linux/drivers/nvme/host/fc.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of version 2 of the GNU General Public License as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful.
   9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
  10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
  11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
  12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
  13 * See the GNU General Public License for more details, a copy of which
  14 * can be found in the file COPYING included with this package
  15 *
  16 */
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18#include <linux/module.h>
  19#include <linux/parser.h>
  20#include <uapi/scsi/fc/fc_fs.h>
  21#include <uapi/scsi/fc/fc_els.h>
  22#include <linux/delay.h>
  23
  24#include "nvme.h"
  25#include "fabrics.h"
  26#include <linux/nvme-fc-driver.h>
  27#include <linux/nvme-fc.h>
  28
  29
  30/* *************************** Data Structures/Defines ****************** */
  31
  32
  33enum nvme_fc_queue_flags {
  34        NVME_FC_Q_CONNECTED = 0,
  35        NVME_FC_Q_LIVE,
  36};
  37
  38#define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
  39
  40struct nvme_fc_queue {
  41        struct nvme_fc_ctrl     *ctrl;
  42        struct device           *dev;
  43        struct blk_mq_hw_ctx    *hctx;
  44        void                    *lldd_handle;
  45        size_t                  cmnd_capsule_len;
  46        u32                     qnum;
  47        u32                     rqcnt;
  48        u32                     seqno;
  49
  50        u64                     connection_id;
  51        atomic_t                csn;
  52
  53        unsigned long           flags;
  54} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
  55
  56enum nvme_fcop_flags {
  57        FCOP_FLAGS_TERMIO       = (1 << 0),
  58        FCOP_FLAGS_AEN          = (1 << 1),
  59};
  60
  61struct nvmefc_ls_req_op {
  62        struct nvmefc_ls_req    ls_req;
  63
  64        struct nvme_fc_rport    *rport;
  65        struct nvme_fc_queue    *queue;
  66        struct request          *rq;
  67        u32                     flags;
  68
  69        int                     ls_error;
  70        struct completion       ls_done;
  71        struct list_head        lsreq_list;     /* rport->ls_req_list */
  72        bool                    req_queued;
  73};
  74
  75enum nvme_fcpop_state {
  76        FCPOP_STATE_UNINIT      = 0,
  77        FCPOP_STATE_IDLE        = 1,
  78        FCPOP_STATE_ACTIVE      = 2,
  79        FCPOP_STATE_ABORTED     = 3,
  80        FCPOP_STATE_COMPLETE    = 4,
  81};
  82
  83struct nvme_fc_fcp_op {
  84        struct nvme_request     nreq;           /*
  85                                                 * nvme/host/core.c
  86                                                 * requires this to be
  87                                                 * the 1st element in the
  88                                                 * private structure
  89                                                 * associated with the
  90                                                 * request.
  91                                                 */
  92        struct nvmefc_fcp_req   fcp_req;
  93
  94        struct nvme_fc_ctrl     *ctrl;
  95        struct nvme_fc_queue    *queue;
  96        struct request          *rq;
  97
  98        atomic_t                state;
  99        u32                     flags;
 100        u32                     rqno;
 101        u32                     nents;
 102
 103        struct nvme_fc_cmd_iu   cmd_iu;
 104        struct nvme_fc_ersp_iu  rsp_iu;
 105};
 106
 107struct nvme_fc_lport {
 108        struct nvme_fc_local_port       localport;
 109
 110        struct ida                      endp_cnt;
 111        struct list_head                port_list;      /* nvme_fc_port_list */
 112        struct list_head                endp_list;
 113        struct device                   *dev;   /* physical device for dma */
 114        struct nvme_fc_port_template    *ops;
 115        struct kref                     ref;
 116        atomic_t                        act_rport_cnt;
 117} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 118
 119struct nvme_fc_rport {
 120        struct nvme_fc_remote_port      remoteport;
 121
 122        struct list_head                endp_list; /* for lport->endp_list */
 123        struct list_head                ctrl_list;
 124        struct list_head                ls_req_list;
 125        struct device                   *dev;   /* physical device for dma */
 126        struct nvme_fc_lport            *lport;
 127        spinlock_t                      lock;
 128        struct kref                     ref;
 129        atomic_t                        act_ctrl_cnt;
 130        unsigned long                   dev_loss_end;
 131} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 132
 133enum nvme_fcctrl_flags {
 134        FCCTRL_TERMIO           = (1 << 0),
 135};
 136
 137struct nvme_fc_ctrl {
 138        spinlock_t              lock;
 139        struct nvme_fc_queue    *queues;
 140        struct device           *dev;
 141        struct nvme_fc_lport    *lport;
 142        struct nvme_fc_rport    *rport;
 143        u32                     cnum;
 144
 145        bool                    assoc_active;
 146        u64                     association_id;
 147
 148        struct list_head        ctrl_list;      /* rport->ctrl_list */
 149
 150        struct blk_mq_tag_set   admin_tag_set;
 151        struct blk_mq_tag_set   tag_set;
 152
 153        struct delayed_work     connect_work;
 154
 155        struct kref             ref;
 156        u32                     flags;
 157        u32                     iocnt;
 158        wait_queue_head_t       ioabort_wait;
 159
 160        struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
 161
 162        struct nvme_ctrl        ctrl;
 163};
 164
 165static inline struct nvme_fc_ctrl *
 166to_fc_ctrl(struct nvme_ctrl *ctrl)
 167{
 168        return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
 169}
 170
 171static inline struct nvme_fc_lport *
 172localport_to_lport(struct nvme_fc_local_port *portptr)
 173{
 174        return container_of(portptr, struct nvme_fc_lport, localport);
 175}
 176
 177static inline struct nvme_fc_rport *
 178remoteport_to_rport(struct nvme_fc_remote_port *portptr)
 179{
 180        return container_of(portptr, struct nvme_fc_rport, remoteport);
 181}
 182
 183static inline struct nvmefc_ls_req_op *
 184ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
 185{
 186        return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
 187}
 188
 189static inline struct nvme_fc_fcp_op *
 190fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
 191{
 192        return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
 193}
 194
 195
 196
 197/* *************************** Globals **************************** */
 198
 199
 200static DEFINE_SPINLOCK(nvme_fc_lock);
 201
 202static LIST_HEAD(nvme_fc_lport_list);
 203static DEFINE_IDA(nvme_fc_local_port_cnt);
 204static DEFINE_IDA(nvme_fc_ctrl_cnt);
 205
 206
 207
 208/*
 209 * These items are short-term. They will eventually be moved into
 210 * a generic FC class. See comments in module init.
 211 */
 212static struct class *fc_class;
 213static struct device *fc_udev_device;
 214
 215
 216/* *********************** FC-NVME Port Management ************************ */
 217
 218static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
 219                        struct nvme_fc_queue *, unsigned int);
 220
 221static void
 222nvme_fc_free_lport(struct kref *ref)
 223{
 224        struct nvme_fc_lport *lport =
 225                container_of(ref, struct nvme_fc_lport, ref);
 226        unsigned long flags;
 227
 228        WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
 229        WARN_ON(!list_empty(&lport->endp_list));
 230
 231        /* remove from transport list */
 232        spin_lock_irqsave(&nvme_fc_lock, flags);
 233        list_del(&lport->port_list);
 234        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 235
 236        ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
 237        ida_destroy(&lport->endp_cnt);
 238
 239        put_device(lport->dev);
 240
 241        kfree(lport);
 242}
 243
 244static void
 245nvme_fc_lport_put(struct nvme_fc_lport *lport)
 246{
 247        kref_put(&lport->ref, nvme_fc_free_lport);
 248}
 249
 250static int
 251nvme_fc_lport_get(struct nvme_fc_lport *lport)
 252{
 253        return kref_get_unless_zero(&lport->ref);
 254}
 255
 256
 257static struct nvme_fc_lport *
 258nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
 259                        struct nvme_fc_port_template *ops,
 260                        struct device *dev)
 261{
 262        struct nvme_fc_lport *lport;
 263        unsigned long flags;
 264
 265        spin_lock_irqsave(&nvme_fc_lock, flags);
 266
 267        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
 268                if (lport->localport.node_name != pinfo->node_name ||
 269                    lport->localport.port_name != pinfo->port_name)
 270                        continue;
 271
 272                if (lport->dev != dev) {
 273                        lport = ERR_PTR(-EXDEV);
 274                        goto out_done;
 275                }
 276
 277                if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
 278                        lport = ERR_PTR(-EEXIST);
 279                        goto out_done;
 280                }
 281
 282                if (!nvme_fc_lport_get(lport)) {
 283                        /*
 284                         * fails if ref cnt already 0. If so,
 285                         * act as if lport already deleted
 286                         */
 287                        lport = NULL;
 288                        goto out_done;
 289                }
 290
 291                /* resume the lport */
 292
 293                lport->ops = ops;
 294                lport->localport.port_role = pinfo->port_role;
 295                lport->localport.port_id = pinfo->port_id;
 296                lport->localport.port_state = FC_OBJSTATE_ONLINE;
 297
 298                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 299
 300                return lport;
 301        }
 302
 303        lport = NULL;
 304
 305out_done:
 306        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 307
 308        return lport;
 309}
 310
 311/**
 312 * nvme_fc_register_localport - transport entry point called by an
 313 *                              LLDD to register the existence of a NVME
 314 *                              host FC port.
 315 * @pinfo:     pointer to information about the port to be registered
 316 * @template:  LLDD entrypoints and operational parameters for the port
 317 * @dev:       physical hardware device node port corresponds to. Will be
 318 *             used for DMA mappings
 319 * @lport_p:   pointer to a local port pointer. Upon success, the routine
 320 *             will allocate a nvme_fc_local_port structure and place its
 321 *             address in the local port pointer. Upon failure, local port
 322 *             pointer will be set to 0.
 323 *
 324 * Returns:
 325 * a completion status. Must be 0 upon success; a negative errno
 326 * (ex: -ENXIO) upon failure.
 327 */
 328int
 329nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
 330                        struct nvme_fc_port_template *template,
 331                        struct device *dev,
 332                        struct nvme_fc_local_port **portptr)
 333{
 334        struct nvme_fc_lport *newrec;
 335        unsigned long flags;
 336        int ret, idx;
 337
 338        if (!template->localport_delete || !template->remoteport_delete ||
 339            !template->ls_req || !template->fcp_io ||
 340            !template->ls_abort || !template->fcp_abort ||
 341            !template->max_hw_queues || !template->max_sgl_segments ||
 342            !template->max_dif_sgl_segments || !template->dma_boundary) {
 343                ret = -EINVAL;
 344                goto out_reghost_failed;
 345        }
 346
 347        /*
 348         * look to see if there is already a localport that had been
 349         * deregistered and in the process of waiting for all the
 350         * references to fully be removed.  If the references haven't
 351         * expired, we can simply re-enable the localport. Remoteports
 352         * and controller reconnections should resume naturally.
 353         */
 354        newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
 355
 356        /* found an lport, but something about its state is bad */
 357        if (IS_ERR(newrec)) {
 358                ret = PTR_ERR(newrec);
 359                goto out_reghost_failed;
 360
 361        /* found existing lport, which was resumed */
 362        } else if (newrec) {
 363                *portptr = &newrec->localport;
 364                return 0;
 365        }
 366
 367        /* nothing found - allocate a new localport struct */
 368
 369        newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
 370                         GFP_KERNEL);
 371        if (!newrec) {
 372                ret = -ENOMEM;
 373                goto out_reghost_failed;
 374        }
 375
 376        idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
 377        if (idx < 0) {
 378                ret = -ENOSPC;
 379                goto out_fail_kfree;
 380        }
 381
 382        if (!get_device(dev) && dev) {
 383                ret = -ENODEV;
 384                goto out_ida_put;
 385        }
 386
 387        INIT_LIST_HEAD(&newrec->port_list);
 388        INIT_LIST_HEAD(&newrec->endp_list);
 389        kref_init(&newrec->ref);
 390        atomic_set(&newrec->act_rport_cnt, 0);
 391        newrec->ops = template;
 392        newrec->dev = dev;
 393        ida_init(&newrec->endp_cnt);
 394        newrec->localport.private = &newrec[1];
 395        newrec->localport.node_name = pinfo->node_name;
 396        newrec->localport.port_name = pinfo->port_name;
 397        newrec->localport.port_role = pinfo->port_role;
 398        newrec->localport.port_id = pinfo->port_id;
 399        newrec->localport.port_state = FC_OBJSTATE_ONLINE;
 400        newrec->localport.port_num = idx;
 401
 402        spin_lock_irqsave(&nvme_fc_lock, flags);
 403        list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
 404        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 405
 406        if (dev)
 407                dma_set_seg_boundary(dev, template->dma_boundary);
 408
 409        *portptr = &newrec->localport;
 410        return 0;
 411
 412out_ida_put:
 413        ida_simple_remove(&nvme_fc_local_port_cnt, idx);
 414out_fail_kfree:
 415        kfree(newrec);
 416out_reghost_failed:
 417        *portptr = NULL;
 418
 419        return ret;
 420}
 421EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
 422
 423/**
 424 * nvme_fc_unregister_localport - transport entry point called by an
 425 *                              LLDD to deregister/remove a previously
 426 *                              registered a NVME host FC port.
