linux/drivers/scsi/aic94xx/aic94xx_hwi.c
<<
>>
Prefs
   1/*
   2 * Aic94xx SAS/SATA driver hardware interface.
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This file is part of the aic94xx driver.
  10 *
  11 * The aic94xx driver is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU General Public License as
  13 * published by the Free Software Foundation; version 2 of the
  14 * License.
  15 *
  16 * The aic94xx driver is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 * General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with the aic94xx driver; if not, write to the Free Software
  23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  24 *
  25 */
  26
  27#include <linux/pci.h>
  28#include <linux/slab.h>
  29#include <linux/delay.h>
  30#include <linux/module.h>
  31#include <linux/firmware.h>
  32
  33#include "aic94xx.h"
  34#include "aic94xx_reg.h"
  35#include "aic94xx_hwi.h"
  36#include "aic94xx_seq.h"
  37#include "aic94xx_dump.h"
  38
  39u32 MBAR0_SWB_SIZE;
  40
  41/* ---------- Initialization ---------- */
  42
  43static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
  44{
  45        /* adapter came with a sas address */
  46        if (asd_ha->hw_prof.sas_addr[0])
  47                return 0;
  48
  49        return sas_request_addr(asd_ha->sas_ha.core.shost,
  50                                asd_ha->hw_prof.sas_addr);
  51}
  52
  53static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
  54{
  55        int i;
  56
  57        for (i = 0; i < ASD_MAX_PHYS; i++) {
  58                if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
  59                        continue;
  60                /* Set a phy's address only if it has none.
  61                 */
  62                ASD_DPRINTK("setting phy%d addr to %llx\n", i,
  63                            SAS_ADDR(asd_ha->hw_prof.sas_addr));
  64                memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
  65                       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
  66        }
  67}
  68
  69/* ---------- PHY initialization ---------- */
  70
  71static void asd_init_phy_identify(struct asd_phy *phy)
  72{
  73        phy->identify_frame = phy->id_frm_tok->vaddr;
  74
  75        memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
  76
  77        phy->identify_frame->dev_type = SAS_END_DEVICE;
  78        if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
  79                phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
  80        if (phy->sas_phy.role & PHY_ROLE_TARGET)
  81                phy->identify_frame->target_bits = phy->sas_phy.tproto;
  82        memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
  83               SAS_ADDR_SIZE);
  84        phy->identify_frame->phy_id = phy->sas_phy.id;
  85}
  86
  87static int asd_init_phy(struct asd_phy *phy)
  88{
  89        struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
  90        struct asd_sas_phy *sas_phy = &phy->sas_phy;
  91
  92        sas_phy->enabled = 1;
  93        sas_phy->class = SAS;
  94        sas_phy->iproto = SAS_PROTOCOL_ALL;
  95        sas_phy->tproto = 0;
  96        sas_phy->type = PHY_TYPE_PHYSICAL;
  97        sas_phy->role = PHY_ROLE_INITIATOR;
  98        sas_phy->oob_mode = OOB_NOT_CONNECTED;
  99        sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
 100
 101        phy->id_frm_tok = asd_alloc_coherent(asd_ha,
 102                                             sizeof(*phy->identify_frame),
 103                                             GFP_KERNEL);
 104        if (!phy->id_frm_tok) {
 105                asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
 106                return -ENOMEM;
 107        } else
 108                asd_init_phy_identify(phy);
 109
 110        memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
 111
 112        return 0;
 113}
 114
 115static void asd_init_ports(struct asd_ha_struct *asd_ha)
 116{
 117        int i;
 118
 119        spin_lock_init(&asd_ha->asd_ports_lock);
 120        for (i = 0; i < ASD_MAX_PHYS; i++) {
 121                struct asd_port *asd_port = &asd_ha->asd_ports[i];
 122
 123                memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
 124                memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
 125                asd_port->phy_mask = 0;
 126                asd_port->num_phys = 0;
 127        }
 128}
 129
 130static int asd_init_phys(struct asd_ha_struct *asd_ha)
 131{
 132        u8 i;
 133        u8 phy_mask = asd_ha->hw_prof.enabled_phys;
 134
 135        for (i = 0; i < ASD_MAX_PHYS; i++) {
 136                struct asd_phy *phy = &asd_ha->phys[i];
 137
 138                phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
 139                phy->asd_port = NULL;
 140
 141                phy->sas_phy.enabled = 0;
 142                phy->sas_phy.id = i;
 143                phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
 144                phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
 145                phy->sas_phy.ha = &asd_ha->sas_ha;
 146                phy->sas_phy.lldd_phy = phy;
 147        }
 148
 149        /* Now enable and initialize only the enabled phys. */
 150        for_each_phy(phy_mask, phy_mask, i) {
 151                int err = asd_init_phy(&asd_ha->phys[i]);
 152                if (err)
 153                        return err;
 154        }
 155
 156        return 0;
 157}
 158
 159/* ---------- Sliding windows ---------- */
 160
 161static int asd_init_sw(struct asd_ha_struct *asd_ha)
 162{
 163        struct pci_dev *pcidev = asd_ha->pcidev;
 164        int err;
 165        u32 v;
 166
 167        /* Unlock MBARs */
 168        err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
 169        if (err) {
 170                asd_printk("couldn't access conf. space of %s\n",
 171                           pci_name(pcidev));
 172                goto Err;
 173        }
 174        if (v)
 175                err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
 176        if (err) {
 177                asd_printk("couldn't write to MBAR_KEY of %s\n",
 178                           pci_name(pcidev));
 179                goto Err;
 180        }
 181
 182        /* Set sliding windows A, B and C to point to proper internal
 183         * memory regions.
