linux/drivers/rapidio/rio.c
<<
>>
Prefs
   1/*
   2 * RapidIO interconnect services
   3 * (RapidIO Interconnect Specification, http://www.rapidio.org)
   4 *
   5 * Copyright 2005 MontaVista Software, Inc.
   6 * Matt Porter <mporter@kernel.crashing.org>
   7 *
   8 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
   9 * Alex Bounine <alexandre.bounine@idt.com>
  10 *
  11 * This program is free software; you can redistribute  it and/or modify it
  12 * under  the terms of  the GNU General  Public License as published by the
  13 * Free Software Foundation;  either version 2 of the  License, or (at your
  14 * option) any later version.
  15 */
  16
  17#include <linux/types.h>
  18#include <linux/kernel.h>
  19
  20#include <linux/delay.h>
  21#include <linux/init.h>
  22#include <linux/rio.h>
  23#include <linux/rio_drv.h>
  24#include <linux/rio_ids.h>
  25#include <linux/rio_regs.h>
  26#include <linux/module.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>
  30
  31#include "rio.h"
  32
  33/*
  34 * struct rio_pwrite - RIO portwrite event
  35 * @node:    Node in list of doorbell events
  36 * @pwcback: Doorbell event callback
  37 * @context: Handler specific context to pass on event
  38 */
  39struct rio_pwrite {
  40        struct list_head node;
  41
  42        int (*pwcback)(struct rio_mport *mport, void *context,
  43                       union rio_pw_msg *msg, int step);
  44        void *context;
  45};
  46
  47MODULE_DESCRIPTION("RapidIO Subsystem Core");
  48MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
  49MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
  50MODULE_LICENSE("GPL");
  51
  52static int hdid[RIO_MAX_MPORTS];
  53static int ids_num;
  54module_param_array(hdid, int, &ids_num, 0);
  55MODULE_PARM_DESC(hdid,
  56        "Destination ID assignment to local RapidIO controllers");
  57
  58static LIST_HEAD(rio_devices);
  59static LIST_HEAD(rio_nets);
  60static DEFINE_SPINLOCK(rio_global_list_lock);
  61
  62static LIST_HEAD(rio_mports);
  63static LIST_HEAD(rio_scans);
  64static DEFINE_MUTEX(rio_mport_list_lock);
  65static unsigned char next_portid;
  66static DEFINE_SPINLOCK(rio_mmap_lock);
  67
  68/**
  69 * rio_local_get_device_id - Get the base/extended device id for a port
  70 * @port: RIO master port from which to get the deviceid
  71 *
  72 * Reads the base/extended device id from the local device
  73 * implementing the master port. Returns the 8/16-bit device
  74 * id.
  75 */
  76u16 rio_local_get_device_id(struct rio_mport *port)
  77{
  78        u32 result;
  79
  80        rio_local_read_config_32(port, RIO_DID_CSR, &result);
  81
  82        return (RIO_GET_DID(port->sys_size, result));
  83}
  84EXPORT_SYMBOL_GPL(rio_local_get_device_id);
  85
  86/**
  87 * rio_query_mport - Query mport device attributes
  88 * @port: mport device to query
  89 * @mport_attr: mport attributes data structure
  90 *
  91 * Returns attributes of specified mport through the
  92 * pointer to attributes data structure.
  93 */
  94int rio_query_mport(struct rio_mport *port,
  95                    struct rio_mport_attr *mport_attr)
  96{
  97        if (!port->ops->query_mport)
  98                return -ENODATA;
  99        return port->ops->query_mport(port, mport_attr);
 100}
 101EXPORT_SYMBOL(rio_query_mport);
 102
 103/**
 104 * rio_alloc_net- Allocate and initialize a new RIO network data structure
 105 * @mport: Master port associated with the RIO network
 106 *
 107 * Allocates a RIO network structure, initializes per-network
 108 * list heads, and adds the associated master port to the
 109 * network list of associated master ports. Returns a
 110 * RIO network pointer on success or %NULL on failure.
 111 */
 112struct rio_net *rio_alloc_net(struct rio_mport *mport)
 113{
 114        struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
 115
 116        if (net) {
 117                INIT_LIST_HEAD(&net->node);
 118                INIT_LIST_HEAD(&net->devices);
 119                INIT_LIST_HEAD(&net->switches);
 120                INIT_LIST_HEAD(&net->mports);
 121                mport->net = net;
 122        }
 123        return net;
 124}
 125EXPORT_SYMBOL_GPL(rio_alloc_net);
 126
 127int rio_add_net(struct rio_net *net)
 128{
 129        int err;
 130
 131        err = device_register(&net->dev);
 132        if (err)
 133                return err;
 134        spin_lock(&rio_global_list_lock);
 135        list_add_tail(&net->node, &rio_nets);
 136        spin_unlock(&rio_global_list_lock);
 137
 138        return 0;
 139}
 140EXPORT_SYMBOL_GPL(rio_add_net);
 141
 142void rio_free_net(struct rio_net *net)
 143{
 144        spin_lock(&rio_global_list_lock);
 145        if (!list_empty(&net->node))
 146                list_del(&net->node);
 147        spin_unlock(&rio_global_list_lock);
 148        if (net->release)
 149                net->release(net);
 150        device_unregister(&net->dev);
 151}
 152EXPORT_SYMBOL_GPL(rio_free_net);
 153
 154/**
 155 * rio_local_set_device_id - Set the base/extended device id for a port
 156 * @port: RIO master port
 157 * @did: Device ID value to be written
 158 *
 159 * Writes the base/extended device id from a device.
 160 */
 161void rio_local_set_device_id(struct rio_mport *port, u16 did)
 162{
 163        rio_local_write_config_32(port, RIO_DID_CSR,
 164                                  RIO_SET_DID(port->sys_size, did));
 165}
 166EXPORT_SYMBOL_GPL(rio_local_set_device_id);
 167
 168/**
 169 * rio_add_device- Adds a RIO device to the device model
 170 * @rdev: RIO device
 171 *
 172 * Adds the RIO device to the global device list and adds the RIO
 173 * device to the RIO device list.  Creates the generic sysfs nodes
 174 * for an RIO device.
 175 */
 176int rio_add_device(struct rio_dev *rdev)
 177{
 178        int err;
 179
 180        atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
 181        err = device_register(&rdev->dev);
 182        if (err)
 183                return err;
 184
 185        spin_lock(&rio_global_list_lock);
 186        list_add_tail(&rdev->global_list, &rio_devices);
 187        if (rdev->net) {
 188                list_add_tail(&rdev->net_list, &rdev->net->devices);
 189                if (rdev->pef & RIO_PEF_SWITCH)
 190                        list_add_tail(&rdev->rswitch->node,
 191                                      &rdev->net->switches);
 192        }
 193        spin_unlock(&rio_global_list_lock);
 194
 195        return 0;
 196}
 197EXPORT_SYMBOL_GPL(rio_add_device);
 198
 199/*
 200 * rio_del_device - removes a RIO device from the device model
 201 * @rdev: RIO device
 202 * @state: device state to set during removal process
 203 *
 204 * Removes the RIO device to the kernel device list and subsystem's device list.
 205 * Clears sysfs entries for the removed device.
 206 */
 207void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
 208{
 209        pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
 210        atomic_set(&rdev->state, state);
 211        spin_lock(&rio_global_list_lock);
 212        list_del(&rdev->global_list);
 213        if (rdev->net) {
 214                list_del(&rdev->net_list);
 215                if (rdev->pef & RIO_PEF_SWITCH) {
 216                        list_del(&rdev->rswitch->node);
 217                        kfree(rdev->rswitch->route_table);
 218                }
 219        }
 220        spin_unlock(&rio_global_list_lock);
 221        device_unregister(&rdev->dev);
 222}
 223EXPORT_SYMBOL_GPL(rio_del_device);
 224
 225/**
 226 * rio_request_inb_mbox - request inbound mailbox service
 227 * @mport: RIO master port from which to allocate the mailbox resource
 228 * @dev_id: Device specific pointer to pass on event
 229 * @mbox: Mailbox number to claim
 230 * @entries: Number of entries in inbound mailbox queue
 231 * @minb: Callback to execute when inbound message is received
 232 *
 233 * Requests ownership of an inbound mailbox resource and binds
 234 * a callback function to the resource. Returns %0 on success.
 235 */
 236int rio_request_inb_mbox(struct rio_mport *mport,
 237                         void *dev_id,
 238                         int mbox,
 239                         int entries,
 240                         void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
 241                                       int slot))
 242{
 243        int rc = -ENOSYS;
 244        struct resource *res;
 245
 246        if (!mport->ops->open_inb_mbox)
 247                goto out;
 248
 249        res = kzalloc(sizeof(*res), GFP_KERNEL);
 250        if (res) {
 251                rio_init_mbox_res(res, mbox, mbox);
 252
 253                /* Make sure this mailbox isn't in use */
 254                rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
 255                                      res);
 256                if (rc < 0) {
 257                        kfree(res);
 258                        goto out;
 259                }
 260
 261                mport->inb_msg[mbox].res = res;
 262
 263                /* Hook the inbound message callback */
 264                mport->inb_msg[mbox].mcback = minb;
 265
 266                rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
 267                if (rc) {
 268                        mport->inb_msg[mbox].mcback = NULL;
 269                        mport->inb_msg[mbox].res = NULL;
 270                        release_resource(res);
 271                        kfree(res);
 272                }
 273        } else
 274                rc = -ENOMEM;
 275
 276      out:
 277        return rc;
 278}
 279EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
 280
 281/**
 282 * rio_release_inb_mbox - release inbound mailbox message service
 283 * @mport: RIO master port from which to release the mailbox resource
 284 * @mbox: Mailbox number to release
 285 *
 286 * Releases ownership of an inbound mailbox resource. Returns 0
 287 * if the request has been satisfied.