 427 * @localport: pointer to the (registered) local port that is to be
 428 *             deregistered.
 429 *
 430 * Returns:
 431 * a completion status. Must be 0 upon success; a negative errno
 432 * (ex: -ENXIO) upon failure.
 433 */
 434int
 435nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
 436{
 437        struct nvme_fc_lport *lport = localport_to_lport(portptr);
 438        unsigned long flags;
 439
 440        if (!portptr)
 441                return -EINVAL;
 442
 443        spin_lock_irqsave(&nvme_fc_lock, flags);
 444
 445        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 446                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 447                return -EINVAL;
 448        }
 449        portptr->port_state = FC_OBJSTATE_DELETED;
 450
 451        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 452
 453        if (atomic_read(&lport->act_rport_cnt) == 0)
 454                lport->ops->localport_delete(&lport->localport);
 455
 456        nvme_fc_lport_put(lport);
 457
 458        return 0;
 459}
 460EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
 461
 462/*
 463 * TRADDR strings, per FC-NVME are fixed format:
 464 *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
 465 * udev event will only differ by prefix of what field is
 466 * being specified:
 467 *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
 468 *  19 + 43 + null_fudge = 64 characters
 469 */
 470#define FCNVME_TRADDR_LENGTH            64
 471
 472static void
 473nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
 474                struct nvme_fc_rport *rport)
 475{
 476        char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
 477        char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
 478        char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
 479
 480        if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
 481                return;
 482
 483        snprintf(hostaddr, sizeof(hostaddr),
 484                "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
 485                lport->localport.node_name, lport->localport.port_name);
 486        snprintf(tgtaddr, sizeof(tgtaddr),
 487                "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
 488                rport->remoteport.node_name, rport->remoteport.port_name);
 489        kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
 490}
 491
 492static void
 493nvme_fc_free_rport(struct kref *ref)
 494{
 495        struct nvme_fc_rport *rport =
 496                container_of(ref, struct nvme_fc_rport, ref);
 497        struct nvme_fc_lport *lport =
 498                        localport_to_lport(rport->remoteport.localport);
 499        unsigned long flags;
 500
 501        WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
 502        WARN_ON(!list_empty(&rport->ctrl_list));
 503
 504        /* remove from lport list */
 505        spin_lock_irqsave(&nvme_fc_lock, flags);
 506        list_del(&rport->endp_list);
 507        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 508
 509        ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
 510
 511        kfree(rport);
 512
 513        nvme_fc_lport_put(lport);
 514}
 515
 516static void
 517nvme_fc_rport_put(struct nvme_fc_rport *rport)
 518{
 519        kref_put(&rport->ref, nvme_fc_free_rport);
 520}
 521
 522static int
 523nvme_fc_rport_get(struct nvme_fc_rport *rport)
 524{
 525        return kref_get_unless_zero(&rport->ref);
 526}
 527
 528static void
 529nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
 530{
 531        switch (ctrl->ctrl.state) {
 532        case NVME_CTRL_NEW:
 533        case NVME_CTRL_CONNECTING:
 534                /*
 535                 * As all reconnects were suppressed, schedule a
 536                 * connect.
 537                 */
 538                dev_info(ctrl->ctrl.device,
 539                        "NVME-FC{%d}: connectivity re-established. "
 540                        "Attempting reconnect\n", ctrl->cnum);
 541
 542                queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
 543                break;
 544
 545        case NVME_CTRL_RESETTING:
 546                /*
 547                 * Controller is already in the process of terminating the
 548                 * association. No need to do anything further. The reconnect
 549                 * step will naturally occur after the reset completes.
 550                 */
 551                break;
 552
 553        default:
 554                /* no action to take - let it delete */
 555                break;
 556        }
 557}
 558
 559static struct nvme_fc_rport *
 560nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
 561                                struct nvme_fc_port_info *pinfo)
 562{
 563        struct nvme_fc_rport *rport;
 564        struct nvme_fc_ctrl *ctrl;
 565        unsigned long flags;
 566
 567        spin_lock_irqsave(&nvme_fc_lock, flags);
 568
 569        list_for_each_entry(rport, &lport->endp_list, endp_list) {
 570                if (rport->remoteport.node_name != pinfo->node_name ||
 571                    rport->remoteport.port_name != pinfo->port_name)
 572                        continue;
 573
 574                if (!nvme_fc_rport_get(rport)) {
 575                        rport = ERR_PTR(-ENOLCK);
 576                        goto out_done;
 577                }
 578
 579                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 580
 581                spin_lock_irqsave(&rport->lock, flags);
 582
 583                /* has it been unregistered */
 584                if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
 585                        /* means lldd called us twice */
 586                        spin_unlock_irqrestore(&rport->lock, flags);
 587                        nvme_fc_rport_put(rport);
 588                        return ERR_PTR(-ESTALE);
 589                }
 590
 591                rport->remoteport.port_role = pinfo->port_role;
 592                rport->remoteport.port_id = pinfo->port_id;
 593                rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
 594                rport->dev_loss_end = 0;
 595
 596                /*
 597                 * kick off a reconnect attempt on all associations to the
 598                 * remote port. A successful reconnects will resume i/o.
 599                 */
 600                list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
 601                        nvme_fc_resume_controller(ctrl);
 602
 603                spin_unlock_irqrestore(&rport->lock, flags);
 604
 605                return rport;
 606        }
 607
 608        rport = NULL;
 609
 610out_done:
 611        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 612
 613        return rport;
 614}
 615
 616static inline void
 617__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
 618                        struct nvme_fc_port_info *pinfo)
 619{
 620        if (pinfo->dev_loss_tmo)
 621                rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
 622        else
 623                rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
 624}
 625
 626/**
 627 * nvme_fc_register_remoteport - transport entry point called by an
 628 *                              LLDD to register the existence of a NVME
 629 *                              subsystem FC port on its fabric.
 630 * @localport: pointer to the (registered) local port that the remote
 631 *             subsystem port is connected to.
 632 * @pinfo:     pointer to information about the port to be registered
 633 * @rport_p:   pointer to a remote port pointer. Upon success, the routine
 634 *             will allocate a nvme_fc_remote_port structure and place its
 635 *             address in the remote port pointer. Upon failure, remote port
 636 *             pointer will be set to 0.
 637 *
 638 * Returns:
 639 * a completion status. Must be 0 upon success; a negative errno
 640 * (ex: -ENXIO) upon failure.
 641 */
 642int
 643nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
 644                                struct nvme_fc_port_info *pinfo,
 645                                struct nvme_fc_remote_port **portptr)
 646{
 647        struct nvme_fc_lport *lport = localport_to_lport(localport);
 648        struct nvme_fc_rport *newrec;
 649        unsigned long flags;
 650        int ret, idx;
 651
 652        if (!nvme_fc_lport_get(lport)) {
 653                ret = -ESHUTDOWN;
 654                goto out_reghost_failed;
 655        }
 656
 657        /*
 658         * look to see if there is already a remoteport that is waiting
 659         * for a reconnect (within dev_loss_tmo) with the same WWN's.
 660         * If so, transition to it and reconnect.
 661         */
 662        newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
 663
 664        /* found an rport, but something about its state is bad */
 665        if (IS_ERR(newrec)) {
 666                ret = PTR_ERR(newrec);
 667                goto out_lport_put;
 668
 669        /* found existing rport, which was resumed */
 670        } else if (newrec) {
 671                nvme_fc_lport_put(lport);
 672                __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 673                nvme_fc_signal_discovery_scan(lport, newrec);
 674                *portptr = &newrec->remoteport;
 675                return 0;
 676        }
 677
 678        /* nothing found - allocate a new remoteport struct */
 679
 680        newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
 681                         GFP_KERNEL);
 682        if (!newrec) {
 683                ret = -ENOMEM;
 684                goto out_lport_put;
 685        }
 686
 687        idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
 688        if (idx < 0) {
 689                ret = -ENOSPC;
 690                goto out_kfree_rport;
 691        }
 692
 693        INIT_LIST_HEAD(&newrec->endp_list);
 694        INIT_LIST_HEAD(&newrec->ctrl_list);
 695        INIT_LIST_HEAD(&newrec->ls_req_list);
 696        kref_init(&newrec->ref);
 697        atomic_set(&newrec->act_ctrl_cnt, 0);
 698        spin_lock_init(&newrec->lock);
 699        newrec->remoteport.localport = &lport->localport;
 700        newrec->dev = lport->dev;
 701        newrec->lport = lport;
 702        newrec->remoteport.private = &newrec[1];
 703        newrec->remoteport.port_role = pinfo->port_role;
 704        newrec->remoteport.node_name = pinfo->node_name;
 705        newrec->remoteport.port_name = pinfo->port_name;
 706        newrec->remoteport.port_id = pinfo->port_id;
 707        newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
 708        newrec->remoteport.port_num = idx;
 709        __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 710
 711        spin_lock_irqsave(&nvme_fc_lock, flags);
 712        list_add_tail(&newrec->endp_list, &lport->endp_list);
 713        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 714
 715        nvme_fc_signal_discovery_scan(lport, newrec);
 716
 717        *portptr = &newrec->remoteport;
 718        return 0;
 719
 720out_kfree_rport:
 721        kfree(newrec);
 722out_lport_put:
 723        nvme_fc_lport_put(lport);
 724out_reghost_failed:
 725        *portptr = NULL;
 726        return ret;
 727}
 728EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
 729
 730static int
 731nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
 732{
 733        struct nvmefc_ls_req_op *lsop;
 734        unsigned long flags;
 735
 736restart:
 737        spin_lock_irqsave(&rport->lock, flags);
 738
 739        list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
 740                if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
 741                        lsop->flags |= FCOP_FLAGS_TERMIO;
 742                        spin_unlock_irqrestore(&rport->lock, flags);
 743                        rport->lport->ops->ls_abort(&rport->lport->localport,
 744                                                &rport->remoteport,
 745                                                &lsop->ls_req);
 746                        goto restart;
 747                }
 748        }
 749        spin_unlock_irqrestore(&rport->lock, flags);
 750
 751        return 0;
 752}
 753
 754static void
 755nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
 756{
 757        dev_info(ctrl->ctrl.device,
 758                "NVME-FC{%d}: controller connectivity lost. Awaiting "
 759                "Reconnect", ctrl->cnum);
 760
 761        switch (ctrl->ctrl.state) {
 762        case NVME_CTRL_NEW:
 763        case NVME_CTRL_LIVE:
 764                /*
 765                 * Schedule a controller reset. The reset will terminate the
 766                 * association and schedule the reconnect timer.  Reconnects
 767                 * will be attempted until either the ctlr_loss_tmo
 768                 * (max_retries * connect_delay) expires or the remoteport's
 769                 * dev_loss_tmo expires.
 770                 */
 771                if (nvme_reset_ctrl(&ctrl->ctrl)) {
 772                        dev_warn(ctrl->ctrl.device,
 773                                "NVME-FC{%d}: Couldn't schedule reset.\n",
 774                                ctrl->cnum);
 775                        nvme_delete_ctrl(&ctrl->ctrl);
 776                }
 777                break;
 778
 779        case NVME_CTRL_CONNECTING:
 780                /*
 781                 * The association has already been terminated and the
 782                 * controller is attempting reconnects.  No need to do anything
 783                 * futher.  Reconnects will be attempted until either the
 784                 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
 785                 * remoteport's dev_loss_tmo expires.
 786                 */
 787                break;
 788
 789        case NVME_CTRL_RESETTING:
 790                /*
 791                 * Controller is already in the process of terminating the
 792                 * association.  No need to do anything further. The reconnect
 793                 * step will kick in naturally after the association is
 794                 * terminated.
 795                 */
 796                break;
 797
 798        case NVME_CTRL_DELETING:
 799        default:
 800                /* no action to take - let it delete */
 801                break;
 802        }
 803}
 804
 805/**
 806 * nvme_fc_unregister_remoteport - transport entry point called by an
 807 *                              LLDD to deregister/remove a previously
 808 *                              registered a NVME subsystem FC port.
 809 * @remoteport: pointer to the (registered) remote port that is to be
 810 *              deregistered.
 811 *
 812 * Returns:
 813 * a completion status. Must be 0 upon success; a negative errno
 814 * (ex: -ENXIO) upon failure.
