linux/drivers/scsi/hpsa.c
<<
>>
Prefs
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
   3 *    Copyright 2016 Microsemi Corporation
   4 *    Copyright 2014-2015 PMC-Sierra, Inc.
   5 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
   6 *
   7 *    This program is free software; you can redistribute it and/or modify
   8 *    it under the terms of the GNU General Public License as published by
   9 *    the Free Software Foundation; version 2 of the License.
  10 *
  11 *    This program is distributed in the hope that it will be useful,
  12 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  15 *
  16 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
  17 *
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/types.h>
  23#include <linux/pci.h>
  24#include <linux/pci-aspm.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/fs.h>
  29#include <linux/timer.h>
  30#include <linux/init.h>
  31#include <linux/spinlock.h>
  32#include <linux/compat.h>
  33#include <linux/blktrace_api.h>
  34#include <linux/uaccess.h>
  35#include <linux/io.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/completion.h>
  38#include <linux/moduleparam.h>
  39#include <scsi/scsi.h>
  40#include <scsi/scsi_cmnd.h>
  41#include <scsi/scsi_device.h>
  42#include <scsi/scsi_host.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi_eh.h>
  45#include <scsi/scsi_transport_sas.h>
  46#include <scsi/scsi_dbg.h>
  47#include <linux/cciss_ioctl.h>
  48#include <linux/string.h>
  49#include <linux/bitmap.h>
  50#include <linux/atomic.h>
  51#include <linux/jiffies.h>
  52#include <linux/percpu-defs.h>
  53#include <linux/percpu.h>
  54#include <asm/unaligned.h>
  55#include <asm/div64.h>
  56#include "hpsa_cmd.h"
  57#include "hpsa.h"
  58
  59/*
  60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
  61 * with an optional trailing '-' followed by a byte value (0-255).
  62 */
  63#define HPSA_DRIVER_VERSION "3.4.20-125"
  64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  65#define HPSA "hpsa"
  66
  67/* How long to wait for CISS doorbell communication */
  68#define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
  69#define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
  70#define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
  71#define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
  72#define MAX_IOCTL_CONFIG_WAIT 1000
  73
  74/*define how many times we will try a command because of bus resets */
  75#define MAX_CMD_RETRIES 3
  76
  77/* Embedded module documentation macros - see modules.h */
  78MODULE_AUTHOR("Hewlett-Packard Company");
  79MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  80        HPSA_DRIVER_VERSION);
  81MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  82MODULE_VERSION(HPSA_DRIVER_VERSION);
  83MODULE_LICENSE("GPL");
  84MODULE_ALIAS("cciss");
  85
  86static int hpsa_simple_mode;
  87module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  88MODULE_PARM_DESC(hpsa_simple_mode,
  89        "Use 'simple mode' rather than 'performant mode'");
  90
  91/* define the PCI info for the cards we can control */
  92static const struct pci_device_id hpsa_pci_device_id[] = {
  93        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  94        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  95        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  96        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  97        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
  98        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
  99        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 100        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 101        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 102        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 103        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 104        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 105        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 106        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 107        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 108        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
 109        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 110        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 111        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 112        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 113        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
 114        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 115        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 116        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 117        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 118        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 119        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 120        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 121        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 122        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 123        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 124        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 125        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 126        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 127        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 128        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 129        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 130        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 131        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 132        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 133        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 134        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 135        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 136        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 137        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 138        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 139        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 140        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 141        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 142        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 143        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 144        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 145        {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 146        {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
 147                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 148        {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
 149                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 150        {0,}
 151};
 152
 153MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 154
 155/*  board_id = Subsystem Device ID & Vendor ID
 156 *  product = Marketing Name for the board
 157 *  access = Address of the struct of function pointers
 158 */
 159static struct board_type products[] = {
 160        {0x40700E11, "Smart Array 5300", &SA5A_access},
 161        {0x40800E11, "Smart Array 5i", &SA5B_access},
 162        {0x40820E11, "Smart Array 532", &SA5B_access},
 163        {0x40830E11, "Smart Array 5312", &SA5B_access},
 164        {0x409A0E11, "Smart Array 641", &SA5A_access},
 165        {0x409B0E11, "Smart Array 642", &SA5A_access},
 166        {0x409C0E11, "Smart Array 6400", &SA5A_access},
 167        {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
 168        {0x40910E11, "Smart Array 6i", &SA5A_access},
 169        {0x3225103C, "Smart Array P600", &SA5A_access},
 170        {0x3223103C, "Smart Array P800", &SA5A_access},
 171        {0x3234103C, "Smart Array P400", &SA5A_access},
 172        {0x3235103C, "Smart Array P400i", &SA5A_access},
 173        {0x3211103C, "Smart Array E200i", &SA5A_access},
 174        {0x3212103C, "Smart Array E200", &SA5A_access},
 175        {0x3213103C, "Smart Array E200i", &SA5A_access},
 176        {0x3214103C, "Smart Array E200i", &SA5A_access},
 177        {0x3215103C, "Smart Array E200i", &SA5A_access},
 178        {0x3237103C, "Smart Array E500", &SA5A_access},
 179        {0x323D103C, "Smart Array P700m", &SA5A_access},
 180        {0x3241103C, "Smart Array P212", &SA5_access},
 181        {0x3243103C, "Smart Array P410", &SA5_access},
 182        {0x3245103C, "Smart Array P410i", &SA5_access},
 183        {0x3247103C, "Smart Array P411", &SA5_access},
 184        {0x3249103C, "Smart Array P812", &SA5_access},
 185        {0x324A103C, "Smart Array P712m", &SA5_access},
 186        {0x324B103C, "Smart Array P711m", &SA5_access},
 187        {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 188        {0x3350103C, "Smart Array P222", &SA5_access},
 189        {0x3351103C, "Smart Array P420", &SA5_access},
 190        {0x3352103C, "Smart Array P421", &SA5_access},
 191        {0x3353103C, "Smart Array P822", &SA5_access},
 192        {0x3354103C, "Smart Array P420i", &SA5_access},
 193        {0x3355103C, "Smart Array P220i", &SA5_access},
 194        {0x3356103C, "Smart Array P721m", &SA5_access},
 195        {0x1920103C, "Smart Array P430i", &SA5_access},
 196        {0x1921103C, "Smart Array P830i", &SA5_access},
 197        {0x1922103C, "Smart Array P430", &SA5_access},
 198        {0x1923103C, "Smart Array P431", &SA5_access},
 199        {0x1924103C, "Smart Array P830", &SA5_access},
 200        {0x1925103C, "Smart Array P831", &SA5_access},
 201        {0x1926103C, "Smart Array P731m", &SA5_access},
 202        {0x1928103C, "Smart Array P230i", &SA5_access},
 203        {0x1929103C, "Smart Array P530", &SA5_access},
 204        {0x21BD103C, "Smart Array P244br", &SA5_access},
 205        {0x21BE103C, "Smart Array P741m", &SA5_access},
 206        {0x21BF103C, "Smart HBA H240ar", &SA5_access},
 207        {0x21C0103C, "Smart Array P440ar", &SA5_access},
 208        {0x21C1103C, "Smart Array P840ar", &SA5_access},
 209        {0x21C2103C, "Smart Array P440", &SA5_access},
 210        {0x21C3103C, "Smart Array P441", &SA5_access},
 211        {0x21C4103C, "Smart Array", &SA5_access},
 212        {0x21C5103C, "Smart Array P841", &SA5_access},
 213        {0x21C6103C, "Smart HBA H244br", &SA5_access},
 214        {0x21C7103C, "Smart HBA H240", &SA5_access},
 215        {0x21C8103C, "Smart HBA H241", &SA5_access},
 216        {0x21C9103C, "Smart Array", &SA5_access},
 217        {0x21CA103C, "Smart Array P246br", &SA5_access},
 218        {0x21CB103C, "Smart Array P840", &SA5_access},
 219        {0x21CC103C, "Smart Array", &SA5_access},
 220        {0x21CD103C, "Smart Array", &SA5_access},
 221        {0x21CE103C, "Smart HBA", &SA5_access},
 222        {0x05809005, "SmartHBA-SA", &SA5_access},
 223        {0x05819005, "SmartHBA-SA 8i", &SA5_access},
 224        {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 225        {0x05839005, "SmartHBA-SA 8e", &SA5_access},
 226        {0x05849005, "SmartHBA-SA 16i", &SA5_access},
 227        {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 228        {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 229        {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 230        {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 231        {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 232        {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 233        {0xFFFF103C, "Unknown Smart Array", &SA5_access},
 234};
 235
 236static struct scsi_transport_template *hpsa_sas_transport_template;
 237static int hpsa_add_sas_host(struct ctlr_info *h);
 238static void hpsa_delete_sas_host(struct ctlr_info *h);
 239static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 240                        struct hpsa_scsi_dev_t *device);
 241static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 242static struct hpsa_scsi_dev_t
 243        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 244                struct sas_rphy *rphy);
 245
 246#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 247static const struct scsi_cmnd hpsa_cmd_busy;
 248#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 249static const struct scsi_cmnd hpsa_cmd_idle;
 250static int number_of_controllers;
 251
 252static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 253static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 254static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
 255
 256#ifdef CONFIG_COMPAT
 257static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
 258        void __user *arg);
 259#endif
 260
 261static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 262static struct CommandList *cmd_alloc(struct ctlr_info *h);
 263static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 264static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 265                                            struct scsi_cmnd *scmd);
 266static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 267        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 268        int cmd_type);
 269static void hpsa_free_cmd_pool(struct ctlr_info *h);
 270#define VPD_PAGE (1 << 8)
 271#define HPSA_SIMPLE_ERROR_BITS 0x03
 272
 273static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 274static void hpsa_scan_start(struct Scsi_Host *);
 275static int hpsa_scan_finished(struct Scsi_Host *sh,
 276        unsigned long elapsed_time);
 277static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 278
 279static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 280static int hpsa_slave_alloc(struct scsi_device *sdev);
 281static int hpsa_slave_configure(struct scsi_device *sdev);
 282static void hpsa_slave_destroy(struct scsi_device *sdev);
 283
 284static void hpsa_update_scsi_devices(struct ctlr_info *h);
 285static int check_for_unit_attention(struct ctlr_info *h,
 286        struct CommandList *c);
 287static void check_ioctl_unit_attention(struct ctlr_info *h,
 288        struct CommandList *c);
 289/* performant mode helper functions */
 290static void calc_bucket_map(int *bucket, int num_buckets,
 291        int nsgs, int min_blocks, u32 *bucket_map);
 292static void hpsa_free_performant_mode(struct ctlr_info *h);
 293static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 294static inline u32 next_command(struct ctlr_info *h, u8 q);
 295static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 296                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 297                               u64 *cfg_offset);
 298static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 299                                    unsigned long *memory_bar);
 300static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 301                                bool *legacy_board);
 302static int wait_for_device_to_become_ready(struct ctlr_info *h,
 303                                           unsigned char lunaddr[],
 304                                           int reply_queue);
 305static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 306                                     int wait_for_ready);
 307static inline void finish_cmd(struct CommandList *c);
 308static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 309#define BOARD_NOT_READY 0
 310#define BOARD_READY 1
 311static void hpsa_drain_accel_commands(struct ctlr_info *h);
 312static void hpsa_flush_cache(struct ctlr_info *h);
 313static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 314        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 315        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 316static void hpsa_command_resubmit_worker(struct work_struct *work);
 317static u32 lockup_detected(struct ctlr_info *h);
 318static int detect_controller_lockup(struct ctlr_info *h);
 319static void hpsa_disable_rld_caching(struct ctlr_info *h);
 320static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 321        struct ReportExtendedLUNdata *buf, int bufsize);
 322static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 323        unsigned char scsi3addr[], u8 page);
 324static int hpsa_luns_changed(struct ctlr_info *h);
 325static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 326                               struct hpsa_scsi_dev_t *dev,
 327                               unsigned char *scsi3addr);
 328
 329static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 330{
 331        unsigned long *priv = shost_priv(sdev->host);
 332        return (struct ctlr_info *) *priv;
 333}
 334
 335static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 336{
 337        unsigned long *priv = shost_priv(sh);
 338        return (struct ctlr_info *) *priv;
 339}
 340
 341static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 342{
 343        return c->scsi_cmd == SCSI_CMD_IDLE;
 344}
 345
 346static inline bool hpsa_is_pending_event(struct CommandList *c)
 347{
 348        return c->reset_pending;
 349}
 350
 351/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 352static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 353                        u8 *sense_key, u8 *asc, u8 *ascq)
 354{
 355        struct scsi_sense_hdr sshdr;
 356        bool rc;
 357
 358        *sense_key = -1;
 359        *asc = -1;
 360        *ascq = -1;
 361
 362        if (sense_data_len < 1)
 363                return;
 364
 365        rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 366        if (rc) {
 367                *sense_key = sshdr.sense_key;
 368                *asc = sshdr.asc;
 369                *ascq = sshdr.ascq;
 370        }
 371}
 372
 373static int check_for_unit_attention(struct ctlr_info *h,
 374        struct CommandList *c)
 375{
 376        u8 sense_key, asc, ascq;
 377        int sense_len;
 378
 379        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 380                sense_len = sizeof(c->err_info->SenseInfo);
 381        else
 382                sense_len = c->err_info->SenseLen;
 383
 384        decode_sense_data(c->err_info->SenseInfo, sense_len,
 385                                &sense_key, &asc, &ascq);
 386        if (sense_key != UNIT_ATTENTION || asc == 0xff)
 387                return 0;
 388
 389        switch (asc) {
 390        case STATE_CHANGED:
 391                dev_warn(&h->pdev->dev,
 392                        "%s: a state change detected, command retried\n",
 393                        h->devname);
 394                break;
 395        case LUN_FAILED:
 396                dev_warn(&h->pdev->dev,
 397                        "%s: LUN failure detected\n", h->devname);
 398                break;
 399        case REPORT_LUNS_CHANGED:
 400                dev_warn(&h->pdev->dev,
 401                        "%s: report LUN data changed\n", h->devname);
 402        /*
 403         * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 404         * target (array) devices.
