linux/drivers/net/wireless/intel/iwlwifi/dvm/calib.c
<<
>>
Prefs
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22 * USA
  23 *
  24 * The full GNU General Public License is included in this distribution
  25 * in the file called COPYING.
  26 *
  27 * Contact Information:
  28 *  Intel Linux Wireless <linuxwifi@intel.com>
  29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30 *
  31 * BSD LICENSE
  32 *
  33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
  34 * All rights reserved.
  35 *
  36 * Redistribution and use in source and binary forms, with or without
  37 * modification, are permitted provided that the following conditions
  38 * are met:
  39 *
  40 *  * Redistributions of source code must retain the above copyright
  41 *    notice, this list of conditions and the following disclaimer.
  42 *  * Redistributions in binary form must reproduce the above copyright
  43 *    notice, this list of conditions and the following disclaimer in
  44 *    the documentation and/or other materials provided with the
  45 *    distribution.
  46 *  * Neither the name Intel Corporation nor the names of its
  47 *    contributors may be used to endorse or promote products derived
  48 *    from this software without specific prior written permission.
  49 *
  50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61 *****************************************************************************/
  62
  63#include <linux/slab.h>
  64#include <net/mac80211.h>
  65
  66#include "iwl-trans.h"
  67
  68#include "dev.h"
  69#include "calib.h"
  70#include "agn.h"
  71
  72/*****************************************************************************
  73 * INIT calibrations framework
  74 *****************************************************************************/
  75
  76/* Opaque calibration results */
  77struct iwl_calib_result {
  78        struct list_head list;
  79        size_t cmd_len;
  80        struct iwl_calib_hdr hdr;
  81        /* data follows */
  82};
  83
  84struct statistics_general_data {
  85        u32 beacon_silence_rssi_a;
  86        u32 beacon_silence_rssi_b;
  87        u32 beacon_silence_rssi_c;
  88        u32 beacon_energy_a;
  89        u32 beacon_energy_b;
  90        u32 beacon_energy_c;
  91};
  92
  93int iwl_send_calib_results(struct iwl_priv *priv)
  94{
  95        struct iwl_host_cmd hcmd = {
  96                .id = REPLY_PHY_CALIBRATION_CMD,
  97        };
  98        struct iwl_calib_result *res;
  99
 100        list_for_each_entry(res, &priv->calib_results, list) {
 101                int ret;
 102
 103                hcmd.len[0] = res->cmd_len;
 104                hcmd.data[0] = &res->hdr;
 105                hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
 106                ret = iwl_dvm_send_cmd(priv, &hcmd);
 107                if (ret) {
 108                        IWL_ERR(priv, "Error %d on calib cmd %d\n",
 109                                ret, res->hdr.op_code);
 110                        return ret;
 111                }
 112        }
 113
 114        return 0;
 115}
 116
 117int iwl_calib_set(struct iwl_priv *priv,
 118                  const struct iwl_calib_hdr *cmd, int len)
 119{
 120        struct iwl_calib_result *res, *tmp;
 121
 122        res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
 123                      GFP_ATOMIC);
 124        if (!res)
 125                return -ENOMEM;
 126        memcpy(&res->hdr, cmd, len);
 127        res->cmd_len = len;
 128
 129        list_for_each_entry(tmp, &priv->calib_results, list) {
 130                if (tmp->hdr.op_code == res->hdr.op_code) {
 131                        list_replace(&tmp->list, &res->list);
 132                        kfree(tmp);
 133                        return 0;
 134                }
 135        }
 136
 137        /* wasn't in list already */
 138        list_add_tail(&res->list, &priv->calib_results);
 139
 140        return 0;
 141}
 142
 143void iwl_calib_free_results(struct iwl_priv *priv)
 144{
 145        struct iwl_calib_result *res, *tmp;
 146
 147        list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
 148                list_del(&res->list);
 149                kfree(res);
 150        }
 151}
 152
 153/*****************************************************************************
 154 * RUNTIME calibrations framework
 155 *****************************************************************************/
 156
 157/* "false alarms" are signals that our DSP tries to lock onto,
 158 *   but then determines that they are either noise, or transmissions
 159 *   from a distant wireless network (also "noise", really) that get
 160 *   "stepped on" by stronger transmissions within our own network.
