linux/drivers/perf/arm_pmu.c
<<
>>
Prefs
   1#undef DEBUG
   2
   3/*
   4 * ARM performance counter support.
   5 *
   6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
   7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
   8 *
   9 * This code is based on the sparc64 perf event code, which is in turn based
  10 * on the x86 code.
  11 */
  12#define pr_fmt(fmt) "hw perfevents: " fmt
  13
  14#include <linux/bitmap.h>
  15#include <linux/cpumask.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/export.h>
  18#include <linux/kernel.h>
  19#include <linux/perf/arm_pmu.h>
  20#include <linux/slab.h>
  21#include <linux/sched/clock.h>
  22#include <linux/spinlock.h>
  23#include <linux/irq.h>
  24#include <linux/irqdesc.h>
  25
  26#include <asm/irq_regs.h>
  27
  28static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
  29static DEFINE_PER_CPU(int, cpu_irq);
  30
  31static int
  32armpmu_map_cache_event(const unsigned (*cache_map)
  33                                      [PERF_COUNT_HW_CACHE_MAX]
  34                                      [PERF_COUNT_HW_CACHE_OP_MAX]
  35                                      [PERF_COUNT_HW_CACHE_RESULT_MAX],
  36                       u64 config)
  37{
  38        unsigned int cache_type, cache_op, cache_result, ret;
  39
  40        cache_type = (config >>  0) & 0xff;
  41        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  42                return -EINVAL;
  43
  44        cache_op = (config >>  8) & 0xff;
  45        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  46                return -EINVAL;
  47
  48        cache_result = (config >> 16) & 0xff;
  49        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  50                return -EINVAL;
  51
  52        if (!cache_map)
  53                return -ENOENT;
  54
  55        ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  56
  57        if (ret == CACHE_OP_UNSUPPORTED)
  58                return -ENOENT;
  59
  60        return ret;
  61}
  62
  63static int
  64armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  65{
  66        int mapping;
  67
  68        if (config >= PERF_COUNT_HW_MAX)
  69                return -EINVAL;
  70
  71        if (!event_map)
  72                return -ENOENT;
  73
  74        mapping = (*event_map)[config];
  75        return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  76}
  77
  78static int
  79armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  80{
  81        return (int)(config & raw_event_mask);
  82}
  83
  84int
  85armpmu_map_event(struct perf_event *event,
  86                 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  87                 const unsigned (*cache_map)
  88                                [PERF_COUNT_HW_CACHE_MAX]
  89                                [PERF_COUNT_HW_CACHE_OP_MAX]
  90                                [PERF_COUNT_HW_CACHE_RESULT_MAX],
  91                 u32 raw_event_mask)
  92{
  93        u64 config = event->attr.config;
  94        int type = event->attr.type;
  95
  96        if (type == event->pmu->type)
  97                return armpmu_map_raw_event(raw_event_mask, config);
  98
  99        switch (type) {
 100        case PERF_TYPE_HARDWARE:
 101                return armpmu_map_hw_event(event_map, config);
 102        case PERF_TYPE_HW_CACHE:
 103                return armpmu_map_cache_event(cache_map, config);
 104        case PERF_TYPE_RAW:
 105                return armpmu_map_raw_event(raw_event_mask, config);
 106        }
 107
 108        return -ENOENT;
 109}
 110
 111int armpmu_event_set_period(struct perf_event *event)
 112{
 113        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 114        struct hw_perf_event *hwc = &event->hw;
 115        s64 left = local64_read(&hwc->period_left);
 116        s64 period = hwc->sample_period;
 117        int ret = 0;
 118
 119        if (unlikely(left <= -period)) {
 120                left = period;
 121                local64_set(&hwc->period_left, left);
 122                hwc->last_period = period;
 123                ret = 1;
 124        }
 125
 126        if (unlikely(left <= 0)) {
 127                left += period;
 128                local64_set(&hwc->period_left, left);
 129                hwc->last_period = period;
 130                ret = 1;
 131        }
 132
 133        /*
 134         * Limit the maximum period to prevent the counter value
 135         * from overtaking the one we are about to program. In
 136         * effect we are reducing max_period to account for
 137         * interrupt latency (and we are being very conservative).