 405         */
 406                break;
 407        case POWER_OR_RESET:
 408                dev_warn(&h->pdev->dev,
 409                        "%s: a power on or device reset detected\n",
 410                        h->devname);
 411                break;
 412        case UNIT_ATTENTION_CLEARED:
 413                dev_warn(&h->pdev->dev,
 414                        "%s: unit attention cleared by another initiator\n",
 415                        h->devname);
 416                break;
 417        default:
 418                dev_warn(&h->pdev->dev,
 419                        "%s: unknown unit attention detected\n",
 420                        h->devname);
 421                break;
 422        }
 423        return 1;
 424}
 425
 426static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 427{
 428        if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 429                (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 430                 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 431                return 0;
 432        dev_warn(&h->pdev->dev, HPSA "device busy");
 433        return 1;
 434}
 435
 436static u32 lockup_detected(struct ctlr_info *h);
 437static ssize_t host_show_lockup_detected(struct device *dev,
 438                struct device_attribute *attr, char *buf)
 439{
 440        int ld;
 441        struct ctlr_info *h;
 442        struct Scsi_Host *shost = class_to_shost(dev);
 443
 444        h = shost_to_hba(shost);
 445        ld = lockup_detected(h);
 446
 447        return sprintf(buf, "ld=%d\n", ld);
 448}
 449
 450static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 451                                         struct device_attribute *attr,
 452                                         const char *buf, size_t count)
 453{
 454        int status, len;
 455        struct ctlr_info *h;
 456        struct Scsi_Host *shost = class_to_shost(dev);
 457        char tmpbuf[10];
 458
 459        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 460                return -EACCES;
 461        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 462        strncpy(tmpbuf, buf, len);
 463        tmpbuf[len] = '\0';
 464        if (sscanf(tmpbuf, "%d", &status) != 1)
 465                return -EINVAL;
 466        h = shost_to_hba(shost);
 467        h->acciopath_status = !!status;
 468        dev_warn(&h->pdev->dev,
 469                "hpsa: HP SSD Smart Path %s via sysfs update.\n",
 470                h->acciopath_status ? "enabled" : "disabled");
 471        return count;
 472}
 473
 474static ssize_t host_store_raid_offload_debug(struct device *dev,
 475                                         struct device_attribute *attr,
 476                                         const char *buf, size_t count)
 477{
 478        int debug_level, len;
 479        struct ctlr_info *h;
 480        struct Scsi_Host *shost = class_to_shost(dev);
 481        char tmpbuf[10];
 482
 483        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 484                return -EACCES;
 485        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 486        strncpy(tmpbuf, buf, len);
 487        tmpbuf[len] = '\0';
 488        if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 489                return -EINVAL;
 490        if (debug_level < 0)
 491                debug_level = 0;
 492        h = shost_to_hba(shost);
 493        h->raid_offload_debug = debug_level;
 494        dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 495                h->raid_offload_debug);
 496        return count;
 497}
 498
 499static ssize_t host_store_rescan(struct device *dev,
 500                                 struct device_attribute *attr,
 501                                 const char *buf, size_t count)
 502{
 503        struct ctlr_info *h;
 504        struct Scsi_Host *shost = class_to_shost(dev);
 505        h = shost_to_hba(shost);
 506        hpsa_scan_start(h->scsi_host);
 507        return count;
 508}
 509
 510static ssize_t host_show_firmware_revision(struct device *dev,
 511             struct device_attribute *attr, char *buf)
 512{
 513        struct ctlr_info *h;
 514        struct Scsi_Host *shost = class_to_shost(dev);
 515        unsigned char *fwrev;
 516
 517        h = shost_to_hba(shost);
 518        if (!h->hba_inquiry_data)
 519                return 0;
 520        fwrev = &h->hba_inquiry_data[32];
 521        return snprintf(buf, 20, "%c%c%c%c\n",
 522                fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 523}
 524
 525static ssize_t host_show_commands_outstanding(struct device *dev,
 526             struct device_attribute *attr, char *buf)
 527{
 528        struct Scsi_Host *shost = class_to_shost(dev);
 529        struct ctlr_info *h = shost_to_hba(shost);
 530
 531        return snprintf(buf, 20, "%d\n",
 532                        atomic_read(&h->commands_outstanding));
 533}
 534
 535static ssize_t host_show_transport_mode(struct device *dev,
 536        struct device_attribute *attr, char *buf)
 537{
 538        struct ctlr_info *h;
 539        struct Scsi_Host *shost = class_to_shost(dev);
 540
 541        h = shost_to_hba(shost);
 542        return snprintf(buf, 20, "%s\n",
 543                h->transMethod & CFGTBL_Trans_Performant ?
 544                        "performant" : "simple");
 545}
 546
 547static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 548        struct device_attribute *attr, char *buf)
 549{
 550        struct ctlr_info *h;
 551        struct Scsi_Host *shost = class_to_shost(dev);
 552
 553        h = shost_to_hba(shost);
 554        return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 555                (h->acciopath_status == 1) ?  "enabled" : "disabled");
 556}
 557
 558/* List of controllers which cannot be hard reset on kexec with reset_devices */
 559static u32 unresettable_controller[] = {
 560        0x324a103C, /* Smart Array P712m */
 561        0x324b103C, /* Smart Array P711m */
 562        0x3223103C, /* Smart Array P800 */
 563        0x3234103C, /* Smart Array P400 */
 564        0x3235103C, /* Smart Array P400i */
 565        0x3211103C, /* Smart Array E200i */
 566        0x3212103C, /* Smart Array E200 */
 567        0x3213103C, /* Smart Array E200i */
 568        0x3214103C, /* Smart Array E200i */
 569        0x3215103C, /* Smart Array E200i */
 570        0x3237103C, /* Smart Array E500 */
 571        0x323D103C, /* Smart Array P700m */
 572        0x40800E11, /* Smart Array 5i */
 573        0x409C0E11, /* Smart Array 6400 */
 574        0x409D0E11, /* Smart Array 6400 EM */
 575        0x40700E11, /* Smart Array 5300 */
 576        0x40820E11, /* Smart Array 532 */
 577        0x40830E11, /* Smart Array 5312 */
 578        0x409A0E11, /* Smart Array 641 */
 579        0x409B0E11, /* Smart Array 642 */
 580        0x40910E11, /* Smart Array 6i */
 581};
 582
 583/* List of controllers which cannot even be soft reset */
 584static u32 soft_unresettable_controller[] = {
 585        0x40800E11, /* Smart Array 5i */
 586        0x40700E11, /* Smart Array 5300 */
 587        0x40820E11, /* Smart Array 532 */
 588        0x40830E11, /* Smart Array 5312 */
 589        0x409A0E11, /* Smart Array 641 */
 590        0x409B0E11, /* Smart Array 642 */
 591        0x40910E11, /* Smart Array 6i */
 592        /* Exclude 640x boards.  These are two pci devices in one slot
 593         * which share a battery backed cache module.  One controls the
 594         * cache, the other accesses the cache through the one that controls
 595         * it.  If we reset the one controlling the cache, the other will
 596         * likely not be happy.  Just forbid resetting this conjoined mess.
 597         * The 640x isn't really supported by hpsa anyway.
 598         */
 599        0x409C0E11, /* Smart Array 6400 */
 600        0x409D0E11, /* Smart Array 6400 EM */
 601};
 602
 603static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 604{
 605        int i;
 606
 607        for (i = 0; i < nelems; i++)
 608                if (a[i] == board_id)
 609                        return 1;
 610        return 0;
 611}
 612
 613static int ctlr_is_hard_resettable(u32 board_id)
 614{
 615        return !board_id_in_array(unresettable_controller,
 616                        ARRAY_SIZE(unresettable_controller), board_id);
 617}
 618
 619static int ctlr_is_soft_resettable(u32 board_id)
 620{
 621        return !board_id_in_array(soft_unresettable_controller,
 622                        ARRAY_SIZE(soft_unresettable_controller), board_id);
 623}
 624
 625static int ctlr_is_resettable(u32 board_id)
 626{
 627        return ctlr_is_hard_resettable(board_id) ||
 628                ctlr_is_soft_resettable(board_id);
 629}
 630
 631static ssize_t host_show_resettable(struct device *dev,
 632        struct device_attribute *attr, char *buf)
 633{
 634        struct ctlr_info *h;
 635        struct Scsi_Host *shost = class_to_shost(dev);
 636
 637        h = shost_to_hba(shost);
 638        return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 639}
 640
 641static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 642{
 643        return (scsi3addr[3] & 0xC0) == 0x40;
 644}
 645
 646static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 647        "1(+0)ADM", "UNKNOWN", "PHYS DRV"
 648};
 649#define HPSA_RAID_0     0
 650#define HPSA_RAID_4     1
 651#define HPSA_RAID_1     2       /* also used for RAID 10 */
 652#define HPSA_RAID_5     3       /* also used for RAID 50 */
 653#define HPSA_RAID_51    4
 654#define HPSA_RAID_6     5       /* also used for RAID 60 */
 655#define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
 656#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 657#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 658
 659static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 660{
 661        return !device->physical_device;
 662}
 663
 664static ssize_t raid_level_show(struct device *dev,
 665             struct device_attribute *attr, char *buf)
 666{
 667        ssize_t l = 0;
 668        unsigned char rlevel;
 669        struct ctlr_info *h;
 670        struct scsi_device *sdev;
 671        struct hpsa_scsi_dev_t *hdev;
 672        unsigned long flags;
 673
 674        sdev = to_scsi_device(dev);
 675        h = sdev_to_hba(sdev);
 676        spin_lock_irqsave(&h->lock, flags);
 677        hdev = sdev->hostdata;
 678        if (!hdev) {
 679                spin_unlock_irqrestore(&h->lock, flags);
 680                return -ENODEV;
 681        }
 682
 683        /* Is this even a logical drive? */
 684        if (!is_logical_device(hdev)) {
 685                spin_unlock_irqrestore(&h->lock, flags);
 686                l = snprintf(buf, PAGE_SIZE, "N/A\n");
 687                return l;
 688        }
 689
 690        rlevel = hdev->raid_level;
 691        spin_unlock_irqrestore(&h->lock, flags);
 692        if (rlevel > RAID_UNKNOWN)
 693                rlevel = RAID_UNKNOWN;
 694        l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 695        return l;
 696}
 697
 698static ssize_t lunid_show(struct device *dev,
 699             struct device_attribute *attr, char *buf)
 700{
 701        struct ctlr_info *h;
 702        struct scsi_device *sdev;
 703        struct hpsa_scsi_dev_t *hdev;
 704        unsigned long flags;
 705        unsigned char lunid[8];
 706
 707        sdev = to_scsi_device(dev);
 708        h = sdev_to_hba(sdev);
 709        spin_lock_irqsave(&h->lock, flags);
 710        hdev = sdev->hostdata;
 711        if (!hdev) {
 712                spin_unlock_irqrestore(&h->lock, flags);
 713                return -ENODEV;
 714        }
 715        memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 716        spin_unlock_irqrestore(&h->lock, flags);
 717        return snprintf(buf, 20, "0x%8phN\n", lunid);
 718}
 719
 720static ssize_t unique_id_show(struct device *dev,
 721             struct device_attribute *attr, char *buf)
 722{
 723        struct ctlr_info *h;
 724        struct scsi_device *sdev;
 725        struct hpsa_scsi_dev_t *hdev;
 726        unsigned long flags;
 727        unsigned char sn[16];
 728
 729        sdev = to_scsi_device(dev);
 730        h = sdev_to_hba(sdev);
 731        spin_lock_irqsave(&h->lock, flags);
 732        hdev = sdev->hostdata;
 733        if (!hdev) {
 734                spin_unlock_irqrestore(&h->lock, flags);
 735                return -ENODEV;
 736        }
 737        memcpy(sn, hdev->device_id, sizeof(sn));
 738        spin_unlock_irqrestore(&h->lock, flags);
 739        return snprintf(buf, 16 * 2 + 2,
 740                        "%02X%02X%02X%02X%02X%02X%02X%02X"
 741                        "%02X%02X%02X%02X%02X%02X%02X%02X\n",
 742                        sn[0], sn[1], sn[2], sn[3],
 743                        sn[4], sn[5], sn[6], sn[7],
 744                        sn[8], sn[9], sn[10], sn[11],
 745                        sn[12], sn[13], sn[14], sn[15]);
 746}
 747
 748static ssize_t sas_address_show(struct device *dev,
 749              struct device_attribute *attr, char *buf)
 750{
 751        struct ctlr_info *h;
 752        struct scsi_device *sdev;
 753        struct hpsa_scsi_dev_t *hdev;
 754        unsigned long flags;
 755        u64 sas_address;
 756
 757        sdev = to_scsi_device(dev);
 758        h = sdev_to_hba(sdev);
 759        spin_lock_irqsave(&h->lock, flags);
 760        hdev = sdev->hostdata;
 761        if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 762                spin_unlock_irqrestore(&h->lock, flags);
 763                return -ENODEV;
 764        }
 765        sas_address = hdev->sas_address;
 766        spin_unlock_irqrestore(&h->lock, flags);
 767
 768        return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 769}
 770
 771static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 772             struct device_attribute *attr, char *buf)
 773{
 774        struct ctlr_info *h;
 775        struct scsi_device *sdev;
 776        struct hpsa_scsi_dev_t *hdev;
 777        unsigned long flags;
 778        int offload_enabled;
 779
 780        sdev = to_scsi_device(dev);
 781        h = sdev_to_hba(sdev);
 782        spin_lock_irqsave(&h->lock, flags);
 783        hdev = sdev->hostdata;
 784        if (!hdev) {
 785                spin_unlock_irqrestore(&h->lock, flags);
 786                return -ENODEV;
 787        }
 788        offload_enabled = hdev->offload_enabled;
 789        spin_unlock_irqrestore(&h->lock, flags);
 790
 791        if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
 792                return snprintf(buf, 20, "%d\n", offload_enabled);
 793        else
 794                return snprintf(buf, 40, "%s\n",
 795                                "Not applicable for a controller");
 796}
 797
 798#define MAX_PATHS 8
 799static ssize_t path_info_show(struct device *dev,
 800             struct device_attribute *attr, char *buf)
 801{
 802        struct ctlr_info *h;
 803        struct scsi_device *sdev;
 804        struct hpsa_scsi_dev_t *hdev;
 805        unsigned long flags;
 806        int i;
 807        int output_len = 0;
 808        u8 box;
 809        u8 bay;
 810        u8 path_map_index = 0;
 811        char *active;
 812        unsigned char phys_connector[2];
 813
 814        sdev = to_scsi_device(dev);
 815        h = sdev_to_hba(sdev);
 816        spin_lock_irqsave(&h->devlock, flags);
 817        hdev = sdev->hostdata;
 818        if (!hdev) {
 819                spin_unlock_irqrestore(&h->devlock, flags);
 820                return -ENODEV;
 821        }
 822
 823        bay = hdev->bay;
 824        for (i = 0; i < MAX_PATHS; i++) {
 825                path_map_index = 1<<i;
 826                if (i == hdev->active_path_index)
 827                        active = "Active";
 828                else if (hdev->path_map & path_map_index)
 829                        active = "Inactive";
 830                else
 831                        continue;
 832
 833                output_len += scnprintf(buf + output_len,
 834                                PAGE_SIZE - output_len,
 835                                "[%d:%d:%d:%d] %20.20s ",
 836                                h->scsi_host->host_no,
 837                                hdev->bus, hdev->target, hdev->lun,
 838                                scsi_device_type(hdev->devtype));
 839
 840                if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 841                        output_len += scnprintf(buf + output_len,
 842                                                PAGE_SIZE - output_len,
 843                                                "%s\n", active);
 844                        continue;
 845                }
 846
 847                box = hdev->box[i];
 848                memcpy(&phys_connector, &hdev->phys_connector[i],
 849                        sizeof(phys_connector));
 850                if (phys_connector[0] < '0')
 851                        phys_connector[0] = '0';
 852                if (phys_connector[1] < '0')
 853                        phys_connector[1] = '0';
 854                output_len += scnprintf(buf + output_len,
 855                                PAGE_SIZE - output_len,
 856                                "PORT: %.2s ",
 857                                phys_connector);
 858                if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 859                        hdev->expose_device) {
 860                        if (box == 0 || box == 0xFF) {
 861                                output_len += scnprintf(buf + output_len,
 862                                        PAGE_SIZE - output_len,
 863                                        "BAY: %hhu %s\n",
 864                                        bay, active);
 865                        } else {
 866                                output_len += scnprintf(buf + output_len,
 867                                        PAGE_SIZE - output_len,
 868                                        "BOX: %hhu BAY: %hhu %s\n",
 869                                        box, bay, active);
 870                        }
 871                } else if (box != 0 && box != 0xFF) {
 872                        output_len += scnprintf(buf + output_len,
 873                                PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 874                                box, active);
 875                } else
 876                        output_len += scnprintf(buf + output_len,
 877                                PAGE_SIZE - output_len, "%s\n", active);
 878        }
 879
 880        spin_unlock_irqrestore(&h->devlock, flags);
 881        return output_len;
 882}
 883
 884static ssize_t host_show_ctlr_num(struct device *dev,
 885        struct device_attribute *attr, char *buf)
 886{
 887        struct ctlr_info *h;
 888        struct Scsi_Host *shost = class_to_shost(dev);
 889
 890        h = shost_to_hba(shost);
 891        return snprintf(buf, 20, "%d\n", h->ctlr);
 892}
 893
 894static ssize_t host_show_legacy_board(struct device *dev,
 895        struct device_attribute *attr, char *buf)
 896{
 897        struct ctlr_info *h;
 898        struct Scsi_Host *shost = class_to_shost(dev);
 899
 900        h = shost_to_hba(shost);
 901        return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
 902}
 903
 904static DEVICE_ATTR_RO(raid_level);
 905static DEVICE_ATTR_RO(lunid);
 906static DEVICE_ATTR_RO(unique_id);