 815 */
 816int
 817nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
 818{
 819        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 820        struct nvme_fc_ctrl *ctrl;
 821        unsigned long flags;
 822
 823        if (!portptr)
 824                return -EINVAL;
 825
 826        spin_lock_irqsave(&rport->lock, flags);
 827
 828        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 829                spin_unlock_irqrestore(&rport->lock, flags);
 830                return -EINVAL;
 831        }
 832        portptr->port_state = FC_OBJSTATE_DELETED;
 833
 834        rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
 835
 836        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
 837                /* if dev_loss_tmo==0, dev loss is immediate */
 838                if (!portptr->dev_loss_tmo) {
 839                        dev_warn(ctrl->ctrl.device,
 840                                "NVME-FC{%d}: controller connectivity lost.\n",
 841                                ctrl->cnum);
 842                        nvme_delete_ctrl(&ctrl->ctrl);
 843                } else
 844                        nvme_fc_ctrl_connectivity_loss(ctrl);
 845        }
 846
 847        spin_unlock_irqrestore(&rport->lock, flags);
 848
 849        nvme_fc_abort_lsops(rport);
 850
 851        if (atomic_read(&rport->act_ctrl_cnt) == 0)
 852                rport->lport->ops->remoteport_delete(portptr);
 853
 854        /*
 855         * release the reference, which will allow, if all controllers
 856         * go away, which should only occur after dev_loss_tmo occurs,
 857         * for the rport to be torn down.
 858         */
 859        nvme_fc_rport_put(rport);
 860
 861        return 0;
 862}
 863EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
 864
 865/**
 866 * nvme_fc_rescan_remoteport - transport entry point called by an
 867 *                              LLDD to request a nvme device rescan.
 868 * @remoteport: pointer to the (registered) remote port that is to be
 869 *              rescanned.
 870 *
 871 * Returns: N/A
 872 */
 873void
 874nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
 875{
 876        struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
 877
 878        nvme_fc_signal_discovery_scan(rport->lport, rport);
 879}
 880EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
 881
 882int
 883nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
 884                        u32 dev_loss_tmo)
 885{
 886        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 887        unsigned long flags;
 888
 889        spin_lock_irqsave(&rport->lock, flags);
 890
 891        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 892                spin_unlock_irqrestore(&rport->lock, flags);
 893                return -EINVAL;
 894        }
 895
 896        /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
 897        rport->remoteport.dev_loss_tmo = dev_loss_tmo;
 898
 899        spin_unlock_irqrestore(&rport->lock, flags);
 900
 901        return 0;
 902}
 903EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
 904
 905
 906/* *********************** FC-NVME DMA Handling **************************** */
 907
 908/*
 909 * The fcloop device passes in a NULL device pointer. Real LLD's will
 910 * pass in a valid device pointer. If NULL is passed to the dma mapping
 911 * routines, depending on the platform, it may or may not succeed, and
 912 * may crash.
 913 *
 914 * As such:
 915 * Wrapper all the dma routines and check the dev pointer.
 916 *
 917 * If simple mappings (return just a dma address, we'll noop them,
 918 * returning a dma address of 0.
 919 *
 920 * On more complex mappings (dma_map_sg), a pseudo routine fills
 921 * in the scatter list, setting all dma addresses to 0.
 922 */
 923
 924static inline dma_addr_t
 925fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 926                enum dma_data_direction dir)
 927{
 928        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 929}
 930
 931static inline int
 932fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 933{
 934        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 935}
 936
 937static inline void
 938fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 939        enum dma_data_direction dir)
 940{
 941        if (dev)
 942                dma_unmap_single(dev, addr, size, dir);
 943}
 944
 945static inline void
 946fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 947                enum dma_data_direction dir)
 948{
 949        if (dev)
 950                dma_sync_single_for_cpu(dev, addr, size, dir);
 951}
 952
 953static inline void
 954fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 955                enum dma_data_direction dir)
 956{
 957        if (dev)
 958                dma_sync_single_for_device(dev, addr, size, dir);
 959}
 960
 961/* pseudo dma_map_sg call */
 962static int
 963fc_map_sg(struct scatterlist *sg, int nents)
 964{
 965        struct scatterlist *s;
 966        int i;
 967
 968        WARN_ON(nents == 0 || sg[0].length == 0);
 969
 970        for_each_sg(sg, s, nents, i) {
 971                s->dma_address = 0L;
 972#ifdef CONFIG_NEED_SG_DMA_LENGTH
 973                s->dma_length = s->length;
 974#endif
 975        }
 976        return nents;
 977}
 978
 979static inline int
 980fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 981                enum dma_data_direction dir)
 982{
 983        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 984}
 985
 986static inline void
 987fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 988                enum dma_data_direction dir)
 989{
 990        if (dev)
 991                dma_unmap_sg(dev, sg, nents, dir);
 992}
 993
 994/* *********************** FC-NVME LS Handling **************************** */
 995
 996static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
 997static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
 998
 999
1000static void
1001__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1002{
1003        struct nvme_fc_rport *rport = lsop->rport;
1004        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1005        unsigned long flags;
1006
1007        spin_lock_irqsave(&rport->lock, flags);
1008
1009        if (!lsop->req_queued) {
1010                spin_unlock_irqrestore(&rport->lock, flags);
1011                return;
1012        }
1013
1014        list_del(&lsop->lsreq_list);
1015
1016        lsop->req_queued = false;
1017
1018        spin_unlock_irqrestore(&rport->lock, flags);
1019
1020        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1021                                  (lsreq->rqstlen + lsreq->rsplen),
1022                                  DMA_BIDIRECTIONAL);
1023
1024        nvme_fc_rport_put(rport);
1025}
1026
1027static int
1028__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1029                struct nvmefc_ls_req_op *lsop,
1030                void (*done)(struct nvmefc_ls_req *req, int status))
1031{
1032        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1033        unsigned long flags;
1034        int ret = 0;
1035
1036        if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1037                return -ECONNREFUSED;
1038
1039        if (!nvme_fc_rport_get(rport))
1040                return -ESHUTDOWN;
1041
1042        lsreq->done = done;
1043        lsop->rport = rport;
1044        lsop->req_queued = false;
1045        INIT_LIST_HEAD(&lsop->lsreq_list);
1046        init_completion(&lsop->ls_done);
1047
1048        lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1049                                  lsreq->rqstlen + lsreq->rsplen,
1050                                  DMA_BIDIRECTIONAL);
1051        if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1052                ret = -EFAULT;
1053                goto out_putrport;
1054        }
1055        lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1056
1057        spin_lock_irqsave(&rport->lock, flags);
1058
1059        list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1060
1061        lsop->req_queued = true;
1062
1063        spin_unlock_irqrestore(&rport->lock, flags);
1064
1065        ret = rport->lport->ops->ls_req(&rport->lport->localport,
1066                                        &rport->remoteport, lsreq);
1067        if (ret)
1068                goto out_unlink;
1069
1070        return 0;
1071
1072out_unlink:
1073        lsop->ls_error = ret;
1074        spin_lock_irqsave(&rport->lock, flags);
1075        lsop->req_queued = false;
1076        list_del(&lsop->lsreq_list);
1077        spin_unlock_irqrestore(&rport->lock, flags);
1078        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1079                                  (lsreq->rqstlen + lsreq->rsplen),
1080                                  DMA_BIDIRECTIONAL);
1081out_putrport:
1082        nvme_fc_rport_put(rport);
1083
1084        return ret;
1085}
1086
1087static void
1088nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1089{
1090        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1091
1092        lsop->ls_error = status;
1093        complete(&lsop->ls_done);
1094}
1095
1096static int
1097nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1098{
1099        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1100        struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1101        int ret;
1102
1103        ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1104
1105        if (!ret) {
1106                /*
1107                 * No timeout/not interruptible as we need the struct
1108                 * to exist until the lldd calls us back. Thus mandate
1109                 * wait until driver calls back. lldd responsible for
1110                 * the timeout action
1111                 */
1112                wait_for_completion(&lsop->ls_done);
1113
1114                __nvme_fc_finish_ls_req(lsop);
1115
1116                ret = lsop->ls_error;
1117        }
1118
1119        if (ret)
1120                return ret;
1121
1122        /* ACC or RJT payload ? */
1123        if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1124                return -ENXIO;
1125
1126        return 0;
1127}
1128
1129static int
1130nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1131                struct nvmefc_ls_req_op *lsop,
1132                void (*done)(struct nvmefc_ls_req *req, int status))
1133{
1134        /* don't wait for completion */
1135
1136        return __nvme_fc_send_ls_req(rport, lsop, done);
1137}
1138
1139/* Validation Error indexes into the string table below */
1140enum {
1141        VERR_NO_ERROR           = 0,
1142        VERR_LSACC              = 1,
1143        VERR_LSDESC_RQST        = 2,
1144        VERR_LSDESC_RQST_LEN    = 3,
1145        VERR_ASSOC_ID           = 4,
1146        VERR_ASSOC_ID_LEN       = 5,
1147        VERR_CONN_ID            = 6,
1148        VERR_CONN_ID_LEN        = 7,
1149        VERR_CR_ASSOC           = 8,
1150        VERR_CR_ASSOC_ACC_LEN   = 9,
1151        VERR_CR_CONN            = 10,
1152        VERR_CR_CONN_ACC_LEN    = 11,
1153        VERR_DISCONN            = 12,
1154        VERR_DISCONN_ACC_LEN    = 13,
1155};
1156
1157static char *validation_errors[] = {
1158        "OK",
1159        "Not LS_ACC",
1160        "Not LSDESC_RQST",
1161        "Bad LSDESC_RQST Length",
1162        "Not Association ID",
1163        "Bad Association ID Length",
1164        "Not Connection ID",
1165        "Bad Connection ID Length",
1166        "Not CR_ASSOC Rqst",
1167        "Bad CR_ASSOC ACC Length",
1168        "Not CR_CONN Rqst",
1169        "Bad CR_CONN ACC Length",
1170        "Not Disconnect Rqst",
1171        "Bad Disconnect ACC Length",
1172};
1173
1174static int
1175nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1176        struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1177{
1178        struct nvmefc_ls_req_op *lsop;
1179        struct nvmefc_ls_req *lsreq;
1180        struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1181        struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1182        int ret, fcret = 0;
1183
1184        lsop = kzalloc((sizeof(*lsop) +
1185                         ctrl->lport->ops->lsrqst_priv_sz +
1186                         sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1187        if (!lsop) {
1188                ret = -ENOMEM;
1189                goto out_no_memory;
1190        }
1191        lsreq = &lsop->ls_req;
1192
1193        lsreq->private = (void *)&lsop[1];
1194        assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1195                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1196        assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1197
1198        assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1199        assoc_rqst->desc_list_len =
1200                        cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1201
1202        assoc_rqst->assoc_cmd.desc_tag =
1203                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1204        assoc_rqst->assoc_cmd.desc_len =
1205                        fcnvme_lsdesc_len(
1206                                sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1207
1208        assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1209        assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1210        /* Linux supports only Dynamic controllers */
1211        assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1212        uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1213        strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1214                min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1215        strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1216                min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1217
1218        lsop->queue = queue;
1219        lsreq->rqstaddr = assoc_rqst;
1220        lsreq->rqstlen = sizeof(*assoc_rqst);
1221        lsreq->rspaddr = assoc_acc;
1222        lsreq->rsplen = sizeof(*assoc_acc);
1223        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1224
1225        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1226        if (ret)
1227                goto out_free_buffer;
1228
1229        /* process connect LS completion */
1230
1231        /* validate the ACC response */
1232        if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1233                fcret = VERR_LSACC;
1234        else if (assoc_acc->hdr.desc_list_len !=
1235                        fcnvme_lsdesc_len(
1236                                sizeof(struct fcnvme_ls_cr_assoc_acc)))
1237                fcret = VERR_CR_ASSOC_ACC_LEN;
1238        else if (assoc_acc->hdr.rqst.desc_tag !=
1239                        cpu_to_be32(FCNVME_LSDESC_RQST))
1240                fcret = VERR_LSDESC_RQST;
1241        else if (assoc_acc->hdr.rqst.desc_len !=
1242                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1243                fcret = VERR_LSDESC_RQST_LEN;
1244        else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1245                fcret = VERR_CR_ASSOC;
1246        else if (assoc_acc->associd.desc_tag !=
1247                        cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1248                fcret = VERR_ASSOC_ID;
1249        else if (assoc_acc->associd.desc_len !=
1250                        fcnvme_lsdesc_len(
1251                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1252                fcret = VERR_ASSOC_ID_LEN;
1253        else if (assoc_acc->connectid.desc_tag !=
1254                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1255                fcret = VERR_CONN_ID;
1256        else if (assoc_acc->connectid.desc_len !=
1257                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1258                fcret = VERR_CONN_ID_LEN;
1259
1260        if (fcret) {
1261                ret = -EBADF;
1262                dev_err(ctrl->dev,
1263                        "q %d connect failed: %s\n",
1264                        queue->qnum, validation_errors[fcret]);
1265        } else {
1266                ctrl->association_id =
1267                        be64_to_cpu(assoc_acc->associd.association_id);
1268                queue->connection_id =