 138         */
 139        if (left > (armpmu->max_period >> 1))
 140                left = armpmu->max_period >> 1;
 141
 142        local64_set(&hwc->prev_count, (u64)-left);
 143
 144        armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
 145
 146        perf_event_update_userpage(event);
 147
 148        return ret;
 149}
 150
 151u64 armpmu_event_update(struct perf_event *event)
 152{
 153        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 154        struct hw_perf_event *hwc = &event->hw;
 155        u64 delta, prev_raw_count, new_raw_count;
 156
 157again:
 158        prev_raw_count = local64_read(&hwc->prev_count);
 159        new_raw_count = armpmu->read_counter(event);
 160
 161        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 162                             new_raw_count) != prev_raw_count)
 163                goto again;
 164
 165        delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
 166
 167        local64_add(delta, &event->count);
 168        local64_sub(delta, &hwc->period_left);
 169
 170        return new_raw_count;
 171}
 172
 173static void
 174armpmu_read(struct perf_event *event)
 175{
 176        armpmu_event_update(event);
 177}
 178
 179static void
 180armpmu_stop(struct perf_event *event, int flags)
 181{
 182        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 183        struct hw_perf_event *hwc = &event->hw;
 184
 185        /*
 186         * ARM pmu always has to update the counter, so ignore
 187         * PERF_EF_UPDATE, see comments in armpmu_start().
 188         */
 189        if (!(hwc->state & PERF_HES_STOPPED)) {
 190                armpmu->disable(event);
 191                armpmu_event_update(event);
 192                hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 193        }
 194}
 195
 196static void armpmu_start(struct perf_event *event, int flags)
 197{
 198        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 199        struct hw_perf_event *hwc = &event->hw;
 200
 201        /*
 202         * ARM pmu always has to reprogram the period, so ignore
 203         * PERF_EF_RELOAD, see the comment below.
 204         */
 205        if (flags & PERF_EF_RELOAD)
 206                WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 207
 208        hwc->state = 0;
 209        /*
 210         * Set the period again. Some counters can't be stopped, so when we
 211         * were stopped we simply disabled the IRQ source and the counter
 212         * may have been left counting. If we don't do this step then we may
 213         * get an interrupt too soon or *way* too late if the overflow has
 214         * happened since disabling.
 215         */
 216        armpmu_event_set_period(event);
 217        armpmu->enable(event);
 218}
 219
 220static void
 221armpmu_del(struct perf_event *event, int flags)
 222{
 223        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 224        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 225        struct hw_perf_event *hwc = &event->hw;
 226        int idx = hwc->idx;
 227
 228        armpmu_stop(event, PERF_EF_UPDATE);
 229        hw_events->events[idx] = NULL;
 230        clear_bit(idx, hw_events->used_mask);
 231        if (armpmu->clear_event_idx)
 232                armpmu->clear_event_idx(hw_events, event);
 233
 234        perf_event_update_userpage(event);
 235}
 236
 237static int
 238armpmu_add(struct perf_event *event, int flags)
 239{
 240        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 241        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 242        struct hw_perf_event *hwc = &event->hw;
 243        int idx;
 244
 245        /* An event following a process won't be stopped earlier */
 246        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 247                return -ENOENT;
 248
 249        /* If we don't have a space for the counter then finish early. */
 250        idx = armpmu->get_event_idx(hw_events, event);
 251        if (idx < 0)
 252                return idx;
 253
 254        /*
 255         * If there is an event in the counter we are going to use then make
 256         * sure it is disabled.
 257         */
 258        event->hw.idx = idx;
 259        armpmu->disable(event);
 260        hw_events->events[idx] = event;
 261
 262        hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 263        if (flags & PERF_EF_START)
 264                armpmu_start(event, PERF_EF_RELOAD);
 265
 266        /* Propagate our changes to the userspace mapping. */
 267        perf_event_update_userpage(event);
 268
 269        return 0;
 270}
 271
 272static int
 273validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
 274                               struct perf_event *event)
 275{
 276        struct arm_pmu *armpmu;
 277
 278        if (is_software_event(event))
 279                return 1;
 280
 281        /*
 282         * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
 283         * core perf code won't check that the pmu->ctx == leader->ctx
 284         * until after pmu->event_init(event).