 184         */
 185        pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
 186        pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
 187                               REG_BASE_ADDR_CSEQCIO);
 188        pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
 189        asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
 190        asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
 191        asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
 192        MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
 193        if (!asd_ha->iospace) {
 194                /* MBAR1 will point to OCM (On Chip Memory) */
 195                pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
 196                asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
 197        }
 198        spin_lock_init(&asd_ha->iolock);
 199Err:
 200        return err;
 201}
 202
 203/* ---------- SCB initialization ---------- */
 204
 205/**
 206 * asd_init_scbs - manually allocate the first SCB.
 207 * @asd_ha: pointer to host adapter structure
 208 *
 209 * This allocates the very first SCB which would be sent to the
 210 * sequencer for execution.  Its bus address is written to
 211 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
 212 * the _next_ scb to be DMA-ed to the host adapter is read from the last
 213 * SCB DMA-ed to the host adapter, we have to always stay one step
 214 * ahead of the sequencer and keep one SCB already allocated.
 215 */
 216static int asd_init_scbs(struct asd_ha_struct *asd_ha)
 217{
 218        struct asd_seq_data *seq = &asd_ha->seq;
 219        int bitmap_bytes;
 220
 221        /* allocate the index array and bitmap */
 222        asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
 223        asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
 224                                             sizeof(void *), GFP_KERNEL);
 225        if (!asd_ha->seq.tc_index_array)
 226                return -ENOMEM;
 227
 228        bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
 229        bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
 230        asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
 231        if (!asd_ha->seq.tc_index_bitmap) {
 232                kfree(asd_ha->seq.tc_index_array);
 233                asd_ha->seq.tc_index_array = NULL;
 234                return -ENOMEM;
 235        }
 236
 237        spin_lock_init(&seq->tc_index_lock);
 238
 239        seq->next_scb.size = sizeof(struct scb);
 240        seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
 241                                             &seq->next_scb.dma_handle);
 242        if (!seq->next_scb.vaddr) {
 243                kfree(asd_ha->seq.tc_index_bitmap);
 244                kfree(asd_ha->seq.tc_index_array);
 245                asd_ha->seq.tc_index_bitmap = NULL;
 246                asd_ha->seq.tc_index_array = NULL;
 247                return -ENOMEM;
 248        }
 249
 250        seq->pending = 0;
 251        spin_lock_init(&seq->pend_q_lock);
 252        INIT_LIST_HEAD(&seq->pend_q);
 253
 254        return 0;
 255}
 256
 257static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
 258{
 259        asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
 260        asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
 261        ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
 262                    asd_ha->hw_prof.max_scbs,
 263                    asd_ha->hw_prof.max_ddbs);
 264}
 265
 266/* ---------- Done List initialization ---------- */
 267
 268static void asd_dl_tasklet_handler(unsigned long);
 269
 270static int asd_init_dl(struct asd_ha_struct *asd_ha)
 271{
 272        asd_ha->seq.actual_dl
 273                = asd_alloc_coherent(asd_ha,
 274                             ASD_DL_SIZE * sizeof(struct done_list_struct),
 275                                     GFP_KERNEL);
 276        if (!asd_ha->seq.actual_dl)
 277                return -ENOMEM;
 278        asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
 279        asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
 280        asd_ha->seq.dl_next = 0;
 281        tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
 282                     (unsigned long) asd_ha);
 283
 284        return 0;
 285}
 286
 287/* ---------- EDB and ESCB init ---------- */
 288
 289static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
 290{
 291        struct asd_seq_data *seq = &asd_ha->seq;
 292        int i;
 293
 294        seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
 295        if (!seq->edb_arr)
 296                return -ENOMEM;
 297
 298        for (i = 0; i < seq->num_edbs; i++) {
 299                seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
 300                                                     gfp_flags);
 301                if (!seq->edb_arr[i])
 302                        goto Err_unroll;
 303                memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
 304        }
 305
 306        ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
 307
 308        return 0;
 309
 310Err_unroll:
 311        for (i-- ; i >= 0; i--)
 312                asd_free_coherent(asd_ha, seq->edb_arr[i]);
 313        kfree(seq->edb_arr);
 314        seq->edb_arr = NULL;
 315
 316        return -ENOMEM;
 317}
 318
 319static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
 320                           gfp_t gfp_flags)
 321{
 322        struct asd_seq_data *seq = &asd_ha->seq;
 323        struct asd_ascb *escb;
 324        int i, escbs;
 325
 326        seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
 327                                gfp_flags);
 328        if (!seq->escb_arr)
 329                return -ENOMEM;
 330
 331        escbs = seq->num_escbs;
 332        escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
 333        if (!escb) {
 334                asd_printk("couldn't allocate list of escbs\n");
 335                goto Err;
 336        }
 337        seq->num_escbs -= escbs;  /* subtract what was not allocated */
 338        ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
 339
 340        for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
 341                                                               struct asd_ascb,
 342                                                               list)) {
 343                seq->escb_arr[i] = escb;
 344                escb->scb->header.opcode = EMPTY_SCB;
 345        }
 346
 347        return 0;
 348Err:
 349        kfree(seq->escb_arr);
 350        seq->escb_arr = NULL;
 351        return -ENOMEM;
 352
 353}
 354
 355static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
 356{
 357        struct asd_seq_data *seq = &asd_ha->seq;
 358        int i, k, z = 0;
 359
 360        for (i = 0; i < seq->num_escbs; i++) {
 361                struct asd_ascb *ascb = seq->escb_arr[i];
 362                struct empty_scb *escb = &ascb->scb->escb;
 363
 364                ascb->edb_index = z;
 365
 366                escb->num_valid = ASD_EDBS_PER_SCB;
 367
 368                for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
 369                        struct sg_el *eb = &escb->eb[k];
 370                        struct asd_dma_tok *edb = seq->edb_arr[z++];
 371
 372                        memset(eb, 0, sizeof(*eb));
 373                        eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
 374                        eb->size = cpu_to_le32(((u32) edb->size));
 375                }
 376        }
 377}
 378
 379/**
 380 * asd_init_escbs -- allocate and initialize empty scbs
 381 * @asd_ha: pointer to host adapter structure
 382 *
 383 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
 384 * They transport sense data, etc.