1269                        be64_to_cpu(assoc_acc->connectid.connection_id);
1270                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1271        }
1272
1273out_free_buffer:
1274        kfree(lsop);
1275out_no_memory:
1276        if (ret)
1277                dev_err(ctrl->dev,
1278                        "queue %d connect admin queue failed (%d).\n",
1279                        queue->qnum, ret);
1280        return ret;
1281}
1282
1283static int
1284nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1285                        u16 qsize, u16 ersp_ratio)
1286{
1287        struct nvmefc_ls_req_op *lsop;
1288        struct nvmefc_ls_req *lsreq;
1289        struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1290        struct fcnvme_ls_cr_conn_acc *conn_acc;
1291        int ret, fcret = 0;
1292
1293        lsop = kzalloc((sizeof(*lsop) +
1294                         ctrl->lport->ops->lsrqst_priv_sz +
1295                         sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1296        if (!lsop) {
1297                ret = -ENOMEM;
1298                goto out_no_memory;
1299        }
1300        lsreq = &lsop->ls_req;
1301
1302        lsreq->private = (void *)&lsop[1];
1303        conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1304                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1305        conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1306
1307        conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1308        conn_rqst->desc_list_len = cpu_to_be32(
1309                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1310                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1311
1312        conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1313        conn_rqst->associd.desc_len =
1314                        fcnvme_lsdesc_len(
1315                                sizeof(struct fcnvme_lsdesc_assoc_id));
1316        conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1317        conn_rqst->connect_cmd.desc_tag =
1318                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1319        conn_rqst->connect_cmd.desc_len =
1320                        fcnvme_lsdesc_len(
1321                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1322        conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1323        conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1324        conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1325
1326        lsop->queue = queue;
1327        lsreq->rqstaddr = conn_rqst;
1328        lsreq->rqstlen = sizeof(*conn_rqst);
1329        lsreq->rspaddr = conn_acc;
1330        lsreq->rsplen = sizeof(*conn_acc);
1331        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1332
1333        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1334        if (ret)
1335                goto out_free_buffer;
1336
1337        /* process connect LS completion */
1338
1339        /* validate the ACC response */
1340        if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1341                fcret = VERR_LSACC;
1342        else if (conn_acc->hdr.desc_list_len !=
1343                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1344                fcret = VERR_CR_CONN_ACC_LEN;
1345        else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1346                fcret = VERR_LSDESC_RQST;
1347        else if (conn_acc->hdr.rqst.desc_len !=
1348                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1349                fcret = VERR_LSDESC_RQST_LEN;
1350        else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1351                fcret = VERR_CR_CONN;
1352        else if (conn_acc->connectid.desc_tag !=
1353                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1354                fcret = VERR_CONN_ID;
1355        else if (conn_acc->connectid.desc_len !=
1356                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1357                fcret = VERR_CONN_ID_LEN;
1358
1359        if (fcret) {
1360                ret = -EBADF;
1361                dev_err(ctrl->dev,
1362                        "q %d connect failed: %s\n",
1363                        queue->qnum, validation_errors[fcret]);
1364        } else {
1365                queue->connection_id =
1366                        be64_to_cpu(conn_acc->connectid.connection_id);
1367                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1368        }
1369
1370out_free_buffer:
1371        kfree(lsop);
1372out_no_memory:
1373        if (ret)
1374                dev_err(ctrl->dev,
1375                        "queue %d connect command failed (%d).\n",
1376                        queue->qnum, ret);
1377        return ret;
1378}
1379
1380static void
1381nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1382{
1383        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1384
1385        __nvme_fc_finish_ls_req(lsop);
1386
1387        /* fc-nvme iniator doesn't care about success or failure of cmd */
1388
1389        kfree(lsop);
1390}
1391
1392/*
1393 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1394 * the FC-NVME Association.  Terminating the association also
1395 * terminates the FC-NVME connections (per queue, both admin and io
1396 * queues) that are part of the association. E.g. things are torn
1397 * down, and the related FC-NVME Association ID and Connection IDs
1398 * become invalid.
1399 *
1400 * The behavior of the fc-nvme initiator is such that it's
1401 * understanding of the association and connections will implicitly
1402 * be torn down. The action is implicit as it may be due to a loss of
1403 * connectivity with the fc-nvme target, so you may never get a
1404 * response even if you tried.  As such, the action of this routine
1405 * is to asynchronously send the LS, ignore any results of the LS, and
1406 * continue on with terminating the association. If the fc-nvme target
1407 * is present and receives the LS, it too can tear down.
1408 */
1409static void
1410nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1411{
1412        struct fcnvme_ls_disconnect_rqst *discon_rqst;
1413        struct fcnvme_ls_disconnect_acc *discon_acc;
1414        struct nvmefc_ls_req_op *lsop;
1415        struct nvmefc_ls_req *lsreq;
1416        int ret;
1417
1418        lsop = kzalloc((sizeof(*lsop) +
1419                         ctrl->lport->ops->lsrqst_priv_sz +
1420                         sizeof(*discon_rqst) + sizeof(*discon_acc)),
1421                        GFP_KERNEL);
1422        if (!lsop)
1423                /* couldn't sent it... too bad */
1424                return;
1425
1426        lsreq = &lsop->ls_req;
1427
1428        lsreq->private = (void *)&lsop[1];
1429        discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1430                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1431        discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1432
1433        discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1434        discon_rqst->desc_list_len = cpu_to_be32(
1435                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1436                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1437
1438        discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1439        discon_rqst->associd.desc_len =
1440                        fcnvme_lsdesc_len(
1441                                sizeof(struct fcnvme_lsdesc_assoc_id));
1442
1443        discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1444
1445        discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1446                                                FCNVME_LSDESC_DISCONN_CMD);
1447        discon_rqst->discon_cmd.desc_len =
1448                        fcnvme_lsdesc_len(
1449                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1450        discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1451        discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1452
1453        lsreq->rqstaddr = discon_rqst;
1454        lsreq->rqstlen = sizeof(*discon_rqst);
1455        lsreq->rspaddr = discon_acc;
1456        lsreq->rsplen = sizeof(*discon_acc);
1457        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1458
1459        ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1460                                nvme_fc_disconnect_assoc_done);
1461        if (ret)
1462                kfree(lsop);
1463
1464        /* only meaningful part to terminating the association */
1465        ctrl->association_id = 0;
1466}
1467
1468
1469/* *********************** NVME Ctrl Routines **************************** */
1470
1471static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1472
1473static int
1474nvme_fc_reinit_request(void *data, struct request *rq)
1475{
1476        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1477        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1478
1479        memset(cmdiu, 0, sizeof(*cmdiu));
1480        cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1481        cmdiu->fc_id = NVME_CMD_FC_ID;
1482        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1483        memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1484
1485        return 0;
1486}
1487
1488static void
1489__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1490                struct nvme_fc_fcp_op *op)
1491{
1492        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1493                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1494        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1495                                sizeof(op->cmd_iu), DMA_TO_DEVICE);
1496
1497        atomic_set(&op->state, FCPOP_STATE_UNINIT);
1498}
1499
1500static void
1501nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1502                unsigned int hctx_idx)
1503{
1504        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1505
1506        return __nvme_fc_exit_request(set->driver_data, op);
1507}
1508
1509static int
1510__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1511{
1512        unsigned long flags;
1513        int opstate;
1514
1515        spin_lock_irqsave(&ctrl->lock, flags);
1516        opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1517        if (opstate != FCPOP_STATE_ACTIVE)
1518                atomic_set(&op->state, opstate);
1519        else if (ctrl->flags & FCCTRL_TERMIO)
1520                ctrl->iocnt++;
1521        spin_unlock_irqrestore(&ctrl->lock, flags);
1522
1523        if (opstate != FCPOP_STATE_ACTIVE)
1524                return -ECANCELED;
1525
1526        ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1527                                        &ctrl->rport->remoteport,
1528                                        op->queue->lldd_handle,
1529                                        &op->fcp_req);
1530
1531        return 0;
1532}
1533
1534static void
1535nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1536{
1537        struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1538        int i;
1539
1540        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1541                __nvme_fc_abort_op(ctrl, aen_op);
1542}
1543
1544static inline void
1545__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1546                struct nvme_fc_fcp_op *op, int opstate)
1547{
1548        unsigned long flags;
1549
1550        if (opstate == FCPOP_STATE_ABORTED) {
1551                spin_lock_irqsave(&ctrl->lock, flags);
1552                if (ctrl->flags & FCCTRL_TERMIO) {
1553                        if (!--ctrl->iocnt)
1554                                wake_up(&ctrl->ioabort_wait);
1555                }
1556                spin_unlock_irqrestore(&ctrl->lock, flags);
1557        }
1558}
1559
1560static void
1561nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1562{
1563        struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1564        struct request *rq = op->rq;
1565        struct nvmefc_fcp_req *freq = &op->fcp_req;
1566        struct nvme_fc_ctrl *ctrl = op->ctrl;
1567        struct nvme_fc_queue *queue = op->queue;
1568        struct nvme_completion *cqe = &op->rsp_iu.cqe;
1569        struct nvme_command *sqe = &op->cmd_iu.sqe;
1570        __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1571        union nvme_result result;
1572        bool terminate_assoc = true;
1573        int opstate;
1574
1575        /*
1576         * WARNING:
1577         * The current linux implementation of a nvme controller
1578         * allocates a single tag set for all io queues and sizes
1579         * the io queues to fully hold all possible tags. Thus, the
1580         * implementation does not reference or care about the sqhd
1581         * value as it never needs to use the sqhd/sqtail pointers
1582         * for submission pacing.
1583         *
1584         * This affects the FC-NVME implementation in two ways:
1585         * 1) As the value doesn't matter, we don't need to waste
1586         *    cycles extracting it from ERSPs and stamping it in the
1587         *    cases where the transport fabricates CQEs on successful
1588         *    completions.
1589         * 2) The FC-NVME implementation requires that delivery of
1590         *    ERSP completions are to go back to the nvme layer in order
1591         *    relative to the rsn, such that the sqhd value will always
1592         *    be "in order" for the nvme layer. As the nvme layer in
1593         *    linux doesn't care about sqhd, there's no need to return
1594         *    them in order.
1595         *
1596         * Additionally:
1597         * As the core nvme layer in linux currently does not look at
1598         * every field in the cqe - in cases where the FC transport must
1599         * fabricate a CQE, the following fields will not be set as they
1600         * are not referenced:
1601         *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1602         *
1603         * Failure or error of an individual i/o, in a transport
1604         * detected fashion unrelated to the nvme completion status,
1605         * potentially cause the initiator and target sides to get out
1606         * of sync on SQ head/tail (aka outstanding io count allowed).
1607         * Per FC-NVME spec, failure of an individual command requires
1608         * the connection to be terminated, which in turn requires the
1609         * association to be terminated.
1610         */
1611
1612        opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1613
1614        fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1615                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1616
1617        if (opstate == FCPOP_STATE_ABORTED)
1618                status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1619        else if (freq->status)
1620                status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1621
1622        /*
1623         * For the linux implementation, if we have an unsuccesful
1624         * status, they blk-mq layer can typically be called with the
1625         * non-zero status and the content of the cqe isn't important.
1626         */
1627        if (status)
1628                goto done;
1629
1630        /*
1631         * command completed successfully relative to the wire
1632         * protocol. However, validate anything received and
1633         * extract the status and result from the cqe (create it
1634         * where necessary).
1635         */
1636
1637        switch (freq->rcv_rsplen) {
1638
1639        case 0:
1640        case NVME_FC_SIZEOF_ZEROS_RSP:
1641                /*
1642                 * No response payload or 12 bytes of payload (which
1643                 * should all be zeros) are considered successful and
1644                 * no payload in the CQE by the transport.
1645                 */
1646                if (freq->transferred_length !=
1647                        be32_to_cpu(op->cmd_iu.data_len)) {
1648                        status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1649                        goto done;
1650                }
1651                result.u64 = 0;
1652                break;
1653
1654        case sizeof(struct nvme_fc_ersp_iu):
1655                /*
1656                 * The ERSP IU contains a full completion with CQE.
1657                 * Validate ERSP IU and look at cqe.
