%i, please "
 524                       "upgrade to 2.0.37 or later.\n",
 525                       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 526        }
 527
 528#if (DEBUG > 2)
 529        printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 530#endif
 531
 532        /*
 533         * Read the hardware address from the eeprom.  The HW address
 534         * is not really necessary for HIPPI but awfully convenient.
 535         * The pointer arithmetic to put it in dev_addr is ugly, but
 536         * Donald Becker does it this way for the GigE version of this
 537         * card and it's shorter and more portable than any
 538         * other method I've seen.  -VAL
 539         */
 540
 541        *(__be16 *)(dev->dev_addr) =
 542          htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 543        *(__be32 *)(dev->dev_addr+2) =
 544          htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 545
 546        printk("  MAC: %pM\n", dev->dev_addr);
 547
 548        sram_size = rr_read_eeprom_word(rrpriv, 8);
 549        printk("  SRAM size 0x%06x\n", sram_size);
 550
 551        return 0;
 552}
 553
 554
 555static int rr_init1(struct net_device *dev)
 556{
 557        struct rr_private *rrpriv;
 558        struct rr_regs __iomem *regs;
 559        unsigned long myjif, flags;
 560        struct cmd cmd;
 561        u32 hostctrl;
 562        int ecode = 0;
 563        short i;
 564
 565        rrpriv = netdev_priv(dev);
 566        regs = rrpriv->regs;
 567
 568        spin_lock_irqsave(&rrpriv->lock, flags);
 569
 570        hostctrl = readl(&regs->HostCtrl);
 571        writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 572        wmb();
 573
 574        if (hostctrl & PARITY_ERR){
 575                printk("%s: Parity error halting NIC - this is serious!\n",
 576                       dev->name);
 577                spin_unlock_irqrestore(&rrpriv->lock, flags);
 578                ecode = -EFAULT;
 579                goto error;
 580        }
 581
 582        set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 583        set_infoaddr(regs, rrpriv->info_dma);
 584
 585        rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 586        rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 587        rrpriv->info->evt_ctrl.mode = 0;
 588        rrpriv->info->evt_ctrl.pi = 0;
 589        set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 590
 591        rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 592        rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 593        rrpriv->info->cmd_ctrl.mode = 0;
 594        rrpriv->info->cmd_ctrl.pi = 15;
 595
 596        for (i = 0; i < CMD_RING_ENTRIES; i++) {
 597                writel(0, &regs->CmdRing[i]);
 598        }
 599
 600        for (i = 0; i < TX_RING_ENTRIES; i++) {
 601                rrpriv->tx_ring[i].size = 0;
 602                set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 603                rrpriv->tx_skbuff[i] = NULL;
 604        }
 605        rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 606        rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 607        rrpriv->info->tx_ctrl.mode = 0;
 608        rrpriv->info->tx_ctrl.pi = 0;
 609        set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 610
 611        /*
 612         * Set dirty_tx before we start receiving interrupts, otherwise
 613         * the interrupt handler might think it is supposed to process
 614         * tx ints before we are up and running, which may cause a null
 615         * pointer access in the int handler.
 616         */
 617        rrpriv->tx_full = 0;
 618        rrpriv->cur_rx = 0;
 619        rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 620
 621        rr_reset(dev);
 622
 623        /* Tuning values */
 624        writel(0x5000, &regs->ConRetry);
 625        writel(0x100, &regs->ConRetryTmr);
 626        writel(0x500000, &regs->ConTmout);
 627        writel(0x60, &regs->IntrTmr);
 628        writel(0x500000, &regs->TxDataMvTimeout);
 629        writel(0x200000, &regs->RxDataMvTimeout);
 630        writel(0x80, &regs->WriteDmaThresh);
 631        writel(0x80, &regs->ReadDmaThresh);
 632
 633        rrpriv->fw_running = 0;
 634        wmb();
 635
 636        hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 637        writel(hostctrl, &regs->HostCtrl);
 638        wmb();
 639
 640        spin_unlock_irqrestore(&rrpriv->lock, flags);
 641
 642        for (i = 0; i < RX_RING_ENTRIES; i++) {
 643                struct sk_buff *skb;
 644                dma_addr_t addr;
 645
 646                rrpriv->rx_ring[i].mode = 0;
 647                skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 648                if (!skb) {
 649                        printk(KERN_WARNING "%s: Unable to allocate memory "
 650                               "for receive ring - halting NIC\n", dev->name);
 651                        ecode = -ENOMEM;
 652                        goto error;
 653                }
 654                rrpriv->rx_skbuff[i] = skb;
 655                addr = pci_map_single(rrpriv->pci_dev, skb->data,
 656                        dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 657                /*
 658                 * Sanity test to see if we conflict with the DMA
 659                 * limitations of the Roadrunner.