 907static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 908static DEVICE_ATTR_RO(sas_address);
 909static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 910                        host_show_hp_ssd_smart_path_enabled, NULL);
 911static DEVICE_ATTR_RO(path_info);
 912static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 913                host_show_hp_ssd_smart_path_status,
 914                host_store_hp_ssd_smart_path_status);
 915static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 916                        host_store_raid_offload_debug);
 917static DEVICE_ATTR(firmware_revision, S_IRUGO,
 918        host_show_firmware_revision, NULL);
 919static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 920        host_show_commands_outstanding, NULL);
 921static DEVICE_ATTR(transport_mode, S_IRUGO,
 922        host_show_transport_mode, NULL);
 923static DEVICE_ATTR(resettable, S_IRUGO,
 924        host_show_resettable, NULL);
 925static DEVICE_ATTR(lockup_detected, S_IRUGO,
 926        host_show_lockup_detected, NULL);
 927static DEVICE_ATTR(ctlr_num, S_IRUGO,
 928        host_show_ctlr_num, NULL);
 929static DEVICE_ATTR(legacy_board, S_IRUGO,
 930        host_show_legacy_board, NULL);
 931
 932static struct device_attribute *hpsa_sdev_attrs[] = {
 933        &dev_attr_raid_level,
 934        &dev_attr_lunid,
 935        &dev_attr_unique_id,
 936        &dev_attr_hp_ssd_smart_path_enabled,
 937        &dev_attr_path_info,
 938        &dev_attr_sas_address,
 939        NULL,
 940};
 941
 942static struct device_attribute *hpsa_shost_attrs[] = {
 943        &dev_attr_rescan,
 944        &dev_attr_firmware_revision,
 945        &dev_attr_commands_outstanding,
 946        &dev_attr_transport_mode,
 947        &dev_attr_resettable,
 948        &dev_attr_hp_ssd_smart_path_status,
 949        &dev_attr_raid_offload_debug,
 950        &dev_attr_lockup_detected,
 951        &dev_attr_ctlr_num,
 952        &dev_attr_legacy_board,
 953        NULL,
 954};
 955
 956#define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
 957                                 HPSA_MAX_CONCURRENT_PASSTHRUS)
 958
 959static struct scsi_host_template hpsa_driver_template = {
 960        .module                 = THIS_MODULE,
 961        .name                   = HPSA,
 962        .proc_name              = HPSA,
 963        .queuecommand           = hpsa_scsi_queue_command,
 964        .scan_start             = hpsa_scan_start,
 965        .scan_finished          = hpsa_scan_finished,
 966        .change_queue_depth     = hpsa_change_queue_depth,
 967        .this_id                = -1,
 968        .use_clustering         = ENABLE_CLUSTERING,
 969        .eh_device_reset_handler = hpsa_eh_device_reset_handler,
 970        .ioctl                  = hpsa_ioctl,
 971        .slave_alloc            = hpsa_slave_alloc,
 972        .slave_configure        = hpsa_slave_configure,
 973        .slave_destroy          = hpsa_slave_destroy,
 974#ifdef CONFIG_COMPAT
 975        .compat_ioctl           = hpsa_compat_ioctl,
 976#endif
 977        .sdev_attrs = hpsa_sdev_attrs,
 978        .shost_attrs = hpsa_shost_attrs,
 979        .max_sectors = 1024,
 980        .no_write_same = 1,
 981};
 982
 983static inline u32 next_command(struct ctlr_info *h, u8 q)
 984{
 985        u32 a;
 986        struct reply_queue_buffer *rq = &h->reply_queue[q];
 987
 988        if (h->transMethod & CFGTBL_Trans_io_accel1)
 989                return h->access.command_completed(h, q);
 990
 991        if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 992                return h->access.command_completed(h, q);
 993
 994        if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 995                a = rq->head[rq->current_entry];
 996                rq->current_entry++;
 997                atomic_dec(&h->commands_outstanding);
 998        } else {
 999                a = FIFO_EMPTY;
1000        }
1001        /* Check for wraparound */
1002        if (rq->current_entry == h->max_commands) {
1003                rq->current_entry = 0;
1004                rq->wraparound ^= 1;
1005        }
1006        return a;
1007}
1008
1009/*
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1013 *
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1018 *
1019 * ioaccel1 mode:
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1027 *
1028 * ioaccel2 mode:
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1033 */
1034
1035/*
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1038 * register number
1039 */
1040#define DEFAULT_REPLY_QUEUE (-1)
1041static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042                                        int reply_queue)
1043{
1044        if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045                c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046                if (unlikely(!h->msix_vectors))
1047                        return;
1048                c->Header.ReplyQueue = reply_queue;
1049        }
1050}
1051
1052static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053                                                struct CommandList *c,
1054                                                int reply_queue)
1055{
1056        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058        /*
1059         * Tell the controller to post the reply to the queue for this
1060         * processor.  This seems to give the best I/O throughput.
1061         */
1062        cp->ReplyQueue = reply_queue;
1063        /*
1064         * Set the bits in the address sent down to include:
1065         *  - performant mode bit (bit 0)
1066         *  - pull count (bits 1-3)
1067         *  - command type (bits 4-6)
1068         */
1069        c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070                                        IOACCEL1_BUSADDR_CMDTYPE;
1071}
1072
1073static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074                                                struct CommandList *c,
1075                                                int reply_queue)
1076{
1077        struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078                &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080        /* Tell the controller to post the reply to the queue for this
1081         * processor.  This seems to give the best I/O throughput.
1082         */
1083        cp->reply_queue = reply_queue;
1084        /* Set the bits in the address sent down to include:
1085         *  - performant mode bit not used in ioaccel mode 2
1086         *  - pull count (bits 0-3)
1087         *  - command type isn't needed for ioaccel2
1088         */
1089        c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090}
1091
1092static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093                                                struct CommandList *c,
1094                                                int reply_queue)
1095{
1096        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098        /*
1099         * Tell the controller to post the reply to the queue for this
1100         * processor.  This seems to give the best I/O throughput.
1101         */
1102        cp->reply_queue = reply_queue;
1103        /*
1104         * Set the bits in the address sent down to include:
1105         *  - performant mode bit not used in ioaccel mode 2
1106         *  - pull count (bits 0-3)
1107         *  - command type isn't needed for ioaccel2
1108         */
1109        c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110}
1111
1112static int is_firmware_flash_cmd(u8 *cdb)
1113{
1114        return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115}
1116
1117/*
1118 * During firmware flash, the heartbeat register may not update as frequently
1119 * as it should.  So we dial down lockup detection during firmware flash. and
1120 * dial it back up when firmware flash completes.
1121 */
1122#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126                struct CommandList *c)
1127{
1128        if (!is_firmware_flash_cmd(c->Request.CDB))
1129                return;
1130        atomic_inc(&h->firmware_flash_in_progress);
1131        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132}
1133
1134static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135                struct CommandList *c)
1136{
1137        if (is_firmware_flash_cmd(c->Request.CDB) &&
1138                atomic_dec_and_test(&h->firmware_flash_in_progress))
1139                h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140}
1141
1142static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143        struct CommandList *c, int reply_queue)
1144{
1145        dial_down_lockup_detection_during_fw_flash(h, c);
1146        atomic_inc(&h->commands_outstanding);
1147
1148        reply_queue = h->reply_map[raw_smp_processor_id()];
1149        switch (c->cmd_type) {
1150        case CMD_IOACCEL1:
1151                set_ioaccel1_performant_mode(h, c, reply_queue);
1152                writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153                break;
1154        case CMD_IOACCEL2:
1155                set_ioaccel2_performant_mode(h, c, reply_queue);
1156                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157                break;
1158        case IOACCEL2_TMF:
1159                set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161                break;
1162        default:
1163                set_performant_mode(h, c, reply_queue);
1164                h->access.submit_command(h, c);
1165        }
1166}
1167
1168static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169{
1170        if (unlikely(hpsa_is_pending_event(c)))
1171                return finish_cmd(c);
1172
1173        __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174}
1175
1176static inline int is_hba_lunid(unsigned char scsi3addr[])
1177{
1178        return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179}
1180
1181static inline int is_scsi_rev_5(struct ctlr_info *h)
1182{
1183        if (!h->hba_inquiry_data)
1184                return 0;
1185        if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186                return 1;
1187        return 0;
1188}
1189
1190static int hpsa_find_target_lun(struct ctlr_info *h,
1191        unsigned char scsi3addr[], int bus, int *target, int *lun)
1192{
1193        /* finds an unused bus, target, lun for a new physical device
1194         * assumes h->devlock is held
1195         */
1196        int i, found = 0;
1197        DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199        bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201        for (i = 0; i < h->ndevices; i++) {
1202                if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203                        __set_bit(h->dev[i]->target, lun_taken);
1204        }
1205
1206        i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207        if (i < HPSA_MAX_DEVICES) {
1208                /* *bus = 1; */
1209                *target = i;
1210                *lun = 0;
1211                found = 1;
1212        }
1213        return !found;
1214}
1215
1216static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217        struct hpsa_scsi_dev_t *dev, char *description)
1218{
1219#define LABEL_SIZE 25
1220        char label[LABEL_SIZE];
1221
1222        if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223                return;
1224
1225        switch (dev->devtype) {
1226        case TYPE_RAID:
1227                snprintf(label, LABEL_SIZE, "controller");
1228                break;
1229        case TYPE_ENCLOSURE:
1230                snprintf(label, LABEL_SIZE, "enclosure");
1231                break;
1232        case TYPE_DISK:
1233        case TYPE_ZBC:
1234                if (dev->external)
1235                        snprintf(label, LABEL_SIZE, "external");
1236                else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237                        snprintf(label, LABEL_SIZE, "%s",
1238                                raid_label[PHYSICAL_DRIVE]);
1239                else
1240                        snprintf(label, LABEL_SIZE, "RAID-%s",
1241                                dev->raid_level > RAID_UNKNOWN ? "?" :
1242                                raid_label[dev->raid_level]);
1243                break;
1244        case TYPE_ROM:
1245                snprintf(label, LABEL_SIZE, "rom");
1246                break;
1247        case TYPE_TAPE:
1248                snprintf(label, LABEL_SIZE, "tape");
1249                break;
1250        case TYPE_MEDIUM_CHANGER:
1251                snprintf(label, LABEL_SIZE, "changer");
1252                break;
1253        default:
1254                snprintf(label, LABEL_SIZE, "UNKNOWN");
1255                break;
1256        }
1257
1258        dev_printk(level, &h->pdev->dev,
1259                        "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260                        h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261                        description,
1262                        scsi_device_type(dev->devtype),
1263                        dev->vendor,
1264                        dev->model,
1265                        label,
1266                        dev->offload_config ? '+' : '-',
1267                        dev->offload_to_be_enabled ? '+' : '-',
1268                        dev->expose_device);
1269}
1270
1271/* Add an entry into h->dev[] array. */
1272static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273                struct hpsa_scsi_dev_t *device,
1274                struct hpsa_scsi_dev_t *added[], int *nadded)
1275{
1276        /* assumes h->devlock is held */
1277        int n = h->ndevices;
1278        int i;
1279        unsigned char addr1[8], addr2[8];
1280        struct hpsa_scsi_dev_t *sd;
1281
1282        if (n >= HPSA_MAX_DEVICES) {
1283                dev_err(&h->pdev->dev, "too many devices, some will be "
1284                        "inaccessible.\n");
1285                return -1;
1286        }
1287
1288        /* physical devices do not have lun or target assigned until now. */
1289        if (device->lun != -1)
1290                /* Logical device, lun is already assigned. */
1291                goto lun_assigned;
1292
1293        /* If this device a non-zero lun of a multi-lun device
1294         * byte 4 of the 8-byte LUN addr will contain the logical
1295         * unit no, zero otherwise.
1296         */
1297        if (device->scsi3addr[4] == 0) {
1298                /* This is not a non-zero lun of a multi-lun device */
1299                if (hpsa_find_target_lun(h, device->scsi3addr,
1300                        device->bus, &device->target, &device->lun) != 0)
1301                        return -1;
1302                goto lun_assigned;
1303        }
1304
1305        /* This is a non-zero lun of a multi-lun device.
1306         * Search through our list and find the device which
1307         * has the same 8 byte LUN address, excepting byte 4 and 5.
1308         * Assign the same bus and target for this new LUN.
1309         * Use the logical unit number from the firmware.
1310         */
1311        memcpy(addr1, device->scsi3addr, 8);
1312        addr1[4] = 0;
1313        addr1[5] = 0;
1314        for (i = 0; i < n; i++) {
1315                sd = h->dev[i];
1316                memcpy(addr2, sd->scsi3addr, 8);
1317                addr2[4] = 0;
1318                addr2[5] = 0;
1319                /* differ only in byte 4 and 5? */
1320                if (memcmp(addr1, addr2, 8) == 0) {
1321                        device->bus = sd->bus;
1322                        device->target = sd->target;
1323                        device->lun = device->scsi3addr[4];
1324                        break;
1325                }
1326        }
1327        if (device->lun == -1) {
1328                dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329                        " suspect firmware bug or unsupported hardware "
1330                        "configuration.\n");
1331                        return -1;
1332        }
1333
1334lun_assigned:
1335
1336        h->dev[n] = device;
1337        h->ndevices++;
1338        added[*nadded] = device;
1339        (*nadded)++;
1340        hpsa_show_dev_msg(KERN_INFO, h, device,
1341                device->expose_device ? "added" : "masked");
1342        return 0;
1343}
1344
1345/*
1346 * Called during a scan operation.
1347 *
1348 * Update an entry in h->dev[] array.
1349 */
1350static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351        int entry, struct hpsa_scsi_dev_t *new_entry)
1352{
1353        /* assumes h->devlock is held */
1354        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356        /* Raid level changed. */
1357        h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359        /*
1360         * ioacccel_handle may have changed for a dual domain disk
1361         */
1362        h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364        /* Raid offload parameters changed.  Careful about the ordering. */
1365        if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366                /*
1367                 * if drive is newly offload_enabled, we want to copy the
1368                 * raid map data first.  If previously offload_enabled and
1369                 * offload_config were set, raid map data had better be
1370                 * the same as it was before. If raid map data has changed
1371                 * then it had better be the case that
1372                 * h->dev[entry]->offload_enabled is currently 0.
1373                 */
1374                h->dev[entry]->raid_map = new_entry->raid_map;
1375                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376        }
1377        if (new_entry->offload_to_be_enabled) {
1378                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379                wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380        }
1381        h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382        h->dev[entry]->offload_config = new_entry->offload_config;
1383        h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384        h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386        /*
1387         * We can turn off ioaccel offload now, but need to delay turning
1388         * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389         * can't do that until all the devices are updated.
1390         */
1391        h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393        /*
1394         * turn ioaccel off immediately if told to do so.
1395         */
1396        if (!new_entry->offload_to_be_enabled)
1397                h->dev[entry]->offload_enabled = 0;
1398
1399        hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400}
1401
1402/* Replace an entry from h->dev[] array. */
1403static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404        int entry, struct hpsa_scsi_dev_t *new_entry,
1405        struct hpsa_scsi_dev_t *added[], int *nadded,
1406        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407{
1408        /* assumes h->devlock is held */
1409        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410        removed[*nremoved] = h->dev[entry];
1411        (*nremoved)++;
1412
1413        /*
1414         * New physical devices won't have target/lun assigned yet
1415         * so we need to preserve the values in the slot we are replacing.