 288 */
 289int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
 290{
 291        int rc;
 292
 293        if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
 294                return -EINVAL;
 295
 296        mport->ops->close_inb_mbox(mport, mbox);
 297        mport->inb_msg[mbox].mcback = NULL;
 298
 299        rc = release_resource(mport->inb_msg[mbox].res);
 300        if (rc)
 301                return rc;
 302
 303        kfree(mport->inb_msg[mbox].res);
 304        mport->inb_msg[mbox].res = NULL;
 305
 306        return 0;
 307}
 308EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
 309
 310/**
 311 * rio_request_outb_mbox - request outbound mailbox service
 312 * @mport: RIO master port from which to allocate the mailbox resource
 313 * @dev_id: Device specific pointer to pass on event
 314 * @mbox: Mailbox number to claim
 315 * @entries: Number of entries in outbound mailbox queue
 316 * @moutb: Callback to execute when outbound message is sent
 317 *
 318 * Requests ownership of an outbound mailbox resource and binds
 319 * a callback function to the resource. Returns 0 on success.
 320 */
 321int rio_request_outb_mbox(struct rio_mport *mport,
 322                          void *dev_id,
 323                          int mbox,
 324                          int entries,
 325                          void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
 326{
 327        int rc = -ENOSYS;
 328        struct resource *res;
 329
 330        if (!mport->ops->open_outb_mbox)
 331                goto out;
 332
 333        res = kzalloc(sizeof(*res), GFP_KERNEL);
 334        if (res) {
 335                rio_init_mbox_res(res, mbox, mbox);
 336
 337                /* Make sure this outbound mailbox isn't in use */
 338                rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
 339                                      res);
 340                if (rc < 0) {
 341                        kfree(res);
 342                        goto out;
 343                }
 344
 345                mport->outb_msg[mbox].res = res;
 346
 347                /* Hook the inbound message callback */
 348                mport->outb_msg[mbox].mcback = moutb;
 349
 350                rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
 351                if (rc) {
 352                        mport->outb_msg[mbox].mcback = NULL;
 353                        mport->outb_msg[mbox].res = NULL;
 354                        release_resource(res);
 355                        kfree(res);
 356                }
 357        } else
 358                rc = -ENOMEM;
 359
 360      out:
 361        return rc;
 362}
 363EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
 364
 365/**
 366 * rio_release_outb_mbox - release outbound mailbox message service
 367 * @mport: RIO master port from which to release the mailbox resource
 368 * @mbox: Mailbox number to release
 369 *
 370 * Releases ownership of an inbound mailbox resource. Returns 0
 371 * if the request has been satisfied.
 372 */
 373int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
 374{
 375        int rc;
 376
 377        if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
 378                return -EINVAL;
 379
 380        mport->ops->close_outb_mbox(mport, mbox);
 381        mport->outb_msg[mbox].mcback = NULL;
 382
 383        rc = release_resource(mport->outb_msg[mbox].res);
 384        if (rc)
 385                return rc;
 386
 387        kfree(mport->outb_msg[mbox].res);
 388        mport->outb_msg[mbox].res = NULL;
 389
 390        return 0;
 391}
 392EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
 393
 394/**
 395 * rio_setup_inb_dbell - bind inbound doorbell callback
 396 * @mport: RIO master port to bind the doorbell callback
 397 * @dev_id: Device specific pointer to pass on event
 398 * @res: Doorbell message resource
 399 * @dinb: Callback to execute when doorbell is received
 400 *
 401 * Adds a doorbell resource/callback pair into a port's
 402 * doorbell event list. Returns 0 if the request has been
 403 * satisfied.
 404 */
 405static int
 406rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
 407                    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
 408                                  u16 info))
 409{
 410        struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
 411
 412        if (!dbell)
 413                return -ENOMEM;
 414
 415        dbell->res = res;
 416        dbell->dinb = dinb;
 417        dbell->dev_id = dev_id;
 418
 419        mutex_lock(&mport->lock);
 420        list_add_tail(&dbell->node, &mport->dbells);
 421        mutex_unlock(&mport->lock);
 422        return 0;
 423}
 424
 425/**
 426 * rio_request_inb_dbell - request inbound doorbell message service
 427 * @mport: RIO master port from which to allocate the doorbell resource
 428 * @dev_id: Device specific pointer to pass on event
 429 * @start: Doorbell info range start
 430 * @end: Doorbell info range end
 431 * @dinb: Callback to execute when doorbell is received
 432 *
 433 * Requests ownership of an inbound doorbell resource and binds
 434 * a callback function to the resource. Returns 0 if the request
 435 * has been satisfied.
 436 */
 437int rio_request_inb_dbell(struct rio_mport *mport,
 438                          void *dev_id,
 439                          u16 start,
 440                          u16 end,
 441                          void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
 442                                        u16 dst, u16 info))
 443{
 444        int rc;
 445        struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
 446
 447        if (res) {
 448                rio_init_dbell_res(res, start, end);
 449
 450                /* Make sure these doorbells aren't in use */
 451                rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
 452                                      res);
 453                if (rc < 0) {
 454                        kfree(res);
 455                        goto out;
 456                }
 457
 458                /* Hook the doorbell callback */
 459                rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
 460        } else
 461                rc = -ENOMEM;
 462
 463      out:
 464        return rc;
 465}
 466EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
 467
 468/**
 469 * rio_release_inb_dbell - release inbound doorbell message service
 470 * @mport: RIO master port from which to release the doorbell resource
 471 * @start: Doorbell info range start
 472 * @end: Doorbell info range end
 473 *
 474 * Releases ownership of an inbound doorbell resource and removes
 475 * callback from the doorbell event list. Returns 0 if the request
 476 * has been satisfied.
 477 */
 478int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
 479{
 480        int rc = 0, found = 0;
 481        struct rio_dbell *dbell;
 482
 483        mutex_lock(&mport->lock);
 484        list_for_each_entry(dbell, &mport->dbells, node) {
 485                if ((dbell->res->start == start) && (dbell->res->end == end)) {
 486                        list_del(&dbell->node);
 487                        found = 1;
 488                        break;
 489                }
 490        }
 491        mutex_unlock(&mport->lock);
 492
 493        /* If we can't find an exact match, fail */
 494        if (!found) {
 495                rc = -EINVAL;
 496                goto out;
 497        }
 498
 499        /* Release the doorbell resource */
 500        rc = release_resource(dbell->res);
 501
 502        /* Free the doorbell event */
 503        kfree(dbell);
 504
 505      out:
 506        return rc;
 507}
 508EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
 509
 510/**
 511 * rio_request_outb_dbell - request outbound doorbell message range
 512 * @rdev: RIO device from which to allocate the doorbell resource
 513 * @start: Doorbell message range start
 514 * @end: Doorbell message range end
 515 *
 516 * Requests ownership of a doorbell message range. Returns a resource
 517 * if the request has been satisfied or %NULL on failure.
 518 */
 519struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
 520                                        u16 end)
 521{
 522        struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 523
 524        if (res) {
 525                rio_init_dbell_res(res, start, end);
 526
 527                /* Make sure these doorbells aren't in use */
 528                if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
 529                    < 0) {
 530                        kfree(res);
 531                        res = NULL;
 532                }
 533        }
 534
 535        return res;
 536}
 537EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
 538
 539/**
 540 * rio_release_outb_dbell - release outbound doorbell message range
 541 * @rdev: RIO device from which to release the doorbell resource
 542 * @res: Doorbell resource to be freed
 543 *
 544 * Releases ownership of a doorbell message range. Returns 0 if the
 545 * request has been satisfied.
 546 */
 547int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
 548{
 549        int rc = release_resource(res);
 550
 551        kfree(res);
 552
 553        return rc;
 554}
 555EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
 556
 557/**
 558 * rio_add_mport_pw_handler - add port-write message handler into the list
 559 *                            of mport specific pw handlers
 560 * @mport:   RIO master port to bind the portwrite callback
 561 * @context: Handler specific context to pass on event
 562 * @pwcback: Callback to execute when portwrite is received
 563 *
 564 * Returns 0 if the request has been satisfied.
 565 */
 566int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
 567                             int (*pwcback)(struct rio_mport *mport,
 568                             void *context, union rio_pw_msg *msg, int step))
 569{
 570        struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
 571
 572        if (!pwrite)
 573                return -ENOMEM;
 574
 575        pwrite->pwcback = pwcback;
 576        pwrite->context = context;
 577        mutex_lock(&mport->lock);
 578        list_add_tail(&pwrite->node, &mport->pwrites);
 579        mutex_unlock(&mport->lock);
 580        return 0;
 581}
 582EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
 583
 584/**
 585 * rio_del_mport_pw_handler - remove port-write message handler from the list
 586 *                            of mport specific pw handlers
 587 * @mport:   RIO master port to bind the portwrite callback
 588 * @context: Registered handler specific context to pass on event
 589 * @pwcback: Registered callback function
 590 *
 591 * Returns 0 if the request has been satisfied.