 660                 */
 661                if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 662                        printk("skb alloc error\n");
 663
 664                set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 665                rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 666        }
 667
 668        rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 669        rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 670        rrpriv->rx_ctrl[4].mode = 8;
 671        rrpriv->rx_ctrl[4].pi = 0;
 672        wmb();
 673        set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 674
 675        udelay(1000);
 676
 677        /*
 678         * Now start the FirmWare.
 679         */
 680        cmd.code = C_START_FW;
 681        cmd.ring = 0;
 682        cmd.index = 0;
 683
 684        rr_issue_cmd(rrpriv, &cmd);
 685
 686        /*
 687         * Give the FirmWare time to chew on the `get running' command.
 688         */
 689        myjif = jiffies + 5 * HZ;
 690        while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 691                cpu_relax();
 692
 693        netif_start_queue(dev);
 694
 695        return ecode;
 696
 697 error:
 698        /*
 699         * We might have gotten here because we are out of memory,
 700         * make sure we release everything we allocated before failing
 701         */
 702        for (i = 0; i < RX_RING_ENTRIES; i++) {
 703                struct sk_buff *skb = rrpriv->rx_skbuff[i];
 704
 705                if (skb) {
 706                        pci_unmap_single(rrpriv->pci_dev,
 707                                         rrpriv->rx_ring[i].addr.addrlo,
 708                                         dev->mtu + HIPPI_HLEN,
 709                                         PCI_DMA_FROMDEVICE);
 710                        rrpriv->rx_ring[i].size = 0;
 711                        set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 712                        dev_kfree_skb(skb);
 713                        rrpriv->rx_skbuff[i] = NULL;
 714                }
 715        }
 716        return ecode;
 717}
 718
 719
 720/*
 721 * All events are considered to be slow (RX/TX ints do not generate
 722 * events) and are handled here, outside the main interrupt handler,
 723 * to reduce the size of the handler.
 724 */
 725static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 726{
 727        struct rr_private *rrpriv;
 728        struct rr_regs __iomem *regs;
 729        u32 tmp;
 730
 731        rrpriv = netdev_priv(dev);
 732        regs = rrpriv->regs;
 733
 734        while (prodidx != eidx){
 735                switch (rrpriv->evt_ring[eidx].code){
 736                case E_NIC_UP:
 737                        tmp = readl(&regs->FwRev);
 738                        printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 739                               "up and running\n", dev->name,
 740                               (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 741                        rrpriv->fw_running = 1;
 742                        writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 743                        wmb();
 744                        break;
 745                case E_LINK_ON:
 746                        printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 747                        break;
 748                case E_LINK_OFF:
 749                        printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 750                        break;
 751                case E_RX_IDLE:
 752                        printk(KERN_WARNING "%s: RX data not moving\n",
 753                               dev->name);
 754                        goto drop;
 755                case E_WATCHDOG:
 756                        printk(KERN_INFO "%s: The watchdog is here to see "
 757                               "us\n", dev->name);
 758                        break;
 759                case E_INTERN_ERR:
 760                        printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 761                               dev->name);
 762                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 763                               &regs->HostCtrl);
 764                        wmb();
 765                        break;
 766                case E_HOST_ERR:
 767                        printk(KERN_ERR "%s: Host software error\n",
 768                               dev->name);
 769                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 770                               &regs->HostCtrl);
 771                        wmb();
 772                        break;
 773                /*
 774                 * TX events.
 775                 */
 776                case E_CON_REJ:
 777                        printk(KERN_WARNING "%s: Connection rejected\n",
 778                               dev->name);
 779                        dev->stats.tx_aborted_errors++;
 780                        break;
 781                case E_CON_TMOUT:
 782                        printk(KERN_WARNING "%s: Connection timeout\n",
 783                               dev->name);
 784                        break;
 785                case E_DISC_ERR:
 786                        printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 787                               dev->name);
 788                        dev->stats.tx_aborted_errors++;
 789                        break;
 790                case E_INT_PRTY:
 791                        printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 792                               dev->name);
 793                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 794                               &regs->HostCtrl);
 795                        wmb();
 796                        break;
 797                case E_TX_IDLE:
 798                        printk(KERN_WARNING "%s: Transmitter idle\n",
 799                               dev->name);
 800                        break;
 801                case E_TX_LINK_DROP:
 802                        printk(KERN_WARNING "%s: Link lost during transmit\n",
 803                               dev->name);
 804                        dev->stats.tx_aborted_errors++;
 805                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 806                               &regs->HostCtrl);
 807                        wmb();
 808                        break;
 809                case E_TX_INV_RNG:
 810                        printk(KERN_ERR "%s: Invalid send ring block\n",
 811                               dev->name);
 812                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 813                               &regs->HostCtrl);
 814                        wmb();
 815                        break;
 816                case E_TX_INV_BUF:
 817                        printk(KERN_ERR "%s: Invalid send buffer address\n",
 818                               dev->name);
 819                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 820                               &regs->HostCtrl);
 821                        wmb();
 822                        break;
 823                case E_TX_INV_DSC:
 824                        printk(KERN_ERR "%s: Invalid descriptor address\n",
 825                               dev->name);
 826                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 827                               &regs->HostCtrl);
 828                        wmb();
 829                        break;
 830                /*
 831                 * RX events.