 285         */
 286        if (event->pmu != pmu)
 287                return 0;
 288
 289        if (event->state < PERF_EVENT_STATE_OFF)
 290                return 1;
 291
 292        if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
 293                return 1;
 294
 295        armpmu = to_arm_pmu(event->pmu);
 296        return armpmu->get_event_idx(hw_events, event) >= 0;
 297}
 298
 299static int
 300validate_group(struct perf_event *event)
 301{
 302        struct perf_event *sibling, *leader = event->group_leader;
 303        struct pmu_hw_events fake_pmu;
 304
 305        /*
 306         * Initialise the fake PMU. We only need to populate the
 307         * used_mask for the purposes of validation.
 308         */
 309        memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
 310
 311        if (!validate_event(event->pmu, &fake_pmu, leader))
 312                return -EINVAL;
 313
 314        for_each_sibling_event(sibling, leader) {
 315                if (!validate_event(event->pmu, &fake_pmu, sibling))
 316                        return -EINVAL;
 317        }
 318
 319        if (!validate_event(event->pmu, &fake_pmu, event))
 320                return -EINVAL;
 321
 322        return 0;
 323}
 324
 325static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
 326{
 327        struct arm_pmu *armpmu;
 328        int ret;
 329        u64 start_clock, finish_clock;
 330
 331        /*
 332         * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
 333         * the handlers expect a struct arm_pmu*. The percpu_irq framework will
 334         * do any necessary shifting, we just need to perform the first
 335         * dereference.
 336         */
 337        armpmu = *(void **)dev;
 338        if (WARN_ON_ONCE(!armpmu))
 339                return IRQ_NONE;
 340
 341        start_clock = sched_clock();
 342        ret = armpmu->handle_irq(irq, armpmu);
 343        finish_clock = sched_clock();
 344
 345        perf_sample_event_took(finish_clock - start_clock);
 346        return ret;
 347}
 348
 349static int
 350event_requires_mode_exclusion(struct perf_event_attr *attr)
 351{
 352        return attr->exclude_idle || attr->exclude_user ||
 353               attr->exclude_kernel || attr->exclude_hv;
 354}
 355
 356static int
 357__hw_perf_event_init(struct perf_event *event)
 358{
 359        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 360        struct hw_perf_event *hwc = &event->hw;
 361        int mapping;
 362
 363        mapping = armpmu->map_event(event);
 364
 365        if (mapping < 0) {
 366                pr_debug("event %x:%llx not supported\n", event->attr.type,
 367                         event->attr.config);
 368                return mapping;
 369        }
 370
 371        /*
 372         * We don't assign an index until we actually place the event onto
 373         * hardware. Use -1 to signify that we haven't decided where to put it
 374         * yet. For SMP systems, each core has it's own PMU so we can't do any
 375         * clever allocation or constraints checking at this point.
 376         */
 377        hwc->idx                = -1;
 378        hwc->config_base        = 0;
 379        hwc->config             = 0;
 380        hwc->event_base         = 0;
 381
 382        /*
 383         * Check whether we need to exclude the counter from certain modes.
 384         */
 385        if ((!armpmu->set_event_filter ||
 386             armpmu->set_event_filter(hwc, &event->attr)) &&
 387             event_requires_mode_exclusion(&event->attr)) {
 388                pr_debug("ARM performance counters do not support "
 389                         "mode exclusion\n");
 390                return -EOPNOTSUPP;
 391        }
 392
 393        /*
 394         * Store the event encoding into the config_base field.
 395         */
 396        hwc->config_base            |= (unsigned long)mapping;
 397
 398        if (!is_sampling_event(event)) {
 399                /*
 400                 * For non-sampling runs, limit the sample_period to half
 401                 * of the counter width. That way, the new counter value
 402                 * is far less likely to overtake the previous one unless
 403                 * you have some serious IRQ latency issues.
 404                 */
 405                hwc->sample_period  = armpmu->max_period >> 1;
 406                hwc->last_period    = hwc->sample_period;
 407                local64_set(&hwc->period_left, hwc->sample_period);
 408        }
 409
 410        if (event->group_leader != event) {
 411                if (validate_group(event) != 0)
 412                        return -EINVAL;
 413        }
 414
 415        return 0;
 416}
 417
 418static int armpmu_event_init(struct perf_event *event)
 419{
 420        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 421
 422        /*
 423         * Reject CPU-affine events for CPUs that are of a different class to
 424         * that which this PMU handles. Process-following events (where
 425         * event->cpu == -1) can be migrated between CPUs, and thus we have to
 426         * reject them later (in armpmu_add) if they're scheduled on a
 427         * different class of CPU.