 161 * This algorithm attempts to set a sensitivity level that is high
 162 *   enough to receive all of our own network traffic, but not so
 163 *   high that our DSP gets too busy trying to lock onto non-network
 164 *   activity/noise. */
 165static int iwl_sens_energy_cck(struct iwl_priv *priv,
 166                                   u32 norm_fa,
 167                                   u32 rx_enable_time,
 168                                   struct statistics_general_data *rx_info)
 169{
 170        u32 max_nrg_cck = 0;
 171        int i = 0;
 172        u8 max_silence_rssi = 0;
 173        u32 silence_ref = 0;
 174        u8 silence_rssi_a = 0;
 175        u8 silence_rssi_b = 0;
 176        u8 silence_rssi_c = 0;
 177        u32 val;
 178
 179        /* "false_alarms" values below are cross-multiplications to assess the
 180         *   numbers of false alarms within the measured period of actual Rx
 181         *   (Rx is off when we're txing), vs the min/max expected false alarms
 182         *   (some should be expected if rx is sensitive enough) in a
 183         *   hypothetical listening period of 200 time units (TU), 204.8 msec:
 184         *
 185         * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
 186         *
 187         * */
 188        u32 false_alarms = norm_fa * 200 * 1024;
 189        u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
 190        u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
 191        struct iwl_sensitivity_data *data = NULL;
 192        const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 193
 194        data = &(priv->sensitivity_data);
 195
 196        data->nrg_auto_corr_silence_diff = 0;
 197
 198        /* Find max silence rssi among all 3 receivers.
 199         * This is background noise, which may include transmissions from other
 200         *    networks, measured during silence before our network's beacon */
 201        silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
 202                            ALL_BAND_FILTER) >> 8);
 203        silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
 204                            ALL_BAND_FILTER) >> 8);
 205        silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
 206                            ALL_BAND_FILTER) >> 8);
 207
 208        val = max(silence_rssi_b, silence_rssi_c);
 209        max_silence_rssi = max(silence_rssi_a, (u8) val);
 210
 211        /* Store silence rssi in 20-beacon history table */
 212        data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
 213        data->nrg_silence_idx++;
 214        if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
 215                data->nrg_silence_idx = 0;
 216
 217        /* Find max silence rssi across 20 beacon history */
 218        for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
 219                val = data->nrg_silence_rssi[i];
 220                silence_ref = max(silence_ref, val);
 221        }
 222        IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
 223                        silence_rssi_a, silence_rssi_b, silence_rssi_c,
 224                        silence_ref);
 225
 226        /* Find max rx energy (min value!) among all 3 receivers,
 227         *   measured during beacon frame.
 228         * Save it in 10-beacon history table. */
 229        i = data->nrg_energy_idx;
 230        val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
 231        data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
 232
 233        data->nrg_energy_idx++;
 234        if (data->nrg_energy_idx >= 10)
 235                data->nrg_energy_idx = 0;
 236
 237        /* Find min rx energy (max value) across 10 beacon history.
 238         * This is the minimum signal level that we want to receive well.
 239         * Add backoff (margin so we don't miss slightly lower energy frames).
 240         * This establishes an upper bound (min value) for energy threshold. */
 241        max_nrg_cck = data->nrg_value[0];
 242        for (i = 1; i < 10; i++)
 243                max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
 244        max_nrg_cck += 6;
 245
 246        IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
 247                        rx_info->beacon_energy_a, rx_info->beacon_energy_b,
 248                        rx_info->beacon_energy_c, max_nrg_cck - 6);
 249
 250        /* Count number of consecutive beacons with fewer-than-desired
 251         *   false alarms. */
 252        if (false_alarms < min_false_alarms)
 253                data->num_in_cck_no_fa++;
 254        else
 255                data->num_in_cck_no_fa = 0;
 256        IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
 257                        data->num_in_cck_no_fa);
 258
 259        /* If we got too many false alarms this time, reduce sensitivity */
 260        if ((false_alarms > max_false_alarms) &&
 261                (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
 262                IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
 263                     false_alarms, max_false_alarms);
 264                IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
 265                data->nrg_curr_state = IWL_FA_TOO_MANY;
 266                /* Store for "fewer than desired" on later beacon */
 267                data->nrg_silence_ref = silence_ref;
 268
 269                /* increase energy threshold (reduce nrg value)
 270                 *   to decrease sensitivity */
 271                data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
 272        /* Else if we got fewer than desired, increase sensitivity */
 273        } else if (false_alarms < min_false_alarms) {
 274                data->nrg_curr_state = IWL_FA_TOO_FEW;
 275
 276                /* Compare silence level with silence level for most recent
 277                 *   healthy number or too many false alarms */
 278                data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
 279                                                   (s32)silence_ref;
 280
 281                IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
 282                         false_alarms, min_false_alarms,
 283                         data->nrg_auto_corr_silence_diff);
 284
 285                /* Increase value to increase sensitivity, but only if:
 286                 * 1a) previous beacon did *not* have *too many* false alarms
 287                 * 1b) AND there's a significant difference in Rx levels