1658                 */
1659                if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1660                                        (freq->rcv_rsplen / 4) ||
1661                             be32_to_cpu(op->rsp_iu.xfrd_len) !=
1662                                        freq->transferred_length ||
1663                             op->rsp_iu.status_code ||
1664                             sqe->common.command_id != cqe->command_id)) {
1665                        status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1666                        goto done;
1667                }
1668                result = cqe->result;
1669                status = cqe->status;
1670                break;
1671
1672        default:
1673                status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1674                goto done;
1675        }
1676
1677        terminate_assoc = false;
1678
1679done:
1680        if (op->flags & FCOP_FLAGS_AEN) {
1681                nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1682                __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1683                atomic_set(&op->state, FCPOP_STATE_IDLE);
1684                op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1685                nvme_fc_ctrl_put(ctrl);
1686                goto check_error;
1687        }
1688
1689        /*
1690         * Force failures of commands if we're killing the controller
1691         * or have an error on a command used to create an new association
1692         */
1693        if (status &&
1694            (blk_queue_dying(rq->q) ||
1695             ctrl->ctrl.state == NVME_CTRL_NEW ||
1696             ctrl->ctrl.state == NVME_CTRL_CONNECTING))
1697                status |= cpu_to_le16(NVME_SC_DNR << 1);
1698
1699        __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1700        nvme_end_request(rq, status, result);
1701
1702check_error:
1703        if (terminate_assoc)
1704                nvme_fc_error_recovery(ctrl, "transport detected io error");
1705}
1706
1707static int
1708__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1709                struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1710                struct request *rq, u32 rqno)
1711{
1712        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1713        int ret = 0;
1714
1715        memset(op, 0, sizeof(*op));
1716        op->fcp_req.cmdaddr = &op->cmd_iu;
1717        op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1718        op->fcp_req.rspaddr = &op->rsp_iu;
1719        op->fcp_req.rsplen = sizeof(op->rsp_iu);
1720        op->fcp_req.done = nvme_fc_fcpio_done;
1721        op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1722        op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1723        op->ctrl = ctrl;
1724        op->queue = queue;
1725        op->rq = rq;
1726        op->rqno = rqno;
1727
1728        cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1729        cmdiu->fc_id = NVME_CMD_FC_ID;
1730        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1731
1732        op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1733                                &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1734        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1735                dev_err(ctrl->dev,
1736                        "FCP Op failed - cmdiu dma mapping failed.\n");
1737                ret = EFAULT;
1738                goto out_on_error;
1739        }
1740
1741        op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1742                                &op->rsp_iu, sizeof(op->rsp_iu),
1743                                DMA_FROM_DEVICE);
1744        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1745                dev_err(ctrl->dev,
1746                        "FCP Op failed - rspiu dma mapping failed.\n");
1747                ret = EFAULT;
1748        }
1749
1750        atomic_set(&op->state, FCPOP_STATE_IDLE);
1751out_on_error:
1752        return ret;
1753}
1754
1755static int
1756nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1757                unsigned int hctx_idx, unsigned int numa_node)
1758{
1759        struct nvme_fc_ctrl *ctrl = set->driver_data;
1760        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1761        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1762        struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1763
1764        return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1765}
1766
1767static int
1768nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1769{
1770        struct nvme_fc_fcp_op *aen_op;
1771        struct nvme_fc_cmd_iu *cmdiu;
1772        struct nvme_command *sqe;
1773        void *private;
1774        int i, ret;
1775
1776        aen_op = ctrl->aen_ops;
1777        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1778                private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1779                                                GFP_KERNEL);
1780                if (!private)
1781                        return -ENOMEM;
1782
1783                cmdiu = &aen_op->cmd_iu;
1784                sqe = &cmdiu->sqe;
1785                ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1786                                aen_op, (struct request *)NULL,
1787                                (NVME_AQ_BLK_MQ_DEPTH + i));
1788                if (ret) {
1789                        kfree(private);
1790                        return ret;
1791                }
1792
1793                aen_op->flags = FCOP_FLAGS_AEN;
1794                aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1795                aen_op->fcp_req.private = private;
1796
1797                memset(sqe, 0, sizeof(*sqe));
1798                sqe->common.opcode = nvme_admin_async_event;
1799                /* Note: core layer may overwrite the sqe.command_id value */
1800                sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1801        }
1802        return 0;
1803}
1804
1805static void
1806nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1807{
1808        struct nvme_fc_fcp_op *aen_op;
1809        int i;
1810
1811        aen_op = ctrl->aen_ops;
1812        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1813                if (!aen_op->fcp_req.private)
1814                        continue;
1815
1816                __nvme_fc_exit_request(ctrl, aen_op);
1817
1818                kfree(aen_op->fcp_req.private);
1819                aen_op->fcp_req.private = NULL;
1820        }
1821}
1822
1823static inline void
1824__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1825                unsigned int qidx)
1826{
1827        struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1828
1829        hctx->driver_data = queue;
1830        queue->hctx = hctx;
1831}
1832
1833static int
1834nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1835                unsigned int hctx_idx)
1836{
1837        struct nvme_fc_ctrl *ctrl = data;
1838
1839        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1840
1841        return 0;
1842}
1843
1844static int
1845nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1846                unsigned int hctx_idx)
1847{
1848        struct nvme_fc_ctrl *ctrl = data;
1849
1850        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1851
1852        return 0;
1853}
1854
1855static void
1856nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1857{
1858        struct nvme_fc_queue *queue;
1859
1860        queue = &ctrl->queues[idx];
1861        memset(queue, 0, sizeof(*queue));
1862        queue->ctrl = ctrl;
1863        queue->qnum = idx;
1864        atomic_set(&queue->csn, 1);
1865        queue->dev = ctrl->dev;
1866
1867        if (idx > 0)
1868                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1869        else
1870                queue->cmnd_capsule_len = sizeof(struct nvme_command);
1871
1872        /*
1873         * Considered whether we should allocate buffers for all SQEs
1874         * and CQEs and dma map them - mapping their respective entries
1875         * into the request structures (kernel vm addr and dma address)
1876         * thus the driver could use the buffers/mappings directly.
1877         * It only makes sense if the LLDD would use them for its
1878         * messaging api. It's very unlikely most adapter api's would use
1879         * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1880         * structures were used instead.
1881         */
1882}
1883
1884/*
1885 * This routine terminates a queue at the transport level.
1886 * The transport has already ensured that all outstanding ios on
1887 * the queue have been terminated.
1888 * The transport will send a Disconnect LS request to terminate
1889 * the queue's connection. Termination of the admin queue will also
1890 * terminate the association at the target.
1891 */
1892static void
1893nvme_fc_free_queue(struct nvme_fc_queue *queue)
1894{
1895        if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1896                return;
1897
1898        clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1899        /*
1900         * Current implementation never disconnects a single queue.
1901         * It always terminates a whole association. So there is never
1902         * a disconnect(queue) LS sent to the target.
1903         */
1904
1905        queue->connection_id = 0;
1906}
1907
1908static void
1909__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1910        struct nvme_fc_queue *queue, unsigned int qidx)
1911{
1912        if (ctrl->lport->ops->delete_queue)
1913                ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1914                                queue->lldd_handle);
1915        queue->lldd_handle = NULL;
1916}
1917
1918static void
1919nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1920{
1921        int i;
1922
1923        for (i = 1; i < ctrl->ctrl.queue_count; i++)
1924                nvme_fc_free_queue(&ctrl->queues[i]);
1925}
1926
1927static int
1928__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1929        struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1930{
1931        int ret = 0;
1932
1933        queue->lldd_handle = NULL;
1934        if (ctrl->lport->ops->create_queue)
1935                ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1936                                qidx, qsize, &queue->lldd_handle);
1937
1938        return ret;
1939}
1940
1941static void
1942nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1943{
1944        struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1945        int i;
1946
1947        for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1948                __nvme_fc_delete_hw_queue(ctrl, queue, i);
1949}
1950
1951static int
1952nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1953{
1954        struct nvme_fc_queue *queue = &ctrl->queues[1];
1955        int i, ret;
1956
1957        for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1958                ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1959                if (ret)
1960                        goto delete_queues;
1961        }
1962
1963        return 0;
1964
1965delete_queues:
1966        for (; i >= 0; i--)
1967                __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1968        return ret;
1969}
1970
1971static int
1972nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1973{
1974        int i, ret = 0;
1975
1976        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1977                ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1978                                        (qsize / 5));
1979                if (ret)
1980                        break;
1981                ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1982                if (ret)
1983                        break;
1984
1985                set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1986        }
1987
1988        return ret;
1989}
1990
1991static void
1992nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1993{
1994        int i;
1995
1996        for (i = 1; i < ctrl->ctrl.queue_count; i++)
1997                nvme_fc_init_queue(ctrl, i);
1998}
1999
2000static void
2001nvme_fc_ctrl_free(struct kref *ref)
2002{
2003        struct nvme_fc_ctrl *ctrl =
2004                container_of(ref, struct nvme_fc_ctrl, ref);
2005        unsigned long flags;
2006
2007        if (ctrl->ctrl.tagset) {
2008                blk_cleanup_queue(ctrl->ctrl.connect_q);
2009                blk_mq_free_tag_set(&ctrl->tag_set);
2010        }
2011
2012        /* remove from rport list */
2013        spin_lock_irqsave(&ctrl->rport->lock, flags);
2014        list_del(&ctrl->ctrl_list);
2015        spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2016
2017        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2018        blk_cleanup_queue(ctrl->ctrl.admin_q);
2019        blk_mq_free_tag_set(&ctrl->admin_tag_set);
2020
2021        kfree(ctrl->queues);
2022
2023        put_device(ctrl->dev);
2024        nvme_fc_rport_put(ctrl->rport);
2025
2026        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2027        if (ctrl->ctrl.opts)
2028                nvmf_free_options(ctrl->ctrl.opts);
2029        kfree(ctrl);
2030}
2031
2032static void
2033nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2034{
2035        kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2036}
2037
2038static int
2039nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2040{
2041        return kref_get_unless_zero(&ctrl->ref);
2042}
2043
2044/*
2045 * All accesses from nvme core layer done - can now free the
2046 * controller. Called after last nvme_put_ctrl() call
2047 */
2048static void
2049nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2050{
2051        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2052
2053        WARN_ON(nctrl != &ctrl->ctrl);
2054
2055        nvme_fc_ctrl_put(ctrl);
2056}
2057
2058static void
2059nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2060{
2061        /* only proceed if in LIVE state - e.g. on first error */
2062        if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2063                return;
2064
2065        dev_warn(ctrl->ctrl.device,
2066                "NVME-FC{%d}: transport association error detected: %s\n",
2067                ctrl->cnum, errmsg);
2068        dev_warn(ctrl->ctrl.device,
2069                "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2070
2071        nvme_reset_ctrl(&ctrl->ctrl);
2072}
2073
2074static enum blk_eh_timer_return
2075nvme_fc_timeout(struct request *rq, bool reserved)
2076{
2077        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2078        struct nvme_fc_ctrl *ctrl = op->ctrl;
2079
2080        /*
2081         * we can't individually ABTS an io without affecting the queue,
2082         * thus killing the queue, and thus the association.
2083         * So resolve by performing a controller reset, which will stop
2084         * the host/io stack, terminate the association on the link,
2085         * and recreate an association on the link.
2086         */
2087        nvme_fc_error_recovery(ctrl, "io timeout error");
2088
2089        /*
2090         * the io abort has been initiated. Have the reset timer
2091         * restarted and the abort completion will complete the io
2092         * shortly. Avoids a synchronous wait while the abort finishes.
2093         */
2094        return BLK_EH_RESET_TIMER;
2095}
2096
2097static int
2098nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2099                struct nvme_fc_fcp_op *op)
2100{
2101        struct nvmefc_fcp_req *freq = &op->fcp_req;
2102        enum dma_data_direction dir;
2103        int ret;
2104
2105        freq->sg_cnt = 0;
2106
2107        if (!blk_rq_payload_bytes(rq))
2108                return 0;
2109
2110        freq->sg_table.sgl = freq->first_sgl;
2111        ret = sg_alloc_table_chained(&freq->sg_table,
2112                        blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2113        if (ret)
2114                return -ENOMEM;
2115
2116        op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2117        WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2118        dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2119        freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2120                                op->nents, dir);
2121        if (unlikely(freq->sg_cnt <= 0)) {
2122                sg_free_table_chained(&freq->sg_table, true);
2123                freq->sg_cnt = 0;
2124                return -EFAULT;
2125        }
2126
2127        /*
2128         * TODO: blk_integrity_rq(rq)  for DIF
2129         */
2130        return 0;
2131}
2132
2133static void
2134nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2135                struct nvme_fc_fcp_op *op)
2136{
2137        struct nvmefc_fcp_req *freq = &op->fcp_req;
2138
2139        if (!freq->sg_cnt)
2140                return;
2141
2142        fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2143                                ((rq_data_dir(rq) == WRITE) ?