 832                 */
 833                case E_RX_RNG_OUT:
 834                        printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 835                        break;
 836
 837                case E_RX_PAR_ERR:
 838                        printk(KERN_WARNING "%s: Receive parity error\n",
 839                               dev->name);
 840                        goto drop;
 841                case E_RX_LLRC_ERR:
 842                        printk(KERN_WARNING "%s: Receive LLRC error\n",
 843                               dev->name);
 844                        goto drop;
 845                case E_PKT_LN_ERR:
 846                        printk(KERN_WARNING "%s: Receive packet length "
 847                               "error\n", dev->name);
 848                        goto drop;
 849                case E_DTA_CKSM_ERR:
 850                        printk(KERN_WARNING "%s: Data checksum error\n",
 851                               dev->name);
 852                        goto drop;
 853                case E_SHT_BST:
 854                        printk(KERN_WARNING "%s: Unexpected short burst "
 855                               "error\n", dev->name);
 856                        goto drop;
 857                case E_STATE_ERR:
 858                        printk(KERN_WARNING "%s: Recv. state transition"
 859                               " error\n", dev->name);
 860                        goto drop;
 861                case E_UNEXP_DATA:
 862                        printk(KERN_WARNING "%s: Unexpected data error\n",
 863                               dev->name);
 864                        goto drop;
 865                case E_LST_LNK_ERR:
 866                        printk(KERN_WARNING "%s: Link lost error\n",
 867                               dev->name);
 868                        goto drop;
 869                case E_FRM_ERR:
 870                        printk(KERN_WARNING "%s: Framming Error\n",
 871                               dev->name);
 872                        goto drop;
 873                case E_FLG_SYN_ERR:
 874                        printk(KERN_WARNING "%s: Flag sync. lost during "
 875                               "packet\n", dev->name);
 876                        goto drop;
 877                case E_RX_INV_BUF:
 878                        printk(KERN_ERR "%s: Invalid receive buffer "
 879                               "address\n", dev->name);
 880                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 881                               &regs->HostCtrl);
 882                        wmb();
 883                        break;
 884                case E_RX_INV_DSC:
 885                        printk(KERN_ERR "%s: Invalid receive descriptor "
 886                               "address\n", dev->name);
 887                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 888                               &regs->HostCtrl);
 889                        wmb();
 890                        break;
 891                case E_RNG_BLK:
 892                        printk(KERN_ERR "%s: Invalid ring block\n",
 893                               dev->name);
 894                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 895                               &regs->HostCtrl);
 896                        wmb();
 897                        break;
 898                drop:
 899                        /* Label packet to be dropped.
 900                         * Actual dropping occurs in rx
 901                         * handling.
 902                         *
 903                         * The index of packet we get to drop is
 904                         * the index of the packet following
 905                         * the bad packet. -kbf
 906                         */
 907                        {
 908                                u16 index = rrpriv->evt_ring[eidx].index;
 909                                index = (index + (RX_RING_ENTRIES - 1)) %
 910                                        RX_RING_ENTRIES;
 911                                rrpriv->rx_ring[index].mode |=
 912                                        (PACKET_BAD | PACKET_END);
 913                        }
 914                        break;
 915                default:
 916                        printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 917                               dev->name, rrpriv->evt_ring[eidx].code);
 918                }
 919                eidx = (eidx + 1) % EVT_RING_ENTRIES;
 920        }
 921
 922        rrpriv->info->evt_ctrl.pi = eidx;
 923        wmb();
 924        return eidx;
 925}
 926
 927
 928static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 929{
 930        struct rr_private *rrpriv = netdev_priv(dev);
 931        struct rr_regs __iomem *regs = rrpriv->regs;
 932
 933        do {
 934                struct rx_desc *desc;
 935                u32 pkt_len;
 936
 937                desc = &(rrpriv->rx_ring[index]);
 938                pkt_len = desc->size;
 939#if (DEBUG > 2)
 940                printk("index %i, rxlimit %i\n", index, rxlimit);
 941                printk("len %x, mode %x\n", pkt_len, desc->mode);
 942#endif
 943                if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 944                        dev->stats.rx_dropped++;
 945                        goto defer;
 946                }
 947
 948                if (pkt_len > 0){
 949                        struct sk_buff *skb, *rx_skb;
 950
 951                        rx_skb = rrpriv->rx_skbuff[index];
 952
 953                        if (pkt_len < PKT_COPY_THRESHOLD) {
 954                                skb = alloc_skb(pkt_len, GFP_ATOMIC);
 955                                if (skb == NULL){
 956                                        printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 957                                        dev->stats.rx_dropped++;
 958                                        goto defer;