 288                 *      from a previous beacon with too many, or healthy # FAs
 289                 * OR 2) We've seen a lot of beacons (100) with too few
 290                 *       false alarms */
 291                if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
 292                        ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 293                        (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 294
 295                        IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
 296                        /* Increase nrg value to increase sensitivity */
 297                        val = data->nrg_th_cck + NRG_STEP_CCK;
 298                        data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
 299                } else {
 300                        IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
 301                }
 302
 303        /* Else we got a healthy number of false alarms, keep status quo */
 304        } else {
 305                IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
 306                data->nrg_curr_state = IWL_FA_GOOD_RANGE;
 307
 308                /* Store for use in "fewer than desired" with later beacon */
 309                data->nrg_silence_ref = silence_ref;
 310
 311                /* If previous beacon had too many false alarms,
 312                 *   give it some extra margin by reducing sensitivity again
 313                 *   (but don't go below measured energy of desired Rx) */
 314                if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
 315                        IWL_DEBUG_CALIB(priv, "... increasing margin\n");
 316                        if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
 317                                data->nrg_th_cck -= NRG_MARGIN;
 318                        else
 319                                data->nrg_th_cck = max_nrg_cck;
 320                }
 321        }
 322
 323        /* Make sure the energy threshold does not go above the measured
 324         * energy of the desired Rx signals (reduced by backoff margin),
 325         * or else we might start missing Rx frames.
 326         * Lower value is higher energy, so we use max()!
 327         */
 328        data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
 329        IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
 330
 331        data->nrg_prev_state = data->nrg_curr_state;
 332
 333        /* Auto-correlation CCK algorithm */
 334        if (false_alarms > min_false_alarms) {
 335
 336                /* increase auto_corr values to decrease sensitivity
 337                 * so the DSP won't be disturbed by the noise
 338                 */
 339                if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
 340                        data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
 341                else {
 342                        val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
 343                        data->auto_corr_cck =
 344                                min((u32)ranges->auto_corr_max_cck, val);
 345                }
 346                val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
 347                data->auto_corr_cck_mrc =
 348                        min((u32)ranges->auto_corr_max_cck_mrc, val);
 349        } else if ((false_alarms < min_false_alarms) &&
 350           ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 351           (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 352
 353                /* Decrease auto_corr values to increase sensitivity */
 354                val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
 355                data->auto_corr_cck =
 356                        max((u32)ranges->auto_corr_min_cck, val);
 357                val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
 358                data->auto_corr_cck_mrc =
 359                        max((u32)ranges->auto_corr_min_cck_mrc, val);
 360        }
 361
 362        return 0;
 363}
 364
 365
 366static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
 367                                       u32 norm_fa,
 368                                       u32 rx_enable_time)
 369{
 370        u32 val;
 371        u32 false_alarms = norm_fa * 200 * 1024;
 372        u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
 373        u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
 374        struct iwl_sensitivity_data *data = NULL;
 375        const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 376
 377        data = &(priv->sensitivity_data);
 378
 379        /* If we got too many false alarms this time, reduce sensitivity */
 380        if (false_alarms > max_false_alarms) {
 381
 382                IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
 383                             false_alarms, max_false_alarms);
 384
 385                val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
 386                data->auto_corr_ofdm =
 387                        min((u32)ranges->auto_corr_max_ofdm, val);
 388
 389                val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
 390                data->auto_corr_ofdm_mrc =
 391                        min((u32)ranges->auto_corr_max_ofdm_mrc, val);
 392
 393                val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
 394                data->auto_corr_ofdm_x1 =
 395                        min((u32)ranges->auto_corr_max_ofdm_x1, val);
 396
 397                val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
 398                data->auto_corr_ofdm_mrc_x1 =
 399                        min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
 400        }
 401
 402        /* Else if we got fewer than desired, increase sensitivity */
 403        else if (false_alarms < min_false_alarms) {
 404
 405                IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
 406                             false_alarms, min_false_alarms);
 407
 408                val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
 409                data->auto_corr_ofdm =
 410                        max((u32)ranges->auto_corr_min_ofdm, val);
 411
 412                val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
 413                data->auto_corr_ofdm_mrc =
 414                        max((u32)ranges->auto_corr_min_ofdm_mrc, val);
 415
 416                val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