2144                                        DMA_TO_DEVICE : DMA_FROM_DEVICE));
2145
2146        nvme_cleanup_cmd(rq);
2147
2148        sg_free_table_chained(&freq->sg_table, true);
2149
2150        freq->sg_cnt = 0;
2151}
2152
2153/*
2154 * In FC, the queue is a logical thing. At transport connect, the target
2155 * creates its "queue" and returns a handle that is to be given to the
2156 * target whenever it posts something to the corresponding SQ.  When an
2157 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2158 * command contained within the SQE, an io, and assigns a FC exchange
2159 * to it. The SQE and the associated SQ handle are sent in the initial
2160 * CMD IU sents on the exchange. All transfers relative to the io occur
2161 * as part of the exchange.  The CQE is the last thing for the io,
2162 * which is transferred (explicitly or implicitly) with the RSP IU
2163 * sent on the exchange. After the CQE is received, the FC exchange is
2164 * terminaed and the Exchange may be used on a different io.
2165 *
2166 * The transport to LLDD api has the transport making a request for a
2167 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2168 * resource and transfers the command. The LLDD will then process all
2169 * steps to complete the io. Upon completion, the transport done routine
2170 * is called.
2171 *
2172 * So - while the operation is outstanding to the LLDD, there is a link
2173 * level FC exchange resource that is also outstanding. This must be
2174 * considered in all cleanup operations.
2175 */
2176static blk_status_t
2177nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2178        struct nvme_fc_fcp_op *op, u32 data_len,
2179        enum nvmefc_fcp_datadir io_dir)
2180{
2181        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2182        struct nvme_command *sqe = &cmdiu->sqe;
2183        u32 csn;
2184        int ret, opstate;
2185
2186        /*
2187         * before attempting to send the io, check to see if we believe
2188         * the target device is present
2189         */
2190        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2191                return BLK_STS_RESOURCE;
2192
2193        if (!nvme_fc_ctrl_get(ctrl))
2194                return BLK_STS_IOERR;
2195
2196        /* format the FC-NVME CMD IU and fcp_req */
2197        cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2198        csn = atomic_inc_return(&queue->csn);
2199        cmdiu->csn = cpu_to_be32(csn);
2200        cmdiu->data_len = cpu_to_be32(data_len);
2201        switch (io_dir) {
2202        case NVMEFC_FCP_WRITE:
2203                cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2204                break;
2205        case NVMEFC_FCP_READ:
2206                cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2207                break;
2208        case NVMEFC_FCP_NODATA:
2209                cmdiu->flags = 0;
2210                break;
2211        }
2212        op->fcp_req.payload_length = data_len;
2213        op->fcp_req.io_dir = io_dir;
2214        op->fcp_req.transferred_length = 0;
2215        op->fcp_req.rcv_rsplen = 0;
2216        op->fcp_req.status = NVME_SC_SUCCESS;
2217        op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2218
2219        /*
2220         * validate per fabric rules, set fields mandated by fabric spec
2221         * as well as those by FC-NVME spec.
2222         */
2223        WARN_ON_ONCE(sqe->common.metadata);
2224        sqe->common.flags |= NVME_CMD_SGL_METABUF;
2225
2226        /*
2227         * format SQE DPTR field per FC-NVME rules:
2228         *    type=0x5     Transport SGL Data Block Descriptor
2229         *    subtype=0xA  Transport-specific value
2230         *    address=0
2231         *    length=length of the data series
2232         */
2233        sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2234                                        NVME_SGL_FMT_TRANSPORT_A;
2235        sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2236        sqe->rw.dptr.sgl.addr = 0;
2237
2238        if (!(op->flags & FCOP_FLAGS_AEN)) {
2239                ret = nvme_fc_map_data(ctrl, op->rq, op);
2240                if (ret < 0) {
2241                        nvme_cleanup_cmd(op->rq);
2242                        nvme_fc_ctrl_put(ctrl);
2243                        if (ret == -ENOMEM || ret == -EAGAIN)
2244                                return BLK_STS_RESOURCE;
2245                        return BLK_STS_IOERR;
2246                }
2247        }
2248
2249        fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2250                                  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2251
2252        atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2253
2254        if (!(op->flags & FCOP_FLAGS_AEN))
2255                blk_mq_start_request(op->rq);
2256
2257        ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2258                                        &ctrl->rport->remoteport,
2259                                        queue->lldd_handle, &op->fcp_req);
2260
2261        if (ret) {
2262                opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2263                __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2264
2265                if (!(op->flags & FCOP_FLAGS_AEN))
2266                        nvme_fc_unmap_data(ctrl, op->rq, op);
2267
2268                nvme_fc_ctrl_put(ctrl);
2269
2270                if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2271                                ret != -EBUSY)
2272                        return BLK_STS_IOERR;
2273
2274                return BLK_STS_RESOURCE;
2275        }
2276
2277        return BLK_STS_OK;
2278}
2279
2280static blk_status_t
2281nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2282                        const struct blk_mq_queue_data *bd)
2283{
2284        struct nvme_ns *ns = hctx->queue->queuedata;
2285        struct nvme_fc_queue *queue = hctx->driver_data;
2286        struct nvme_fc_ctrl *ctrl = queue->ctrl;
2287        struct request *rq = bd->rq;
2288        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2289        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2290        struct nvme_command *sqe = &cmdiu->sqe;
2291        enum nvmefc_fcp_datadir io_dir;
2292        u32 data_len;
2293        blk_status_t ret;
2294
2295        ret = nvmf_check_if_ready(&queue->ctrl->ctrl, rq,
2296                test_bit(NVME_FC_Q_LIVE, &queue->flags),
2297                ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE);
2298        if (unlikely(ret))
2299                return ret;
2300
2301        ret = nvme_setup_cmd(ns, rq, sqe);
2302        if (ret)
2303                return ret;
2304
2305        data_len = blk_rq_payload_bytes(rq);
2306        if (data_len)
2307                io_dir = ((rq_data_dir(rq) == WRITE) ?
2308                                        NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2309        else
2310                io_dir = NVMEFC_FCP_NODATA;
2311
2312        return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2313}
2314
2315static struct blk_mq_tags *
2316nvme_fc_tagset(struct nvme_fc_queue *queue)
2317{
2318        if (queue->qnum == 0)
2319                return queue->ctrl->admin_tag_set.tags[queue->qnum];
2320
2321        return queue->ctrl->tag_set.tags[queue->qnum - 1];
2322}
2323
2324static int
2325nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2326
2327{
2328        struct nvme_fc_queue *queue = hctx->driver_data;
2329        struct nvme_fc_ctrl *ctrl = queue->ctrl;
2330        struct request *req;
2331        struct nvme_fc_fcp_op *op;
2332
2333        req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2334        if (!req)
2335                return 0;
2336
2337        op = blk_mq_rq_to_pdu(req);
2338
2339        if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2340                 (ctrl->lport->ops->poll_queue))
2341                ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2342                                                 queue->lldd_handle);
2343
2344        return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2345}
2346
2347static void
2348nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2349{
2350        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2351        struct nvme_fc_fcp_op *aen_op;
2352        unsigned long flags;
2353        bool terminating = false;
2354        blk_status_t ret;
2355
2356        spin_lock_irqsave(&ctrl->lock, flags);
2357        if (ctrl->flags & FCCTRL_TERMIO)
2358                terminating = true;
2359        spin_unlock_irqrestore(&ctrl->lock, flags);
2360
2361        if (terminating)
2362                return;
2363
2364        aen_op = &ctrl->aen_ops[0];
2365
2366        ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2367                                        NVMEFC_FCP_NODATA);
2368        if (ret)
2369                dev_err(ctrl->ctrl.device,
2370                        "failed async event work\n");
2371}
2372
2373static void
2374nvme_fc_complete_rq(struct request *rq)
2375{
2376        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2377        struct nvme_fc_ctrl *ctrl = op->ctrl;
2378
2379        atomic_set(&op->state, FCPOP_STATE_IDLE);
2380
2381        nvme_fc_unmap_data(ctrl, rq, op);
2382        nvme_complete_rq(rq);
2383        nvme_fc_ctrl_put(ctrl);
2384}
2385
2386/*
2387 * This routine is used by the transport when it needs to find active
2388 * io on a queue that is to be terminated. The transport uses
2389 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2390 * this routine to kill them on a 1 by 1 basis.
2391 *
2392 * As FC allocates FC exchange for each io, the transport must contact
2393 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2394 * After terminating the exchange the LLDD will call the transport's
2395 * normal io done path for the request, but it will have an aborted
2396 * status. The done path will return the io request back to the block
2397 * layer with an error status.
2398 */
2399static void
2400nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2401{
2402        struct nvme_ctrl *nctrl = data;
2403        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2404        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2405
2406        if (!blk_mq_request_started(req))
2407                return;
2408
2409        __nvme_fc_abort_op(ctrl, op);
2410}
2411
2412
2413static const struct blk_mq_ops nvme_fc_mq_ops = {
2414        .queue_rq       = nvme_fc_queue_rq,
2415        .complete       = nvme_fc_complete_rq,
2416        .init_request   = nvme_fc_init_request,
2417        .exit_request   = nvme_fc_exit_request,
2418        .init_hctx      = nvme_fc_init_hctx,
2419        .poll           = nvme_fc_poll,
2420        .timeout        = nvme_fc_timeout,
2421};
2422
2423static int
2424nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2425{
2426        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2427        unsigned int nr_io_queues;
2428        int ret;
2429
2430        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2431                                ctrl->lport->ops->max_hw_queues);
2432        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2433        if (ret) {
2434                dev_info(ctrl->ctrl.device,
2435                        "set_queue_count failed: %d\n", ret);
2436                return ret;
2437        }
2438
2439        ctrl->ctrl.queue_count = nr_io_queues + 1;
2440        if (!nr_io_queues)
2441                return 0;
2442
2443        nvme_fc_init_io_queues(ctrl);
2444
2445        memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2446        ctrl->tag_set.ops = &nvme_fc_mq_ops;
2447        ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2448        ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2449        ctrl->tag_set.numa_node = NUMA_NO_NODE;
2450        ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2451        ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2452                                        (SG_CHUNK_SIZE *
2453                                                sizeof(struct scatterlist)) +
2454                                        ctrl->lport->ops->fcprqst_priv_sz;
2455        ctrl->tag_set.driver_data = ctrl;
2456        ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2457        ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2458
2459        ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2460        if (ret)
2461                return ret;
2462
2463        ctrl->ctrl.tagset = &ctrl->tag_set;
2464
2465        ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2466        if (IS_ERR(ctrl->ctrl.connect_q)) {
2467                ret = PTR_ERR(ctrl->ctrl.connect_q);
2468                goto out_free_tag_set;
2469        }
2470
2471        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2472        if (ret)
2473                goto out_cleanup_blk_queue;
2474
2475        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2476        if (ret)
2477                goto out_delete_hw_queues;
2478
2479        return 0;
2480
2481out_delete_hw_queues:
2482        nvme_fc_delete_hw_io_queues(ctrl);
2483out_cleanup_blk_queue:
2484        blk_cleanup_queue(ctrl->ctrl.connect_q);
2485out_free_tag_set:
2486        blk_mq_free_tag_set(&ctrl->tag_set);
2487        nvme_fc_free_io_queues(ctrl);
2488
2489        /* force put free routine to ignore io queues */
2490        ctrl->ctrl.tagset = NULL;
2491
2492        return ret;
2493}
2494
2495static int
2496nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2497{
2498        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2499        unsigned int nr_io_queues;
2500        int ret;
2501
2502        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2503                                ctrl->lport->ops->max_hw_queues);
2504        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2505        if (ret) {
2506                dev_info(ctrl->ctrl.device,
2507                        "set_queue_count failed: %d\n", ret);
2508                return ret;
2509        }
2510
2511        ctrl->ctrl.queue_count = nr_io_queues + 1;
2512        /* check for io queues existing */
2513        if (ctrl->ctrl.queue_count == 1)
2514                return 0;
2515
2516        nvme_fc_init_io_queues(ctrl);
2517
2518        ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2519        if (ret)
2520                goto out_free_io_queues;
2521
2522        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2523        if (ret)
2524                goto out_free_io_queues;
2525
2526        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2527        if (ret)
2528                goto out_delete_hw_queues;
2529
2530        blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2531
2532        return 0;
2533
2534out_delete_hw_queues:
2535        nvme_fc_delete_hw_io_queues(ctrl);
2536out_free_io_queues:
2537        nvme_fc_free_io_queues(ctrl);
2538        return ret;
2539}
2540
2541static void
2542nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2543{
2544        struct nvme_fc_lport *lport = rport->lport;
2545
2546        atomic_inc(&lport->act_rport_cnt);
2547}
2548
2549static void
2550nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2551{
2552        struct nvme_fc_lport *lport = rport->lport;
2553        u32 cnt;
2554
2555        cnt = atomic_dec_return(&lport->act_rport_cnt);
2556        if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2557                lport->ops->localport_delete(&lport->localport);
2558}
2559
2560static int
2561nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2562{
2563        struct nvme_fc_rport *rport = ctrl->rport;
2564        u32 cnt;
2565
2566        if (ctrl->assoc_active)
2567                return 1;
2568
2569        ctrl->assoc_active = true;
2570        cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2571        if (cnt == 1)
2572                nvme_fc_rport_active_on_lport(rport);
2573
2574        return 0;
2575}
2576
2577static int
2578nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2579{
2580        struct nvme_fc_rport *rport = ctrl->rport;
2581        struct nvme_fc_lport *lport = rport->lport;
2582        u32 cnt;
2583
2584        /* ctrl->assoc_active=false will be set independently */
2585
2586        cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2587        if (cnt == 0) {
2588                if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2589                        lport->ops->remoteport_delete(&rport->remoteport);
2590                nvme_fc_rport_inactive_on_lport(rport);
2591        }
2592
2593        return 0;
2594}
2595
2596/*
2597 * This routine restarts the controller on the host side, and
2598 * on the link side, recreates the controller association.