 592 */
 593int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
 594                             int (*pwcback)(struct rio_mport *mport,
 595                             void *context, union rio_pw_msg *msg, int step))
 596{
 597        int rc = -EINVAL;
 598        struct rio_pwrite *pwrite;
 599
 600        mutex_lock(&mport->lock);
 601        list_for_each_entry(pwrite, &mport->pwrites, node) {
 602                if (pwrite->pwcback == pwcback && pwrite->context == context) {
 603                        list_del(&pwrite->node);
 604                        kfree(pwrite);
 605                        rc = 0;
 606                        break;
 607                }
 608        }
 609        mutex_unlock(&mport->lock);
 610
 611        return rc;
 612}
 613EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
 614
 615/**
 616 * rio_request_inb_pwrite - request inbound port-write message service for
 617 *                          specific RapidIO device
 618 * @rdev: RIO device to which register inbound port-write callback routine
 619 * @pwcback: Callback routine to execute when port-write is received
 620 *
 621 * Binds a port-write callback function to the RapidIO device.
 622 * Returns 0 if the request has been satisfied.
 623 */
 624int rio_request_inb_pwrite(struct rio_dev *rdev,
 625        int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
 626{
 627        int rc = 0;
 628
 629        spin_lock(&rio_global_list_lock);
 630        if (rdev->pwcback)
 631                rc = -ENOMEM;
 632        else
 633                rdev->pwcback = pwcback;
 634
 635        spin_unlock(&rio_global_list_lock);
 636        return rc;
 637}
 638EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
 639
 640/**
 641 * rio_release_inb_pwrite - release inbound port-write message service
 642 *                          associated with specific RapidIO device
 643 * @rdev: RIO device which registered for inbound port-write callback
 644 *
 645 * Removes callback from the rio_dev structure. Returns 0 if the request
 646 * has been satisfied.
 647 */
 648int rio_release_inb_pwrite(struct rio_dev *rdev)
 649{
 650        int rc = -ENOMEM;
 651
 652        spin_lock(&rio_global_list_lock);
 653        if (rdev->pwcback) {
 654                rdev->pwcback = NULL;
 655                rc = 0;
 656        }
 657
 658        spin_unlock(&rio_global_list_lock);
 659        return rc;
 660}
 661EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
 662
 663/**
 664 * rio_pw_enable - Enables/disables port-write handling by a master port
 665 * @mport: Master port associated with port-write handling
 666 * @enable:  1=enable,  0=disable
 667 */
 668void rio_pw_enable(struct rio_mport *mport, int enable)
 669{
 670        if (mport->ops->pwenable) {
 671                mutex_lock(&mport->lock);
 672
 673                if ((enable && ++mport->pwe_refcnt == 1) ||
 674                    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
 675                        mport->ops->pwenable(mport, enable);
 676                mutex_unlock(&mport->lock);
 677        }
 678}
 679EXPORT_SYMBOL_GPL(rio_pw_enable);
 680
 681/**
 682 * rio_map_inb_region -- Map inbound memory region.
 683 * @mport: Master port.
 684 * @local: physical address of memory region to be mapped
 685 * @rbase: RIO base address assigned to this window
 686 * @size: Size of the memory region
 687 * @rflags: Flags for mapping.
 688 *
 689 * Return: 0 -- Success.
 690 *
 691 * This function will create the mapping from RIO space to local memory.
 692 */
 693int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
 694                        u64 rbase, u32 size, u32 rflags)
 695{
 696        int rc;
 697        unsigned long flags;
 698
 699        if (!mport->ops->map_inb)
 700                return -1;
 701        spin_lock_irqsave(&rio_mmap_lock, flags);
 702        rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
 703        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 704        return rc;
 705}
 706EXPORT_SYMBOL_GPL(rio_map_inb_region);
 707
 708/**
 709 * rio_unmap_inb_region -- Unmap the inbound memory region
 710 * @mport: Master port
 711 * @lstart: physical address of memory region to be unmapped
 712 */
 713void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
 714{
 715        unsigned long flags;
 716        if (!mport->ops->unmap_inb)
 717                return;
 718        spin_lock_irqsave(&rio_mmap_lock, flags);
 719        mport->ops->unmap_inb(mport, lstart);
 720        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 721}
 722EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
 723
 724/**
 725 * rio_map_outb_region -- Map outbound memory region.
 726 * @mport: Master port.
 727 * @destid: destination id window points to
 728 * @rbase: RIO base address window translates to
 729 * @size: Size of the memory region
 730 * @rflags: Flags for mapping.
 731 * @local: physical address of memory region mapped
 732 *
 733 * Return: 0 -- Success.
 734 *
 735 * This function will create the mapping from RIO space to local memory.
 736 */
 737int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
 738                        u32 size, u32 rflags, dma_addr_t *local)
 739{
 740        int rc;
 741        unsigned long flags;
 742
 743        if (!mport->ops->map_outb)
 744                return -ENODEV;
 745
 746        spin_lock_irqsave(&rio_mmap_lock, flags);
 747        rc = mport->ops->map_outb(mport, destid, rbase, size,
 748                rflags, local);
 749        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 750
 751        return rc;
 752}
 753EXPORT_SYMBOL_GPL(rio_map_outb_region);
 754
 755/**
 756 * rio_unmap_inb_region -- Unmap the inbound memory region
 757 * @mport: Master port
 758 * @destid: destination id mapping points to
 759 * @rstart: RIO base address window translates to
 760 */
 761void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
 762{
 763        unsigned long flags;
 764
 765        if (!mport->ops->unmap_outb)
 766                return;
 767
 768        spin_lock_irqsave(&rio_mmap_lock, flags);
 769        mport->ops->unmap_outb(mport, destid, rstart);
 770        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 771}
 772EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
 773
 774/**
 775 * rio_mport_get_physefb - Helper function that returns register offset
 776 *                      for Physical Layer Extended Features Block.
 777 * @port: Master port to issue transaction
 778 * @local: Indicate a local master port or remote device access
 779 * @destid: Destination ID of the device
 780 * @hopcount: Number of switch hops to the device
 781 * @rmap: pointer to location to store register map type info
 782 */
 783u32
 784rio_mport_get_physefb(struct rio_mport *port, int local,
 785                      u16 destid, u8 hopcount, u32 *rmap)
 786{
 787        u32 ext_ftr_ptr;
 788        u32 ftr_header;
 789
 790        ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
 791
 792        while (ext_ftr_ptr)  {
 793                if (local)
 794                        rio_local_read_config_32(port, ext_ftr_ptr,
 795                                                 &ftr_header);
 796                else
 797                        rio_mport_read_config_32(port, destid, hopcount,
 798                                                 ext_ftr_ptr, &ftr_header);
 799
 800                ftr_header = RIO_GET_BLOCK_ID(ftr_header);
 801                switch (ftr_header) {
 802
 803                case RIO_EFB_SER_EP_ID:
 804                case RIO_EFB_SER_EP_REC_ID:
 805                case RIO_EFB_SER_EP_FREE_ID:
 806                case RIO_EFB_SER_EP_M1_ID:
 807                case RIO_EFB_SER_EP_SW_M1_ID:
 808                case RIO_EFB_SER_EPF_M1_ID:
 809                case RIO_EFB_SER_EPF_SW_M1_ID:
 810                        *rmap = 1;
 811                        return ext_ftr_ptr;
 812
 813                case RIO_EFB_SER_EP_M2_ID:
 814                case RIO_EFB_SER_EP_SW_M2_ID:
 815                case RIO_EFB_SER_EPF_M2_ID:
 816                case RIO_EFB_SER_EPF_SW_M2_ID:
 817                        *rmap = 2;
 818                        return ext_ftr_ptr;
 819
 820                default:
 821                        break;
 822                }
 823
 824                ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
 825                                                hopcount, ext_ftr_ptr);
 826        }
 827
 828        return ext_ftr_ptr;
 829}
 830EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
 831
 832/**
 833 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
 834 * @comp_tag: RIO component tag to match
 835 * @from: Previous RIO device found in search, or %NULL for new search
 836 *
 837 * Iterates through the list of known RIO devices. If a RIO device is
 838 * found with a matching @comp_tag, a pointer to its device
 839 * structure is returned. Otherwise, %NULL is returned. A new search
 840 * is initiated by passing %NULL to the @from argument. Otherwise, if
 841 * @from is not %NULL, searches continue from next device on the global
 842 * list.