 428         */
 429        if (event->cpu != -1 &&
 430                !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
 431                return -ENOENT;
 432
 433        /* does not support taken branch sampling */
 434        if (has_branch_stack(event))
 435                return -EOPNOTSUPP;
 436
 437        if (armpmu->map_event(event) == -ENOENT)
 438                return -ENOENT;
 439
 440        return __hw_perf_event_init(event);
 441}
 442
 443static void armpmu_enable(struct pmu *pmu)
 444{
 445        struct arm_pmu *armpmu = to_arm_pmu(pmu);
 446        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 447        int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 448
 449        /* For task-bound events we may be called on other CPUs */
 450        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 451                return;
 452
 453        if (enabled)
 454                armpmu->start(armpmu);
 455}
 456
 457static void armpmu_disable(struct pmu *pmu)
 458{
 459        struct arm_pmu *armpmu = to_arm_pmu(pmu);
 460
 461        /* For task-bound events we may be called on other CPUs */
 462        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 463                return;
 464
 465        armpmu->stop(armpmu);
 466}
 467
 468/*
 469 * In heterogeneous systems, events are specific to a particular
 470 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
 471 * the same microarchitecture.
 472 */
 473static int armpmu_filter_match(struct perf_event *event)
 474{
 475        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 476        unsigned int cpu = smp_processor_id();
 477        return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
 478}
 479
 480static ssize_t armpmu_cpumask_show(struct device *dev,
 481                                   struct device_attribute *attr, char *buf)
 482{
 483        struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
 484        return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
 485}
 486
 487static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
 488
 489static struct attribute *armpmu_common_attrs[] = {
 490        &dev_attr_cpus.attr,
 491        NULL,
 492};
 493
 494static struct attribute_group armpmu_common_attr_group = {
 495        .attrs = armpmu_common_attrs,
 496};
 497
 498/* Set at runtime when we know what CPU type we are. */
 499static struct arm_pmu *__oprofile_cpu_pmu;
 500
 501/*
 502 * Despite the names, these two functions are CPU-specific and are used
 503 * by the OProfile/perf code.
 504 */
 505const char *perf_pmu_name(void)
 506{
 507        if (!__oprofile_cpu_pmu)
 508                return NULL;
 509
 510        return __oprofile_cpu_pmu->name;
 511}
 512EXPORT_SYMBOL_GPL(perf_pmu_name);
 513
 514int perf_num_counters(void)
 515{
 516        int max_events = 0;
 517
 518        if (__oprofile_cpu_pmu != NULL)
 519                max_events = __oprofile_cpu_pmu->num_events;
 520
 521        return max_events;
 522}
 523EXPORT_SYMBOL_GPL(perf_num_counters);
 524
 525static int armpmu_count_irq_users(const int irq)
 526{
 527        int cpu, count = 0;
 528
 529        for_each_possible_cpu(cpu) {
 530                if (per_cpu(cpu_irq, cpu) == irq)
 531                        count++;
 532        }
 533
 534        return count;
 535}
 536
 537void armpmu_free_irq(int irq, int cpu)
 538{
 539        if (per_cpu(cpu_irq, cpu) == 0)
 540                return;
 541        if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
 542                return;
 543
 544        if (!irq_is_percpu_devid(irq))
 545                free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
 546        else if (armpmu_count_irq_users(irq) == 1)
 547                free_percpu_irq(irq, &cpu_armpmu);
 548
 549        per_cpu(cpu_irq, cpu) = 0;
 550}
 551
 552int armpmu_request_irq(int irq, int cpu)
 553{
 554        int err = 0;
 555        const irq_handler_t handler = armpmu_dispatch_irq;
 556        if (!irq)
 557                return 0;
 558
 559        if (!irq_is_percpu_devid(irq)) {
 560                unsigned long irq_flags;
 561
 562                err = irq_force_affinity(irq, cpumask_of(cpu));
 563
 564                if (err && num_possible_cpus() > 1) {
 565                        pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
 566                                irq, cpu);
 567                        goto err_out;
 568                }
 569
 570                irq_flags = IRQF_PERCPU |
 571                            IRQF_NOBALANCING |
 572                            IRQF_NO_THREAD;
 573
 574                irq_set_status_flags(irq, IRQ_NOAUTOEN);
 575                err = request_irq(irq, handler, irq_flags, "arm-pmu",
 576                                  per_cpu_ptr(&cpu_armpmu, cpu));
 577        } else if (armpmu_count_irq_users(irq) == 0) {
 578                err = request_percpu_irq(irq, handler, "arm-pmu",
 579                                         &cpu_armpmu);
 580        }
 581
 582        if (err)
 583                goto err_out;
 584
 585        per_cpu(cpu_irq, cpu) = irq;
 586        return 0;
 587
 588err_out:
 589        pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
 590        return err;
 591}
 592
 593static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
 594{
 595        struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
 596        return per_cpu(hw_events->irq, cpu);
 597}
 598
 599/*
 600 * PMU hardware loses all context when a CPU goes offline.