2599 */
2600static int
2601nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2602{
2603        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2604        int ret;
2605        bool changed;
2606
2607        ++ctrl->ctrl.nr_reconnects;
2608
2609        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2610                return -ENODEV;
2611
2612        if (nvme_fc_ctlr_active_on_rport(ctrl))
2613                return -ENOTUNIQ;
2614
2615        /*
2616         * Create the admin queue
2617         */
2618
2619        nvme_fc_init_queue(ctrl, 0);
2620
2621        ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2622                                NVME_AQ_DEPTH);
2623        if (ret)
2624                goto out_free_queue;
2625
2626        ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2627                                NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2628        if (ret)
2629                goto out_delete_hw_queue;
2630
2631        if (ctrl->ctrl.state != NVME_CTRL_NEW)
2632                blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2633
2634        ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2635        if (ret)
2636                goto out_disconnect_admin_queue;
2637
2638        set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2639
2640        /*
2641         * Check controller capabilities
2642         *
2643         * todo:- add code to check if ctrl attributes changed from
2644         * prior connection values
2645         */
2646
2647        ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2648        if (ret) {
2649                dev_err(ctrl->ctrl.device,
2650                        "prop_get NVME_REG_CAP failed\n");
2651                goto out_disconnect_admin_queue;
2652        }
2653
2654        ctrl->ctrl.sqsize =
2655                min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2656
2657        ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2658        if (ret)
2659                goto out_disconnect_admin_queue;
2660
2661        ctrl->ctrl.max_hw_sectors =
2662                (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2663
2664        ret = nvme_init_identify(&ctrl->ctrl);
2665        if (ret)
2666                goto out_disconnect_admin_queue;
2667
2668        /* sanity checks */
2669
2670        /* FC-NVME does not have other data in the capsule */
2671        if (ctrl->ctrl.icdoff) {
2672                dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2673                                ctrl->ctrl.icdoff);
2674                goto out_disconnect_admin_queue;
2675        }
2676
2677        /* FC-NVME supports normal SGL Data Block Descriptors */
2678
2679        if (opts->queue_size > ctrl->ctrl.maxcmd) {
2680                /* warn if maxcmd is lower than queue_size */
2681                dev_warn(ctrl->ctrl.device,
2682                        "queue_size %zu > ctrl maxcmd %u, reducing "
2683                        "to queue_size\n",
2684                        opts->queue_size, ctrl->ctrl.maxcmd);
2685                opts->queue_size = ctrl->ctrl.maxcmd;
2686        }
2687
2688        if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2689                /* warn if sqsize is lower than queue_size */
2690                dev_warn(ctrl->ctrl.device,
2691                        "queue_size %zu > ctrl sqsize %u, clamping down\n",
2692                        opts->queue_size, ctrl->ctrl.sqsize + 1);
2693                opts->queue_size = ctrl->ctrl.sqsize + 1;
2694        }
2695
2696        ret = nvme_fc_init_aen_ops(ctrl);
2697        if (ret)
2698                goto out_term_aen_ops;
2699
2700        /*
2701         * Create the io queues
2702         */
2703
2704        if (ctrl->ctrl.queue_count > 1) {
2705                if (ctrl->ctrl.state == NVME_CTRL_NEW)
2706                        ret = nvme_fc_create_io_queues(ctrl);
2707                else
2708                        ret = nvme_fc_reinit_io_queues(ctrl);
2709                if (ret)
2710                        goto out_term_aen_ops;
2711        }
2712
2713        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2714
2715        ctrl->ctrl.nr_reconnects = 0;
2716
2717        if (changed)
2718                nvme_start_ctrl(&ctrl->ctrl);
2719
2720        return 0;       /* Success */
2721
2722out_term_aen_ops:
2723        nvme_fc_term_aen_ops(ctrl);
2724out_disconnect_admin_queue:
2725        /* send a Disconnect(association) LS to fc-nvme target */
2726        nvme_fc_xmt_disconnect_assoc(ctrl);
2727out_delete_hw_queue:
2728        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2729out_free_queue:
2730        nvme_fc_free_queue(&ctrl->queues[0]);
2731        ctrl->assoc_active = false;
2732        nvme_fc_ctlr_inactive_on_rport(ctrl);
2733
2734        return ret;
2735}
2736
2737/*
2738 * This routine stops operation of the controller on the host side.
2739 * On the host os stack side: Admin and IO queues are stopped,
2740 *   outstanding ios on them terminated via FC ABTS.
2741 * On the link side: the association is terminated.
2742 */
2743static void
2744nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2745{
2746        unsigned long flags;
2747
2748        if (!ctrl->assoc_active)
2749                return;
2750        ctrl->assoc_active = false;
2751
2752        spin_lock_irqsave(&ctrl->lock, flags);
2753        ctrl->flags |= FCCTRL_TERMIO;
2754        ctrl->iocnt = 0;
2755        spin_unlock_irqrestore(&ctrl->lock, flags);
2756
2757        /*
2758         * If io queues are present, stop them and terminate all outstanding
2759         * ios on them. As FC allocates FC exchange for each io, the
2760         * transport must contact the LLDD to terminate the exchange,
2761         * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2762         * to tell us what io's are busy and invoke a transport routine
2763         * to kill them with the LLDD.  After terminating the exchange
2764         * the LLDD will call the transport's normal io done path, but it
2765         * will have an aborted status. The done path will return the
2766         * io requests back to the block layer as part of normal completions
2767         * (but with error status).
2768         */
2769        if (ctrl->ctrl.queue_count > 1) {
2770                nvme_stop_queues(&ctrl->ctrl);
2771                blk_mq_tagset_busy_iter(&ctrl->tag_set,
2772                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2773        }
2774
2775        /*
2776         * Other transports, which don't have link-level contexts bound
2777         * to sqe's, would try to gracefully shutdown the controller by
2778         * writing the registers for shutdown and polling (call
2779         * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2780         * just aborted and we will wait on those contexts, and given
2781         * there was no indication of how live the controlelr is on the
2782         * link, don't send more io to create more contexts for the
2783         * shutdown. Let the controller fail via keepalive failure if
2784         * its still present.
2785         */
2786
2787        /*
2788         * clean up the admin queue. Same thing as above.
2789         * use blk_mq_tagset_busy_itr() and the transport routine to
2790         * terminate the exchanges.
2791         */
2792        if (ctrl->ctrl.state != NVME_CTRL_NEW)
2793                blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2794        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2795                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2796
2797        /* kill the aens as they are a separate path */
2798        nvme_fc_abort_aen_ops(ctrl);
2799
2800        /* wait for all io that had to be aborted */
2801        spin_lock_irq(&ctrl->lock);
2802        wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2803        ctrl->flags &= ~FCCTRL_TERMIO;
2804        spin_unlock_irq(&ctrl->lock);
2805
2806        nvme_fc_term_aen_ops(ctrl);
2807
2808        /*
2809         * send a Disconnect(association) LS to fc-nvme target
2810         * Note: could have been sent at top of process, but
2811         * cleaner on link traffic if after the aborts complete.
2812         * Note: if association doesn't exist, association_id will be 0
2813         */
2814        if (ctrl->association_id)
2815                nvme_fc_xmt_disconnect_assoc(ctrl);
2816
2817        if (ctrl->ctrl.tagset) {
2818                nvme_fc_delete_hw_io_queues(ctrl);
2819                nvme_fc_free_io_queues(ctrl);
2820        }
2821
2822        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2823        nvme_fc_free_queue(&ctrl->queues[0]);
2824
2825        /* re-enable the admin_q so anything new can fast fail */
2826        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2827
2828        nvme_fc_ctlr_inactive_on_rport(ctrl);
2829}
2830
2831static void
2832nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2833{
2834        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2835
2836        cancel_delayed_work_sync(&ctrl->connect_work);
2837        /*
2838         * kill the association on the link side.  this will block
2839         * waiting for io to terminate
2840         */
2841        nvme_fc_delete_association(ctrl);
2842
2843        /* resume the io queues so that things will fast fail */
2844        nvme_start_queues(nctrl);
2845}
2846
2847static void
2848nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2849{
2850        struct nvme_fc_rport *rport = ctrl->rport;
2851        struct nvme_fc_remote_port *portptr = &rport->remoteport;
2852        unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2853        bool recon = true;
2854
2855        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2856                return;
2857
2858        if (portptr->port_state == FC_OBJSTATE_ONLINE)
2859                dev_info(ctrl->ctrl.device,
2860                        "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2861                        ctrl->cnum, status);
2862        else if (time_after_eq(jiffies, rport->dev_loss_end))
2863                recon = false;
2864
2865        if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2866                if (portptr->port_state == FC_OBJSTATE_ONLINE)
2867                        dev_info(ctrl->ctrl.device,
2868                                "NVME-FC{%d}: Reconnect attempt in %ld "
2869                                "seconds\n",
2870                                ctrl->cnum, recon_delay / HZ);
2871                else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2872                        recon_delay = rport->dev_loss_end - jiffies;
2873
2874                queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2875        } else {
2876                if (portptr->port_state == FC_OBJSTATE_ONLINE)
2877                        dev_warn(ctrl->ctrl.device,
2878                                "NVME-FC{%d}: Max reconnect attempts (%d) "
2879                                "reached.\n",
2880                                ctrl->cnum, ctrl->ctrl.nr_reconnects);
2881                else
2882                        dev_warn(ctrl->ctrl.device,
2883                                "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2884                                "while waiting for remoteport connectivity.\n",
2885                                ctrl->cnum, portptr->dev_loss_tmo);
2886                WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2887        }
2888}
2889
2890static void
2891nvme_fc_reset_ctrl_work(struct work_struct *work)
2892{
2893        struct nvme_fc_ctrl *ctrl =
2894                container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2895        int ret;
2896
2897        nvme_stop_ctrl(&ctrl->ctrl);
2898
2899        /* will block will waiting for io to terminate */
2900        nvme_fc_delete_association(ctrl);
2901
2902        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2903                dev_err(ctrl->ctrl.device,
2904                        "NVME-FC{%d}: error_recovery: Couldn't change state "
2905                        "to CONNECTING\n", ctrl->cnum);
2906                return;
2907        }
2908
2909        if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2910                ret = nvme_fc_create_association(ctrl);
2911        else
2912                ret = -ENOTCONN;
2913
2914        if (ret)
2915                nvme_fc_reconnect_or_delete(ctrl, ret);
2916        else
2917                dev_info(ctrl->ctrl.device,
2918                        "NVME-FC{%d}: controller reset complete\n",
2919                        ctrl->cnum);
2920}
2921
2922static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2923        .name                   = "fc",
2924        .module                 = THIS_MODULE,
2925        .flags                  = NVME_F_FABRICS,
2926        .reg_read32             = nvmf_reg_read32,
2927        .reg_read64             = nvmf_reg_read64,
2928        .reg_write32            = nvmf_reg_write32,
2929        .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2930        .submit_async_event     = nvme_fc_submit_async_event,
2931        .delete_ctrl            = nvme_fc_delete_ctrl,
2932        .get_address            = nvmf_get_address,
2933        .reinit_request         = nvme_fc_reinit_request,
2934};
2935
2936static void
2937nvme_fc_connect_ctrl_work(struct work_struct *work)
2938{
2939        int ret;
2940
2941        struct nvme_fc_ctrl *ctrl =
2942                        container_of(to_delayed_work(work),
2943                                struct nvme_fc_ctrl, connect_work);
2944
2945        ret = nvme_fc_create_association(ctrl);
2946        if (ret)
2947                nvme_fc_reconnect_or_delete(ctrl, ret);
2948        else
2949                dev_info(ctrl->ctrl.device,
2950                        "NVME-FC{%d}: controller reconnect complete\n",
2951                        ctrl->cnum);
2952}
2953
2954
2955static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2956        .queue_rq       = nvme_fc_queue_rq,
2957        .complete       = nvme_fc_complete_rq,
2958        .init_request   = nvme_fc_init_request,
2959        .exit_request   = nvme_fc_exit_request,
2960        .init_hctx      = nvme_fc_init_admin_hctx,
2961        .timeout        = nvme_fc_timeout,
2962};
2963
2964
2965/*
2966 * Fails a controller request if it matches an existing controller
2967 * (association) with the same tuple:
2968 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2969 *
2970 * The ports don't need to be compared as they are intrinsically
2971 * already matched by the port pointers supplied.