 843 */
 844struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
 845{
 846        struct list_head *n;
 847        struct rio_dev *rdev;
 848
 849        spin_lock(&rio_global_list_lock);
 850        n = from ? from->global_list.next : rio_devices.next;
 851
 852        while (n && (n != &rio_devices)) {
 853                rdev = rio_dev_g(n);
 854                if (rdev->comp_tag == comp_tag)
 855                        goto exit;
 856                n = n->next;
 857        }
 858        rdev = NULL;
 859exit:
 860        spin_unlock(&rio_global_list_lock);
 861        return rdev;
 862}
 863EXPORT_SYMBOL_GPL(rio_get_comptag);
 864
 865/**
 866 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
 867 * @rdev: Pointer to RIO device control structure
 868 * @pnum: Switch port number to set LOCKOUT bit
 869 * @lock: Operation : set (=1) or clear (=0)
 870 */
 871int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
 872{
 873        u32 regval;
 874
 875        rio_read_config_32(rdev,
 876                RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 877                &regval);
 878        if (lock)
 879                regval |= RIO_PORT_N_CTL_LOCKOUT;
 880        else
 881                regval &= ~RIO_PORT_N_CTL_LOCKOUT;
 882
 883        rio_write_config_32(rdev,
 884                RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 885                regval);
 886        return 0;
 887}
 888EXPORT_SYMBOL_GPL(rio_set_port_lockout);
 889
 890/**
 891 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
 892 * given port
 893 * @port: Master port associated with the RIO network
 894 * @local: local=1 select local port otherwise a far device is reached
 895 * @destid: Destination ID of the device to check host bit
 896 * @hopcount: Number of hops to reach the target
 897 * @port_num: Port (-number on switch) to enable on a far end device
 898 *
 899 * Returns 0 or 1 from on General Control Command and Status Register
 900 * (EXT_PTR+0x3C)
 901 */
 902int rio_enable_rx_tx_port(struct rio_mport *port,
 903                          int local, u16 destid,
 904                          u8 hopcount, u8 port_num)
 905{
 906#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
 907        u32 regval;
 908        u32 ext_ftr_ptr;
 909        u32 rmap;
 910
 911        /*
 912        * enable rx input tx output port
 913        */
 914        pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
 915                 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
 916
 917        ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
 918                                            hopcount, &rmap);
 919
 920        if (local) {
 921                rio_local_read_config_32(port,
 922                                ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
 923                                &regval);
 924        } else {
 925                if (rio_mport_read_config_32(port, destid, hopcount,
 926                        ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 927                                &regval) < 0)
 928                        return -EIO;
 929        }
 930
 931        regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
 932
 933        if (local) {
 934                rio_local_write_config_32(port,
 935                        ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
 936        } else {
 937                if (rio_mport_write_config_32(port, destid, hopcount,
 938                        ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 939                                regval) < 0)
 940                        return -EIO;
 941        }
 942#endif
 943        return 0;
 944}
 945EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
 946
 947
 948/**
 949 * rio_chk_dev_route - Validate route to the specified device.
 950 * @rdev:  RIO device failed to respond
 951 * @nrdev: Last active device on the route to rdev
 952 * @npnum: nrdev's port number on the route to rdev
 953 *
 954 * Follows a route to the specified RIO device to determine the last available
 955 * device (and corresponding RIO port) on the route.
 956 */
 957static int
 958rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
 959{
 960        u32 result;
 961        int p_port, rc = -EIO;
 962        struct rio_dev *prev = NULL;
 963
 964        /* Find switch with failed RIO link */
 965        while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
 966                if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
 967                        prev = rdev->prev;
 968                        break;
 969                }
 970                rdev = rdev->prev;
 971        }
 972
 973        if (!prev)
 974                goto err_out;
 975
 976        p_port = prev->rswitch->route_table[rdev->destid];
 977
 978        if (p_port != RIO_INVALID_ROUTE) {
 979                pr_debug("RIO: link failed on [%s]-P%d\n",
 980                         rio_name(prev), p_port);
 981                *nrdev = prev;
 982                *npnum = p_port;
 983                rc = 0;
 984        } else
 985                pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
 986err_out:
 987        return rc;
 988}
 989
 990/**
 991 * rio_mport_chk_dev_access - Validate access to the specified device.
 992 * @mport: Master port to send transactions
 993 * @destid: Device destination ID in network
 994 * @hopcount: Number of hops into the network
 995 */
 996int
 997rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
 998{
 999        int i = 0;
1000        u32 tmp;
1001
1002        while (rio_mport_read_config_32(mport, destid, hopcount,
1003                                        RIO_DEV_ID_CAR, &tmp)) {
1004                i++;
1005                if (i == RIO_MAX_CHK_RETRY)
1006                        return -EIO;
1007                mdelay(1);
1008        }
1009
1010        return 0;
1011}
1012EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1013
1014/**
1015 * rio_chk_dev_access - Validate access to the specified device.
1016 * @rdev: Pointer to RIO device control structure
1017 */
1018static int rio_chk_dev_access(struct rio_dev *rdev)
1019{
1020        return rio_mport_chk_dev_access(rdev->net->hport,
1021                                        rdev->destid, rdev->hopcount);
1022}
1023
1024/**
1025 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1026 *                        returns link-response (if requested).
1027 * @rdev: RIO devive to issue Input-status command
1028 * @pnum: Device port number to issue the command
1029 * @lnkresp: Response from a link partner
1030 */
1031static int
1032rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1033{
1034        u32 regval;
1035        int checkcount;
1036
1037        if (lnkresp) {
1038                /* Read from link maintenance response register
1039                 * to clear valid bit */
1040                rio_read_config_32(rdev,
1041                        RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1042                        &regval);
1043                udelay(50);
1044        }
1045
1046        /* Issue Input-status command */
1047        rio_write_config_32(rdev,
1048                RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1049                RIO_MNT_REQ_CMD_IS);
1050
1051        /* Exit if the response is not expected */
1052        if (!lnkresp)
1053                return 0;
1054
1055        checkcount = 3;
1056        while (checkcount--) {
1057                udelay(50);
1058                rio_read_config_32(rdev,
1059                        RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1060                        &regval);
1061                if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1062                        *lnkresp = regval;
1063                        return 0;
1064                }
1065        }
1066
1067        return -EIO;
1068}
1069
1070/**
1071 * rio_clr_err_stopped - Clears port Error-stopped states.
1072 * @rdev: Pointer to RIO device control structure
1073 * @pnum: Switch port number to clear errors
1074 * @err_status: port error status (if 0 reads register from device)
1075 *
1076 * TODO: Currently this routine is not compatible with recovery process
1077 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1078 * to implement universal recovery process that is compatible full range
1079 * off available devices.
1080 * IDT gen3 switch driver now implements HW-specific error handler that
1081 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1082 */
1083static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1084{
1085        struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1086        u32 regval;
1087        u32 far_ackid, far_linkstat, near_ackid;
1088
1089        if (err_status == 0)
1090                rio_read_config_32(rdev,
1091                        RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1092                        &err_status);
1093
1094        if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1095                pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1096                /*
1097                 * Send a Link-Request/Input-Status control symbol
1098                 */
1099                if (rio_get_input_status(rdev, pnum, &regval)) {
1100                        pr_debug("RIO_EM: Input-status response timeout\n");
1101                        goto rd_err;
1102                }
1103
1104                pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1105                         pnum, regval);
1106                far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1107                far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1108                rio_read_config_32(rdev,
1109                        RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1110                        &regval);
1111                pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1112                near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1113                pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1114                         " near_ackID=0x%02x\n",
1115                        pnum, far_ackid, far_linkstat, near_ackid);
1116
1117                /*
1118                 * If required, synchronize ackIDs of near and
1119                 * far sides.
1120                 */
1121                if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1122                    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1123                        /* Align near outstanding/outbound ackIDs with
1124                         * far inbound.
1125                         */
1126                        rio_write_config_32(rdev,
1127                                RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1128                                (near_ackid << 24) |
1129                                        (far_ackid << 8) | far_ackid);
1130                        /* Align far outstanding/outbound ackIDs with
1131                         * near inbound.
1132                         */
1133                        far_ackid++;
1134                        if (!nextdev) {
1135                                pr_debug("RIO_EM: nextdev pointer == NULL\n");
1136                                goto rd_err;
1137                        }
1138
1139                        rio_write_config_32(nextdev,
1140                                RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1141                                        RIO_GET_PORT_NUM(nextdev->swpinfo)),
1142                                (far_ackid << 24) |
1143                                (near_ackid << 8) | near_ackid);
1144                }
1145rd_err:
1146                rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1147                                   &err_status);
1148                pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1149        }
1150
1151        if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1152                pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1153                rio_get_input_status(nextdev,
1154                                     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1155                udelay(50);
1156
1157                rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1158                                   &err_status);
1159                pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1160        }
1161
1162        return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1163                              RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1164}
1165
1166/**
1167 * rio_inb_pwrite_handler - inbound port-write message handler
1168 * @mport:  mport device associated with port-write
1169 * @pw_msg: pointer to inbound port-write message
1170 *
1171 * Processes an inbound port-write message. Returns 0 if the request
1172 * has been satisfied.
1173 */
1174int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1175{
1176        struct rio_dev *rdev;
1177        u32 err_status, em_perrdet, em_ltlerrdet;
1178        int rc, portnum;
1179        struct rio_pwrite *pwrite;
1180
1181#ifdef DEBUG_PW
1182        {
1183                u32 i;
1184
1185                pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1186                for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1187                        pr_debug("0x%02x: %08x %08x %08x %08x\n",
1188                                i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1189                                pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1190                }
1191        }
1192#endif
1193
1194        rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1195        if (rdev) {
1196                pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1197        } else {
1198                pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1199                        __func__, pw_msg->em.comptag);
1200        }
1201
1202        /* Call a device-specific handler (if it is registered for the device).