 959                                } else {
 960                                        pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
 961                                                                    desc->addr.addrlo,
 962                                                                    pkt_len,
 963                                                                    PCI_DMA_FROMDEVICE);
 964
 965                                        skb_put_data(skb, rx_skb->data,
 966                                                     pkt_len);
 967
 968                                        pci_dma_sync_single_for_device(rrpriv->pci_dev,
 969                                                                       desc->addr.addrlo,
 970                                                                       pkt_len,
 971                                                                       PCI_DMA_FROMDEVICE);
 972                                }
 973                        }else{
 974                                struct sk_buff *newskb;
 975
 976                                newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 977                                        GFP_ATOMIC);
 978                                if (newskb){
 979                                        dma_addr_t addr;
 980
 981                                        pci_unmap_single(rrpriv->pci_dev,
 982                                                desc->addr.addrlo, dev->mtu +
 983                                                HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 984                                        skb = rx_skb;
 985                                        skb_put(skb, pkt_len);
 986                                        rrpriv->rx_skbuff[index] = newskb;
 987                                        addr = pci_map_single(rrpriv->pci_dev,
 988                                                newskb->data,
 989                                                dev->mtu + HIPPI_HLEN,
 990                                                PCI_DMA_FROMDEVICE);
 991                                        set_rraddr(&desc->addr, addr);
 992                                } else {
 993                                        printk("%s: Out of memory, deferring "
 994                                               "packet\n", dev->name);
 995                                        dev->stats.rx_dropped++;
 996                                        goto defer;
 997                                }
 998                        }
 999                        skb->protocol = hippi_type_trans(skb, dev);
1000
1001                        netif_rx(skb);          /* send it up */
1002
1003                        dev->stats.rx_packets++;
1004                        dev->stats.rx_bytes += pkt_len;
1005                }
1006        defer:
1007                desc->mode = 0;
1008                desc->size = dev->mtu + HIPPI_HLEN;
1009
1010                if ((index & 7) == 7)
1011                        writel(index, &regs->IpRxPi);
1012
1013                index = (index + 1) % RX_RING_ENTRIES;
1014        } while(index != rxlimit);
1015
1016        rrpriv->cur_rx = index;
1017        wmb();
1018}
1019
1020
1021static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022{
1023        struct rr_private *rrpriv;
1024        struct rr_regs __iomem *regs;
1025        struct net_device *dev = (struct net_device *)dev_id;
1026        u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027
1028        rrpriv = netdev_priv(dev);
1029        regs = rrpriv->regs;
1030
1031        if (!(readl(&regs->HostCtrl) & RR_INT))
1032                return IRQ_NONE;
1033
1034        spin_lock(&rrpriv->lock);
1035
1036        prodidx = readl(&regs->EvtPrd);
1037        txcsmr = (prodidx >> 8) & 0xff;
1038        rxlimit = (prodidx >> 16) & 0xff;
1039        prodidx &= 0xff;
1040
1041#if (DEBUG > 2)
1042        printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043               prodidx, rrpriv->info->evt_ctrl.pi);
1044#endif
1045        /*
1046         * Order here is important.  We must handle events
1047         * before doing anything else in order to catch
1048         * such things as LLRC errors, etc -kbf
1049         */
1050
1051        eidx = rrpriv->info->evt_ctrl.pi;
1052        if (prodidx != eidx)
1053                eidx = rr_handle_event(dev, prodidx, eidx);
1054
1055        rxindex = rrpriv->cur_rx;
1056        if (rxindex != rxlimit)
1057                rx_int(dev, rxlimit, rxindex);
1058
1059        txcon = rrpriv->dirty_tx;
1060        if (txcsmr != txcon) {
1061                do {
1062                        /* Due to occational firmware TX producer/consumer out
1063                         * of sync. error need to check entry in ring -kbf
1064                         */
1065                        if(rrpriv->tx_skbuff[txcon]){
1066                                struct tx_desc *desc;
1067                                struct sk_buff *skb;
1068
1069                                desc = &(rrpriv->tx_ring[txcon]);
1070                                skb = rrpriv->tx_skbuff[txcon];
1071
1072                                dev->stats.tx_packets++;
1073                                dev->stats.tx_bytes += skb->len;
1074
1075                                pci_unmap_single(rrpriv->pci_dev,
1076                                                 desc->addr.addrlo, skb->len,
1077                                                 PCI_DMA_TODEVICE);
1078                                dev_kfree_skb_irq(skb);
1079
1080                                rrpriv->tx_skbuff[txcon] = NULL;
1081                                desc->size = 0;
1082                                set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083                                desc->mode = 0;
1084                        }
1085                        txcon = (txcon + 1) % TX_RING_ENTRIES;
1086                } while (txcsmr != txcon);