 385 */
 386static int asd_init_escbs(struct asd_ha_struct *asd_ha)
 387{
 388        struct asd_seq_data *seq = &asd_ha->seq;
 389        int err = 0;
 390
 391        /* Allocate two empty data buffers (edb) per sequencer. */
 392        int edbs = 2*(1+asd_ha->hw_prof.num_phys);
 393
 394        seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
 395        seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
 396
 397        err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
 398        if (err) {
 399                asd_printk("couldn't allocate edbs\n");
 400                return err;
 401        }
 402
 403        err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
 404        if (err) {
 405                asd_printk("couldn't allocate escbs\n");
 406                return err;
 407        }
 408
 409        asd_assign_edbs2escbs(asd_ha);
 410        /* In order to insure that normal SCBs do not overfill sequencer
 411         * memory and leave no space for escbs (halting condition),
 412         * we increment pending here by the number of escbs.  However,
 413         * escbs are never pending.
 414         */
 415        seq->pending   = seq->num_escbs;
 416        seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
 417
 418        return 0;
 419}
 420
 421/* ---------- HW initialization ---------- */
 422
 423/**
 424 * asd_chip_hardrst -- hard reset the chip
 425 * @asd_ha: pointer to host adapter structure
 426 *
 427 * This takes 16 cycles and is synchronous to CFCLK, which runs
 428 * at 200 MHz, so this should take at most 80 nanoseconds.
 429 */
 430int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
 431{
 432        int i;
 433        int count = 100;
 434        u32 reg;
 435
 436        for (i = 0 ; i < 4 ; i++) {
 437                asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
 438        }
 439
 440        do {
 441                udelay(1);
 442                reg = asd_read_reg_dword(asd_ha, CHIMINT);
 443                if (reg & HARDRSTDET) {
 444                        asd_write_reg_dword(asd_ha, CHIMINT,
 445                                            HARDRSTDET|PORRSTDET);
 446                        return 0;
 447                }
 448        } while (--count > 0);
 449
 450        return -ENODEV;
 451}
 452
 453/**
 454 * asd_init_chip -- initialize the chip
 455 * @asd_ha: pointer to host adapter structure
 456 *
 457 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
 458 * microcode and starts the sequencers.  The caller has to explicitly
 459 * enable HA interrupts with asd_enable_ints(asd_ha).
 460 */
 461static int asd_init_chip(struct asd_ha_struct *asd_ha)
 462{
 463        int err;
 464
 465        err = asd_chip_hardrst(asd_ha);
 466        if (err) {
 467                asd_printk("couldn't hard reset %s\n",
 468                            pci_name(asd_ha->pcidev));
 469                goto out;
 470        }
 471
 472        asd_disable_ints(asd_ha);
 473
 474        err = asd_init_seqs(asd_ha);
 475        if (err) {
 476                asd_printk("couldn't init seqs for %s\n",
 477                           pci_name(asd_ha->pcidev));
 478                goto out;
 479        }
 480
 481        err = asd_start_seqs(asd_ha);
 482        if (err) {
 483                asd_printk("couldn't start seqs for %s\n",
 484                           pci_name(asd_ha->pcidev));
 485                goto out;
 486        }
 487out:
 488        return err;
 489}
 490
 491#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
 492
 493static int max_devs = 0;
 494module_param_named(max_devs, max_devs, int, S_IRUGO);
 495MODULE_PARM_DESC(max_devs, "\n"
 496        "\tMaximum number of SAS devices to support (not LUs).\n"
 497        "\tDefault: 2176, Maximum: 65663.\n");
 498
 499static int max_cmnds = 0;
 500module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
 501MODULE_PARM_DESC(max_cmnds, "\n"
 502        "\tMaximum number of commands queuable.\n"
 503        "\tDefault: 512, Maximum: 66047.\n");
 504
 505static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
 506{
 507        unsigned long dma_addr = OCM_BASE_ADDR;
 508        u32 d;
 509
 510        dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
 511        asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
 512        d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
 513        d |= 4;
 514        asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
 515        asd_ha->hw_prof.max_ddbs += MAX_DEVS;
 516}
 517
 518static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
 519{
 520        dma_addr_t dma_handle;
 521        unsigned long dma_addr;
 522        u32 d;
 523        int size;
 524
 525        asd_extend_devctx_ocm(asd_ha);
 526
 527        asd_ha->hw_prof.ddb_ext = NULL;
 528        if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
 529                max_devs = asd_ha->hw_prof.max_ddbs;
 530                return 0;
 531        }
 532
 533        size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
 534
 535        asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
 536        if (!asd_ha->hw_prof.ddb_ext) {
 537                asd_printk("couldn't allocate memory for %d devices\n",
 538                           max_devs);
 539                max_devs = asd_ha->hw_prof.max_ddbs;
 540                return -ENOMEM;
 541        }
 542        dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
 543        dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
 544        dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
 545        dma_handle = (dma_addr_t) dma_addr;
 546        asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
 547        d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
 548        d &= ~4;
 549        asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
 550
 551        asd_ha->hw_prof.max_ddbs = max_devs;
 552
 553        return 0;
 554}
 555
 556static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
 557{
 558        dma_addr_t dma_handle;
 559        unsigned long dma_addr;
 560        u32 d;
 561        int size;
 562
 563        asd_ha->hw_prof.scb_ext = NULL;
 564        if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
 565                max_cmnds = asd_ha->hw_prof.max_scbs;
 566                return 0;
 567        }
 568
 569        size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
 570
 571        asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
 572        if (!asd_ha->hw_prof.scb_ext) {
 573                asd_printk("couldn't allocate memory for %d commands\n",
 574                           max_cmnds);
 575                max_cmnds = asd_ha->hw_prof.max_scbs;
 576                return -ENOMEM;
 577        }
 578        dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
 579        dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
 580        dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
 581        dma_handle = (dma_addr_t) dma_addr;
 582        asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
 583        d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
 584        d &= ~1;
 585        asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
 586
 587        asd_ha->hw_prof.max_scbs = max_cmnds;
 588
 589        return 0;
 590}
 591
 592/**
 593 * asd_init_ctxmem -- initialize context memory
 594 * asd_ha: pointer to host adapter structure
 595 *
 596 * This function sets the maximum number of SCBs and
 597 * DDBs which can be used by the sequencer.  This is normally
 598 * 512 and 128 respectively.  If support for more SCBs or more DDBs
 599 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
 600 * initialized here to extend context memory to point to host memory,
 601 * thus allowing unlimited support for SCBs and DDBs -- only limited
 602 * by host memory.