 417                data->auto_corr_ofdm_x1 =
 418                        max((u32)ranges->auto_corr_min_ofdm_x1, val);
 419
 420                val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
 421                data->auto_corr_ofdm_mrc_x1 =
 422                        max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
 423        } else {
 424                IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
 425                         min_false_alarms, false_alarms, max_false_alarms);
 426        }
 427        return 0;
 428}
 429
 430static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
 431                                struct iwl_sensitivity_data *data,
 432                                __le16 *tbl)
 433{
 434        tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
 435                                cpu_to_le16((u16)data->auto_corr_ofdm);
 436        tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
 437                                cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
 438        tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
 439                                cpu_to_le16((u16)data->auto_corr_ofdm_x1);
 440        tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
 441                                cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
 442
 443        tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
 444                                cpu_to_le16((u16)data->auto_corr_cck);
 445        tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
 446                                cpu_to_le16((u16)data->auto_corr_cck_mrc);
 447
 448        tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
 449                                cpu_to_le16((u16)data->nrg_th_cck);
 450        tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
 451                                cpu_to_le16((u16)data->nrg_th_ofdm);
 452
 453        tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
 454                                cpu_to_le16(data->barker_corr_th_min);
 455        tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
 456                                cpu_to_le16(data->barker_corr_th_min_mrc);
 457        tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
 458                                cpu_to_le16(data->nrg_th_cca);
 459
 460        IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
 461                        data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
 462                        data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
 463                        data->nrg_th_ofdm);
 464
 465        IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
 466                        data->auto_corr_cck, data->auto_corr_cck_mrc,
 467                        data->nrg_th_cck);
 468}
 469
 470/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 471static int iwl_sensitivity_write(struct iwl_priv *priv)
 472{
 473        struct iwl_sensitivity_cmd cmd;
 474        struct iwl_sensitivity_data *data = NULL;
 475        struct iwl_host_cmd cmd_out = {
 476                .id = SENSITIVITY_CMD,
 477                .len = { sizeof(struct iwl_sensitivity_cmd), },
 478                .flags = CMD_ASYNC,
 479                .data = { &cmd, },
 480        };
 481
 482        data = &(priv->sensitivity_data);
 483
 484        memset(&cmd, 0, sizeof(cmd));
 485
 486        iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
 487
 488        /* Update uCode's "work" table, and copy it to DSP */
 489        cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 490
 491        /* Don't send command to uCode if nothing has changed */
 492        if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
 493                    sizeof(u16)*HD_TABLE_SIZE)) {
 494                IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 495                return 0;
 496        }
 497
 498        /* Copy table for comparison next time */
 499        memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
 500               sizeof(u16)*HD_TABLE_SIZE);
 501
 502        return iwl_dvm_send_cmd(priv, &cmd_out);
 503}
 504
 505/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 506static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
 507{
 508        struct iwl_enhance_sensitivity_cmd cmd;
 509        struct iwl_sensitivity_data *data = NULL;
 510        struct iwl_host_cmd cmd_out = {
 511                .id = SENSITIVITY_CMD,
 512                .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
 513                .flags = CMD_ASYNC,
 514                .data = { &cmd, },
 515        };
 516
 517        data = &(priv->sensitivity_data);
 518
 519        memset(&cmd, 0, sizeof(cmd));
 520
 521        iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
 522
 523        if (priv->lib->hd_v2) {
 524                cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 525                        HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
 526                cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 527                        HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
 528                cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 529                        HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
 530                cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 531                        HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 532                cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 533                        HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 534                cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 535                        HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
 536                cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 537                        HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 538                cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 539                        HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 540                cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 541                        HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 542                cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 543                        HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