1416         */
1417        if (new_entry->target == -1) {
1418                new_entry->target = h->dev[entry]->target;
1419                new_entry->lun = h->dev[entry]->lun;
1420        }
1421
1422        h->dev[entry] = new_entry;
1423        added[*nadded] = new_entry;
1424        (*nadded)++;
1425
1426        hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427}
1428
1429/* Remove an entry from h->dev[] array. */
1430static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432{
1433        /* assumes h->devlock is held */
1434        int i;
1435        struct hpsa_scsi_dev_t *sd;
1436
1437        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439        sd = h->dev[entry];
1440        removed[*nremoved] = h->dev[entry];
1441        (*nremoved)++;
1442
1443        for (i = entry; i < h->ndevices-1; i++)
1444                h->dev[i] = h->dev[i+1];
1445        h->ndevices--;
1446        hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447}
1448
1449#define SCSI3ADDR_EQ(a, b) ( \
1450        (a)[7] == (b)[7] && \
1451        (a)[6] == (b)[6] && \
1452        (a)[5] == (b)[5] && \
1453        (a)[4] == (b)[4] && \
1454        (a)[3] == (b)[3] && \
1455        (a)[2] == (b)[2] && \
1456        (a)[1] == (b)[1] && \
1457        (a)[0] == (b)[0])
1458
1459static void fixup_botched_add(struct ctlr_info *h,
1460        struct hpsa_scsi_dev_t *added)
1461{
1462        /* called when scsi_add_device fails in order to re-adjust
1463         * h->dev[] to match the mid layer's view.
1464         */
1465        unsigned long flags;
1466        int i, j;
1467
1468        spin_lock_irqsave(&h->lock, flags);
1469        for (i = 0; i < h->ndevices; i++) {
1470                if (h->dev[i] == added) {
1471                        for (j = i; j < h->ndevices-1; j++)
1472                                h->dev[j] = h->dev[j+1];
1473                        h->ndevices--;
1474                        break;
1475                }
1476        }
1477        spin_unlock_irqrestore(&h->lock, flags);
1478        kfree(added);
1479}
1480
1481static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482        struct hpsa_scsi_dev_t *dev2)
1483{
1484        /* we compare everything except lun and target as these
1485         * are not yet assigned.  Compare parts likely
1486         * to differ first
1487         */
1488        if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489                sizeof(dev1->scsi3addr)) != 0)
1490                return 0;
1491        if (memcmp(dev1->device_id, dev2->device_id,
1492                sizeof(dev1->device_id)) != 0)
1493                return 0;
1494        if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495                return 0;
1496        if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497                return 0;
1498        if (dev1->devtype != dev2->devtype)
1499                return 0;
1500        if (dev1->bus != dev2->bus)
1501                return 0;
1502        return 1;
1503}
1504
1505static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506        struct hpsa_scsi_dev_t *dev2)
1507{
1508        /* Device attributes that can change, but don't mean
1509         * that the device is a different device, nor that the OS
1510         * needs to be told anything about the change.
1511         */
1512        if (dev1->raid_level != dev2->raid_level)
1513                return 1;
1514        if (dev1->offload_config != dev2->offload_config)
1515                return 1;
1516        if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517                return 1;
1518        if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519                if (dev1->queue_depth != dev2->queue_depth)
1520                        return 1;
1521        /*
1522         * This can happen for dual domain devices. An active
1523         * path change causes the ioaccel handle to change
1524         *
1525         * for example note the handle differences between p0 and p1
1526         * Device                    WWN               ,WWN hash,Handle
1527         * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528         *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529         */
1530        if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531                return 1;
1532        return 0;
1533}
1534
1535/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536 * and return needle location in *index.  If scsi3addr matches, but not
1537 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538 * location in *index.
1539 * In the case of a minor device attribute change, such as RAID level, just
1540 * return DEVICE_UPDATED, along with the updated device's location in index.
1541 * If needle not found, return DEVICE_NOT_FOUND.
1542 */
1543static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544        struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545        int *index)
1546{
1547        int i;
1548#define DEVICE_NOT_FOUND 0
1549#define DEVICE_CHANGED 1
1550#define DEVICE_SAME 2
1551#define DEVICE_UPDATED 3
1552        if (needle == NULL)
1553                return DEVICE_NOT_FOUND;
1554
1555        for (i = 0; i < haystack_size; i++) {
1556                if (haystack[i] == NULL) /* previously removed. */
1557                        continue;
1558                if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559                        *index = i;
1560                        if (device_is_the_same(needle, haystack[i])) {
1561                                if (device_updated(needle, haystack[i]))
1562                                        return DEVICE_UPDATED;
1563                                return DEVICE_SAME;
1564                        } else {
1565                                /* Keep offline devices offline */
1566                                if (needle->volume_offline)
1567                                        return DEVICE_NOT_FOUND;
1568                                return DEVICE_CHANGED;
1569                        }
1570                }
1571        }
1572        *index = -1;
1573        return DEVICE_NOT_FOUND;
1574}
1575
1576static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577                                        unsigned char scsi3addr[])
1578{
1579        struct offline_device_entry *device;
1580        unsigned long flags;
1581
1582        /* Check to see if device is already on the list */
1583        spin_lock_irqsave(&h->offline_device_lock, flags);
1584        list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585                if (memcmp(device->scsi3addr, scsi3addr,
1586                        sizeof(device->scsi3addr)) == 0) {
1587                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588                        return;
1589                }
1590        }
1591        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593        /* Device is not on the list, add it. */
1594        device = kmalloc(sizeof(*device), GFP_KERNEL);
1595        if (!device)
1596                return;
1597
1598        memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599        spin_lock_irqsave(&h->offline_device_lock, flags);
1600        list_add_tail(&device->offline_list, &h->offline_device_list);
1601        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602}
1603
1604/* Print a message explaining various offline volume states */
1605static void hpsa_show_volume_status(struct ctlr_info *h,
1606        struct hpsa_scsi_dev_t *sd)
1607{
1608        if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609                dev_info(&h->pdev->dev,
1610                        "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611                        h->scsi_host->host_no,
1612                        sd->bus, sd->target, sd->lun);
1613        switch (sd->volume_offline) {
1614        case HPSA_LV_OK:
1615                break;
1616        case HPSA_LV_UNDERGOING_ERASE:
1617                dev_info(&h->pdev->dev,
1618                        "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619                        h->scsi_host->host_no,
1620                        sd->bus, sd->target, sd->lun);
1621                break;
1622        case HPSA_LV_NOT_AVAILABLE:
1623                dev_info(&h->pdev->dev,
1624                        "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625                        h->scsi_host->host_no,
1626                        sd->bus, sd->target, sd->lun);
1627                break;
1628        case HPSA_LV_UNDERGOING_RPI:
1629                dev_info(&h->pdev->dev,
1630                        "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631                        h->scsi_host->host_no,
1632                        sd->bus, sd->target, sd->lun);
1633                break;
1634        case HPSA_LV_PENDING_RPI:
1635                dev_info(&h->pdev->dev,
1636                        "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637                        h->scsi_host->host_no,
1638                        sd->bus, sd->target, sd->lun);
1639                break;
1640        case HPSA_LV_ENCRYPTED_NO_KEY:
1641                dev_info(&h->pdev->dev,
1642                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643                        h->scsi_host->host_no,
1644                        sd->bus, sd->target, sd->lun);
1645                break;
1646        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647                dev_info(&h->pdev->dev,
1648                        "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649                        h->scsi_host->host_no,
1650                        sd->bus, sd->target, sd->lun);
1651                break;
1652        case HPSA_LV_UNDERGOING_ENCRYPTION:
1653                dev_info(&h->pdev->dev,
1654                        "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655                        h->scsi_host->host_no,
1656                        sd->bus, sd->target, sd->lun);
1657                break;
1658        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659                dev_info(&h->pdev->dev,
1660                        "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661                        h->scsi_host->host_no,
1662                        sd->bus, sd->target, sd->lun);
1663                break;
1664        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665                dev_info(&h->pdev->dev,
1666                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667                        h->scsi_host->host_no,
1668                        sd->bus, sd->target, sd->lun);
1669                break;
1670        case HPSA_LV_PENDING_ENCRYPTION:
1671                dev_info(&h->pdev->dev,
1672                        "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673                        h->scsi_host->host_no,
1674                        sd->bus, sd->target, sd->lun);
1675                break;
1676        case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677                dev_info(&h->pdev->dev,
1678                        "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679                        h->scsi_host->host_no,
1680                        sd->bus, sd->target, sd->lun);
1681                break;
1682        }
1683}
1684
1685/*
1686 * Figure the list of physical drive pointers for a logical drive with
1687 * raid offload configured.
1688 */
1689static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690                                struct hpsa_scsi_dev_t *dev[], int ndevices,
1691                                struct hpsa_scsi_dev_t *logical_drive)
1692{
1693        struct raid_map_data *map = &logical_drive->raid_map;
1694        struct raid_map_disk_data *dd = &map->data[0];
1695        int i, j;
1696        int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697                                le16_to_cpu(map->metadata_disks_per_row);
1698        int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699                                le16_to_cpu(map->layout_map_count) *
1700                                total_disks_per_row;
1701        int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702                                total_disks_per_row;
1703        int qdepth;
1704
1705        if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706                nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708        logical_drive->nphysical_disks = nraid_map_entries;
1709
1710        qdepth = 0;
1711        for (i = 0; i < nraid_map_entries; i++) {
1712                logical_drive->phys_disk[i] = NULL;
1713                if (!logical_drive->offload_config)
1714                        continue;
1715                for (j = 0; j < ndevices; j++) {
1716                        if (dev[j] == NULL)
1717                                continue;
1718                        if (dev[j]->devtype != TYPE_DISK &&
1719                            dev[j]->devtype != TYPE_ZBC)
1720                                continue;
1721                        if (is_logical_device(dev[j]))
1722                                continue;
1723                        if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724                                continue;
1725
1726                        logical_drive->phys_disk[i] = dev[j];
1727                        if (i < nphys_disk)
1728                                qdepth = min(h->nr_cmds, qdepth +
1729                                    logical_drive->phys_disk[i]->queue_depth);
1730                        break;
1731                }
1732
1733                /*
1734                 * This can happen if a physical drive is removed and
1735                 * the logical drive is degraded.  In that case, the RAID
1736                 * map data will refer to a physical disk which isn't actually
1737                 * present.  And in that case offload_enabled should already
1738                 * be 0, but we'll turn it off here just in case
1739                 */
1740                if (!logical_drive->phys_disk[i]) {
1741                        dev_warn(&h->pdev->dev,
1742                                "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743                                __func__,
1744                                h->scsi_host->host_no, logical_drive->bus,
1745                                logical_drive->target, logical_drive->lun);
1746                        logical_drive->offload_enabled = 0;
1747                        logical_drive->offload_to_be_enabled = 0;
1748                        logical_drive->queue_depth = 8;
1749                }
1750        }
1751        if (nraid_map_entries)
1752                /*
1753                 * This is correct for reads, too high for full stripe writes,
1754                 * way too high for partial stripe writes
1755                 */
1756                logical_drive->queue_depth = qdepth;
1757        else {
1758                if (logical_drive->external)
1759                        logical_drive->queue_depth = EXTERNAL_QD;
1760                else
1761                        logical_drive->queue_depth = h->nr_cmds;
1762        }
1763}
1764
1765static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766                                struct hpsa_scsi_dev_t *dev[], int ndevices)
1767{
1768        int i;
1769
1770        for (i = 0; i < ndevices; i++) {
1771                if (dev[i] == NULL)
1772                        continue;
1773                if (dev[i]->devtype != TYPE_DISK &&
1774                    dev[i]->devtype != TYPE_ZBC)
1775                        continue;
1776                if (!is_logical_device(dev[i]))
1777                        continue;
1778
1779                /*
1780                 * If offload is currently enabled, the RAID map and
1781                 * phys_disk[] assignment *better* not be changing
1782                 * because we would be changing ioaccel phsy_disk[] pointers
1783                 * on a ioaccel volume processing I/O requests.
1784                 *
1785                 * If an ioaccel volume status changed, initially because it was
1786                 * re-configured and thus underwent a transformation, or
1787                 * a drive failed, we would have received a state change
1788                 * request and ioaccel should have been turned off. When the
1789                 * transformation completes, we get another state change
1790                 * request to turn ioaccel back on. In this case, we need
1791                 * to update the ioaccel information.
1792                 *
1793                 * Thus: If it is not currently enabled, but will be after
1794                 * the scan completes, make sure the ioaccel pointers
1795                 * are up to date.
1796                 */
1797
1798                if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799                        hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800        }
1801}
1802
1803static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804{
1805        int rc = 0;
1806
1807        if (!h->scsi_host)
1808                return 1;
1809
1810        if (is_logical_device(device)) /* RAID */
1811                rc = scsi_add_device(h->scsi_host, device->bus,
1812                                        device->target, device->lun);
1813        else /* HBA */
1814                rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816        return rc;
1817}
1818
1819static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820                                                struct hpsa_scsi_dev_t *dev)
1821{
1822        int i;
1823        int count = 0;
1824
1825        for (i = 0; i < h->nr_cmds; i++) {
1826                struct CommandList *c = h->cmd_pool + i;
1827                int refcount = atomic_inc_return(&c->refcount);
1828
1829                if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830                                dev->scsi3addr)) {
1831                        unsigned long flags;
1832
1833                        spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1834                        if (!hpsa_is_cmd_idle(c))
1835                                ++count;
1836                        spin_unlock_irqrestore(&h->lock, flags);
1837                }
1838
1839                cmd_free(h, c);
1840        }
1841
1842        return count;
1843}
1844
1845static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846                                                struct hpsa_scsi_dev_t *device)
1847{
1848        int cmds = 0;
1849        int waits = 0;
1850
1851        while (1) {
1852                cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                if (cmds == 0)
1854                        break;
1855                if (++waits > 20)
1856                        break;
1857                msleep(1000);
1858        }
1859
1860        if (waits > 20)
1861                dev_warn(&h->pdev->dev,
1862                        "%s: removing device with %d outstanding commands!\n",
1863                        __func__, cmds);
1864}
1865
1866static void hpsa_remove_device(struct ctlr_info *h,
1867                        struct hpsa_scsi_dev_t *device)
1868{
1869        struct scsi_device *sdev = NULL;
1870
1871        if (!h->scsi_host)
1872                return;
1873
1874        /*
1875         * Allow for commands to drain
1876         */
1877        device->removed = 1;
1878        hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880        if (is_logical_device(device)) { /* RAID */
1881                sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882                                                device->target, device->lun);
1883                if (sdev) {
1884                        scsi_remove_device(sdev);
1885                        scsi_device_put(sdev);
1886                } else {
1887                        /*
1888                         * We don't expect to get here.  Future commands
1889                         * to this device will get a selection timeout as
1890                         * if the device were gone.
1891                         */
1892                        hpsa_show_dev_msg(KERN_WARNING, h, device,
1893                                        "didn't find device for removal.");
1894                }
1895        } else { /* HBA */
1896
1897                hpsa_remove_sas_device(device);
1898        }
1899}
1900
1901static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902        struct hpsa_scsi_dev_t *sd[], int nsds)
1903{
1904        /* sd contains scsi3 addresses and devtypes, and inquiry
1905         * data.  This function takes what's in sd to be the current
1906         * reality and updates h->dev[] to reflect that reality.
1907         */
1908        int i, entry, device_change, changes = 0;
1909        struct hpsa_scsi_dev_t *csd;
1910        unsigned long flags;
1911        struct hpsa_scsi_dev_t **added, **removed;
1912        int nadded, nremoved;
1913
1914        /*
1915         * A reset can cause a device status to change
1916         * re-schedule the scan to see what happened.
1917         */
1918        spin_lock_irqsave(&h->reset_lock, flags);
1919        if (h->reset_in_progress) {
1920                h->drv_req_rescan = 1;
1921                spin_unlock_irqrestore(&h->reset_lock, flags);
1922                return;
1923        }
1924        spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926        added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1927        removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1928
1929        if (!added || !removed) {
1930                dev_warn(&h->pdev->dev, "out of memory in "
1931                        "adjust_hpsa_scsi_table\n");
1932                goto free_and_out;
1933        }
1934
1935        spin_lock_irqsave(&h->devlock, flags);
1936
1937        /* find any devices in h->dev[] that are not in
1938         * sd[] and remove them from h->dev[], and for any
1939         * devices which have changed, remove the old device
1940         * info and add the new device info.