 603 */
 604static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
 605{
 606        int bitmap_bytes;
 607
 608        asd_get_max_scb_ddb(asd_ha);
 609        asd_extend_devctx(asd_ha);
 610        asd_extend_cmdctx(asd_ha);
 611
 612        /* The kernel wants bitmaps to be unsigned long sized. */
 613        bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
 614        bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
 615        asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
 616        if (!asd_ha->hw_prof.ddb_bitmap)
 617                return -ENOMEM;
 618        spin_lock_init(&asd_ha->hw_prof.ddb_lock);
 619
 620        return 0;
 621}
 622
 623int asd_init_hw(struct asd_ha_struct *asd_ha)
 624{
 625        int err;
 626        u32 v;
 627
 628        err = asd_init_sw(asd_ha);
 629        if (err)
 630                return err;
 631
 632        err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
 633        if (err) {
 634                asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
 635                           pci_name(asd_ha->pcidev));
 636                return err;
 637        }
 638        err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
 639                                        v | SC_TMR_DIS);
 640        if (err) {
 641                asd_printk("couldn't disable split completion timer of %s\n",
 642                           pci_name(asd_ha->pcidev));
 643                return err;
 644        }
 645
 646        err = asd_read_ocm(asd_ha);
 647        if (err) {
 648                asd_printk("couldn't read ocm(%d)\n", err);
 649                /* While suspicios, it is not an error that we
 650                 * couldn't read the OCM. */
 651        }
 652
 653        err = asd_read_flash(asd_ha);
 654        if (err) {
 655                asd_printk("couldn't read flash(%d)\n", err);
 656                /* While suspicios, it is not an error that we
 657                 * couldn't read FLASH memory.
 658                 */
 659        }
 660
 661        asd_init_ctxmem(asd_ha);
 662
 663        if (asd_get_user_sas_addr(asd_ha)) {
 664                asd_printk("No SAS Address provided for %s\n",
 665                           pci_name(asd_ha->pcidev));
 666                err = -ENODEV;
 667                goto Out;
 668        }
 669
 670        asd_propagate_sas_addr(asd_ha);
 671
 672        err = asd_init_phys(asd_ha);
 673        if (err) {
 674                asd_printk("couldn't initialize phys for %s\n",
 675                            pci_name(asd_ha->pcidev));
 676                goto Out;
 677        }
 678
 679        asd_init_ports(asd_ha);
 680
 681        err = asd_init_scbs(asd_ha);
 682        if (err) {
 683                asd_printk("couldn't initialize scbs for %s\n",
 684                            pci_name(asd_ha->pcidev));
 685                goto Out;
 686        }
 687
 688        err = asd_init_dl(asd_ha);
 689        if (err) {
 690                asd_printk("couldn't initialize the done list:%d\n",
 691                            err);
 692                goto Out;
 693        }
 694
 695        err = asd_init_escbs(asd_ha);
 696        if (err) {
 697                asd_printk("couldn't initialize escbs\n");
 698                goto Out;
 699        }
 700
 701        err = asd_init_chip(asd_ha);
 702        if (err) {
 703                asd_printk("couldn't init the chip\n");
 704                goto Out;
 705        }
 706Out:
 707        return err;
 708}
 709
 710/* ---------- Chip reset ---------- */
 711
 712/**
 713 * asd_chip_reset -- reset the host adapter, etc
 714 * @asd_ha: pointer to host adapter structure of interest
 715 *
 716 * Called from the ISR.  Hard reset the chip.  Let everything
 717 * timeout.  This should be no different than hot-unplugging the
 718 * host adapter.  Once everything times out we'll init the chip with
 719 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
 720 * XXX finish.