1087                wmb();
1088
1089                rrpriv->dirty_tx = txcon;
1090                if (rrpriv->tx_full && rr_if_busy(dev) &&
1091                    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092                     != rrpriv->dirty_tx)){
1093                        rrpriv->tx_full = 0;
1094                        netif_wake_queue(dev);
1095                }
1096        }
1097
1098        eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099        writel(eidx, &regs->EvtCon);
1100        wmb();
1101
1102        spin_unlock(&rrpriv->lock);
1103        return IRQ_HANDLED;
1104}
1105
1106static inline void rr_raz_tx(struct rr_private *rrpriv,
1107                             struct net_device *dev)
1108{
1109        int i;
1110
1111        for (i = 0; i < TX_RING_ENTRIES; i++) {
1112                struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113
1114                if (skb) {
1115                        struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116
1117                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1118                                skb->len, PCI_DMA_TODEVICE);
1119                        desc->size = 0;
1120                        set_rraddr(&desc->addr, 0);
1121                        dev_kfree_skb(skb);
1122                        rrpriv->tx_skbuff[i] = NULL;
1123                }
1124        }
1125}
1126
1127
1128static inline void rr_raz_rx(struct rr_private *rrpriv,
1129                             struct net_device *dev)
1130{
1131        int i;
1132
1133        for (i = 0; i < RX_RING_ENTRIES; i++) {
1134                struct sk_buff *skb = rrpriv->rx_skbuff[i];
1135
1136                if (skb) {
1137                        struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1138
1139                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1140                                dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1141                        desc->size = 0;
1142                        set_rraddr(&desc->addr, 0);
1143                        dev_kfree_skb(skb);
1144                        rrpriv->rx_skbuff[i] = NULL;
1145                }
1146        }
1147}
1148
1149static void rr_timer(struct timer_list *t)
1150{
1151        struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1152        struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1153        struct rr_regs __iomem *regs = rrpriv->regs;
1154        unsigned long flags;
1155
1156        if (readl(&regs->HostCtrl) & NIC_HALTED){
1157                printk("%s: Restarting nic\n", dev->name);
1158                memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1159                memset(rrpriv->info, 0, sizeof(struct rr_info));
1160                wmb();
1161
1162                rr_raz_tx(rrpriv, dev);
1163                rr_raz_rx(rrpriv, dev);
1164
1165                if (rr_init1(dev)) {
1166                        spin_lock_irqsave(&rrpriv->lock, flags);
1167                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1168                               &regs->HostCtrl);
1169                        spin_unlock_irqrestore(&rrpriv->lock, flags);
1170                }
1171        }
1172        rrpriv->timer.expires = RUN_AT(5*HZ);
1173        add_timer(&rrpriv->timer);
1174}
1175
1176
1177static int rr_open(struct net_device *dev)
1178{
1179        struct rr_private *rrpriv = netdev_priv(dev);
1180        struct pci_dev *pdev = rrpriv->pci_dev;
1181        struct rr_regs __iomem *regs;
1182        int ecode = 0;
1183        unsigned long flags;
1184        dma_addr_t dma_addr;
1185
1186        regs = rrpriv->regs;
1187
1188        if (rrpriv->fw_rev < 0x00020000) {
1189                printk(KERN_WARNING "%s: trying to configure device with "
1190                       "obsolete firmware\n", dev->name);
1191                ecode = -EBUSY;
1192                goto error;
1193        }
1194
1195        rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1196                                               256 * sizeof(struct ring_ctrl),
1197                                               &dma_addr);
1198        if (!rrpriv->rx_ctrl) {
1199                ecode = -ENOMEM;
1200                goto error;
1201        }
1202        rrpriv->rx_ctrl_dma = dma_addr;
1203        memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1204
1205        rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1206                                            &dma_addr);
1207        if (!rrpriv->info) {
1208                ecode = -ENOMEM;
1209                goto error;
1210        }
1211        rrpriv->info_dma = dma_addr;
1212        memset(rrpriv->info, 0, sizeof(struct rr_info));
1213        wmb();
1214
1215        spin_lock_irqsave(&rrpriv->lock, flags);
1216        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1217        readl(&regs->HostCtrl);
1218        spin_unlock_irqrestore(&rrpriv->lock, flags);
1219
1220        if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1221                printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1222                       dev->name, pdev->irq);
1223                ecode = -EAGAIN;
1224                goto error;
1225        }
1226
1227        if ((ecode = rr_init1(dev)))
1228                goto error;
1229
1230        /* Set the timer to switch to check for link beat and perhaps switch
1231           to an alternate media type. */
1232        timer_setup(&rrpriv->timer, rr_timer, 0);
1233        rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1234        add_timer(&rrpriv->timer);
1235
1236        netif_start_queue(dev);
1237
1238        return ecode;
1239
1240 error:
1241        spin_lock_irqsave(&rrpriv->lock, flags);
1242        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1243        spin_unlock_irqrestore(&rrpriv->lock, flags);
1244
1245        if (rrpriv->info) {