1203         * This may be the service for endpoints that send device-specific
1204         * port-write messages. End-point messages expected to be handled
1205         * completely by EP specific device driver.
1206         * For switches rc==0 signals that no standard processing required.
1207         */
1208        if (rdev && rdev->pwcback) {
1209                rc = rdev->pwcback(rdev, pw_msg, 0);
1210                if (rc == 0)
1211                        return 0;
1212        }
1213
1214        mutex_lock(&mport->lock);
1215        list_for_each_entry(pwrite, &mport->pwrites, node)
1216                pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1217        mutex_unlock(&mport->lock);
1218
1219        if (!rdev)
1220                return 0;
1221
1222        /*
1223         * FIXME: The code below stays as it was before for now until we decide
1224         * how to do default PW handling in combination with per-mport callbacks
1225         */
1226
1227        portnum = pw_msg->em.is_port & 0xFF;
1228
1229        /* Check if device and route to it are functional:
1230         * Sometimes devices may send PW message(s) just before being
1231         * powered down (or link being lost).
1232         */
1233        if (rio_chk_dev_access(rdev)) {
1234                pr_debug("RIO: device access failed - get link partner\n");
1235                /* Scan route to the device and identify failed link.
1236                 * This will replace device and port reported in PW message.
1237                 * PW message should not be used after this point.
1238                 */
1239                if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1240                        pr_err("RIO: Route trace for %s failed\n",
1241                                rio_name(rdev));
1242                        return -EIO;
1243                }
1244                pw_msg = NULL;
1245        }
1246
1247        /* For End-point devices processing stops here */
1248        if (!(rdev->pef & RIO_PEF_SWITCH))
1249                return 0;
1250
1251        if (rdev->phys_efptr == 0) {
1252                pr_err("RIO_PW: Bad switch initialization for %s\n",
1253                        rio_name(rdev));
1254                return 0;
1255        }
1256
1257        /*
1258         * Process the port-write notification from switch
1259         */
1260        if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1261                rdev->rswitch->ops->em_handle(rdev, portnum);
1262
1263        rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1264                           &err_status);
1265        pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1266
1267        if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1268
1269                if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1270                        rdev->rswitch->port_ok |= (1 << portnum);
1271                        rio_set_port_lockout(rdev, portnum, 0);
1272                        /* Schedule Insertion Service */
1273                        pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1274                               rio_name(rdev), portnum);
1275                }
1276
1277                /* Clear error-stopped states (if reported).
1278                 * Depending on the link partner state, two attempts
1279                 * may be needed for successful recovery.
1280                 */
1281                if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1282                                  RIO_PORT_N_ERR_STS_INP_ES)) {
1283                        if (rio_clr_err_stopped(rdev, portnum, err_status))
1284                                rio_clr_err_stopped(rdev, portnum, 0);
1285                }
1286        }  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1287
1288                if (rdev->rswitch->port_ok & (1 << portnum)) {
1289                        rdev->rswitch->port_ok &= ~(1 << portnum);
1290                        rio_set_port_lockout(rdev, portnum, 1);
1291
1292                        if (rdev->phys_rmap == 1) {
1293                        rio_write_config_32(rdev,
1294                                RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1295                                RIO_PORT_N_ACK_CLEAR);
1296                        } else {
1297                                rio_write_config_32(rdev,
1298                                        RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1299                                        RIO_PORT_N_OB_ACK_CLEAR);
1300                                rio_write_config_32(rdev,
1301                                        RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1302                                        0);
1303                        }
1304
1305                        /* Schedule Extraction Service */
1306                        pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1307                               rio_name(rdev), portnum);
1308                }
1309        }
1310
1311        rio_read_config_32(rdev,
1312                rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1313        if (em_perrdet) {
1314                pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1315                         portnum, em_perrdet);
1316                /* Clear EM Port N Error Detect CSR */
1317                rio_write_config_32(rdev,
1318                        rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1319        }
1320
1321        rio_read_config_32(rdev,
1322                rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1323        if (em_ltlerrdet) {
1324                pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1325                         em_ltlerrdet);
1326                /* Clear EM L/T Layer Error Detect CSR */
1327                rio_write_config_32(rdev,
1328                        rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1329        }
1330
1331        /* Clear remaining error bits and Port-Write Pending bit */
1332        rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1333                            err_status);
1334
1335        return 0;
1336}
1337EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1338
1339/**
1340 * rio_mport_get_efb - get pointer to next extended features block
1341 * @port: Master port to issue transaction
1342 * @local: Indicate a local master port or remote device access
1343 * @destid: Destination ID of the device
1344 * @hopcount: Number of switch hops to the device
1345 * @from: Offset of  current Extended Feature block header (if 0 starts
1346 * from ExtFeaturePtr)
1347 */
1348u32
1349rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1350                      u8 hopcount, u32 from)
1351{
1352        u32 reg_val;
1353
1354        if (from == 0) {
1355                if (local)
1356                        rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1357                                                 &reg_val);
1358                else
1359                        rio_mport_read_config_32(port, destid, hopcount,
1360                                                 RIO_ASM_INFO_CAR, &reg_val);
1361                return reg_val & RIO_EXT_FTR_PTR_MASK;
1362        } else {
1363                if (local)
1364                        rio_local_read_config_32(port, from, &reg_val);
1365                else
1366                        rio_mport_read_config_32(port, destid, hopcount,
1367                                                 from, &reg_val);
1368                return RIO_GET_BLOCK_ID(reg_val);
1369        }
1370}
1371EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1372
1373/**
1374 * rio_mport_get_feature - query for devices' extended features
1375 * @port: Master port to issue transaction
1376 * @local: Indicate a local master port or remote device access
1377 * @destid: Destination ID of the device
1378 * @hopcount: Number of switch hops to the device
1379 * @ftr: Extended feature code
1380 *
1381 * Tell if a device supports a given RapidIO capability.
1382 * Returns the offset of the requested extended feature
1383 * block within the device's RIO configuration space or
1384 * 0 in case the device does not support it.
1385 */
1386u32
1387rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1388                      u8 hopcount, int ftr)
1389{
1390        u32 asm_info, ext_ftr_ptr, ftr_header;
1391
1392        if (local)
1393                rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1394        else
1395                rio_mport_read_config_32(port, destid, hopcount,
1396                                         RIO_ASM_INFO_CAR, &asm_info);
1397
1398        ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1399
1400        while (ext_ftr_ptr) {
1401                if (local)
1402                        rio_local_read_config_32(port, ext_ftr_ptr,
1403                                                 &ftr_header);
1404                else
1405                        rio_mport_read_config_32(port, destid, hopcount,
1406                                                 ext_ftr_ptr, &ftr_header);
1407                if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1408                        return ext_ftr_ptr;
1409
1410                ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1411                if (!ext_ftr_ptr)
1412                        break;
1413        }
1414
1415        return 0;
1416}
1417EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1418
1419/**
1420 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1421 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1422 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1423 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1424 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1425 * @from: Previous RIO device found in search, or %NULL for new search
1426 *
1427 * Iterates through the list of known RIO devices. If a RIO device is
1428 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1429 * count to the device is incrememted and a pointer to its device
1430 * structure is returned. Otherwise, %NULL is returned. A new search
1431 * is initiated by passing %NULL to the @from argument. Otherwise, if
1432 * @from is not %NULL, searches continue from next device on the global
1433 * list. The reference count for @from is always decremented if it is
1434 * not %NULL.
1435 */
1436struct rio_dev *rio_get_asm(u16 vid, u16 did,
1437                            u16 asm_vid, u16 asm_did, struct rio_dev *from)
1438{
1439        struct list_head *n;
1440        struct rio_dev *rdev;
1441
1442        WARN_ON(in_interrupt());
1443        spin_lock(&rio_global_list_lock);
1444        n = from ? from->global_list.next : rio_devices.next;
1445
1446        while (n && (n != &rio_devices)) {
1447                rdev = rio_dev_g(n);
1448                if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1449                    (did == RIO_ANY_ID || rdev->did == did) &&
1450                    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1451                    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1452                        goto exit;
1453                n = n->next;
1454        }
1455        rdev = NULL;
1456      exit:
1457        rio_dev_put(from);
1458        rdev = rio_dev_get(rdev);
1459        spin_unlock(&rio_global_list_lock);
1460        return rdev;
1461}
1462EXPORT_SYMBOL_GPL(rio_get_asm);
1463
1464/**
1465 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1466 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1467 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1468 * @from: Previous RIO device found in search, or %NULL for new search
1469 *
1470 * Iterates through the list of known RIO devices. If a RIO device is
1471 * found with a matching @vid and @did, the reference count to the
1472 * device is incrememted and a pointer to its device structure is returned.
1473 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1474 * to the @from argument. Otherwise, if @from is not %NULL, searches
1475 * continue from next device on the global list. The reference count for
1476 * @from is always decremented if it is not %NULL.