 721 */
 722static void asd_chip_reset(struct asd_ha_struct *asd_ha)
 723{
 724        ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
 725        asd_chip_hardrst(asd_ha);
 726}
 727
 728/* ---------- Done List Routines ---------- */
 729
 730static void asd_dl_tasklet_handler(unsigned long data)
 731{
 732        struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
 733        struct asd_seq_data *seq = &asd_ha->seq;
 734        unsigned long flags;
 735
 736        while (1) {
 737                struct done_list_struct *dl = &seq->dl[seq->dl_next];
 738                struct asd_ascb *ascb;
 739
 740                if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
 741                        break;
 742
 743                /* find the aSCB */
 744                spin_lock_irqsave(&seq->tc_index_lock, flags);
 745                ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
 746                spin_unlock_irqrestore(&seq->tc_index_lock, flags);
 747                if (unlikely(!ascb)) {
 748                        ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
 749                        goto next_1;
 750                } else if (ascb->scb->header.opcode == EMPTY_SCB) {
 751                        goto out;
 752                } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
 753                        goto next_1;
 754                }
 755                spin_lock_irqsave(&seq->pend_q_lock, flags);
 756                list_del_init(&ascb->list);
 757                seq->pending--;
 758                spin_unlock_irqrestore(&seq->pend_q_lock, flags);
 759        out:
 760                ascb->tasklet_complete(ascb, dl);
 761
 762        next_1:
 763                seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
 764                if (!seq->dl_next)
 765                        seq->dl_toggle ^= DL_TOGGLE_MASK;
 766        }
 767}
 768
 769/* ---------- Interrupt Service Routines ---------- */
 770
 771/**
 772 * asd_process_donelist_isr -- schedule processing of done list entries
 773 * @asd_ha: pointer to host adapter structure
 774 */
 775static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
 776{
 777        tasklet_schedule(&asd_ha->seq.dl_tasklet);
 778}
 779
 780/**
 781 * asd_com_sas_isr -- process device communication interrupt (COMINT)
 782 * @asd_ha: pointer to host adapter structure
 783 */
 784static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
 785{
 786        u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
 787
 788        /* clear COMSTAT int */
 789        asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
 790
 791        if (comstat & CSBUFPERR) {
 792                asd_printk("%s: command/status buffer dma parity error\n",
 793                           pci_name(asd_ha->pcidev));
 794        } else if (comstat & CSERR) {
 795                int i;
 796                u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
 797                dmaerr &= 0xFF;
 798                asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
 799                           "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
 800                           pci_name(asd_ha->pcidev),
 801                           dmaerr,
 802                           asd_read_reg_dword(asd_ha, CSDMAADR),
 803                           asd_read_reg_dword(asd_ha, CSDMAADR+4));
 804                asd_printk("CSBUFFER:\n");
 805                for (i = 0; i < 8; i++) {
 806                        asd_printk("%08x %08x %08x %08x\n",
 807                                   asd_read_reg_dword(asd_ha, CSBUFFER),
 808                                   asd_read_reg_dword(asd_ha, CSBUFFER+4),
 809                                   asd_read_reg_dword(asd_ha, CSBUFFER+8),
 810                                   asd_read_reg_dword(asd_ha, CSBUFFER+12));
 811                }
 812                asd_dump_seq_state(asd_ha, 0);
 813        } else if (comstat & OVLYERR) {
 814                u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
 815                dmaerr = (dmaerr >> 8) & 0xFF;
 816                asd_printk("%s: overlay dma error:0x%x\n",
 817                           pci_name(asd_ha->pcidev),
 818                           dmaerr);
 819        }
 820        asd_chip_reset(asd_ha);
 821}
 822
 823static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
 824{
 825        static const char *halt_code[256] = {
 826                "UNEXPECTED_INTERRUPT0",
 827                "UNEXPECTED_INTERRUPT1",
 828                "UNEXPECTED_INTERRUPT2",
 829                "UNEXPECTED_INTERRUPT3",
 830                "UNEXPECTED_INTERRUPT4",
 831                "UNEXPECTED_INTERRUPT5",
 832                "UNEXPECTED_INTERRUPT6",
 833                "UNEXPECTED_INTERRUPT7",
 834                "UNEXPECTED_INTERRUPT8",
 835                "UNEXPECTED_INTERRUPT9",
 836                "UNEXPECTED_INTERRUPT10",
 837                [11 ... 19] = "unknown[11,19]",
 838                "NO_FREE_SCB_AVAILABLE",
 839                "INVALID_SCB_OPCODE",
 840                "INVALID_MBX_OPCODE",
 841                "INVALID_ATA_STATE",
 842                "ATA_QUEUE_FULL",
 843                "ATA_TAG_TABLE_FAULT",
 844                "ATA_TAG_MASK_FAULT",
 845                "BAD_LINK_QUEUE_STATE",
 846                "DMA2CHIM_QUEUE_ERROR",
 847                "EMPTY_SCB_LIST_FULL",
 848                "unknown[30]",
 849                "IN_USE_SCB_ON_FREE_LIST",
 850                "BAD_OPEN_WAIT_STATE",
 851                "INVALID_STP_AFFILIATION",
 852                "unknown[34]",
 853                "EXEC_QUEUE_ERROR",
 854                "TOO_MANY_EMPTIES_NEEDED",
 855                "EMPTY_REQ_QUEUE_ERROR",
 856                "Q_MONIRTT_MGMT_ERROR",
 857                "TARGET_MODE_FLOW_ERROR",
 858                "DEVICE_QUEUE_NOT_FOUND",
 859                "START_IRTT_TIMER_ERROR",
 860                "ABORT_TASK_ILLEGAL_REQ",
 861                [43 ... 255] = "unknown[43,255]"
 862        };
 863
 864        if (dchstatus & CSEQINT) {
 865                u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
 866
 867                if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
 868                        asd_printk("%s: CSEQ arp2int:0x%x\n",
 869                                   pci_name(asd_ha->pcidev),
 870                                   arp2int);
 871                } else if (arp2int & ARP2HALTC)
 872                        asd_printk("%s: CSEQ halted: %s\n",
 873                                   pci_name(asd_ha->pcidev),
 874                                   halt_code[(arp2int>>16)&0xFF]);