1246                pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1247                                    rrpriv->info_dma);
1248                rrpriv->info = NULL;
1249        }
1250        if (rrpriv->rx_ctrl) {
1251                pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1252                                    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1253                rrpriv->rx_ctrl = NULL;
1254        }
1255
1256        netif_stop_queue(dev);
1257
1258        return ecode;
1259}
1260
1261
1262static void rr_dump(struct net_device *dev)
1263{
1264        struct rr_private *rrpriv;
1265        struct rr_regs __iomem *regs;
1266        u32 index, cons;
1267        short i;
1268        int len;
1269
1270        rrpriv = netdev_priv(dev);
1271        regs = rrpriv->regs;
1272
1273        printk("%s: dumping NIC TX rings\n", dev->name);
1274
1275        printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1276               readl(&regs->RxPrd), readl(&regs->TxPrd),
1277               readl(&regs->EvtPrd), readl(&regs->TxPi),
1278               rrpriv->info->tx_ctrl.pi);
1279
1280        printk("Error code 0x%x\n", readl(&regs->Fail1));
1281
1282        index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1283        cons = rrpriv->dirty_tx;
1284        printk("TX ring index %i, TX consumer %i\n",
1285               index, cons);
1286
1287        if (rrpriv->tx_skbuff[index]){
1288                len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1289                printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1290                for (i = 0; i < len; i++){
1291                        if (!(i & 7))
1292                                printk("\n");
1293                        printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1294                }
1295                printk("\n");
1296        }
1297
1298        if (rrpriv->tx_skbuff[cons]){
1299                len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1300                printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1301                printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1302                       rrpriv->tx_ring[cons].mode,
1303                       rrpriv->tx_ring[cons].size,
1304                       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1305                       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1306                       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1307                for (i = 0; i < len; i++){
1308                        if (!(i & 7))
1309                                printk("\n");
1310                        printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1311                }
1312                printk("\n");
1313        }
1314
1315        printk("dumping TX ring info:\n");
1316        for (i = 0; i < TX_RING_ENTRIES; i++)
1317                printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1318                       rrpriv->tx_ring[i].mode,
1319                       rrpriv->tx_ring[i].size,
1320                       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1321
1322}
1323
1324
1325static int rr_close(struct net_device *dev)
1326{
1327        struct rr_private *rrpriv = netdev_priv(dev);
1328        struct rr_regs __iomem *regs = rrpriv->regs;
1329        struct pci_dev *pdev = rrpriv->pci_dev;
1330        unsigned long flags;
1331        u32 tmp;
1332        short i;
1333
1334        netif_stop_queue(dev);
1335
1336
1337        /*
1338         * Lock to make sure we are not cleaning up while another CPU
1339         * is handling interrupts.
1340         */
1341        spin_lock_irqsave(&rrpriv->lock, flags);
1342
1343        tmp = readl(&regs->HostCtrl);
1344        if (tmp & NIC_HALTED){
1345                printk("%s: NIC already halted\n", dev->name);
1346                rr_dump(dev);
1347        }else{
1348                tmp |= HALT_NIC | RR_CLEAR_INT;
1349                writel(tmp, &regs->HostCtrl);
1350                readl(&regs->HostCtrl);
1351        }
1352
1353        rrpriv->fw_running = 0;
1354
1355        del_timer_sync(&rrpriv->timer);
1356
1357        writel(0, &regs->TxPi);
1358        writel(0, &regs->IpRxPi);
1359
1360        writel(0, &regs->EvtCon);
1361        writel(0, &regs->EvtPrd);
1362
1363        for (i = 0; i < CMD_RING_ENTRIES; i++)
1364                writel(0, &regs->CmdRing[i]);
1365
1366        rrpriv->info->tx_ctrl.entries = 0;
1367        rrpriv->info->cmd_ctrl.pi = 0;
1368        rrpriv->info->evt_ctrl.pi = 0;
1369        rrpriv->rx_ctrl[4].entries = 0;
1370
1371        rr_raz_tx(rrpriv, dev);
1372        rr_raz_rx(rrpriv, dev);
1373
1374        pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1375                            rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1376        rrpriv->rx_ctrl = NULL;
1377
1378        pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1379                            rrpriv->info_dma);
1380        rrpriv->info = NULL;
1381
1382        spin_unlock_irqrestore(&rrpriv->lock, flags);
1383        free_irq(pdev->irq, dev);
1384
1385        return 0;
1386}
1387
1388
1389static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1390                                 struct net_device *dev)
1391{
1392        struct rr_private *rrpriv = netdev_priv(dev);
1393        struct rr_regs __iomem *regs = rrpriv->regs;
1394        struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1395        struct ring_ctrl *txctrl;
1396        unsigned long flags;
1397        u32 index, len = skb->len;
1398        u32 *ifield;
1399        struct sk_buff *new_skb;
1400
1401        if (readl(&regs->Mode) & FATAL_ERR)
1402                printk("error codes Fail1 %02x, Fail2 %02x\n",
1403                       readl(&regs->Fail1), readl(&regs->Fail2));
1404
1405        /*
1406         * We probably need to deal with tbusy here to prevent overruns.