 544                cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 545                        HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 546        } else {
 547                cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 548                        HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
 549                cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 550                        HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
 551                cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 552                        HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
 553                cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 554                        HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 555                cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 556                        HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 557                cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 558                        HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
 559                cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 560                        HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 561                cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 562                        HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 563                cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 564                        HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 565                cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 566                        HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
 567                cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 568                        HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 569        }
 570
 571        /* Update uCode's "work" table, and copy it to DSP */
 572        cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 573
 574        /* Don't send command to uCode if nothing has changed */
 575        if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
 576                    sizeof(u16)*HD_TABLE_SIZE) &&
 577            !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
 578                    &(priv->enhance_sensitivity_tbl[0]),
 579                    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
 580                IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 581                return 0;
 582        }
 583
 584        /* Copy table for comparison next time */
 585        memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
 586               sizeof(u16)*HD_TABLE_SIZE);
 587        memcpy(&(priv->enhance_sensitivity_tbl[0]),
 588               &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
 589               sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
 590
 591        return iwl_dvm_send_cmd(priv, &cmd_out);
 592}
 593
 594void iwl_init_sensitivity(struct iwl_priv *priv)
 595{
 596        int ret = 0;
 597        int i;
 598        struct iwl_sensitivity_data *data = NULL;
 599        const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 600
 601        if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 602                return;
 603
 604        IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
 605
 606        /* Clear driver's sensitivity algo data */
 607        data = &(priv->sensitivity_data);
 608
 609        if (ranges == NULL)
 610                return;
 611
 612        memset(data, 0, sizeof(struct iwl_sensitivity_data));
 613
 614        data->num_in_cck_no_fa = 0;
 615        data->nrg_curr_state = IWL_FA_TOO_MANY;
 616        data->nrg_prev_state = IWL_FA_TOO_MANY;
 617        data->nrg_silence_ref = 0;
 618        data->nrg_silence_idx = 0;
 619        data->nrg_energy_idx = 0;
 620
 621        for (i = 0; i < 10; i++)
 622                data->nrg_value[i] = 0;
 623
 624        for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
 625                data->nrg_silence_rssi[i] = 0;
 626
 627        data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
 628        data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
 629        data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
 630        data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
 631        data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
 632        data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
 633        data->nrg_th_cck = ranges->nrg_th_cck;
 634        data->nrg_th_ofdm = ranges->nrg_th_ofdm;
 635        data->barker_corr_th_min = ranges->barker_corr_th_min;
 636        data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
 637        data->nrg_th_cca = ranges->nrg_th_cca;
 638
 639        data->last_bad_plcp_cnt_ofdm = 0;
 640        data->last_fa_cnt_ofdm = 0;
 641        data->last_bad_plcp_cnt_cck = 0;
 642        data->last_fa_cnt_cck = 0;
 643
 644        if (priv->fw->enhance_sensitivity_table)
 645                ret |= iwl_enhance_sensitivity_write(priv);
 646        else
 647                ret |= iwl_sensitivity_write(priv);
 648        IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
 649}
 650
 651void iwl_sensitivity_calibration(struct iwl_priv *priv)
 652{
 653        u32 rx_enable_time;
 654        u32 fa_cck;
 655        u32 fa_ofdm;
 656        u32 bad_plcp_cck;
 657        u32 bad_plcp_ofdm;
 658        u32 norm_fa_ofdm;
 659        u32 norm_fa_cck;
 660        struct iwl_sensitivity_data *data = NULL;
 661        struct statistics_rx_non_phy *rx_info;
 662        struct statistics_rx_phy *ofdm, *cck;
 663        struct statistics_general_data statis;
 664
 665        if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 666                return;
 667
 668        data = &(priv->sensitivity_data);
 669
 670        if (!iwl_is_any_associated(priv)) {
 671                IWL_DEBUG_CALIB(priv, "<< - not associated\n");
 672                return;
 673        }
 674
 675        spin_lock_bh(&priv->statistics.lock);
 676        rx_info = &priv->statistics.rx_non_phy;
 677        ofdm = &priv->statistics.rx_ofdm;
 678        cck = &priv->statistics.rx_cck;
 679        if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 680                IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
 681                spin_unlock_bh(&priv->statistics.lock);
 682                return;
 683        }
 684
 685        /* Extract Statistics: */