1477 */
1478struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1479{
1480        return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1481}
1482EXPORT_SYMBOL_GPL(rio_get_device);
1483
1484/**
1485 * rio_std_route_add_entry - Add switch route table entry using standard
1486 *   registers defined in RIO specification rev.1.3
1487 * @mport: Master port to issue transaction
1488 * @destid: Destination ID of the device
1489 * @hopcount: Number of switch hops to the device
1490 * @table: routing table ID (global or port-specific)
1491 * @route_destid: destID entry in the RT
1492 * @route_port: destination port for specified destID
1493 */
1494static int
1495rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1496                        u16 table, u16 route_destid, u8 route_port)
1497{
1498        if (table == RIO_GLOBAL_TABLE) {
1499                rio_mport_write_config_32(mport, destid, hopcount,
1500                                RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1501                                (u32)route_destid);
1502                rio_mport_write_config_32(mport, destid, hopcount,
1503                                RIO_STD_RTE_CONF_PORT_SEL_CSR,
1504                                (u32)route_port);
1505        }
1506
1507        udelay(10);
1508        return 0;
1509}
1510
1511/**
1512 * rio_std_route_get_entry - Read switch route table entry (port number)
1513 *   associated with specified destID using standard registers defined in RIO
1514 *   specification rev.1.3
1515 * @mport: Master port to issue transaction
1516 * @destid: Destination ID of the device
1517 * @hopcount: Number of switch hops to the device
1518 * @table: routing table ID (global or port-specific)
1519 * @route_destid: destID entry in the RT
1520 * @route_port: returned destination port for specified destID
1521 */
1522static int
1523rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1524                        u16 table, u16 route_destid, u8 *route_port)
1525{
1526        u32 result;
1527
1528        if (table == RIO_GLOBAL_TABLE) {
1529                rio_mport_write_config_32(mport, destid, hopcount,
1530                                RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1531                rio_mport_read_config_32(mport, destid, hopcount,
1532                                RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1533
1534                *route_port = (u8)result;
1535        }
1536
1537        return 0;
1538}
1539
1540/**
1541 * rio_std_route_clr_table - Clear swotch route table using standard registers
1542 *   defined in RIO specification rev.1.3.
1543 * @mport: Master port to issue transaction
1544 * @destid: Destination ID of the device
1545 * @hopcount: Number of switch hops to the device
1546 * @table: routing table ID (global or port-specific)
1547 */
1548static int
1549rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1550                        u16 table)
1551{
1552        u32 max_destid = 0xff;
1553        u32 i, pef, id_inc = 1, ext_cfg = 0;
1554        u32 port_sel = RIO_INVALID_ROUTE;
1555
1556        if (table == RIO_GLOBAL_TABLE) {
1557                rio_mport_read_config_32(mport, destid, hopcount,
1558                                         RIO_PEF_CAR, &pef);
1559
1560                if (mport->sys_size) {
1561                        rio_mport_read_config_32(mport, destid, hopcount,
1562                                                 RIO_SWITCH_RT_LIMIT,
1563                                                 &max_destid);
1564                        max_destid &= RIO_RT_MAX_DESTID;
1565                }
1566
1567                if (pef & RIO_PEF_EXT_RT) {
1568                        ext_cfg = 0x80000000;
1569                        id_inc = 4;
1570                        port_sel = (RIO_INVALID_ROUTE << 24) |
1571                                   (RIO_INVALID_ROUTE << 16) |
1572                                   (RIO_INVALID_ROUTE << 8) |
1573                                   RIO_INVALID_ROUTE;
1574                }
1575
1576                for (i = 0; i <= max_destid;) {
1577                        rio_mport_write_config_32(mport, destid, hopcount,
1578                                        RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1579                                        ext_cfg | i);
1580                        rio_mport_write_config_32(mport, destid, hopcount,
1581                                        RIO_STD_RTE_CONF_PORT_SEL_CSR,
1582                                        port_sel);
1583                        i += id_inc;
1584                }
1585        }
1586
1587        udelay(10);
1588        return 0;
1589}
1590
1591/**
1592 * rio_lock_device - Acquires host device lock for specified device
1593 * @port: Master port to send transaction
1594 * @destid: Destination ID for device/switch
1595 * @hopcount: Hopcount to reach switch
1596 * @wait_ms: Max wait time in msec (0 = no timeout)
1597 *
1598 * Attepts to acquire host device lock for specified device
1599 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1600 */
1601int rio_lock_device(struct rio_mport *port, u16 destid,
1602                    u8 hopcount, int wait_ms)
1603{
1604        u32 result;
1605        int tcnt = 0;
1606
1607        /* Attempt to acquire device lock */
1608        rio_mport_write_config_32(port, destid, hopcount,
1609                                  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1610        rio_mport_read_config_32(port, destid, hopcount,
1611                                 RIO_HOST_DID_LOCK_CSR, &result);
1612
1613        while (result != port->host_deviceid) {
1614                if (wait_ms != 0 && tcnt == wait_ms) {
1615                        pr_debug("RIO: timeout when locking device %x:%x\n",
1616                                destid, hopcount);
1617                        return -EINVAL;
1618                }
1619
1620                /* Delay a bit */
1621                mdelay(1);
1622                tcnt++;
1623                /* Try to acquire device lock again */
1624                rio_mport_write_config_32(port, destid,
1625                        hopcount,
1626                        RIO_HOST_DID_LOCK_CSR,
1627                        port->host_deviceid);
1628                rio_mport_read_config_32(port, destid,
1629                        hopcount,
1630                        RIO_HOST_DID_LOCK_CSR, &result);
1631        }
1632
1633        return 0;
1634}
1635EXPORT_SYMBOL_GPL(rio_lock_device);
1636
1637/**
1638 * rio_unlock_device - Releases host device lock for specified device
1639 * @port: Master port to send transaction
1640 * @destid: Destination ID for device/switch
1641 * @hopcount: Hopcount to reach switch
1642 *
1643 * Returns 0 if device lock released or EINVAL if fails.
1644 */
1645int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1646{
1647        u32 result;
1648
1649        /* Release device lock */
1650        rio_mport_write_config_32(port, destid,
1651                                  hopcount,
1652                                  RIO_HOST_DID_LOCK_CSR,
1653                                  port->host_deviceid);
1654        rio_mport_read_config_32(port, destid, hopcount,
1655                RIO_HOST_DID_LOCK_CSR, &result);
1656        if ((result & 0xffff) != 0xffff) {
1657                pr_debug("RIO: badness when releasing device lock %x:%x\n",
1658                         destid, hopcount);
1659                return -EINVAL;
1660        }
1661
1662        return 0;
1663}
1664EXPORT_SYMBOL_GPL(rio_unlock_device);
1665
1666/**
1667 * rio_route_add_entry- Add a route entry to a switch routing table
1668 * @rdev: RIO device
1669 * @table: Routing table ID
1670 * @route_destid: Destination ID to be routed
1671 * @route_port: Port number to be routed
1672 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1673 *
1674 * If available calls the switch specific add_entry() method to add a route
1675 * entry into a switch routing table. Otherwise uses standard RT update method
1676 * as defined by RapidIO specification. A specific routing table can be selected
1677 * using the @table argument if a switch has per port routing tables or
1678 * the standard (or global) table may be used by passing
1679 * %RIO_GLOBAL_TABLE in @table.
1680 *
1681 * Returns %0 on success or %-EINVAL on failure.
1682 */
1683int rio_route_add_entry(struct rio_dev *rdev,
1684                        u16 table, u16 route_destid, u8 route_port, int lock)
1685{
1686        int rc = -EINVAL;
1687        struct rio_switch_ops *ops = rdev->rswitch->ops;
1688
1689        if (lock) {
1690                rc = rio_lock_device(rdev->net->hport, rdev->destid,
1691                                     rdev->hopcount, 1000);
1692                if (rc)
1693                        return rc;
1694        }
1695
1696        spin_lock(&rdev->rswitch->lock);
1697
1698        if (!ops || !ops->add_entry) {
1699                rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1700                                             rdev->hopcount, table,
1701                                             route_destid, route_port);
1702        } else if (try_module_get(ops->owner)) {
1703                rc = ops->add_entry(rdev->net->hport, rdev->destid,
1704                                    rdev->hopcount, table, route_destid,
1705                                    route_port);
1706                module_put(ops->owner);
1707        }
1708
1709        spin_unlock(&rdev->rswitch->lock);
1710
1711        if (lock)
1712                rio_unlock_device(rdev->net->hport, rdev->destid,
1713                                  rdev->hopcount);
1714
1715        return rc;
1716}
1717EXPORT_SYMBOL_GPL(rio_route_add_entry);
1718
1719/**
1720 * rio_route_get_entry- Read an entry from a switch routing table
1721 * @rdev: RIO device
1722 * @table: Routing table ID
1723 * @route_destid: Destination ID to be routed
1724 * @route_port: Pointer to read port number into
1725 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1726 *
1727 * If available calls the switch specific get_entry() method to fetch a route
1728 * entry from a switch routing table. Otherwise uses standard RT read method
1729 * as defined by RapidIO specification. A specific routing table can be selected
1730 * using the @table argument if a switch has per port routing tables or
1731 * the standard (or global) table may be used by passing
1732 * %RIO_GLOBAL_TABLE in @table.
1733 *
1734 * Returns %0 on success or %-EINVAL on failure.