 875                else
 876                        asd_printk("%s: CARP2INT:0x%x\n",
 877                                   pci_name(asd_ha->pcidev),
 878                                   arp2int);
 879        }
 880        if (dchstatus & LSEQINT_MASK) {
 881                int lseq;
 882                u8  lseq_mask = dchstatus & LSEQINT_MASK;
 883
 884                for_each_sequencer(lseq_mask, lseq_mask, lseq) {
 885                        u32 arp2int = asd_read_reg_dword(asd_ha,
 886                                                         LmARP2INT(lseq));
 887                        if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
 888                                       | ARP2CIOPERR)) {
 889                                asd_printk("%s: LSEQ%d arp2int:0x%x\n",
 890                                           pci_name(asd_ha->pcidev),
 891                                           lseq, arp2int);
 892                                /* XXX we should only do lseq reset */
 893                        } else if (arp2int & ARP2HALTC)
 894                                asd_printk("%s: LSEQ%d halted: %s\n",
 895                                           pci_name(asd_ha->pcidev),
 896                                           lseq,halt_code[(arp2int>>16)&0xFF]);
 897                        else
 898                                asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
 899                                           pci_name(asd_ha->pcidev), lseq,
 900                                           arp2int);
 901                }
 902        }
 903        asd_chip_reset(asd_ha);
 904}
 905
 906/**
 907 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
 908 * @asd_ha: pointer to host adapter structure
 909 */
 910static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
 911{
 912        u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
 913
 914        if (dchstatus & CFIFTOERR) {
 915                asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
 916                asd_chip_reset(asd_ha);
 917        } else
 918                asd_arp2_err(asd_ha, dchstatus);
 919}
 920
 921/**
 922 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
 923 * @asd_ha: pointer to host adapter structure
 924 */
 925static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
 926{
 927        u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
 928
 929        if (!(stat0r & ASIERR)) {
 930                asd_printk("hmm, EXSI interrupted but no error?\n");
 931                return;
 932        }
 933
 934        if (stat0r & ASIFMTERR) {
 935                asd_printk("ASI SEEPROM format error for %s\n",
 936                           pci_name(asd_ha->pcidev));
 937        } else if (stat0r & ASISEECHKERR) {
 938                u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
 939                asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
 940                           stat1r & CHECKSUM_MASK,
 941                           pci_name(asd_ha->pcidev));
 942        } else {
 943                u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
 944
 945                if (!(statr & CPI2ASIMSTERR_MASK)) {
 946                        ASD_DPRINTK("hmm, ASIERR?\n");
 947                        return;
 948                } else {
 949                        u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
 950                        u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
 951
 952                        asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
 953                                   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
 954                                   "master id: 0x%x, master err: 0x%x\n",
 955                                   pci_name(asd_ha->pcidev),
 956                                   addr, data,
 957                                   (statr & CPI2ASIBYTECNT_MASK) >> 16,
 958                                   (statr & CPI2ASIBYTEEN_MASK) >> 12,
 959                                   (statr & CPI2ASITARGERR_MASK) >> 8,
 960                                   (statr & CPI2ASITARGMID_MASK) >> 4,
 961                                   (statr & CPI2ASIMSTERR_MASK));
 962                }
 963        }
 964        asd_chip_reset(asd_ha);
 965}
 966
 967/**
 968 * asd_hst_pcix_isr -- process host interface interrupts
 969 * @asd_ha: pointer to host adapter structure
 970 *
 971 * Asserted on PCIX errors: target abort, etc.
 972 */
 973static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
 974{
 975        u16 status;
 976        u32 pcix_status;
 977        u32 ecc_status;
 978
 979        pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
 980        pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
 981        pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
 982
 983        if (status & PCI_STATUS_DETECTED_PARITY)
 984                asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
 985        else if (status & PCI_STATUS_REC_MASTER_ABORT)
 986                asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
 987        else if (status & PCI_STATUS_REC_TARGET_ABORT)
 988                asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
 989        else if (status & PCI_STATUS_PARITY)
 990                asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
 991        else if (pcix_status & RCV_SCE) {
 992                asd_printk("received split completion error for %s\n",
 993                           pci_name(asd_ha->pcidev));
 994                pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
 995                /* XXX: Abort task? */
 996                return;
 997        } else if (pcix_status & UNEXP_SC) {
 998                asd_printk("unexpected split completion for %s\n",
 999                           pci_name(asd_ha->pcidev));
1000                pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
1001                /* ignore */
1002                return;
1003        } else if (pcix_status & SC_DISCARD)
1004                asd_printk("split completion discarded for %s\n",
1005                           pci_name(asd_ha->pcidev));
1006        else if (ecc_status & UNCOR_ECCERR)
1007                asd_printk("uncorrectable ECC error for %s\n",
1008                           pci_name(asd_ha->pcidev));
1009        asd_chip_reset(asd_ha);
1010}
1011
1012/**
1013 * asd_hw_isr -- host adapter interrupt service routine
1014 * @irq: ignored
1015 * @dev_id: pointer to host adapter structure
1016 *
1017 * The ISR processes done list entries and level 3 error handling.