 686        rx_enable_time = le32_to_cpu(rx_info->channel_load);
 687        fa_cck = le32_to_cpu(cck->false_alarm_cnt);
 688        fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
 689        bad_plcp_cck = le32_to_cpu(cck->plcp_err);
 690        bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
 691
 692        statis.beacon_silence_rssi_a =
 693                        le32_to_cpu(rx_info->beacon_silence_rssi_a);
 694        statis.beacon_silence_rssi_b =
 695                        le32_to_cpu(rx_info->beacon_silence_rssi_b);
 696        statis.beacon_silence_rssi_c =
 697                        le32_to_cpu(rx_info->beacon_silence_rssi_c);
 698        statis.beacon_energy_a =
 699                        le32_to_cpu(rx_info->beacon_energy_a);
 700        statis.beacon_energy_b =
 701                        le32_to_cpu(rx_info->beacon_energy_b);
 702        statis.beacon_energy_c =
 703                        le32_to_cpu(rx_info->beacon_energy_c);
 704
 705        spin_unlock_bh(&priv->statistics.lock);
 706
 707        IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
 708
 709        if (!rx_enable_time) {
 710                IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
 711                return;
 712        }
 713
 714        /* These statistics increase monotonically, and do not reset
 715         *   at each beacon.  Calculate difference from last value, or just
 716         *   use the new statistics value if it has reset or wrapped around. */
 717        if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
 718                data->last_bad_plcp_cnt_cck = bad_plcp_cck;
 719        else {
 720                bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
 721                data->last_bad_plcp_cnt_cck += bad_plcp_cck;
 722        }
 723
 724        if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
 725                data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
 726        else {
 727                bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
 728                data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
 729        }
 730
 731        if (data->last_fa_cnt_ofdm > fa_ofdm)
 732                data->last_fa_cnt_ofdm = fa_ofdm;
 733        else {
 734                fa_ofdm -= data->last_fa_cnt_ofdm;
 735                data->last_fa_cnt_ofdm += fa_ofdm;
 736        }
 737
 738        if (data->last_fa_cnt_cck > fa_cck)
 739                data->last_fa_cnt_cck = fa_cck;
 740        else {
 741                fa_cck -= data->last_fa_cnt_cck;
 742                data->last_fa_cnt_cck += fa_cck;
 743        }
 744
 745        /* Total aborted signal locks */
 746        norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
 747        norm_fa_cck = fa_cck + bad_plcp_cck;
 748
 749        IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
 750                        bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
 751
 752        iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
 753        iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
 754        if (priv->fw->enhance_sensitivity_table)
 755                iwl_enhance_sensitivity_write(priv);
 756        else
 757                iwl_sensitivity_write(priv);
 758}
 759
 760static inline u8 find_first_chain(u8 mask)
 761{
 762        if (mask & ANT_A)
 763                return CHAIN_A;
 764        if (mask & ANT_B)
 765                return CHAIN_B;
 766        return CHAIN_C;
 767}
 768
 769/**
 770 * Run disconnected antenna algorithm to find out which antennas are
 771 * disconnected.
 772 */
 773static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
 774                                     struct iwl_chain_noise_data *data)
 775{
 776        u32 active_chains = 0;
 777        u32 max_average_sig;
 778        u16 max_average_sig_antenna_i;
 779        u8 num_tx_chains;
 780        u8 first_chain;
 781        u16 i = 0;
 782
 783        average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
 784        average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
 785        average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
 786
 787        if (average_sig[0] >= average_sig[1]) {
 788                max_average_sig = average_sig[0];
 789                max_average_sig_antenna_i = 0;
 790                active_chains = (1 << max_average_sig_antenna_i);
 791        } else {
 792                max_average_sig = average_sig[1];
 793                max_average_sig_antenna_i = 1;
 794                active_chains = (1 << max_average_sig_antenna_i);
 795        }
 796
 797        if (average_sig[2] >= max_average_sig) {
 798                max_average_sig = average_sig[2];
 799                max_average_sig_antenna_i = 2;
 800                active_chains = (1 << max_average_sig_antenna_i);
 801        }
 802
 803        IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
 804                     average_sig[0], average_sig[1], average_sig[2]);
 805        IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
 806                     max_average_sig, max_average_sig_antenna_i);
 807
 808        /* Compare signal strengths for all 3 receivers. */
 809        for (i = 0; i < NUM_RX_CHAINS; i++) {
 810                if (i != max_average_sig_antenna_i) {
 811                        s32 rssi_delta = (max_average_sig - average_sig[i]);
 812
 813                        /* If signal is very weak, compared with
 814                         * strongest, mark it as disconnected. */
 815                        if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
 816                                data->disconn_array[i] = 1;
 817                        else
 818                                active_chains |= (1 << i);
 819                        IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
 820                             "disconn_array[i] = %d\n",
 821                             i, rssi_delta, data->disconn_array[i]);
 822                }
 823        }
 824
 825        /*
 826         * The above algorithm sometimes fails when the ucode
 827         * reports 0 for all chains. It's not clear why that
 828         * happens to start with, but it is then causing trouble
 829         * because this can make us enable more chains than the
 830         * hardware really has.
 831         *
 832         * To be safe, simply mask out any chains that we know
 833         * are not on the device.