 601 * When a CPU is hotplugged back in, since some hardware registers are
 602 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
 603 * junk values out of them.
 604 */
 605static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
 606{
 607        struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
 608        int irq;
 609
 610        if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 611                return 0;
 612        if (pmu->reset)
 613                pmu->reset(pmu);
 614
 615        per_cpu(cpu_armpmu, cpu) = pmu;
 616
 617        irq = armpmu_get_cpu_irq(pmu, cpu);
 618        if (irq) {
 619                if (irq_is_percpu_devid(irq))
 620                        enable_percpu_irq(irq, IRQ_TYPE_NONE);
 621                else
 622                        enable_irq(irq);
 623        }
 624
 625        return 0;
 626}
 627
 628static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
 629{
 630        struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
 631        int irq;
 632
 633        if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 634                return 0;
 635
 636        irq = armpmu_get_cpu_irq(pmu, cpu);
 637        if (irq) {
 638                if (irq_is_percpu_devid(irq))
 639                        disable_percpu_irq(irq);
 640                else
 641                        disable_irq_nosync(irq);
 642        }
 643
 644        per_cpu(cpu_armpmu, cpu) = NULL;
 645
 646        return 0;
 647}
 648
 649#ifdef CONFIG_CPU_PM
 650static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
 651{
 652        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 653        struct perf_event *event;
 654        int idx;
 655
 656        for (idx = 0; idx < armpmu->num_events; idx++) {
 657                /*
 658                 * If the counter is not used skip it, there is no
 659                 * need of stopping/restarting it.
 660                 */
 661                if (!test_bit(idx, hw_events->used_mask))
 662                        continue;
 663
 664                event = hw_events->events[idx];
 665
 666                switch (cmd) {
 667                case CPU_PM_ENTER:
 668                        /*
 669                         * Stop and update the counter
 670                         */
 671                        armpmu_stop(event, PERF_EF_UPDATE);
 672                        break;
 673                case CPU_PM_EXIT:
 674                case CPU_PM_ENTER_FAILED:
 675                         /*
 676                          * Restore and enable the counter.
 677                          * armpmu_start() indirectly calls
 678                          *
 679                          * perf_event_update_userpage()
 680                          *
 681                          * that requires RCU read locking to be functional,
 682                          * wrap the call within RCU_NONIDLE to make the
 683                          * RCU subsystem aware this cpu is not idle from
 684                          * an RCU perspective for the armpmu_start() call
 685                          * duration.
 686                          */
 687                        RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
 688                        break;
 689                default:
 690                        break;
 691                }
 692        }
 693}
 694
 695static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
 696                             void *v)
 697{
 698        struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
 699        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 700        int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 701
 702        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 703                return NOTIFY_DONE;
 704
 705        /*
 706         * Always reset the PMU registers on power-up even if
 707         * there are no events running.