1407         */
1408
1409        if (skb_headroom(skb) < 8){
1410                printk("incoming skb too small - reallocating\n");
1411                if (!(new_skb = dev_alloc_skb(len + 8))) {
1412                        dev_kfree_skb(skb);
1413                        netif_wake_queue(dev);
1414                        return NETDEV_TX_OK;
1415                }
1416                skb_reserve(new_skb, 8);
1417                skb_put(new_skb, len);
1418                skb_copy_from_linear_data(skb, new_skb->data, len);
1419                dev_kfree_skb(skb);
1420                skb = new_skb;
1421        }
1422
1423        ifield = skb_push(skb, 8);
1424
1425        ifield[0] = 0;
1426        ifield[1] = hcb->ifield;
1427
1428        /*
1429         * We don't need the lock before we are actually going to start
1430         * fiddling with the control blocks.
1431         */
1432        spin_lock_irqsave(&rrpriv->lock, flags);
1433
1434        txctrl = &rrpriv->info->tx_ctrl;
1435
1436        index = txctrl->pi;
1437
1438        rrpriv->tx_skbuff[index] = skb;
1439        set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1440                rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1441        rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1442        rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1443        txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1444        wmb();
1445        writel(txctrl->pi, &regs->TxPi);
1446
1447        if (txctrl->pi == rrpriv->dirty_tx){
1448                rrpriv->tx_full = 1;
1449                netif_stop_queue(dev);
1450        }
1451
1452        spin_unlock_irqrestore(&rrpriv->lock, flags);
1453
1454        return NETDEV_TX_OK;
1455}
1456
1457
1458/*
1459 * Read the firmware out of the EEPROM and put it into the SRAM
1460 * (or from user space - later)
1461 *
1462 * This operation requires the NIC to be halted and is performed with
1463 * interrupts disabled and with the spinlock hold.
1464 */
1465static int rr_load_firmware(struct net_device *dev)
1466{
1467        struct rr_private *rrpriv;
1468        struct rr_regs __iomem *regs;
1469        size_t eptr, segptr;
1470        int i, j;
1471        u32 localctrl, sptr, len, tmp;
1472        u32 p2len, p2size, nr_seg, revision, io, sram_size;
1473
1474        rrpriv = netdev_priv(dev);
1475        regs = rrpriv->regs;
1476
1477        if (dev->flags & IFF_UP)
1478                return -EBUSY;
1479
1480        if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1481                printk("%s: Trying to load firmware to a running NIC.\n",
1482                       dev->name);
1483                return -EBUSY;
1484        }
1485
1486        localctrl = readl(&regs->LocalCtrl);
1487        writel(0, &regs->LocalCtrl);
1488
1489        writel(0, &regs->EvtPrd);
1490        writel(0, &regs->RxPrd);
1491        writel(0, &regs->TxPrd);
1492
1493        /*
1494         * First wipe the entire SRAM, otherwise we might run into all
1495         * kinds of trouble ... sigh, this took almost all afternoon
1496         * to track down ;-(
1497         */
1498        io = readl(&regs->ExtIo);
1499        writel(0, &regs->ExtIo);
1500        sram_size = rr_read_eeprom_word(rrpriv, 8);
1501
1502        for (i = 200; i < sram_size / 4; i++){
1503                writel(i * 4, &regs->WinBase);
1504                mb();
1505                writel(0, &regs->WinData);
1506                mb();
1507        }
1508        writel(io, &regs->ExtIo);
1509        mb();
1510
1511        eptr = rr_read_eeprom_word(rrpriv,
1512                       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1513        eptr = ((eptr & 0x1fffff) >> 3);
1514
1515        p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1516        p2len = (p2len << 2);
1517        p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1518        p2size = ((p2size & 0x1fffff) >> 3);
1519
1520        if ((eptr < p2size) || (eptr > (p2size + p2len))){
1521                printk("%s: eptr is invalid\n", dev->name);
1522                goto out;
1523        }
1524
1525        revision = rr_read_eeprom_word(rrpriv,
1526                        offsetof(struct eeprom, manf.HeaderFmt));
1527
1528        if (revision != 1){
1529                printk("%s: invalid firmware format (%i)\n",
1530                       dev->name, revision);
1531                goto out;
1532        }
1533
1534        nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1535        eptr +=4;
1536#if (DEBUG > 1)
1537        printk("%s: nr_seg %i\n", dev->name, nr_seg);
1538#endif
1539
1540        for (i = 0; i < nr_seg; i++){
1541                sptr = rr_read_eeprom_word(rrpriv, eptr);
1542                eptr += 4;
1543                len = rr_read_eeprom_word(rrpriv, eptr);
1544                eptr += 4;
1545                segptr = rr_read_eeprom_word(rrpriv, eptr);
1546                segptr = ((segptr & 0x1fffff) >> 3);