 834         */
 835        active_chains &= priv->nvm_data->valid_rx_ant;
 836
 837        num_tx_chains = 0;
 838        for (i = 0; i < NUM_RX_CHAINS; i++) {
 839                /* loops on all the bits of
 840                 * priv->hw_setting.valid_tx_ant */
 841                u8 ant_msk = (1 << i);
 842                if (!(priv->nvm_data->valid_tx_ant & ant_msk))
 843                        continue;
 844
 845                num_tx_chains++;
 846                if (data->disconn_array[i] == 0)
 847                        /* there is a Tx antenna connected */
 848                        break;
 849                if (num_tx_chains == priv->hw_params.tx_chains_num &&
 850                    data->disconn_array[i]) {
 851                        /*
 852                         * If all chains are disconnected
 853                         * connect the first valid tx chain
 854                         */
 855                        first_chain =
 856                                find_first_chain(priv->nvm_data->valid_tx_ant);
 857                        data->disconn_array[first_chain] = 0;
 858                        active_chains |= BIT(first_chain);
 859                        IWL_DEBUG_CALIB(priv,
 860                                        "All Tx chains are disconnected W/A - declare %d as connected\n",
 861                                        first_chain);
 862                        break;
 863                }
 864        }
 865
 866        if (active_chains != priv->nvm_data->valid_rx_ant &&
 867            active_chains != priv->chain_noise_data.active_chains)
 868                IWL_DEBUG_CALIB(priv,
 869                                "Detected that not all antennas are connected! "
 870                                "Connected: %#x, valid: %#x.\n",
 871                                active_chains,
 872                                priv->nvm_data->valid_rx_ant);
 873
 874        /* Save for use within RXON, TX, SCAN commands, etc. */
 875        data->active_chains = active_chains;
 876        IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
 877                        active_chains);
 878}
 879
 880static void iwlagn_gain_computation(struct iwl_priv *priv,
 881                                    u32 average_noise[NUM_RX_CHAINS],
 882                                    u8 default_chain)
 883{
 884        int i;
 885        s32 delta_g;
 886        struct iwl_chain_noise_data *data = &priv->chain_noise_data;
 887
 888        /*
 889         * Find Gain Code for the chains based on "default chain"
 890         */
 891        for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
 892                if ((data->disconn_array[i])) {
 893                        data->delta_gain_code[i] = 0;
 894                        continue;
 895                }
 896
 897                delta_g = (priv->lib->chain_noise_scale *
 898                        ((s32)average_noise[default_chain] -
 899                        (s32)average_noise[i])) / 1500;
 900
 901                /* bound gain by 2 bits value max, 3rd bit is sign */
 902                data->delta_gain_code[i] =
 903                        min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
 904
 905                if (delta_g < 0)
 906                        /*
 907                         * set negative sign ...
 908                         * note to Intel developers:  This is uCode API format,
 909                         *   not the format of any internal device registers.
 910                         *   Do not change this format for e.g. 6050 or similar
 911                         *   devices.  Change format only if more resolution
 912                         *   (i.e. more than 2 bits magnitude) is needed.
 913                         */
 914                        data->delta_gain_code[i] |= (1 << 2);
 915        }
 916
 917        IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
 918                        data->delta_gain_code[1], data->delta_gain_code[2]);
 919
 920        if (!data->radio_write) {
 921                struct iwl_calib_chain_noise_gain_cmd cmd;
 922
 923                memset(&cmd, 0, sizeof(cmd));
 924
 925                iwl_set_calib_hdr(&cmd.hdr,
 926                        priv->phy_calib_chain_noise_gain_cmd);
 927                cmd.delta_gain_1 = data->delta_gain_code[1];
 928                cmd.delta_gain_2 = data->delta_gain_code[2];
 929                iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
 930                        CMD_ASYNC, sizeof(cmd), &cmd);
 931
 932                data->radio_write = 1;
 933                data->state = IWL_CHAIN_NOISE_CALIBRATED;
 934        }
 935}
 936
 937/*
 938 * Accumulate 16 beacons of signal and noise statistics for each of
 939 *   3 receivers/antennas/rx-chains, then figure out:
 940 * 1)  Which antennas are connected.
 941 * 2)  Differential rx gain settings to balance the 3 receivers.
 942 */
 943void iwl_chain_noise_calibration(struct iwl_priv *priv)
 944{
 945        struct iwl_chain_noise_data *data = NULL;
 946
 947        u32 chain_noise_a;
 948        u32 chain_noise_b;
 949        u32 chain_noise_c;
 950        u32 chain_sig_a;
 951        u32 chain_sig_b;
 952        u32 chain_sig_c;
 953        u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 954        u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 955        u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
 956        u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
 957        u16 i = 0;
 958        u16 rxon_chnum = INITIALIZATION_VALUE;
 959        u16 stat_chnum = INITIALIZATION_VALUE;
 960        u8 rxon_band24;
 961        u8 stat_band24;
 962        struct statistics_rx_non_phy *rx_info;
 963
 964        /*
 965         * MULTI-FIXME:
 966         * When we support multiple interfaces on different channels,
 967         * this must be modified/fixed.