1018 */
1019irqreturn_t asd_hw_isr(int irq, void *dev_id)
1020{
1021        struct asd_ha_struct *asd_ha = dev_id;
1022        u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1023
1024        if (!chimint)
1025                return IRQ_NONE;
1026
1027        asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1028        (void) asd_read_reg_dword(asd_ha, CHIMINT);
1029
1030        if (chimint & DLAVAIL)
1031                asd_process_donelist_isr(asd_ha);
1032        if (chimint & COMINT)
1033                asd_com_sas_isr(asd_ha);
1034        if (chimint & DEVINT)
1035                asd_dch_sas_isr(asd_ha);
1036        if (chimint & INITERR)
1037                asd_rbi_exsi_isr(asd_ha);
1038        if (chimint & HOSTERR)
1039                asd_hst_pcix_isr(asd_ha);
1040
1041        return IRQ_HANDLED;
1042}
1043
1044/* ---------- SCB handling ---------- */
1045
1046static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1047                                       gfp_t gfp_flags)
1048{
1049        extern struct kmem_cache *asd_ascb_cache;
1050        struct asd_seq_data *seq = &asd_ha->seq;
1051        struct asd_ascb *ascb;
1052        unsigned long flags;
1053
1054        ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1055
1056        if (ascb) {
1057                ascb->dma_scb.size = sizeof(struct scb);
1058                ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
1059                                                     gfp_flags,
1060                                                    &ascb->dma_scb.dma_handle);
1061                if (!ascb->dma_scb.vaddr) {
1062                        kmem_cache_free(asd_ascb_cache, ascb);
1063                        return NULL;
1064                }
1065                memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
1066                asd_init_ascb(asd_ha, ascb);
1067
1068                spin_lock_irqsave(&seq->tc_index_lock, flags);
1069                ascb->tc_index = asd_tc_index_get(seq, ascb);
1070                spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1071                if (ascb->tc_index == -1)
1072                        goto undo;
1073
1074                ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1075        }
1076
1077        return ascb;
1078undo:
1079        dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1080                      ascb->dma_scb.dma_handle);
1081        kmem_cache_free(asd_ascb_cache, ascb);
1082        ASD_DPRINTK("no index for ascb\n");
1083        return NULL;
1084}
1085
1086/**
1087 * asd_ascb_alloc_list -- allocate a list of aSCBs
1088 * @asd_ha: pointer to host adapter structure
1089 * @num: pointer to integer number of aSCBs
1090 * @gfp_flags: GFP_ flags.
1091 *
1092 * This is the only function which is used to allocate aSCBs.
1093 * It can allocate one or many. If more than one, then they form
1094 * a linked list in two ways: by their list field of the ascb struct
1095 * and by the next_scb field of the scb_header.
1096 *
1097 * Returns NULL if no memory was available, else pointer to a list
1098 * of ascbs.  When this function returns, @num would be the number
1099 * of SCBs which were not able to be allocated, 0 if all requested
1100 * were able to be allocated.
1101 */
1102struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1103                                     *asd_ha, int *num,
1104                                     gfp_t gfp_flags)
1105{
1106        struct asd_ascb *first = NULL;
1107
1108        for ( ; *num > 0; --*num) {
1109                struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1110
1111                if (!ascb)
1112                        break;
1113                else if (!first)
1114                        first = ascb;
1115                else {
1116                        struct asd_ascb *last = list_entry(first->list.prev,
1117                                                           struct asd_ascb,
1118                                                           list);
1119                        list_add_tail(&ascb->list, &first->list);
1120                        last->scb->header.next_scb =
1121                                cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1122                }
1123        }
1124
1125        return first;
1126}
1127
1128/**
1129 * asd_swap_head_scb -- swap the head scb
1130 * @asd_ha: pointer to host adapter structure
1131 * @ascb: pointer to the head of an ascb list
1132 *
1133 * The sequencer knows the DMA address of the next SCB to be DMAed to
1134 * the host adapter, from initialization or from the last list DMAed.
1135 * seq->next_scb keeps the address of this SCB.  The sequencer will
1136 * DMA to the host adapter this list of SCBs.  But the head (first
1137 * element) of this list is not known to the sequencer.  Here we swap
1138 * the head of the list with the known SCB (memcpy()).
1139 * Only one memcpy() is required per list so it is in our interest
1140 * to keep the list of SCB as long as possible so that the ratio
1141 * of number of memcpy calls to the number of SCB DMA-ed is as small
1142 * as possible.
1143 *
1144 * LOCKING: called with the pending list lock held.
1145 */
1146static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1147                              struct asd_ascb *ascb)
1148{
1149        struct asd_seq_data *seq = &asd_ha->seq;
1150        struct asd_ascb *last = list_entry(ascb->list.prev,
1151                                           struct asd_ascb,
1152                                           list);
1153        struct asd_dma_tok t = ascb->dma_scb;
1154
1155        memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1156        ascb->dma_scb = seq->next_scb;
1157        ascb->scb = ascb->dma_scb.vaddr;
1158        seq->next_scb = t;
1159        last->scb->header.next_scb =
1160                cpu_to_le64(((u64)seq->next_scb.dma_handle));
1161}
1162
1163/**
1164 * asd_start_timers -- (add and) start timers of SCBs
1165 * @list: pointer to struct list_head of the scbs
1166 * @to: timeout in jiffies
1167 *
1168 * If an SCB in the @list has no timer function, assign the default
1169 * one,  then start the timer of the SCB.  This function is
1170 * intended to be called from asd_post_ascb_list(), just prior to
1171 * posting the SCBs to the sequencer.
1172 */
1173static void asd_start_scb_timers(struct list_head *list)
1174{
1175        struct asd_ascb *ascb;
1176        list_for_each_entry(ascb, list, list) {
1177                if (!ascb->uldd_timer) {
1178                        ascb->timer.function = asd_ascb_timedout;
1179                        ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1180                        add_timer(&ascb->timer);
1181                }
1182        }
1183}
1184
1185/**
1186 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1187 * @asd_ha: pointer to a host adapter structure
1188 * @ascb: pointer to the first aSCB in the list
1189 * @num: number of aSCBs in the list (to be posted)
1190 *
1191 * See queueing comment in asd_post_escb_list().
1192 *
1193 * Additional note on queuing: In order to minimize the ratio of memcpy()
1194 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1195 * in one go.
1196 * Two cases are possible:
1197 *    A) can_queue >= num,
1198 *    B) can_queue < num.