1941         * If minor device attributes change, just update
1942         * the existing device structure.
1943         */
1944        i = 0;
1945        nremoved = 0;
1946        nadded = 0;
1947        while (i < h->ndevices) {
1948                csd = h->dev[i];
1949                device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950                if (device_change == DEVICE_NOT_FOUND) {
1951                        changes++;
1952                        hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953                        continue; /* remove ^^^, hence i not incremented */
1954                } else if (device_change == DEVICE_CHANGED) {
1955                        changes++;
1956                        hpsa_scsi_replace_entry(h, i, sd[entry],
1957                                added, &nadded, removed, &nremoved);
1958                        /* Set it to NULL to prevent it from being freed
1959                         * at the bottom of hpsa_update_scsi_devices()
1960                         */
1961                        sd[entry] = NULL;
1962                } else if (device_change == DEVICE_UPDATED) {
1963                        hpsa_scsi_update_entry(h, i, sd[entry]);
1964                }
1965                i++;
1966        }
1967
1968        /* Now, make sure every device listed in sd[] is also
1969         * listed in h->dev[], adding them if they aren't found
1970         */
1971
1972        for (i = 0; i < nsds; i++) {
1973                if (!sd[i]) /* if already added above. */
1974                        continue;
1975
1976                /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977                 * as the SCSI mid-layer does not handle such devices well.
1978                 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979                 * at 160Hz, and prevents the system from coming up.
1980                 */
1981                if (sd[i]->volume_offline) {
1982                        hpsa_show_volume_status(h, sd[i]);
1983                        hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984                        continue;
1985                }
1986
1987                device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988                                        h->ndevices, &entry);
1989                if (device_change == DEVICE_NOT_FOUND) {
1990                        changes++;
1991                        if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992                                break;
1993                        sd[i] = NULL; /* prevent from being freed later. */
1994                } else if (device_change == DEVICE_CHANGED) {
1995                        /* should never happen... */
1996                        changes++;
1997                        dev_warn(&h->pdev->dev,
1998                                "device unexpectedly changed.\n");
1999                        /* but if it does happen, we just ignore that device */
2000                }
2001        }
2002        hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004        /*
2005         * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006         * any logical drives that need it enabled.
2007         *
2008         * The raid map should be current by now.
2009         *
2010         * We are updating the device list used for I/O requests.
2011         */
2012        for (i = 0; i < h->ndevices; i++) {
2013                if (h->dev[i] == NULL)
2014                        continue;
2015                h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016        }
2017
2018        spin_unlock_irqrestore(&h->devlock, flags);
2019
2020        /* Monitor devices which are in one of several NOT READY states to be
2021         * brought online later. This must be done without holding h->devlock,
2022         * so don't touch h->dev[]
2023         */
2024        for (i = 0; i < nsds; i++) {
2025                if (!sd[i]) /* if already added above. */
2026                        continue;
2027                if (sd[i]->volume_offline)
2028                        hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029        }
2030
2031        /* Don't notify scsi mid layer of any changes the first time through
2032         * (or if there are no changes) scsi_scan_host will do it later the
2033         * first time through.
2034         */
2035        if (!changes)
2036                goto free_and_out;
2037
2038        /* Notify scsi mid layer of any removed devices */
2039        for (i = 0; i < nremoved; i++) {
2040                if (removed[i] == NULL)
2041                        continue;
2042                if (removed[i]->expose_device)
2043                        hpsa_remove_device(h, removed[i]);
2044                kfree(removed[i]);
2045                removed[i] = NULL;
2046        }
2047
2048        /* Notify scsi mid layer of any added devices */
2049        for (i = 0; i < nadded; i++) {
2050                int rc = 0;
2051
2052                if (added[i] == NULL)
2053                        continue;
2054                if (!(added[i]->expose_device))
2055                        continue;
2056                rc = hpsa_add_device(h, added[i]);
2057                if (!rc)
2058                        continue;
2059                dev_warn(&h->pdev->dev,
2060                        "addition failed %d, device not added.", rc);
2061                /* now we have to remove it from h->dev,
2062                 * since it didn't get added to scsi mid layer
2063                 */
2064                fixup_botched_add(h, added[i]);
2065                h->drv_req_rescan = 1;
2066        }
2067
2068free_and_out:
2069        kfree(added);
2070        kfree(removed);
2071}
2072
2073/*
2074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075 * Assume's h->devlock is held.
2076 */
2077static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078        int bus, int target, int lun)
2079{
2080        int i;
2081        struct hpsa_scsi_dev_t *sd;
2082
2083        for (i = 0; i < h->ndevices; i++) {
2084                sd = h->dev[i];
2085                if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086                        return sd;
2087        }
2088        return NULL;
2089}
2090
2091static int hpsa_slave_alloc(struct scsi_device *sdev)
2092{
2093        struct hpsa_scsi_dev_t *sd = NULL;
2094        unsigned long flags;
2095        struct ctlr_info *h;
2096
2097        h = sdev_to_hba(sdev);
2098        spin_lock_irqsave(&h->devlock, flags);
2099        if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100                struct scsi_target *starget;
2101                struct sas_rphy *rphy;
2102
2103                starget = scsi_target(sdev);
2104                rphy = target_to_rphy(starget);
2105                sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106                if (sd) {
2107                        sd->target = sdev_id(sdev);
2108                        sd->lun = sdev->lun;
2109                }
2110        }
2111        if (!sd)
2112                sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113                                        sdev_id(sdev), sdev->lun);
2114
2115        if (sd && sd->expose_device) {
2116                atomic_set(&sd->ioaccel_cmds_out, 0);
2117                sdev->hostdata = sd;
2118        } else
2119                sdev->hostdata = NULL;
2120        spin_unlock_irqrestore(&h->devlock, flags);
2121        return 0;
2122}
2123
2124/* configure scsi device based on internal per-device structure */
2125static int hpsa_slave_configure(struct scsi_device *sdev)
2126{
2127        struct hpsa_scsi_dev_t *sd;
2128        int queue_depth;
2129
2130        sd = sdev->hostdata;
2131        sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133        if (sd) {
2134                if (sd->external)
2135                        queue_depth = EXTERNAL_QD;
2136                else
2137                        queue_depth = sd->queue_depth != 0 ?
2138                                        sd->queue_depth : sdev->host->can_queue;
2139        } else
2140                queue_depth = sdev->host->can_queue;
2141
2142        scsi_change_queue_depth(sdev, queue_depth);
2143
2144        return 0;
2145}
2146
2147static void hpsa_slave_destroy(struct scsi_device *sdev)
2148{
2149        /* nothing to do. */
2150}
2151
2152static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153{
2154        int i;
2155
2156        if (!h->ioaccel2_cmd_sg_list)
2157                return;
2158        for (i = 0; i < h->nr_cmds; i++) {
2159                kfree(h->ioaccel2_cmd_sg_list[i]);
2160                h->ioaccel2_cmd_sg_list[i] = NULL;
2161        }
2162        kfree(h->ioaccel2_cmd_sg_list);
2163        h->ioaccel2_cmd_sg_list = NULL;
2164}
2165
2166static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167{
2168        int i;
2169
2170        if (h->chainsize <= 0)
2171                return 0;
2172
2173        h->ioaccel2_cmd_sg_list =
2174                kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2175                                        GFP_KERNEL);
2176        if (!h->ioaccel2_cmd_sg_list)
2177                return -ENOMEM;
2178        for (i = 0; i < h->nr_cmds; i++) {
2179                h->ioaccel2_cmd_sg_list[i] =
2180                        kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2181                                        h->maxsgentries, GFP_KERNEL);
2182                if (!h->ioaccel2_cmd_sg_list[i])
2183                        goto clean;
2184        }
2185        return 0;
2186
2187clean:
2188        hpsa_free_ioaccel2_sg_chain_blocks(h);
2189        return -ENOMEM;
2190}
2191
2192static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2193{
2194        int i;
2195
2196        if (!h->cmd_sg_list)
2197                return;
2198        for (i = 0; i < h->nr_cmds; i++) {
2199                kfree(h->cmd_sg_list[i]);
2200                h->cmd_sg_list[i] = NULL;
2201        }
2202        kfree(h->cmd_sg_list);
2203        h->cmd_sg_list = NULL;
2204}
2205
2206static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2207{
2208        int i;
2209
2210        if (h->chainsize <= 0)
2211                return 0;
2212
2213        h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2214                                GFP_KERNEL);
2215        if (!h->cmd_sg_list)
2216                return -ENOMEM;
2217
2218        for (i = 0; i < h->nr_cmds; i++) {
2219                h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2220                                                h->chainsize, GFP_KERNEL);
2221                if (!h->cmd_sg_list[i])
2222                        goto clean;
2223
2224        }
2225        return 0;
2226
2227clean:
2228        hpsa_free_sg_chain_blocks(h);
2229        return -ENOMEM;
2230}
2231
2232static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2233        struct io_accel2_cmd *cp, struct CommandList *c)
2234{
2235        struct ioaccel2_sg_element *chain_block;
2236        u64 temp64;
2237        u32 chain_size;
2238
2239        chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2240        chain_size = le32_to_cpu(cp->sg[0].length);
2241        temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2242                                PCI_DMA_TODEVICE);
2243        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2244                /* prevent subsequent unmapping */
2245                cp->sg->address = 0;
2246                return -1;
2247        }
2248        cp->sg->address = cpu_to_le64(temp64);
2249        return 0;
2250}
2251
2252static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2253        struct io_accel2_cmd *cp)
2254{
2255        struct ioaccel2_sg_element *chain_sg;
2256        u64 temp64;
2257        u32 chain_size;
2258
2259        chain_sg = cp->sg;
2260        temp64 = le64_to_cpu(chain_sg->address);
2261        chain_size = le32_to_cpu(cp->sg[0].length);
2262        pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2263}
2264
2265static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2266        struct CommandList *c)
2267{
2268        struct SGDescriptor *chain_sg, *chain_block;
2269        u64 temp64;
2270        u32 chain_len;
2271
2272        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2273        chain_block = h->cmd_sg_list[c->cmdindex];
2274        chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2275        chain_len = sizeof(*chain_sg) *
2276                (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2277        chain_sg->Len = cpu_to_le32(chain_len);
2278        temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2279                                PCI_DMA_TODEVICE);
2280        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2281                /* prevent subsequent unmapping */
2282                chain_sg->Addr = cpu_to_le64(0);
2283                return -1;
2284        }
2285        chain_sg->Addr = cpu_to_le64(temp64);
2286        return 0;
2287}
2288
2289static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2290        struct CommandList *c)
2291{
2292        struct SGDescriptor *chain_sg;
2293
2294        if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2295                return;
2296
2297        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2298        pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2299                        le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2300}
2301
2302
2303/* Decode the various types of errors on ioaccel2 path.
2304 * Return 1 for any error that should generate a RAID path retry.
2305 * Return 0 for errors that don't require a RAID path retry.
2306 */
2307static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2308                                        struct CommandList *c,
2309                                        struct scsi_cmnd *cmd,
2310                                        struct io_accel2_cmd *c2,
2311                                        struct hpsa_scsi_dev_t *dev)
2312{
2313        int data_len;
2314        int retry = 0;
2315        u32 ioaccel2_resid = 0;
2316
2317        switch (c2->error_data.serv_response) {
2318        case IOACCEL2_SERV_RESPONSE_COMPLETE:
2319                switch (c2->error_data.status) {
2320                case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2321                        break;
2322                case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2323                        cmd->result |= SAM_STAT_CHECK_CONDITION;
2324                        if (c2->error_data.data_present !=
2325                                        IOACCEL2_SENSE_DATA_PRESENT) {
2326                                memset(cmd->sense_buffer, 0,
2327                                        SCSI_SENSE_BUFFERSIZE);
2328                                break;
2329                        }
2330                        /* copy the sense data */
2331                        data_len = c2->error_data.sense_data_len;
2332                        if (data_len > SCSI_SENSE_BUFFERSIZE)
2333                                data_len = SCSI_SENSE_BUFFERSIZE;
2334                        if (data_len > sizeof(c2->error_data.sense_data_buff))
2335                                data_len =
2336                                        sizeof(c2->error_data.sense_data_buff);
2337                        memcpy(cmd->sense_buffer,
2338                                c2->error_data.sense_data_buff, data_len);
2339                        retry = 1;
2340                        break;
2341                case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2342                        retry = 1;
2343                        break;
2344                case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2345                        retry = 1;
2346                        break;
2347                case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2348                        retry = 1;
2349                        break;
2350                case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2351                        retry = 1;
2352                        break;
2353                default:
2354                        retry = 1;
2355                        break;
2356                }
2357                break;
2358        case IOACCEL2_SERV_RESPONSE_FAILURE:
2359                switch (c2->error_data.status) {
2360                case IOACCEL2_STATUS_SR_IO_ERROR:
2361                case IOACCEL2_STATUS_SR_IO_ABORTED:
2362                case IOACCEL2_STATUS_SR_OVERRUN:
2363                        retry = 1;
2364                        break;
2365                case IOACCEL2_STATUS_SR_UNDERRUN:
2366                        cmd->result = (DID_OK << 16);           /* host byte */
2367                        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2368                        ioaccel2_resid = get_unaligned_le32(
2369                                                &c2->error_data.resid_cnt[0]);
2370                        scsi_set_resid(cmd, ioaccel2_resid);
2371                        break;
2372                case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2373                case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2374                case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2375                        /*
2376                         * Did an HBA disk disappear? We will eventually
2377                         * get a state change event from the controller but
2378                         * in the meantime, we need to tell the OS that the
2379                         * HBA disk is no longer there and stop I/O
2380                         * from going down. This allows the potential re-insert
2381                         * of the disk to get the same device node.
2382                         */
2383                        if (dev->physical_device && dev->expose_device) {
2384                                cmd->result = DID_NO_CONNECT << 16;
2385                                dev->removed = 1;
2386                                h->drv_req_rescan = 1;
2387                                dev_warn(&h->pdev->dev,
2388                                        "%s: device is gone!\n", __func__);
2389                        } else
2390                                /*
2391                                 * Retry by sending down the RAID path.
2392                                 * We will get an event from ctlr to
2393                                 * trigger rescan regardless.
2394                                 */
2395                                retry = 1;
2396                        break;
2397                default:
2398                        retry = 1;
2399                }
2400                break;
2401        case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2402                break;
2403        case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2404                break;
2405        case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2406                retry = 1;
2407                break;
2408        case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2409                break;
2410        default:
2411                retry = 1;
2412                break;
2413        }
2414
2415        return retry;   /* retry on raid path? */
2416}
2417
2418static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2419                struct CommandList *c)
2420{
2421        bool do_wake = false;
2422
2423        /*
2424         * Reset c->scsi_cmd here so that the reset handler will know
2425         * this command has completed.  Then, check to see if the handler is
2426         * waiting for this command, and, if so, wake it.
2427         */
2428        c->scsi_cmd = SCSI_CMD_IDLE;
2429        mb();   /* Declare command idle before checking for pending events. */
2430        if (c->reset_pending) {
2431                unsigned long flags;
2432                struct hpsa_scsi_dev_t *dev;
2433
2434                /*
2435                 * There appears to be a reset pending; lock the lock and
2436                 * reconfirm.  If so, then decrement the count of outstanding
2437                 * commands and wake the reset command if this is the last one.