1547                eptr += 4;
1548#if (DEBUG > 1)
1549                printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1550                       dev->name, i, sptr, len, segptr);
1551#endif
1552                for (j = 0; j < len; j++){
1553                        tmp = rr_read_eeprom_word(rrpriv, segptr);
1554                        writel(sptr, &regs->WinBase);
1555                        mb();
1556                        writel(tmp, &regs->WinData);
1557                        mb();
1558                        segptr += 4;
1559                        sptr += 4;
1560                }
1561        }
1562
1563out:
1564        writel(localctrl, &regs->LocalCtrl);
1565        mb();
1566        return 0;
1567}
1568
1569
1570static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1571{
1572        struct rr_private *rrpriv;
1573        unsigned char *image, *oldimage;
1574        unsigned long flags;
1575        unsigned int i;
1576        int error = -EOPNOTSUPP;
1577
1578        rrpriv = netdev_priv(dev);
1579
1580        switch(cmd){
1581        case SIOCRRGFW:
1582                if (!capable(CAP_SYS_RAWIO)){
1583                        return -EPERM;
1584                }
1585
1586                image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1587                if (!image)
1588                        return -ENOMEM;
1589
1590                if (rrpriv->fw_running){
1591                        printk("%s: Firmware already running\n", dev->name);
1592                        error = -EPERM;
1593                        goto gf_out;
1594                }
1595
1596                spin_lock_irqsave(&rrpriv->lock, flags);
1597                i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1598                spin_unlock_irqrestore(&rrpriv->lock, flags);
1599                if (i != EEPROM_BYTES){
1600                        printk(KERN_ERR "%s: Error reading EEPROM\n",
1601                               dev->name);
1602                        error = -EFAULT;
1603                        goto gf_out;
1604                }
1605                error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1606                if (error)
1607                        error = -EFAULT;
1608        gf_out:
1609                kfree(image);
1610                return error;
1611
1612        case SIOCRRPFW:
1613                if (!capable(CAP_SYS_RAWIO)){
1614                        return -EPERM;
1615                }
1616
1617                image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1618                if (IS_ERR(image))
1619                        return PTR_ERR(image);
1620
1621                oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1622                if (!oldimage) {
1623                        kfree(image);
1624                        return -ENOMEM;
1625                }
1626
1627                if (rrpriv->fw_running){
1628                        printk("%s: Firmware already running\n", dev->name);
1629                        error = -EPERM;
1630                        goto wf_out;
1631                }
1632
1633                printk("%s: Updating EEPROM firmware\n", dev->name);
1634
1635                spin_lock_irqsave(&rrpriv->lock, flags);
1636                error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1637                if (error)
1638                        printk(KERN_ERR "%s: Error writing EEPROM\n",
1639                               dev->name);
1640
1641                i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1642                spin_unlock_irqrestore(&rrpriv->lock, flags);
1643
1644                if (i != EEPROM_BYTES)
1645                        printk(KERN_ERR "%s: Error reading back EEPROM "
1646                               "image\n", dev->name);
1647
1648                error = memcmp(image, oldimage, EEPROM_BYTES);
1649                if (error){
1650                        printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1651                               dev->name);
1652                        error = -EFAULT;
1653                }
1654        wf_out:
1655                kfree(oldimage);
1656                kfree(image);
1657                return error;
1658
1659        case SIOCRRID:
1660                return put_user(0x52523032, (int __user *)rq->ifr_data);
1661        default:
1662                return error;
1663        }
1664}
1665
1666static const struct pci_device_id rr_pci_tbl[] = {
1667        { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1668                PCI_ANY_ID, PCI_ANY_ID, },
1669        { 0,}
1670};
1671MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1672
1673static struct pci_driver rr_driver = {
1674        .name           = "rrunner",
1675        .id_table       = rr_pci_tbl,
1676        .probe          = rr_init_one,
1677        .remove         = rr_remove_one,
1678};
1679
1680module_pci_driver(rr_driver);
1681