2972 */
2973static bool
2974nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2975                struct nvmf_ctrl_options *opts)
2976{
2977        struct nvme_fc_ctrl *ctrl;
2978        unsigned long flags;
2979        bool found = false;
2980
2981        spin_lock_irqsave(&rport->lock, flags);
2982        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2983                found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
2984                if (found)
2985                        break;
2986        }
2987        spin_unlock_irqrestore(&rport->lock, flags);
2988
2989        return found;
2990}
2991
2992static struct nvme_ctrl *
2993nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2994        struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2995{
2996        struct nvme_fc_ctrl *ctrl;
2997        unsigned long flags;
2998        int ret, idx, retry;
2999
3000        if (!(rport->remoteport.port_role &
3001            (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3002                ret = -EBADR;
3003                goto out_fail;
3004        }
3005
3006        if (!opts->duplicate_connect &&
3007            nvme_fc_existing_controller(rport, opts)) {
3008                ret = -EALREADY;
3009                goto out_fail;
3010        }
3011
3012        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3013        if (!ctrl) {
3014                ret = -ENOMEM;
3015                goto out_fail;
3016        }
3017
3018        idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3019        if (idx < 0) {
3020                ret = -ENOSPC;
3021                goto out_free_ctrl;
3022        }
3023
3024        ctrl->ctrl.opts = opts;
3025        INIT_LIST_HEAD(&ctrl->ctrl_list);
3026        ctrl->lport = lport;
3027        ctrl->rport = rport;
3028        ctrl->dev = lport->dev;
3029        ctrl->cnum = idx;
3030        ctrl->assoc_active = false;
3031        init_waitqueue_head(&ctrl->ioabort_wait);
3032
3033        get_device(ctrl->dev);
3034        kref_init(&ctrl->ref);
3035
3036        INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3037        INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3038        spin_lock_init(&ctrl->lock);
3039
3040        /* io queue count */
3041        ctrl->ctrl.queue_count = min_t(unsigned int,
3042                                opts->nr_io_queues,
3043                                lport->ops->max_hw_queues);
3044        ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3045
3046        ctrl->ctrl.sqsize = opts->queue_size - 1;
3047        ctrl->ctrl.kato = opts->kato;
3048
3049        ret = -ENOMEM;
3050        ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3051                                sizeof(struct nvme_fc_queue), GFP_KERNEL);
3052        if (!ctrl->queues)
3053                goto out_free_ida;
3054
3055        memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3056        ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3057        ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3058        ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3059        ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3060        ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3061                                        (SG_CHUNK_SIZE *
3062                                                sizeof(struct scatterlist)) +
3063                                        ctrl->lport->ops->fcprqst_priv_sz;
3064        ctrl->admin_tag_set.driver_data = ctrl;
3065        ctrl->admin_tag_set.nr_hw_queues = 1;
3066        ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3067        ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3068
3069        ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3070        if (ret)
3071                goto out_free_queues;
3072        ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3073
3074        ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3075        if (IS_ERR(ctrl->ctrl.admin_q)) {
3076                ret = PTR_ERR(ctrl->ctrl.admin_q);
3077                goto out_free_admin_tag_set;
3078        }
3079
3080        /*
3081         * Would have been nice to init io queues tag set as well.
3082         * However, we require interaction from the controller
3083         * for max io queue count before we can do so.
3084         * Defer this to the connect path.
3085         */
3086
3087        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3088        if (ret)
3089                goto out_cleanup_admin_q;
3090
3091        /* at this point, teardown path changes to ref counting on nvme ctrl */
3092
3093        spin_lock_irqsave(&rport->lock, flags);
3094        list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3095        spin_unlock_irqrestore(&rport->lock, flags);
3096
3097        /*
3098         * It's possible that transactions used to create the association
3099         * may fail. Examples: CreateAssociation LS or CreateIOConnection
3100         * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3101         * command times out for one of the actions to init the controller
3102         * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3103         * transport errors (frame drop, LS failure) inherently must kill
3104         * the association. The transport is coded so that any command used
3105         * to create the association (prior to a LIVE state transition
3106         * while NEW or CONNECTING) will fail if it completes in error or
3107         * times out.
3108         *
3109         * As such: as the connect request was mostly likely due to a
3110         * udev event that discovered the remote port, meaning there is
3111         * not an admin or script there to restart if the connect
3112         * request fails, retry the initial connection creation up to
3113         * three times before giving up and declaring failure.
3114         */
3115        for (retry = 0; retry < 3; retry++) {
3116                ret = nvme_fc_create_association(ctrl);
3117                if (!ret)
3118                        break;
3119        }
3120
3121        if (ret) {
3122                nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3123                cancel_work_sync(&ctrl->ctrl.reset_work);
3124                cancel_delayed_work_sync(&ctrl->connect_work);
3125
3126                /* couldn't schedule retry - fail out */
3127                dev_err(ctrl->ctrl.device,
3128                        "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3129
3130                ctrl->ctrl.opts = NULL;
3131
3132                /* initiate nvme ctrl ref counting teardown */
3133                nvme_uninit_ctrl(&ctrl->ctrl);
3134
3135                /* Remove core ctrl ref. */
3136                nvme_put_ctrl(&ctrl->ctrl);
3137
3138                /* as we're past the point where we transition to the ref
3139                 * counting teardown path, if we return a bad pointer here,
3140                 * the calling routine, thinking it's prior to the
3141                 * transition, will do an rport put. Since the teardown
3142                 * path also does a rport put, we do an extra get here to
3143                 * so proper order/teardown happens.
3144                 */
3145                nvme_fc_rport_get(rport);
3146
3147                if (ret > 0)
3148                        ret = -EIO;
3149                return ERR_PTR(ret);
3150        }
3151
3152        nvme_get_ctrl(&ctrl->ctrl);
3153
3154        dev_info(ctrl->ctrl.device,
3155                "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3156                ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3157
3158        return &ctrl->ctrl;
3159
3160out_cleanup_admin_q:
3161        blk_cleanup_queue(ctrl->ctrl.admin_q);
3162out_free_admin_tag_set:
3163        blk_mq_free_tag_set(&ctrl->admin_tag_set);
3164out_free_queues:
3165        kfree(ctrl->queues);
3166out_free_ida:
3167        put_device(ctrl->dev);
3168        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3169out_free_ctrl:
3170        kfree(ctrl);
3171out_fail:
3172        /* exit via here doesn't follow ctlr ref points */
3173        return ERR_PTR(ret);
3174}
3175
3176
3177struct nvmet_fc_traddr {
3178        u64     nn;
3179        u64     pn;
3180};
3181
3182static int
3183__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3184{
3185        u64 token64;
3186
3187        if (match_u64(sstr, &token64))
3188                return -EINVAL;
3189        *val = token64;
3190
3191        return 0;
3192}
3193
3194/*
3195 * This routine validates and extracts the WWN's from the TRADDR string.
3196 * As kernel parsers need the 0x to determine number base, universally
3197 * build string to parse with 0x prefix before parsing name strings.
3198 */
3199static int
3200nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3201{
3202        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3203        substring_t wwn = { name, &name[sizeof(name)-1] };
3204        int nnoffset, pnoffset;
3205
3206        /* validate it string one of the 2 allowed formats */
3207        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3208                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3209                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3210                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3211                nnoffset = NVME_FC_TRADDR_OXNNLEN;
3212                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3213                                                NVME_FC_TRADDR_OXNNLEN;
3214        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3215                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3216                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3217                                "pn-", NVME_FC_TRADDR_NNLEN))) {
3218                nnoffset = NVME_FC_TRADDR_NNLEN;
3219                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3220        } else
3221                goto out_einval;
3222
3223        name[0] = '0';
3224        name[1] = 'x';
3225        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3226
3227        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3228        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3229                goto out_einval;
3230
3231        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3232        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3233                goto out_einval;
3234
3235        return 0;
3236
3237out_einval:
3238        pr_warn("%s: bad traddr string\n", __func__);
3239        return -EINVAL;
3240}
3241
3242static struct nvme_ctrl *
3243nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3244{
3245        struct nvme_fc_lport *lport;
3246        struct nvme_fc_rport *rport;
3247        struct nvme_ctrl *ctrl;
3248        struct nvmet_fc_traddr laddr = { 0L, 0L };
3249        struct nvmet_fc_traddr raddr = { 0L, 0L };
3250        unsigned long flags;
3251        int ret;
3252
3253        ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3254        if (ret || !raddr.nn || !raddr.pn)
3255                return ERR_PTR(-EINVAL);
3256
3257        ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3258        if (ret || !laddr.nn || !laddr.pn)
3259                return ERR_PTR(-EINVAL);
3260
3261        /* find the host and remote ports to connect together */
3262        spin_lock_irqsave(&nvme_fc_lock, flags);
3263        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3264                if (lport->localport.node_name != laddr.nn ||
3265                    lport->localport.port_name != laddr.pn)
3266                        continue;
3267
3268                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3269                        if (rport->remoteport.node_name != raddr.nn ||
3270                            rport->remoteport.port_name != raddr.pn)
3271                                continue;
3272
3273                        /* if fail to get reference fall through. Will error */
3274                        if (!nvme_fc_rport_get(rport))
3275                                break;
3276
3277                        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3278
3279                        ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3280                        if (IS_ERR(ctrl))
3281                                nvme_fc_rport_put(rport);
3282                        return ctrl;
3283                }
3284        }
3285        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3286
3287        return ERR_PTR(-ENOENT);
3288}
3289
3290
3291static struct nvmf_transport_ops nvme_fc_transport = {
3292        .name           = "fc",
3293        .module         = THIS_MODULE,
3294        .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3295        .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3296        .create_ctrl    = nvme_fc_create_ctrl,
3297};
3298
3299static int __init nvme_fc_init_module(void)
3300{
3301        int ret;
3302
3303        /*
3304         * NOTE:
3305         * It is expected that in the future the kernel will combine
3306         * the FC-isms that are currently under scsi and now being
3307         * added to by NVME into a new standalone FC class. The SCSI
3308         * and NVME protocols and their devices would be under this
3309         * new FC class.
3310         *
3311         * As we need something to post FC-specific udev events to,
3312         * specifically for nvme probe events, start by creating the
3313         * new device class.  When the new standalone FC class is
3314         * put in place, this code will move to a more generic
3315         * location for the class.
3316         */
3317        fc_class = class_create(THIS_MODULE, "fc");
3318        if (IS_ERR(fc_class)) {
3319                pr_err("couldn't register class fc\n");
3320                return PTR_ERR(fc_class);
3321        }
3322
3323        /*
3324         * Create a device for the FC-centric udev events
3325         */
3326        fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3327                                "fc_udev_device");
3328        if (IS_ERR(fc_udev_device)) {
3329                pr_err("couldn't create fc_udev device!\n");
3330                ret = PTR_ERR(fc_udev_device);
3331                goto out_destroy_class;
3332        }
3333
3334        ret = nvmf_register_transport(&nvme_fc_transport);
3335        if (ret)
3336                goto out_destroy_device;
3337
3338        return 0;
3339
3340out_destroy_device:
3341        device_destroy(fc_class, MKDEV(0, 0));
3342out_destroy_class:
3343        class_destroy(fc_class);
3344        return ret;
3345}
3346
3347static void __exit nvme_fc_exit_module(void)
3348{
3349        /* sanity check - all lports should be removed */
3350        if (!list_empty(&nvme_fc_lport_list))
3351                pr_warn("%s: localport list not empty\n", __func__);
3352
3353        nvmf_unregister_transport(&nvme_fc_transport);
3354
3355        ida_destroy(&nvme_fc_local_port_cnt);
3356        ida_destroy(&nvme_fc_ctrl_cnt);
3357
3358        device_destroy(fc_class, MKDEV(0, 0));
3359        class_destroy(fc_class);
3360}
3361
3362module_init(nvme_fc_init_module);
3363module_exit(nvme_fc_exit_module);
3364
3365MODULE_LICENSE("GPL v2");
3366