2438                 */
2439                spin_lock_irqsave(&h->lock, flags);
2440                dev = c->reset_pending;         /* Re-fetch under the lock. */
2441                if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2442                        do_wake = true;
2443                c->reset_pending = NULL;
2444                spin_unlock_irqrestore(&h->lock, flags);
2445        }
2446
2447        if (do_wake)
2448                wake_up_all(&h->event_sync_wait_queue);
2449}
2450
2451static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2452                                      struct CommandList *c)
2453{
2454        hpsa_cmd_resolve_events(h, c);
2455        cmd_tagged_free(h, c);
2456}
2457
2458static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2459                struct CommandList *c, struct scsi_cmnd *cmd)
2460{
2461        hpsa_cmd_resolve_and_free(h, c);
2462        if (cmd && cmd->scsi_done)
2463                cmd->scsi_done(cmd);
2464}
2465
2466static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2467{
2468        INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2469        queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2470}
2471
2472static void process_ioaccel2_completion(struct ctlr_info *h,
2473                struct CommandList *c, struct scsi_cmnd *cmd,
2474                struct hpsa_scsi_dev_t *dev)
2475{
2476        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2477
2478        /* check for good status */
2479        if (likely(c2->error_data.serv_response == 0 &&
2480                        c2->error_data.status == 0))
2481                return hpsa_cmd_free_and_done(h, c, cmd);
2482
2483        /*
2484         * Any RAID offload error results in retry which will use
2485         * the normal I/O path so the controller can handle whatever is
2486         * wrong.
2487         */
2488        if (is_logical_device(dev) &&
2489                c2->error_data.serv_response ==
2490                        IOACCEL2_SERV_RESPONSE_FAILURE) {
2491                if (c2->error_data.status ==
2492                        IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2493                        dev->offload_enabled = 0;
2494                        dev->offload_to_be_enabled = 0;
2495                }
2496
2497                return hpsa_retry_cmd(h, c);
2498        }
2499
2500        if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2501                return hpsa_retry_cmd(h, c);
2502
2503        return hpsa_cmd_free_and_done(h, c, cmd);
2504}
2505
2506/* Returns 0 on success, < 0 otherwise. */
2507static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2508                                        struct CommandList *cp)
2509{
2510        u8 tmf_status = cp->err_info->ScsiStatus;
2511
2512        switch (tmf_status) {
2513        case CISS_TMF_COMPLETE:
2514                /*
2515                 * CISS_TMF_COMPLETE never happens, instead,
2516                 * ei->CommandStatus == 0 for this case.
2517                 */
2518        case CISS_TMF_SUCCESS:
2519                return 0;
2520        case CISS_TMF_INVALID_FRAME:
2521        case CISS_TMF_NOT_SUPPORTED:
2522        case CISS_TMF_FAILED:
2523        case CISS_TMF_WRONG_LUN:
2524        case CISS_TMF_OVERLAPPED_TAG:
2525                break;
2526        default:
2527                dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2528                                tmf_status);
2529                break;
2530        }
2531        return -tmf_status;
2532}
2533
2534static void complete_scsi_command(struct CommandList *cp)
2535{
2536        struct scsi_cmnd *cmd;
2537        struct ctlr_info *h;
2538        struct ErrorInfo *ei;
2539        struct hpsa_scsi_dev_t *dev;
2540        struct io_accel2_cmd *c2;
2541
2542        u8 sense_key;
2543        u8 asc;      /* additional sense code */
2544        u8 ascq;     /* additional sense code qualifier */
2545        unsigned long sense_data_size;
2546
2547        ei = cp->err_info;
2548        cmd = cp->scsi_cmd;
2549        h = cp->h;
2550
2551        if (!cmd->device) {
2552                cmd->result = DID_NO_CONNECT << 16;
2553                return hpsa_cmd_free_and_done(h, cp, cmd);
2554        }
2555
2556        dev = cmd->device->hostdata;
2557        if (!dev) {
2558                cmd->result = DID_NO_CONNECT << 16;
2559                return hpsa_cmd_free_and_done(h, cp, cmd);
2560        }
2561        c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2562
2563        scsi_dma_unmap(cmd); /* undo the DMA mappings */
2564        if ((cp->cmd_type == CMD_SCSI) &&
2565                (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2566                hpsa_unmap_sg_chain_block(h, cp);
2567
2568        if ((cp->cmd_type == CMD_IOACCEL2) &&
2569                (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2570                hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2571
2572        cmd->result = (DID_OK << 16);           /* host byte */
2573        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2574
2575        if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2576                if (dev->physical_device && dev->expose_device &&
2577                        dev->removed) {
2578                        cmd->result = DID_NO_CONNECT << 16;
2579                        return hpsa_cmd_free_and_done(h, cp, cmd);
2580                }
2581                if (likely(cp->phys_disk != NULL))
2582                        atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2583        }
2584
2585        /*
2586         * We check for lockup status here as it may be set for
2587         * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2588         * fail_all_oustanding_cmds()
2589         */
2590        if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2591                /* DID_NO_CONNECT will prevent a retry */
2592                cmd->result = DID_NO_CONNECT << 16;
2593                return hpsa_cmd_free_and_done(h, cp, cmd);
2594        }
2595
2596        if ((unlikely(hpsa_is_pending_event(cp))))
2597                if (cp->reset_pending)
2598                        return hpsa_cmd_free_and_done(h, cp, cmd);
2599
2600        if (cp->cmd_type == CMD_IOACCEL2)
2601                return process_ioaccel2_completion(h, cp, cmd, dev);
2602
2603        scsi_set_resid(cmd, ei->ResidualCnt);
2604        if (ei->CommandStatus == 0)
2605                return hpsa_cmd_free_and_done(h, cp, cmd);
2606
2607        /* For I/O accelerator commands, copy over some fields to the normal
2608         * CISS header used below for error handling.
2609         */
2610        if (cp->cmd_type == CMD_IOACCEL1) {
2611                struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2612                cp->Header.SGList = scsi_sg_count(cmd);
2613                cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2614                cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2615                        IOACCEL1_IOFLAGS_CDBLEN_MASK;
2616                cp->Header.tag = c->tag;
2617                memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2618                memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2619
2620                /* Any RAID offload error results in retry which will use
2621                 * the normal I/O path so the controller can handle whatever's
2622                 * wrong.
2623                 */
2624                if (is_logical_device(dev)) {
2625                        if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2626                                dev->offload_enabled = 0;
2627                        return hpsa_retry_cmd(h, cp);
2628                }
2629        }
2630
2631        /* an error has occurred */
2632        switch (ei->CommandStatus) {
2633
2634        case CMD_TARGET_STATUS:
2635                cmd->result |= ei->ScsiStatus;
2636                /* copy the sense data */
2637                if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2638                        sense_data_size = SCSI_SENSE_BUFFERSIZE;
2639                else
2640                        sense_data_size = sizeof(ei->SenseInfo);
2641                if (ei->SenseLen < sense_data_size)
2642                        sense_data_size = ei->SenseLen;
2643                memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2644                if (ei->ScsiStatus)
2645                        decode_sense_data(ei->SenseInfo, sense_data_size,
2646                                &sense_key, &asc, &ascq);
2647                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2648                        if (sense_key == ABORTED_COMMAND) {
2649                                cmd->result |= DID_SOFT_ERROR << 16;
2650                                break;
2651                        }
2652                        break;
2653                }
2654                /* Problem was not a check condition
2655                 * Pass it up to the upper layers...
2656                 */
2657                if (ei->ScsiStatus) {
2658                        dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2659                                "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2660                                "Returning result: 0x%x\n",
2661                                cp, ei->ScsiStatus,
2662                                sense_key, asc, ascq,
2663                                cmd->result);
2664                } else {  /* scsi status is zero??? How??? */
2665                        dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2666                                "Returning no connection.\n", cp),
2667
2668                        /* Ordinarily, this case should never happen,
2669                         * but there is a bug in some released firmware
2670                         * revisions that allows it to happen if, for
2671                         * example, a 4100 backplane loses power and
2672                         * the tape drive is in it.  We assume that
2673                         * it's a fatal error of some kind because we
2674                         * can't show that it wasn't. We will make it
2675                         * look like selection timeout since that is
2676                         * the most common reason for this to occur,
2677                         * and it's severe enough.
2678                         */
2679
2680                        cmd->result = DID_NO_CONNECT << 16;
2681                }
2682                break;
2683
2684        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2685                break;
2686        case CMD_DATA_OVERRUN:
2687                dev_warn(&h->pdev->dev,
2688                        "CDB %16phN data overrun\n", cp->Request.CDB);
2689                break;
2690        case CMD_INVALID: {
2691                /* print_bytes(cp, sizeof(*cp), 1, 0);
2692                print_cmd(cp); */
2693                /* We get CMD_INVALID if you address a non-existent device
2694                 * instead of a selection timeout (no response).  You will
2695                 * see this if you yank out a drive, then try to access it.
2696                 * This is kind of a shame because it means that any other
2697                 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2698                 * missing target. */
2699                cmd->result = DID_NO_CONNECT << 16;
2700        }
2701                break;
2702        case CMD_PROTOCOL_ERR:
2703                cmd->result = DID_ERROR << 16;
2704                dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2705                                cp->Request.CDB);
2706                break;
2707        case CMD_HARDWARE_ERR:
2708                cmd->result = DID_ERROR << 16;
2709                dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2710                        cp->Request.CDB);
2711                break;
2712        case CMD_CONNECTION_LOST:
2713                cmd->result = DID_ERROR << 16;
2714                dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2715                        cp->Request.CDB);
2716                break;
2717        case CMD_ABORTED:
2718                cmd->result = DID_ABORT << 16;
2719                break;
2720        case CMD_ABORT_FAILED:
2721                cmd->result = DID_ERROR << 16;
2722                dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2723                        cp->Request.CDB);
2724                break;
2725        case CMD_UNSOLICITED_ABORT:
2726                cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2727                dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2728                        cp->Request.CDB);
2729                break;
2730        case CMD_TIMEOUT:
2731                cmd->result = DID_TIME_OUT << 16;
2732                dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2733                        cp->Request.CDB);
2734                break;
2735        case CMD_UNABORTABLE:
2736                cmd->result = DID_ERROR << 16;
2737                dev_warn(&h->pdev->dev, "Command unabortable\n");
2738                break;
2739        case CMD_TMF_STATUS:
2740                if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2741                        cmd->result = DID_ERROR << 16;
2742                break;
2743        case CMD_IOACCEL_DISABLED:
2744                /* This only handles the direct pass-through case since RAID
2745                 * offload is handled above.  Just attempt a retry.
2746                 */
2747                cmd->result = DID_SOFT_ERROR << 16;
2748                dev_warn(&h->pdev->dev,
2749                                "cp %p had HP SSD Smart Path error\n", cp);
2750                break;
2751        default:
2752                cmd->result = DID_ERROR << 16;
2753                dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2754                                cp, ei->CommandStatus);
2755        }
2756
2757        return hpsa_cmd_free_and_done(h, cp, cmd);
2758}
2759
2760static void hpsa_pci_unmap(struct pci_dev *pdev,
2761        struct CommandList *c, int sg_used, int data_direction)
2762{
2763        int i;
2764
2765        for (i = 0; i < sg_used; i++)
2766                pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2767                                le32_to_cpu(c->SG[i].Len),
2768                                data_direction);
2769}
2770
2771static int hpsa_map_one(struct pci_dev *pdev,
2772                struct CommandList *cp,
2773                unsigned char *buf,
2774                size_t buflen,
2775                int data_direction)
2776{
2777        u64 addr64;
2778
2779        if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2780                cp->Header.SGList = 0;
2781                cp->Header.SGTotal = cpu_to_le16(0);
2782                return 0;
2783        }
2784
2785        addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2786        if (dma_mapping_error(&pdev->dev, addr64)) {
2787                /* Prevent subsequent unmap of something never mapped */
2788                cp->Header.SGList = 0;
2789                cp->Header.SGTotal = cpu_to_le16(0);
2790                return -1;
2791        }
2792        cp->SG[0].Addr = cpu_to_le64(addr64);
2793        cp->SG[0].Len = cpu_to_le32(buflen);
2794        cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2795        cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2796        cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2797        return 0;
2798}
2799
2800#define NO_TIMEOUT ((unsigned long) -1)
2801#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2802static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2803        struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2804{
2805        DECLARE_COMPLETION_ONSTACK(wait);
2806
2807        c->waiting = &wait;
2808        __enqueue_cmd_and_start_io(h, c, reply_queue);
2809        if (timeout_msecs == NO_TIMEOUT) {
2810                /* TODO: get rid of this no-timeout thing */
2811                wait_for_completion_io(&wait);
2812                return IO_OK;
2813        }
2814        if (!wait_for_completion_io_timeout(&wait,
2815                                        msecs_to_jiffies(timeout_msecs))) {
2816                dev_warn(&h->pdev->dev, "Command timed out.\n");
2817                return -ETIMEDOUT;
2818        }
2819        return IO_OK;
2820}
2821
2822static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2823                                   int reply_queue, unsigned long timeout_msecs)
2824{
2825        if (unlikely(lockup_detected(h))) {
2826                c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2827                return IO_OK;
2828        }
2829        return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2830}
2831
2832static u32 lockup_detected(struct ctlr_info *h)
2833{
2834        int cpu;
2835        u32 rc, *lockup_detected;
2836
2837        cpu = get_cpu();
2838        lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2839        rc = *lockup_detected;
2840        put_cpu();
2841        return rc;
2842}
2843
2844#define MAX_DRIVER_CMD_RETRIES 25
2845static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2846        struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2847{
2848        int backoff_time = 10, retry_count = 0;
2849        int rc;
2850
2851        do {
2852                memset(c->err_info, 0, sizeof(*c->err_info));
2853                rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2854                                                  timeout_msecs);
2855                if (rc)
2856                        break;
2857                retry_count++;
2858                if (retry_count > 3) {
2859                        msleep(backoff_time);
2860                        if (backoff_time < 1000)
2861                                backoff_time *= 2;
2862                }
2863        } while ((check_for_unit_attention(h, c) ||
2864                        check_for_busy(h, c)) &&
2865                        retry_count <= MAX_DRIVER_CMD_RETRIES);
2866        hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2867        if (retry_count > MAX_DRIVER_CMD_RETRIES)
2868                rc = -EIO;
2869        return rc;
2870}
2871
2872static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2873                                struct CommandList *c)
2874{
2875        const u8 *cdb = c->Request.CDB;
2876        const u8 *lun = c->Header.LUN.LunAddrBytes;
2877
2878        dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2879                 txt, lun, cdb);
2880}
2881
2882static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2883                        struct CommandList *cp)
2884{
2885        const struct ErrorInfo *ei = cp->err_info;
2886        struct device *d = &cp->h->pdev->dev;
2887        u8 sense_key, asc, ascq;
2888        int sense_len;
2889
2890        switch (ei->CommandStatus) {
2891        case CMD_TARGET_STATUS:
2892                if (ei->SenseLen > sizeof(ei->SenseInfo))
2893                        sense_len = sizeof(ei->SenseInfo);
2894                else
2895                        sense_len = ei->SenseLen;
2896                decode_sense_data(ei->SenseInfo, sense_len,
2897                                        &sense_key, &asc, &ascq);
2898                hpsa_print_cmd(h, "SCSI status", cp);
2899                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2900                        dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2901                                sense_key, asc, ascq);
2902                else
2903                        dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2904                if (ei->ScsiStatus == 0)
2905                        dev_warn(d, "SCSI status is abnormally zero.  "
2906                        "(probably indicates selection timeout "
2907                        "reported incorrectly due to a known "
2908                        "firmware bug, circa July, 2001.)\n");
2909                break;
2910        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2911                break;
2912        case CMD_DATA_OVERRUN:
2913                hpsa_print_cmd(h, "overrun condition", cp);
2914                break;
2915        case CMD_INVALID: {
2916                /* controller unfortunately reports SCSI passthru's
2917                 * to non-existent targets as invalid commands.