1199 * Case A: we can send the whole batch at once.  Increment "pending"
1200 * in the beginning of this function, when it is checked, in order to
1201 * eliminate races when this function is called by multiple processes.
1202 * Case B: should never happen.
1203 */
1204int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1205                       int num)
1206{
1207        unsigned long flags;
1208        LIST_HEAD(list);
1209        int can_queue;
1210
1211        spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1212        can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1213        if (can_queue >= num)
1214                asd_ha->seq.pending += num;
1215        else
1216                can_queue = 0;
1217
1218        if (!can_queue) {
1219                spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1220                asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1221                return -SAS_QUEUE_FULL;
1222        }
1223
1224        asd_swap_head_scb(asd_ha, ascb);
1225
1226        __list_add(&list, ascb->list.prev, &ascb->list);
1227
1228        asd_start_scb_timers(&list);
1229
1230        asd_ha->seq.scbpro += num;
1231        list_splice_init(&list, asd_ha->seq.pend_q.prev);
1232        asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1233        spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1234
1235        return 0;
1236}
1237
1238/**
1239 * asd_post_escb_list -- post a list of 1 or more empty scb
1240 * @asd_ha: pointer to a host adapter structure
1241 * @ascb: pointer to the first empty SCB in the list
1242 * @num: number of aSCBs in the list (to be posted)
1243 *
1244 * This is essentially the same as asd_post_ascb_list, but we do not
1245 * increment pending, add those to the pending list or get indexes.
1246 * See asd_init_escbs() and asd_init_post_escbs().
1247 *
1248 * Since sending a list of ascbs is a superset of sending a single
1249 * ascb, this function exists to generalize this.  More specifically,
1250 * when sending a list of those, we want to do only a _single_
1251 * memcpy() at swap head, as opposed to for each ascb sent (in the
1252 * case of sending them one by one).  That is, we want to minimize the
1253 * ratio of memcpy() operations to the number of ascbs sent.  The same
1254 * logic applies to asd_post_ascb_list().
1255 */
1256int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1257                       int num)
1258{
1259        unsigned long flags;
1260
1261        spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1262        asd_swap_head_scb(asd_ha, ascb);
1263        asd_ha->seq.scbpro += num;
1264        asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1265        spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1266
1267        return 0;
1268}
1269
1270/* ---------- LED ---------- */
1271
1272/**
1273 * asd_turn_led -- turn on/off an LED
1274 * @asd_ha: pointer to host adapter structure
1275 * @phy_id: the PHY id whose LED we want to manupulate
1276 * @op: 1 to turn on, 0 to turn off
1277 */
1278void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1279{
1280        if (phy_id < ASD_MAX_PHYS) {
1281                u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1282                if (op)
1283                        v |= LEDPOL;
1284                else
1285                        v &= ~LEDPOL;
1286                asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1287        }
1288}
1289
1290/**
1291 * asd_control_led -- enable/disable an LED on the board
1292 * @asd_ha: pointer to host adapter structure
1293 * @phy_id: integer, the phy id
1294 * @op: integer, 1 to enable, 0 to disable the LED
1295 *
1296 * First we output enable the LED, then we set the source
1297 * to be an external module.
1298 */
1299void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1300{
1301        if (phy_id < ASD_MAX_PHYS) {
1302                u32 v;
1303
1304                v = asd_read_reg_dword(asd_ha, GPIOOER);
1305                if (op)
1306                        v |= (1 << phy_id);
1307                else
1308                        v &= ~(1 << phy_id);
1309                asd_write_reg_dword(asd_ha, GPIOOER, v);
1310
1311                v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1312                if (op)
1313                        v |= (1 << phy_id);
1314                else
1315                        v &= ~(1 << phy_id);
1316                asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1317        }
1318}
1319
1320/* ---------- PHY enable ---------- */
1321
1322static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1323{
1324        struct asd_phy *phy = &asd_ha->phys[phy_id];
1325
1326        asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1327        asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1328                           HOTPLUG_DELAY_TIMEOUT);
1329
1330        /* Get defaults from manuf. sector */
1331        /* XXX we need defaults for those in case MS is broken. */
1332        asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1333                           phy->phy_desc->phy_control_0);
1334        asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1335                           phy->phy_desc->phy_control_1);
1336        asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1337                           phy->phy_desc->phy_control_2);
1338        asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1339                           phy->phy_desc->phy_control_3);
1340
1341        asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1342                            ASD_COMINIT_TIMEOUT);
1343
1344        asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1345                           phy->id_frm_tok->dma_handle);
1346
1347        asd_control_led(asd_ha, phy_id, 1);
1348
1349        return 0;
1350}
1351
1352int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1353{
1354        u8  phy_m;
1355        u8  i;
1356        int num = 0, k;
1357        struct asd_ascb *ascb;
1358        struct asd_ascb *ascb_list;
1359
1360        if (!phy_mask) {
1361                asd_printk("%s called with phy_mask of 0!?\n", __func__);
1362                return 0;
1363        }
1364
1365        for_each_phy(phy_mask, phy_m, i) {
1366                num++;
1367                asd_enable_phy(asd_ha, i);
1368        }
1369
1370        k = num;
1371        ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1372        if (!ascb_list) {
1373                asd_printk("no memory for control phy ascb list\n");
1374                return -ENOMEM;
1375        }
1376        num -= k;
1377
1378        ascb = ascb_list;
1379        for_each_phy(phy_mask, phy_m, i) {
1380                asd_build_control_phy(ascb, i, ENABLE_PHY);
1381                ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1382        }
1383        ASD_DPRINTK("posting %d control phy scbs\n", num);
1384        k = asd_post_ascb_list(asd_ha, ascb_list, num);
1385        if (k)
1386                asd_ascb_free_list(ascb_list);
1387
1388        return k;
1389}
1390