1735 */
1736int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1737                        u16 route_destid, u8 *route_port, int lock)
1738{
1739        int rc = -EINVAL;
1740        struct rio_switch_ops *ops = rdev->rswitch->ops;
1741
1742        if (lock) {
1743                rc = rio_lock_device(rdev->net->hport, rdev->destid,
1744                                     rdev->hopcount, 1000);
1745                if (rc)
1746                        return rc;
1747        }
1748
1749        spin_lock(&rdev->rswitch->lock);
1750
1751        if (!ops || !ops->get_entry) {
1752                rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1753                                             rdev->hopcount, table,
1754                                             route_destid, route_port);
1755        } else if (try_module_get(ops->owner)) {
1756                rc = ops->get_entry(rdev->net->hport, rdev->destid,
1757                                    rdev->hopcount, table, route_destid,
1758                                    route_port);
1759                module_put(ops->owner);
1760        }
1761
1762        spin_unlock(&rdev->rswitch->lock);
1763
1764        if (lock)
1765                rio_unlock_device(rdev->net->hport, rdev->destid,
1766                                  rdev->hopcount);
1767        return rc;
1768}
1769EXPORT_SYMBOL_GPL(rio_route_get_entry);
1770
1771/**
1772 * rio_route_clr_table - Clear a switch routing table
1773 * @rdev: RIO device
1774 * @table: Routing table ID
1775 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1776 *
1777 * If available calls the switch specific clr_table() method to clear a switch
1778 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1779 * specification. A specific routing table can be selected using the @table
1780 * argument if a switch has per port routing tables or the standard (or global)
1781 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1782 *
1783 * Returns %0 on success or %-EINVAL on failure.
1784 */
1785int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1786{
1787        int rc = -EINVAL;
1788        struct rio_switch_ops *ops = rdev->rswitch->ops;
1789
1790        if (lock) {
1791                rc = rio_lock_device(rdev->net->hport, rdev->destid,
1792                                     rdev->hopcount, 1000);
1793                if (rc)
1794                        return rc;
1795        }
1796
1797        spin_lock(&rdev->rswitch->lock);
1798
1799        if (!ops || !ops->clr_table) {
1800                rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1801                                             rdev->hopcount, table);
1802        } else if (try_module_get(ops->owner)) {
1803                rc = ops->clr_table(rdev->net->hport, rdev->destid,
1804                                    rdev->hopcount, table);
1805
1806                module_put(ops->owner);
1807        }
1808
1809        spin_unlock(&rdev->rswitch->lock);
1810
1811        if (lock)
1812                rio_unlock_device(rdev->net->hport, rdev->destid,
1813                                  rdev->hopcount);
1814
1815        return rc;
1816}
1817EXPORT_SYMBOL_GPL(rio_route_clr_table);
1818
1819#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1820
1821static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1822{
1823        struct rio_mport *mport = arg;
1824
1825        /* Check that DMA device belongs to the right MPORT */
1826        return mport == container_of(chan->device, struct rio_mport, dma);
1827}
1828
1829/**
1830 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1831 *   with specified local RapidIO mport device.
1832 * @mport: RIO mport to perform DMA data transfers
1833 *
1834 * Returns pointer to allocated DMA channel or NULL if failed.
1835 */
1836struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1837{
1838        dma_cap_mask_t mask;
1839
1840        dma_cap_zero(mask);
1841        dma_cap_set(DMA_SLAVE, mask);
1842        return dma_request_channel(mask, rio_chan_filter, mport);
1843}
1844EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1845
1846/**
1847 * rio_request_dma - request RapidIO capable DMA channel that supports
1848 *   specified target RapidIO device.
1849 * @rdev: RIO device associated with DMA transfer
1850 *
1851 * Returns pointer to allocated DMA channel or NULL if failed.
1852 */
1853struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1854{
1855        return rio_request_mport_dma(rdev->net->hport);
1856}
1857EXPORT_SYMBOL_GPL(rio_request_dma);
1858
1859/**
1860 * rio_release_dma - release specified DMA channel
1861 * @dchan: DMA channel to release
1862 */
1863void rio_release_dma(struct dma_chan *dchan)
1864{
1865        dma_release_channel(dchan);
1866}
1867EXPORT_SYMBOL_GPL(rio_release_dma);
1868
1869/**
1870 * rio_dma_prep_xfer - RapidIO specific wrapper
1871 *   for device_prep_slave_sg callback defined by DMAENGINE.
1872 * @dchan: DMA channel to configure
1873 * @destid: target RapidIO device destination ID
1874 * @data: RIO specific data descriptor
1875 * @direction: DMA data transfer direction (TO or FROM the device)
1876 * @flags: dmaengine defined flags
1877 *
1878 * Initializes RapidIO capable DMA channel for the specified data transfer.
1879 * Uses DMA channel private extension to pass information related to remote
1880 * target RIO device.
1881 *
1882 * Returns: pointer to DMA transaction descriptor if successful,
1883 *          error-valued pointer or NULL if failed.
1884 */
1885struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1886        u16 destid, struct rio_dma_data *data,
1887        enum dma_transfer_direction direction, unsigned long flags)
1888{
1889        struct rio_dma_ext rio_ext;
1890
1891        if (!dchan->device->device_prep_slave_sg) {
1892                pr_err("%s: prep_rio_sg == NULL\n", __func__);
1893                return NULL;
1894        }
1895
1896        rio_ext.destid = destid;
1897        rio_ext.rio_addr_u = data->rio_addr_u;
1898        rio_ext.rio_addr = data->rio_addr;
1899        rio_ext.wr_type = data->wr_type;
1900
1901        return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1902                                     direction, flags, &rio_ext);
1903}
1904EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1905
1906/**
1907 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1908 *   for device_prep_slave_sg callback defined by DMAENGINE.
1909 * @rdev: RIO device control structure
1910 * @dchan: DMA channel to configure
1911 * @data: RIO specific data descriptor
1912 * @direction: DMA data transfer direction (TO or FROM the device)
1913 * @flags: dmaengine defined flags
1914 *
1915 * Initializes RapidIO capable DMA channel for the specified data transfer.
1916 * Uses DMA channel private extension to pass information related to remote
1917 * target RIO device.
1918 *
1919 * Returns: pointer to DMA transaction descriptor if successful,
1920 *          error-valued pointer or NULL if failed.
1921 */
1922struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1923        struct dma_chan *dchan, struct rio_dma_data *data,
1924        enum dma_transfer_direction direction, unsigned long flags)
1925{
1926        return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
1927}
1928EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1929
1930#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1931
1932/**
1933 * rio_find_mport - find RIO mport by its ID
1934 * @mport_id: number (ID) of mport device
1935 *
1936 * Given a RIO mport number, the desired mport is located
1937 * in the global list of mports. If the mport is found, a pointer to its
1938 * data structure is returned.  If no mport is found, %NULL is returned.
1939 */
1940struct rio_mport *rio_find_mport(int mport_id)
1941{
1942        struct rio_mport *port;
1943
1944        mutex_lock(&rio_mport_list_lock);
1945        list_for_each_entry(port, &rio_mports, node) {
1946                if (port->id == mport_id)
1947                        goto found;
1948        }
1949        port = NULL;
1950found:
1951        mutex_unlock(&rio_mport_list_lock);
1952
1953        return port;
1954}
1955
1956/**
1957 * rio_register_scan - enumeration/discovery method registration interface
1958 * @mport_id: mport device ID for which fabric scan routine has to be set
1959 *            (RIO_MPORT_ANY = set for all available mports)
1960 * @scan_ops: enumeration/discovery operations structure
1961 *
1962 * Registers enumeration/discovery operations with RapidIO subsystem and
1963 * attaches it to the specified mport device (or all available mports
1964 * if RIO_MPORT_ANY is specified).
1965 *
1966 * Returns error if the mport already has an enumerator attached to it.
1967 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1968 */
1969int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1970{
1971        struct rio_mport *port;
1972        struct rio_scan_node *scan;
1973        int rc = 0;
1974
1975        pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1976
1977        if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1978            !scan_ops)
1979                return -EINVAL;
1980
1981        mutex_lock(&rio_mport_list_lock);
1982
1983        /*
1984         * Check if there is another enumerator already registered for
1985         * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1986         * for the same mport ID are not supported.
1987         */
1988        list_for_each_entry(scan, &rio_scans, node) {
1989                if (scan->mport_id == mport_id) {
1990                        rc = -EBUSY;
1991                        goto err_out;
1992                }
1993        }
1994
1995        /*
1996         * Allocate and initialize new scan registration node.
1997         */
1998        scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1999        if (!scan) {
2000                rc = -ENOMEM;
2001                goto err_out;
2002        }
2003
2004        scan->mport_id = mport_id;
2005        scan->ops = scan_ops;
2006
2007        /*
2008         * Traverse the list of registered mports to attach this new scan.
2009         *
2010         * The new scan with matching mport ID overrides any previously attached
2011         * scan assuming that old scan (if any) is the default one (based on the
2012         * enumerator registration check above).
2013         * If the new scan is the global one, it will be attached only to mports
2014         * that do not have their own individual operations already attached.
2015         */
2016        list_for_each_entry(port, &rio_mports, node) {
2017                if (port->id == mport_id) {
2018                        port->nscan = scan_ops;
2019                        break;
2020                } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2021                        port->nscan = scan_ops;
2022        }
2023
2024        list_add_tail(&scan->node, &rio_scans);
2025
2026err_out:
2027        mutex_unlock(&rio_mport_list_lock);
2028
2029        return rc;
2030}
2031EXPORT_SYMBOL_GPL(rio_register_scan);
2032
2033/**
2034 * rio_unregister_scan - removes enumeration/discovery method from mport
2035 * @mport_id: mport device ID for which fabric scan routine has to be
2036 *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2037 *            the specified scan_ops)
2038 * @scan_ops: enumeration/discovery operations structure
2039 *
2040 * Removes enumeration or discovery method assigned to the specified mport
2041 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2042 * all mports that have them attached.