2918                 */
2919                hpsa_print_cmd(h, "invalid command", cp);
2920                dev_warn(d, "probably means device no longer present\n");
2921                }
2922                break;
2923        case CMD_PROTOCOL_ERR:
2924                hpsa_print_cmd(h, "protocol error", cp);
2925                break;
2926        case CMD_HARDWARE_ERR:
2927                hpsa_print_cmd(h, "hardware error", cp);
2928                break;
2929        case CMD_CONNECTION_LOST:
2930                hpsa_print_cmd(h, "connection lost", cp);
2931                break;
2932        case CMD_ABORTED:
2933                hpsa_print_cmd(h, "aborted", cp);
2934                break;
2935        case CMD_ABORT_FAILED:
2936                hpsa_print_cmd(h, "abort failed", cp);
2937                break;
2938        case CMD_UNSOLICITED_ABORT:
2939                hpsa_print_cmd(h, "unsolicited abort", cp);
2940                break;
2941        case CMD_TIMEOUT:
2942                hpsa_print_cmd(h, "timed out", cp);
2943                break;
2944        case CMD_UNABORTABLE:
2945                hpsa_print_cmd(h, "unabortable", cp);
2946                break;
2947        case CMD_CTLR_LOCKUP:
2948                hpsa_print_cmd(h, "controller lockup detected", cp);
2949                break;
2950        default:
2951                hpsa_print_cmd(h, "unknown status", cp);
2952                dev_warn(d, "Unknown command status %x\n",
2953                                ei->CommandStatus);
2954        }
2955}
2956
2957static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2958                                        u8 page, u8 *buf, size_t bufsize)
2959{
2960        int rc = IO_OK;
2961        struct CommandList *c;
2962        struct ErrorInfo *ei;
2963
2964        c = cmd_alloc(h);
2965        if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2966                        page, scsi3addr, TYPE_CMD)) {
2967                rc = -1;
2968                goto out;
2969        }
2970        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2971                PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2972        if (rc)
2973                goto out;
2974        ei = c->err_info;
2975        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2976                hpsa_scsi_interpret_error(h, c);
2977                rc = -1;
2978        }
2979out:
2980        cmd_free(h, c);
2981        return rc;
2982}
2983
2984static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2985                                                u8 *scsi3addr)
2986{
2987        u8 *buf;
2988        u64 sa = 0;
2989        int rc = 0;
2990
2991        buf = kzalloc(1024, GFP_KERNEL);
2992        if (!buf)
2993                return 0;
2994
2995        rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2996                                        buf, 1024);
2997
2998        if (rc)
2999                goto out;
3000
3001        sa = get_unaligned_be64(buf+12);
3002
3003out:
3004        kfree(buf);
3005        return sa;
3006}
3007
3008static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3009                        u16 page, unsigned char *buf,
3010                        unsigned char bufsize)
3011{
3012        int rc = IO_OK;
3013        struct CommandList *c;
3014        struct ErrorInfo *ei;
3015
3016        c = cmd_alloc(h);
3017
3018        if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3019                        page, scsi3addr, TYPE_CMD)) {
3020                rc = -1;
3021                goto out;
3022        }
3023        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3024                                        PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3025        if (rc)
3026                goto out;
3027        ei = c->err_info;
3028        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3029                hpsa_scsi_interpret_error(h, c);
3030                rc = -1;
3031        }
3032out:
3033        cmd_free(h, c);
3034        return rc;
3035}
3036
3037static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3038        u8 reset_type, int reply_queue)
3039{
3040        int rc = IO_OK;
3041        struct CommandList *c;
3042        struct ErrorInfo *ei;
3043
3044        c = cmd_alloc(h);
3045
3046
3047        /* fill_cmd can't fail here, no data buffer to map. */
3048        (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3049                        scsi3addr, TYPE_MSG);
3050        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3051        if (rc) {
3052                dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3053                goto out;
3054        }
3055        /* no unmap needed here because no data xfer. */
3056
3057        ei = c->err_info;
3058        if (ei->CommandStatus != 0) {
3059                hpsa_scsi_interpret_error(h, c);
3060                rc = -1;
3061        }
3062out:
3063        cmd_free(h, c);
3064        return rc;
3065}
3066
3067static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3068                               struct hpsa_scsi_dev_t *dev,
3069                               unsigned char *scsi3addr)
3070{
3071        int i;
3072        bool match = false;
3073        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3074        struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3075
3076        if (hpsa_is_cmd_idle(c))
3077                return false;
3078
3079        switch (c->cmd_type) {
3080        case CMD_SCSI:
3081        case CMD_IOCTL_PEND:
3082                match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3083                                sizeof(c->Header.LUN.LunAddrBytes));
3084                break;
3085
3086        case CMD_IOACCEL1:
3087        case CMD_IOACCEL2:
3088                if (c->phys_disk == dev) {
3089                        /* HBA mode match */
3090                        match = true;
3091                } else {
3092                        /* Possible RAID mode -- check each phys dev. */
3093                        /* FIXME:  Do we need to take out a lock here?  If
3094                         * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3095                         * instead. */
3096                        for (i = 0; i < dev->nphysical_disks && !match; i++) {
3097                                /* FIXME: an alternate test might be
3098                                 *
3099                                 * match = dev->phys_disk[i]->ioaccel_handle
3100                                 *              == c2->scsi_nexus;      */
3101                                match = dev->phys_disk[i] == c->phys_disk;
3102                        }
3103                }
3104                break;
3105
3106        case IOACCEL2_TMF:
3107                for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108                        match = dev->phys_disk[i]->ioaccel_handle ==
3109                                        le32_to_cpu(ac->it_nexus);
3110                }
3111                break;
3112
3113        case 0:         /* The command is in the middle of being initialized. */
3114                match = false;
3115                break;
3116
3117        default:
3118                dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3119                        c->cmd_type);
3120                BUG();
3121        }
3122
3123        return match;
3124}
3125
3126static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3127        unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3128{
3129        int i;
3130        int rc = 0;
3131
3132        /* We can really only handle one reset at a time */
3133        if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3134                dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3135                return -EINTR;
3136        }
3137
3138        BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3139
3140        for (i = 0; i < h->nr_cmds; i++) {
3141                struct CommandList *c = h->cmd_pool + i;
3142                int refcount = atomic_inc_return(&c->refcount);
3143
3144                if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3145                        unsigned long flags;
3146
3147                        /*
3148                         * Mark the target command as having a reset pending,
3149                         * then lock a lock so that the command cannot complete
3150                         * while we're considering it.  If the command is not
3151                         * idle then count it; otherwise revoke the event.
3152                         */
3153                        c->reset_pending = dev;
3154                        spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3155                        if (!hpsa_is_cmd_idle(c))
3156                                atomic_inc(&dev->reset_cmds_out);
3157                        else
3158                                c->reset_pending = NULL;
3159                        spin_unlock_irqrestore(&h->lock, flags);
3160                }
3161
3162                cmd_free(h, c);
3163        }
3164
3165        rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3166        if (!rc)
3167                wait_event(h->event_sync_wait_queue,
3168                        atomic_read(&dev->reset_cmds_out) == 0 ||
3169                        lockup_detected(h));
3170
3171        if (unlikely(lockup_detected(h))) {
3172                dev_warn(&h->pdev->dev,
3173                         "Controller lockup detected during reset wait\n");
3174                rc = -ENODEV;
3175        }
3176
3177        if (unlikely(rc))
3178                atomic_set(&dev->reset_cmds_out, 0);
3179        else
3180                rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3181
3182        mutex_unlock(&h->reset_mutex);
3183        return rc;
3184}
3185
3186static void hpsa_get_raid_level(struct ctlr_info *h,
3187        unsigned char *scsi3addr, unsigned char *raid_level)
3188{
3189        int rc;
3190        unsigned char *buf;
3191
3192        *raid_level = RAID_UNKNOWN;
3193        buf = kzalloc(64, GFP_KERNEL);
3194        if (!buf)
3195                return;
3196
3197        if (!hpsa_vpd_page_supported(h, scsi3addr,
3198                HPSA_VPD_LV_DEVICE_GEOMETRY))
3199                goto exit;
3200
3201        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3202                HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3203
3204        if (rc == 0)
3205                *raid_level = buf[8];
3206        if (*raid_level > RAID_UNKNOWN)
3207                *raid_level = RAID_UNKNOWN;
3208exit:
3209        kfree(buf);
3210        return;
3211}
3212
3213#define HPSA_MAP_DEBUG
3214#ifdef HPSA_MAP_DEBUG
3215static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3216                                struct raid_map_data *map_buff)
3217{
3218        struct raid_map_disk_data *dd = &map_buff->data[0];
3219        int map, row, col;
3220        u16 map_cnt, row_cnt, disks_per_row;
3221
3222        if (rc != 0)
3223                return;
3224
3225        /* Show details only if debugging has been activated. */
3226        if (h->raid_offload_debug < 2)
3227                return;
3228
3229        dev_info(&h->pdev->dev, "structure_size = %u\n",
3230                                le32_to_cpu(map_buff->structure_size));
3231        dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3232                        le32_to_cpu(map_buff->volume_blk_size));
3233        dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3234                        le64_to_cpu(map_buff->volume_blk_cnt));
3235        dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3236                        map_buff->phys_blk_shift);
3237        dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3238                        map_buff->parity_rotation_shift);
3239        dev_info(&h->pdev->dev, "strip_size = %u\n",
3240                        le16_to_cpu(map_buff->strip_size));
3241        dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3242                        le64_to_cpu(map_buff->disk_starting_blk));
3243        dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3244                        le64_to_cpu(map_buff->disk_blk_cnt));
3245        dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3246                        le16_to_cpu(map_buff->data_disks_per_row));
3247        dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3248                        le16_to_cpu(map_buff->metadata_disks_per_row));
3249        dev_info(&h->pdev->dev, "row_cnt = %u\n",
3250                        le16_to_cpu(map_buff->row_cnt));
3251        dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3252                        le16_to_cpu(map_buff->layout_map_count));
3253        dev_info(&h->pdev->dev, "flags = 0x%x\n",
3254                        le16_to_cpu(map_buff->flags));
3255        dev_info(&h->pdev->dev, "encryption = %s\n",
3256                        le16_to_cpu(map_buff->flags) &
3257                        RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3258        dev_info(&h->pdev->dev, "dekindex = %u\n",
3259                        le16_to_cpu(map_buff->dekindex));
3260        map_cnt = le16_to_cpu(map_buff->layout_map_count);
3261        for (map = 0; map < map_cnt; map++) {
3262                dev_info(&h->pdev->dev, "Map%u:\n", map);
3263                row_cnt = le16_to_cpu(map_buff->row_cnt);
3264                for (row = 0; row < row_cnt; row++) {
3265                        dev_info(&h->pdev->dev, "  Row%u:\n", row);
3266                        disks_per_row =
3267                                le16_to_cpu(map_buff->data_disks_per_row);
3268                        for (col = 0; col < disks_per_row; col++, dd++)
3269                                dev_info(&h->pdev->dev,
3270                                        "    D%02u: h=0x%04x xor=%u,%u\n",
3271                                        col, dd->ioaccel_handle,
3272                                        dd->xor_mult[0], dd->xor_mult[1]);
3273                        disks_per_row =
3274                                le16_to_cpu(map_buff->metadata_disks_per_row);
3275                        for (col = 0; col < disks_per_row; col++, dd++)
3276                                dev_info(&h->pdev->dev,
3277                                        "    M%02u: h=0x%04x xor=%u,%u\n",
3278                                        col, dd->ioaccel_handle,
3279                                        dd->xor_mult[0], dd->xor_mult[1]);
3280                }
3281        }
3282}
3283#else
3284static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3285                        __attribute__((unused)) int rc,
3286                        __attribute__((unused)) struct raid_map_data *map_buff)
3287{
3288}
3289#endif
3290
3291static int hpsa_get_raid_map(struct ctlr_info *h,
3292        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3293{
3294        int rc = 0;
3295        struct CommandList *c;
3296        struct ErrorInfo *ei;
3297
3298        c = cmd_alloc(h);
3299
3300        if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3301                        sizeof(this_device->raid_map), 0,
3302                        scsi3addr, TYPE_CMD)) {
3303                dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304                cmd_free(h, c);
3305                return -1;
3306        }
3307        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3308                                        PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3309        if (rc)
3310                goto out;
3311        ei = c->err_info;
3312        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3313                hpsa_scsi_interpret_error(h, c);
3314                rc = -1;
3315                goto out;
3316        }
3317        cmd_free(h, c);
3318
3319        /* @todo in the future, dynamically allocate RAID map memory */
3320        if (le32_to_cpu(this_device->raid_map.structure_size) >
3321                                sizeof(this_device->raid_map)) {
3322                dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3323                rc = -1;
3324        }
3325        hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3326        return rc;
3327out:
3328        cmd_free(h, c);
3329        return rc;
3330}
3331
3332static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3333                unsigned char scsi3addr[], u16 bmic_device_index,
3334                struct bmic_sense_subsystem_info *buf, size_t bufsize)
3335{
3336        int rc = IO_OK;
3337        struct CommandList *c;
3338        struct ErrorInfo *ei;
3339
3340        c = cmd_alloc(h);
3341
3342        rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3343                0, RAID_CTLR_LUNID, TYPE_CMD);
3344        if (rc)
3345                goto out;
3346
3347        c->Request.CDB[2] = bmic_device_index & 0xff;
3348        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3349
3350        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3351                                PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3352        if (rc)
3353                goto out;
3354        ei = c->err_info;
3355        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3356                hpsa_scsi_interpret_error(h, c);
3357                rc = -1;
3358        }
3359out:
3360        cmd_free(h, c);
3361        return rc;
3362}
3363
3364static int hpsa_bmic_id_controller(struct ctlr_info *h,
3365        struct bmic_identify_controller *buf, size_t bufsize)
3366{
3367        int rc = IO_OK;
3368        struct CommandList *c;
3369        struct ErrorInfo *ei;
3370
3371        c = cmd_alloc(h);
3372
3373        rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3374                0, RAID_CTLR_LUNID, TYPE_CMD);
3375        if (rc)
3376                goto out;
3377
3378        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379                PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380        if (rc)
3381                goto out;
3382        ei = c->err_info;
3383        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3384                hpsa_scsi_interpret_error(h, c);
3385                rc = -1;
3386        }
3387out:
3388        cmd_free(h, c);
3389        return rc;
3390}
3391
3392static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3393                unsigned char scsi3addr[], u16 bmic_device_index,
3394                struct bmic_identify_physical_device *buf, size_t bufsize)
3395{
3396        int rc = IO_OK;
3397        struct CommandList *c;
3398        struct ErrorInfo *ei;
3399
3400        c = cmd_alloc(h);
3401        rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3402                0, RAID_CTLR_LUNID, TYPE_CMD);
3403        if (rc)
3404                goto out;
3405
3406        c->Request.CDB[2] = bmic_device_index & 0xff;
3407        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3408
3409        hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3410                                                NO_TIMEOUT);
3411        ei = c->err_info;
3412        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3413                hpsa_scsi_interpret_error(h, c);
3414                rc = -1;
3415        }
3416out:
3417        cmd_free(h, c);
3418
3419        return rc;
3420}
3421
3422/*
3423 * get enclosure information
3424 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426 * Uses id_physical_device to determine the box_index.