 968         */
 969        struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
 970
 971        if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
 972                return;
 973
 974        data = &(priv->chain_noise_data);
 975
 976        /*
 977         * Accumulate just the first "chain_noise_num_beacons" after
 978         * the first association, then we're done forever.
 979         */
 980        if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
 981                if (data->state == IWL_CHAIN_NOISE_ALIVE)
 982                        IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
 983                return;
 984        }
 985
 986        spin_lock_bh(&priv->statistics.lock);
 987
 988        rx_info = &priv->statistics.rx_non_phy;
 989
 990        if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 991                IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
 992                spin_unlock_bh(&priv->statistics.lock);
 993                return;
 994        }
 995
 996        rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
 997        rxon_chnum = le16_to_cpu(ctx->staging.channel);
 998        stat_band24 =
 999                !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
1000        stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
1001
1002        /* Make sure we accumulate data for just the associated channel
1003         *   (even if scanning). */
1004        if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1005                IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1006                                rxon_chnum, rxon_band24);
1007                spin_unlock_bh(&priv->statistics.lock);
1008                return;
1009        }
1010
1011        /*
1012         *  Accumulate beacon statistics values across
1013         * "chain_noise_num_beacons"
1014         */
1015        chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1016                                IN_BAND_FILTER;
1017        chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1018                                IN_BAND_FILTER;
1019        chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1020                                IN_BAND_FILTER;
1021
1022        chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1023        chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1024        chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1025
1026        spin_unlock_bh(&priv->statistics.lock);
1027
1028        data->beacon_count++;
1029
1030        data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1031        data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1032        data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1033
1034        data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1035        data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1036        data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1037
1038        IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1039                        rxon_chnum, rxon_band24, data->beacon_count);
1040        IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1041                        chain_sig_a, chain_sig_b, chain_sig_c);
1042        IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1043                        chain_noise_a, chain_noise_b, chain_noise_c);
1044
1045        /* If this is the "chain_noise_num_beacons", determine:
1046         * 1)  Disconnected antennas (using signal strengths)
1047         * 2)  Differential gain (using silence noise) to balance receivers */
1048        if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1049                return;
1050
1051        /* Analyze signal for disconnected antenna */
1052        if (priv->lib->bt_params &&
1053            priv->lib->bt_params->advanced_bt_coexist) {
1054                /* Disable disconnected antenna algorithm for advanced
1055                   bt coex, assuming valid antennas are connected */
1056                data->active_chains = priv->nvm_data->valid_rx_ant;
1057                for (i = 0; i < NUM_RX_CHAINS; i++)
1058                        if (!(data->active_chains & (1<<i)))
1059                                data->disconn_array[i] = 1;
1060        } else
1061                iwl_find_disconn_antenna(priv, average_sig, data);
1062
1063        /* Analyze noise for rx balance */
1064        average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1065        average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1066        average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1067
1068        for (i = 0; i < NUM_RX_CHAINS; i++) {
1069                if (!(data->disconn_array[i]) &&
1070                   (average_noise[i] <= min_average_noise)) {
1071                        /* This means that chain i is active and has
1072                         * lower noise values so far: */
1073                        min_average_noise = average_noise[i];
1074                        min_average_noise_antenna_i = i;
1075                }
1076        }
1077
1078        IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1079                        average_noise[0], average_noise[1],
1080                        average_noise[2]);
1081
1082        IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1083                        min_average_noise, min_average_noise_antenna_i);
1084
1085        iwlagn_gain_computation(
1086                priv, average_noise,
1087                find_first_chain(priv->nvm_data->valid_rx_ant));
1088
1089        /* Some power changes may have been made during the calibration.
1090         * Update and commit the RXON
1091         */
1092        iwl_update_chain_flags(priv);
1093
1094        data->state = IWL_CHAIN_NOISE_DONE;
1095        iwl_power_update_mode(priv, false);
1096}
1097
1098void iwl_reset_run_time_calib(struct iwl_priv *priv)
1099{
1100        int i;
1101        memset(&(priv->sensitivity_data), 0,
1102               sizeof(struct iwl_sensitivity_data));
1103        memset(&(priv->chain_noise_data), 0,
1104               sizeof(struct iwl_chain_noise_data));
1105        for (i = 0; i < NUM_RX_CHAINS; i++)
1106                priv->chain_noise_data.delta_gain_code[i] =
1107                                CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1108
1109        /* Ask for statistics now, the uCode will send notification
1110         * periodically after association */
1111        iwl_send_statistics_request(priv, CMD_ASYNC, true);
1112}
1113