 708         */
 709        if (cmd == CPU_PM_EXIT && armpmu->reset)
 710                armpmu->reset(armpmu);
 711
 712        if (!enabled)
 713                return NOTIFY_OK;
 714
 715        switch (cmd) {
 716        case CPU_PM_ENTER:
 717                armpmu->stop(armpmu);
 718                cpu_pm_pmu_setup(armpmu, cmd);
 719                break;
 720        case CPU_PM_EXIT:
 721                cpu_pm_pmu_setup(armpmu, cmd);
 722        case CPU_PM_ENTER_FAILED:
 723                armpmu->start(armpmu);
 724                break;
 725        default:
 726                return NOTIFY_DONE;
 727        }
 728
 729        return NOTIFY_OK;
 730}
 731
 732static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
 733{
 734        cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
 735        return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
 736}
 737
 738static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
 739{
 740        cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
 741}
 742#else
 743static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
 744static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
 745#endif
 746
 747static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
 748{
 749        int err;
 750
 751        err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
 752                                       &cpu_pmu->node);
 753        if (err)
 754                goto out;
 755
 756        err = cpu_pm_pmu_register(cpu_pmu);
 757        if (err)
 758                goto out_unregister;
 759
 760        return 0;
 761
 762out_unregister:
 763        cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 764                                            &cpu_pmu->node);
 765out:
 766        return err;
 767}
 768
 769static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
 770{
 771        cpu_pm_pmu_unregister(cpu_pmu);
 772        cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 773                                            &cpu_pmu->node);
 774}
 775
 776static struct arm_pmu *__armpmu_alloc(gfp_t flags)
 777{
 778        struct arm_pmu *pmu;
 779        int cpu;
 780
 781        pmu = kzalloc(sizeof(*pmu), flags);
 782        if (!pmu) {
 783                pr_info("failed to allocate PMU device!\n");
 784                goto out;
 785        }
 786
 787        pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
 788        if (!pmu->hw_events) {
 789                pr_info("failed to allocate per-cpu PMU data.\n");
 790                goto out_free_pmu;
 791        }
 792
 793        pmu->pmu = (struct pmu) {
 794                .pmu_enable     = armpmu_enable,
 795                .pmu_disable    = armpmu_disable,
 796                .event_init     = armpmu_event_init,
 797                .add            = armpmu_add,
 798                .del            = armpmu_del,
 799                .start          = armpmu_start,
 800                .stop           = armpmu_stop,
 801                .read           = armpmu_read,
 802                .filter_match   = armpmu_filter_match,
 803                .attr_groups    = pmu->attr_groups,
 804                /*
 805                 * This is a CPU PMU potentially in a heterogeneous
 806                 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
 807                 * and we have taken ctx sharing into account (e.g. with our
 808                 * pmu::filter_match callback and pmu::event_init group
 809                 * validation).
 810                 */
 811                .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
 812        };
 813
 814        pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
 815                &armpmu_common_attr_group;
 816
 817        for_each_possible_cpu(cpu) {
 818                struct pmu_hw_events *events;
 819
 820                events = per_cpu_ptr(pmu->hw_events, cpu);
 821                raw_spin_lock_init(&events->pmu_lock);
 822                events->percpu_pmu = pmu;
 823        }
 824
 825        return pmu;
 826
 827out_free_pmu:
 828        kfree(pmu);
 829out:
 830        return NULL;
 831}
 832
 833struct arm_pmu *armpmu_alloc(void)
 834{
 835        return __armpmu_alloc(GFP_KERNEL);
 836}
 837
 838struct arm_pmu *armpmu_alloc_atomic(void)
 839{
 840        return __armpmu_alloc(GFP_ATOMIC);
 841}
 842
 843
 844void armpmu_free(struct arm_pmu *pmu)
 845{
 846        free_percpu(pmu->hw_events);
 847        kfree(pmu);
 848}
 849
 850int armpmu_register(struct arm_pmu *pmu)
 851{
 852        int ret;
 853
 854        ret = cpu_pmu_init(pmu);
 855        if (ret)
 856                return ret;
 857
 858        ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
 859        if (ret)
 860                goto out_destroy;
 861
 862        if (!__oprofile_cpu_pmu)
 863                __oprofile_cpu_pmu = pmu;
 864
 865        pr_info("enabled with %s PMU driver, %d counters available\n",
 866                pmu->name, pmu->num_events);
 867
 868        return 0;
 869
 870out_destroy:
 871        cpu_pmu_destroy(pmu);
 872        return ret;
 873}
 874
 875static int arm_pmu_hp_init(void)
 876{
 877        int ret;
 878
 879        ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
 880                                      "perf/arm/pmu:starting",
 881                                      arm_perf_starting_cpu,
 882                                      arm_perf_teardown_cpu);
 883        if (ret)
 884                pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
 885                       ret);
 886        return ret;
 887}
 888subsys_initcall(arm_pmu_hp_init);
 889