2043 */
2044int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2045{
2046        struct rio_mport *port;
2047        struct rio_scan_node *scan;
2048
2049        pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2050
2051        if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2052                return -EINVAL;
2053
2054        mutex_lock(&rio_mport_list_lock);
2055
2056        list_for_each_entry(port, &rio_mports, node)
2057                if (port->id == mport_id ||
2058                    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2059                        port->nscan = NULL;
2060
2061        list_for_each_entry(scan, &rio_scans, node) {
2062                if (scan->mport_id == mport_id) {
2063                        list_del(&scan->node);
2064                        kfree(scan);
2065                        break;
2066                }
2067        }
2068
2069        mutex_unlock(&rio_mport_list_lock);
2070
2071        return 0;
2072}
2073EXPORT_SYMBOL_GPL(rio_unregister_scan);
2074
2075/**
2076 * rio_mport_scan - execute enumeration/discovery on the specified mport
2077 * @mport_id: number (ID) of mport device
2078 */
2079int rio_mport_scan(int mport_id)
2080{
2081        struct rio_mport *port = NULL;
2082        int rc;
2083
2084        mutex_lock(&rio_mport_list_lock);
2085        list_for_each_entry(port, &rio_mports, node) {
2086                if (port->id == mport_id)
2087                        goto found;
2088        }
2089        mutex_unlock(&rio_mport_list_lock);
2090        return -ENODEV;
2091found:
2092        if (!port->nscan) {
2093                mutex_unlock(&rio_mport_list_lock);
2094                return -EINVAL;
2095        }
2096
2097        if (!try_module_get(port->nscan->owner)) {
2098                mutex_unlock(&rio_mport_list_lock);
2099                return -ENODEV;
2100        }
2101
2102        mutex_unlock(&rio_mport_list_lock);
2103
2104        if (port->host_deviceid >= 0)
2105                rc = port->nscan->enumerate(port, 0);
2106        else
2107                rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2108
2109        module_put(port->nscan->owner);
2110        return rc;
2111}
2112
2113static void rio_fixup_device(struct rio_dev *dev)
2114{
2115}
2116
2117static int rio_init(void)
2118{
2119        struct rio_dev *dev = NULL;
2120
2121        while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2122                rio_fixup_device(dev);
2123        }
2124        return 0;
2125}
2126
2127static struct workqueue_struct *rio_wq;
2128
2129struct rio_disc_work {
2130        struct work_struct      work;
2131        struct rio_mport        *mport;
2132};
2133
2134static void disc_work_handler(struct work_struct *_work)
2135{
2136        struct rio_disc_work *work;
2137
2138        work = container_of(_work, struct rio_disc_work, work);
2139        pr_debug("RIO: discovery work for mport %d %s\n",
2140                 work->mport->id, work->mport->name);
2141        if (try_module_get(work->mport->nscan->owner)) {
2142                work->mport->nscan->discover(work->mport, 0);
2143                module_put(work->mport->nscan->owner);
2144        }
2145}
2146
2147int rio_init_mports(void)
2148{
2149        struct rio_mport *port;
2150        struct rio_disc_work *work;
2151        int n = 0;
2152
2153        if (!next_portid)
2154                return -ENODEV;
2155
2156        /*
2157         * First, run enumerations and check if we need to perform discovery
2158         * on any of the registered mports.
2159         */
2160        mutex_lock(&rio_mport_list_lock);
2161        list_for_each_entry(port, &rio_mports, node) {
2162                if (port->host_deviceid >= 0) {
2163                        if (port->nscan && try_module_get(port->nscan->owner)) {
2164                                port->nscan->enumerate(port, 0);
2165                                module_put(port->nscan->owner);
2166                        }
2167                } else
2168                        n++;
2169        }
2170        mutex_unlock(&rio_mport_list_lock);
2171
2172        if (!n)
2173                goto no_disc;
2174
2175        /*
2176         * If we have mports that require discovery schedule a discovery work
2177         * for each of them. If the code below fails to allocate needed
2178         * resources, exit without error to keep results of enumeration
2179         * process (if any).
2180         * TODO: Implement restart of discovery process for all or
2181         * individual discovering mports.
2182         */
2183        rio_wq = alloc_workqueue("riodisc", 0, 0);
2184        if (!rio_wq) {
2185                pr_err("RIO: unable allocate rio_wq\n");
2186                goto no_disc;
2187        }
2188
2189        work = kcalloc(n, sizeof *work, GFP_KERNEL);
2190        if (!work) {
2191                destroy_workqueue(rio_wq);
2192                goto no_disc;
2193        }
2194
2195        n = 0;
2196        mutex_lock(&rio_mport_list_lock);
2197        list_for_each_entry(port, &rio_mports, node) {
2198                if (port->host_deviceid < 0 && port->nscan) {
2199                        work[n].mport = port;
2200                        INIT_WORK(&work[n].work, disc_work_handler);
2201                        queue_work(rio_wq, &work[n].work);
2202                        n++;
2203                }
2204        }
2205
2206        flush_workqueue(rio_wq);
2207        mutex_unlock(&rio_mport_list_lock);
2208        pr_debug("RIO: destroy discovery workqueue\n");
2209        destroy_workqueue(rio_wq);
2210        kfree(work);
2211
2212no_disc:
2213        rio_init();
2214
2215        return 0;
2216}
2217EXPORT_SYMBOL_GPL(rio_init_mports);
2218
2219static int rio_get_hdid(int index)
2220{
2221        if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2222                return -1;
2223
2224        return hdid[index];
2225}
2226
2227int rio_mport_initialize(struct rio_mport *mport)
2228{
2229        if (next_portid >= RIO_MAX_MPORTS) {
2230                pr_err("RIO: reached specified max number of mports\n");
2231                return -ENODEV;
2232        }
2233
2234        atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2235        mport->id = next_portid++;
2236        mport->host_deviceid = rio_get_hdid(mport->id);
2237        mport->nscan = NULL;
2238        mutex_init(&mport->lock);
2239        mport->pwe_refcnt = 0;
2240        INIT_LIST_HEAD(&mport->pwrites);
2241
2242        return 0;
2243}
2244EXPORT_SYMBOL_GPL(rio_mport_initialize);
2245
2246int rio_register_mport(struct rio_mport *port)
2247{
2248        struct rio_scan_node *scan = NULL;
2249        int res = 0;
2250
2251        mutex_lock(&rio_mport_list_lock);
2252
2253        /*
2254         * Check if there are any registered enumeration/discovery operations
2255         * that have to be attached to the added mport.
2256         */
2257        list_for_each_entry(scan, &rio_scans, node) {
2258                if (port->id == scan->mport_id ||
2259                    scan->mport_id == RIO_MPORT_ANY) {
2260                        port->nscan = scan->ops;
2261                        if (port->id == scan->mport_id)
2262                                break;
2263                }
2264        }
2265
2266        list_add_tail(&port->node, &rio_mports);
2267        mutex_unlock(&rio_mport_list_lock);
2268
2269        dev_set_name(&port->dev, "rapidio%d", port->id);
2270        port->dev.class = &rio_mport_class;
2271        atomic_set(&port->state, RIO_DEVICE_RUNNING);
2272
2273        res = device_register(&port->dev);
2274        if (res)
2275                dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2276                        port->id, res);
2277        else
2278                dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2279
2280        return res;
2281}
2282EXPORT_SYMBOL_GPL(rio_register_mport);
2283
2284static int rio_mport_cleanup_callback(struct device *dev, void *data)
2285{
2286        struct rio_dev *rdev = to_rio_dev(dev);
2287
2288        if (dev->bus == &rio_bus_type)
2289                rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2290        return 0;
2291}
2292
2293static int rio_net_remove_children(struct rio_net *net)
2294{
2295        /*
2296         * Unregister all RapidIO devices residing on this net (this will
2297         * invoke notification of registered subsystem interfaces as well).
2298         */
2299        device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2300        return 0;
2301}
2302
2303int rio_unregister_mport(struct rio_mport *port)
2304{
2305        pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2306
2307        /* Transition mport to the SHUTDOWN state */
2308        if (atomic_cmpxchg(&port->state,
2309                           RIO_DEVICE_RUNNING,
2310                           RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2311                pr_err("RIO: %s unexpected state transition for mport %s\n",
2312                        __func__, port->name);
2313        }
2314
2315        if (port->net && port->net->hport == port) {
2316                rio_net_remove_children(port->net);
2317                rio_free_net(port->net);
2318        }
2319
2320        /*
2321         * Unregister all RapidIO devices attached to this mport (this will
2322         * invoke notification of registered subsystem interfaces as well).
2323         */
2324        mutex_lock(&rio_mport_list_lock);
2325        list_del(&port->node);
2326        mutex_unlock(&rio_mport_list_lock);
2327        device_unregister(&port->dev);
2328
2329        return 0;
2330}
2331EXPORT_SYMBOL_GPL(rio_unregister_mport);
2332