3427 */
3428static void hpsa_get_enclosure_info(struct ctlr_info *h,
3429                        unsigned char *scsi3addr,
3430                        struct ReportExtendedLUNdata *rlep, int rle_index,
3431                        struct hpsa_scsi_dev_t *encl_dev)
3432{
3433        int rc = -1;
3434        struct CommandList *c = NULL;
3435        struct ErrorInfo *ei = NULL;
3436        struct bmic_sense_storage_box_params *bssbp = NULL;
3437        struct bmic_identify_physical_device *id_phys = NULL;
3438        struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3439        u16 bmic_device_index = 0;
3440
3441        bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3442
3443        encl_dev->sas_address =
3444                hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3445
3446        if (encl_dev->target == -1 || encl_dev->lun == -1) {
3447                rc = IO_OK;
3448                goto out;
3449        }
3450
3451        if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3452                rc = IO_OK;
3453                goto out;
3454        }
3455
3456        bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457        if (!bssbp)
3458                goto out;
3459
3460        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461        if (!id_phys)
3462                goto out;
3463
3464        rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3465                                                id_phys, sizeof(*id_phys));
3466        if (rc) {
3467                dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3468                        __func__, encl_dev->external, bmic_device_index);
3469                goto out;
3470        }
3471
3472        c = cmd_alloc(h);
3473
3474        rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3475                        sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3476
3477        if (rc)
3478                goto out;
3479
3480        if (id_phys->phys_connector[1] == 'E')
3481                c->Request.CDB[5] = id_phys->box_index;
3482        else
3483                c->Request.CDB[5] = 0;
3484
3485        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3486                                                NO_TIMEOUT);
3487        if (rc)
3488                goto out;
3489
3490        ei = c->err_info;
3491        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3492                rc = -1;
3493                goto out;
3494        }
3495
3496        encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3497        memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3498                bssbp->phys_connector, sizeof(bssbp->phys_connector));
3499
3500        rc = IO_OK;
3501out:
3502        kfree(bssbp);
3503        kfree(id_phys);
3504
3505        if (c)
3506                cmd_free(h, c);
3507
3508        if (rc != IO_OK)
3509                hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3510                        "Error, could not get enclosure information");
3511}
3512
3513static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3514                                                unsigned char *scsi3addr)
3515{
3516        struct ReportExtendedLUNdata *physdev;
3517        u32 nphysicals;
3518        u64 sa = 0;
3519        int i;
3520
3521        physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522        if (!physdev)
3523                return 0;
3524
3525        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3526                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527                kfree(physdev);
3528                return 0;
3529        }
3530        nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3531
3532        for (i = 0; i < nphysicals; i++)
3533                if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3534                        sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3535                        break;
3536                }
3537
3538        kfree(physdev);
3539
3540        return sa;
3541}
3542
3543static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3544                                        struct hpsa_scsi_dev_t *dev)
3545{
3546        int rc;
3547        u64 sa = 0;
3548
3549        if (is_hba_lunid(scsi3addr)) {
3550                struct bmic_sense_subsystem_info *ssi;
3551
3552                ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553                if (!ssi)
3554                        return;
3555
3556                rc = hpsa_bmic_sense_subsystem_information(h,
3557                                        scsi3addr, 0, ssi, sizeof(*ssi));
3558                if (rc == 0) {
3559                        sa = get_unaligned_be64(ssi->primary_world_wide_id);
3560                        h->sas_address = sa;
3561                }
3562
3563                kfree(ssi);
3564        } else
3565                sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3566
3567        dev->sas_address = sa;
3568}
3569
3570static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3571        struct ReportExtendedLUNdata *physdev)
3572{
3573        u32 nphysicals;
3574        int i;
3575
3576        if (h->discovery_polling)
3577                return;
3578
3579        nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3580
3581        for (i = 0; i < nphysicals; i++) {
3582                if (physdev->LUN[i].device_type ==
3583                        BMIC_DEVICE_TYPE_CONTROLLER
3584                        && !is_hba_lunid(physdev->LUN[i].lunid)) {
3585                        dev_info(&h->pdev->dev,
3586                                "External controller present, activate discovery polling and disable rld caching\n");
3587                        hpsa_disable_rld_caching(h);
3588                        h->discovery_polling = 1;
3589                        break;
3590                }
3591        }
3592}
3593
3594/* Get a device id from inquiry page 0x83 */
3595static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3596        unsigned char scsi3addr[], u8 page)
3597{
3598        int rc;
3599        int i;
3600        int pages;
3601        unsigned char *buf, bufsize;
3602
3603        buf = kzalloc(256, GFP_KERNEL);
3604        if (!buf)
3605                return false;
3606
3607        /* Get the size of the page list first */
3608        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3609                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3610                                buf, HPSA_VPD_HEADER_SZ);
3611        if (rc != 0)
3612                goto exit_unsupported;
3613        pages = buf[3];
3614        if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3615                bufsize = pages + HPSA_VPD_HEADER_SZ;
3616        else
3617                bufsize = 255;
3618
3619        /* Get the whole VPD page list */
3620        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3621                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3622                                buf, bufsize);
3623        if (rc != 0)
3624                goto exit_unsupported;
3625
3626        pages = buf[3];
3627        for (i = 1; i <= pages; i++)
3628                if (buf[3 + i] == page)
3629                        goto exit_supported;
3630exit_unsupported:
3631        kfree(buf);
3632        return false;
3633exit_supported:
3634        kfree(buf);
3635        return true;
3636}
3637
3638/*
3639 * Called during a scan operation.
3640 * Sets ioaccel status on the new device list, not the existing device list
3641 *
3642 * The device list used during I/O will be updated later in
3643 * adjust_hpsa_scsi_table.
3644 */
3645static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3646        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3647{
3648        int rc;
3649        unsigned char *buf;
3650        u8 ioaccel_status;
3651
3652        this_device->offload_config = 0;
3653        this_device->offload_enabled = 0;
3654        this_device->offload_to_be_enabled = 0;
3655
3656        buf = kzalloc(64, GFP_KERNEL);
3657        if (!buf)
3658                return;
3659        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3660                goto out;
3661        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3662                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663        if (rc != 0)
3664                goto out;
3665
3666#define IOACCEL_STATUS_BYTE 4
3667#define OFFLOAD_CONFIGURED_BIT 0x01
3668#define OFFLOAD_ENABLED_BIT 0x02
3669        ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3670        this_device->offload_config =
3671                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3672        if (this_device->offload_config) {
3673                this_device->offload_to_be_enabled =
3674                        !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3675                if (hpsa_get_raid_map(h, scsi3addr, this_device))
3676                        this_device->offload_to_be_enabled = 0;
3677        }
3678
3679out:
3680        kfree(buf);
3681        return;
3682}
3683
3684/* Get the device id from inquiry page 0x83 */
3685static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3686        unsigned char *device_id, int index, int buflen)
3687{
3688        int rc;
3689        unsigned char *buf;
3690
3691        /* Does controller have VPD for device id? */
3692        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3693                return 1; /* not supported */
3694
3695        buf = kzalloc(64, GFP_KERNEL);
3696        if (!buf)
3697                return -ENOMEM;
3698
3699        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3700                                        HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701        if (rc == 0) {
3702                if (buflen > 16)
3703                        buflen = 16;
3704                memcpy(device_id, &buf[8], buflen);
3705        }
3706
3707        kfree(buf);
3708
3709        return rc; /*0 - got id,  otherwise, didn't */
3710}
3711
3712static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3713                void *buf, int bufsize,
3714                int extended_response)
3715{
3716        int rc = IO_OK;
3717        struct CommandList *c;
3718        unsigned char scsi3addr[8];
3719        struct ErrorInfo *ei;
3720
3721        c = cmd_alloc(h);
3722
3723        /* address the controller */
3724        memset(scsi3addr, 0, sizeof(scsi3addr));
3725        if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3726                buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727                rc = -EAGAIN;
3728                goto out;
3729        }
3730        if (extended_response)
3731                c->Request.CDB[1] = extended_response;
3732        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3733                                        PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3734        if (rc)
3735                goto out;
3736        ei = c->err_info;
3737        if (ei->CommandStatus != 0 &&
3738            ei->CommandStatus != CMD_DATA_UNDERRUN) {
3739                hpsa_scsi_interpret_error(h, c);
3740                rc = -EIO;
3741        } else {
3742                struct ReportLUNdata *rld = buf;
3743
3744                if (rld->extended_response_flag != extended_response) {
3745                        if (!h->legacy_board) {
3746                                dev_err(&h->pdev->dev,
3747                                        "report luns requested format %u, got %u\n",
3748                                        extended_response,
3749                                        rld->extended_response_flag);
3750                                rc = -EINVAL;
3751                        } else
3752                                rc = -EOPNOTSUPP;
3753                }
3754        }
3755out:
3756        cmd_free(h, c);
3757        return rc;
3758}
3759
3760static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3761                struct ReportExtendedLUNdata *buf, int bufsize)
3762{
3763        int rc;
3764        struct ReportLUNdata *lbuf;
3765
3766        rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3767                                      HPSA_REPORT_PHYS_EXTENDED);
3768        if (!rc || rc != -EOPNOTSUPP)
3769                return rc;
3770
3771        /* REPORT PHYS EXTENDED is not supported */
3772        lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773        if (!lbuf)
3774                return -ENOMEM;
3775
3776        rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3777        if (!rc) {
3778                int i;
3779                u32 nphys;
3780
3781                /* Copy ReportLUNdata header */
3782                memcpy(buf, lbuf, 8);
3783                nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3784                for (i = 0; i < nphys; i++)
3785                        memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3786        }
3787        kfree(lbuf);
3788        return rc;
3789}
3790
3791static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3792                struct ReportLUNdata *buf, int bufsize)
3793{
3794        return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3795}
3796
3797static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3798        int bus, int target, int lun)
3799{
3800        device->bus = bus;
3801        device->target = target;
3802        device->lun = lun;
3803}
3804
3805/* Use VPD inquiry to get details of volume status */
3806static int hpsa_get_volume_status(struct ctlr_info *h,
3807                                        unsigned char scsi3addr[])
3808{
3809        int rc;
3810        int status;
3811        int size;
3812        unsigned char *buf;
3813
3814        buf = kzalloc(64, GFP_KERNEL);
3815        if (!buf)
3816                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3817
3818        /* Does controller have VPD for logical volume status? */
3819        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3820                goto exit_failed;
3821
3822        /* Get the size of the VPD return buffer */
3823        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3824                                        buf, HPSA_VPD_HEADER_SZ);
3825        if (rc != 0)
3826                goto exit_failed;
3827        size = buf[3];
3828
3829        /* Now get the whole VPD buffer */
3830        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3831                                        buf, size + HPSA_VPD_HEADER_SZ);
3832        if (rc != 0)
3833                goto exit_failed;
3834        status = buf[4]; /* status byte */
3835
3836        kfree(buf);
3837        return status;
3838exit_failed:
3839        kfree(buf);
3840        return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841}
3842
3843/* Determine offline status of a volume.
3844 * Return either:
3845 *  0 (not offline)
3846 *  0xff (offline for unknown reasons)
3847 *  # (integer code indicating one of several NOT READY states
3848 *     describing why a volume is to be kept offline)
3849 */
3850static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3851                                        unsigned char scsi3addr[])
3852{
3853        struct CommandList *c;
3854        unsigned char *sense;
3855        u8 sense_key, asc, ascq;
3856        int sense_len;
3857        int rc, ldstat = 0;
3858        u16 cmd_status;
3859        u8 scsi_status;
3860#define ASC_LUN_NOT_READY 0x04
3861#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863
3864        c = cmd_alloc(h);
3865
3866        (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3867        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868                                        NO_TIMEOUT);
3869        if (rc) {
3870                cmd_free(h, c);
3871                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3872        }
3873        sense = c->err_info->SenseInfo;
3874        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3875                sense_len = sizeof(c->err_info->SenseInfo);
3876        else
3877                sense_len = c->err_info->SenseLen;
3878        decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3879        cmd_status = c->err_info->CommandStatus;
3880        scsi_status = c->err_info->ScsiStatus;
3881        cmd_free(h, c);
3882
3883        /* Determine the reason for not ready state */
3884        ldstat = hpsa_get_volume_status(h, scsi3addr);
3885
3886        /* Keep volume offline in certain cases: */
3887        switch (ldstat) {
3888        case HPSA_LV_FAILED:
3889        case HPSA_LV_UNDERGOING_ERASE:
3890        case HPSA_LV_NOT_AVAILABLE:
3891        case HPSA_LV_UNDERGOING_RPI:
3892        case HPSA_LV_PENDING_RPI:
3893        case HPSA_LV_ENCRYPTED_NO_KEY:
3894        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3895        case HPSA_LV_UNDERGOING_ENCRYPTION:
3896        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3897        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3898                return ldstat;
3899        case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3900                /* If VPD status page isn't available,
3901                 * use ASC/ASCQ to determine state
3902                 */
3903                if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3904                        (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3905                        return ldstat;
3906                break;
3907        default:
3908                break;
3909        }
3910        return HPSA_LV_OK;
3911}
3912
3913static int hpsa_update_device_info(struct ctlr_info *h,
3914        unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3915        unsigned char *is_OBDR_device)
3916{
3917
3918#define OBDR_SIG_OFFSET 43
3919#define OBDR_TAPE_SIG "$DR-10"
3920#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3922
3923        unsigned char *inq_buff;
3924        unsigned char *obdr_sig;
3925        int rc = 0;
3926
3927        inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3928        if (!inq_buff) {
3929                rc = -ENOMEM;
3930                goto bail_out;
3931        }
3932
3933        /* Do an inquiry to the device to see what it is. */
3934        if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3935                (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3936                dev_err(&h->pdev->dev,
3937                        "%s: inquiry failed, device will be skipped.\n",
3938                        __func__);
3939                rc = HPSA_INQUIRY_FAILED;
3940                goto bail_out;
3941        }
3942
3943        scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3944        scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3945
3946        this_device->devtype = (inq_buff[0] & 0x1f);
3947        memcpy(this_device->scsi3addr, scsi3addr, 8);
3948        memcpy(this_device->vendor, &inq_buff[8],
3949                sizeof(this_device->vendor));
3950        memcpy(this_device->model, &inq_buff[16],
3951                sizeof(this_device->model));
3952        this_device->rev = inq_buff[2];
3953        memset(this_device->device_id, 0,
3954                sizeof(this_device->device_id));
3955        if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3956                sizeof(this_device->device_id)) < 0)
3957                dev_err(&h->pdev->dev,
3958                        "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3959                        h->ctlr, __func__,
3960                        h->scsi_host->host_no,
3961                        this_device->target, this_device->lun,
3962                        scsi_device_type(this_device->devtype),
3963                        this_device->model);
3964
3965        if ((this_device->devtype == TYPE_DISK ||
3966                this_device->devtype == TYPE_ZBC) &&
3967                is_logical_dev_addr_mode(scsi3addr)) {
3968                unsigned char volume_offline;
3969
3970                hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3971                if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3972                        hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3973                volume_offline = hpsa_volume_offline(h, scsi3addr);
3974                if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3975                    h->legacy_board) {
3976                        /*
3977                         * Legacy boards might not support volume status
3978                         */
3979                        dev_info(&h->pdev->dev,
3980                                 "C0:T%d:L%d Volume status not available, assuming online.\n",
3981                                 this_device->target, this_device->lun);
3982                        volume_offline = 0;
3983                }
3984                this_device->volume_offline = volume_offline;
3985                if (volume_offline == HPSA_LV_FAILED) {
3986                        rc = HPSA_LV_FAILED;
3987                        dev_err(&h->pdev->dev,
3988                                "%s: LV failed, device will be skipped.\n",
3989                                __func__);
3990                        goto bail_out;
3991                }
3992        } else {
3993                this_device->raid_level = RAID_UNKNOWN;
3994                this_device->offload_config = 0;
3995                this_device->offload_enabled = 0;
3996                this_device->offload_to_be_enabled = 0;
3997                this_device->hba_ioaccel_enabled = 0;
3998                this_device->volume_offline = 0;
3999                this_device->queue_depth = h->nr_cmds;
4000        }
4001
4002        if (this_device->external)
4003                this_device->queue_depth = EXTERNAL_QD;
4004
4005        if (is_OBDR_device) {
4006                /* See if this is a One-Button-Disaster-Recovery device
4007                 * by looking for "$DR-10" at offset 43 in inquiry data.
4008                 */
4009                obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4010                *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4011                                        strncmp(obdr_sig, OBDR_TAPE_SIG,
4012                                                OBDR_SIG_LEN) == 0);
4013        }
4014        kfree(inq_buff);
4015        return 0;
4016
4017bail_out:
4018        kfree(inq_buff);
4019        return rc;
4020}
4021
4022/*
4023 * Helper function to assign bus, target, lun mapping of devices.
4024 * Logical drive target and lun are assigned at this time, but
4025 * physical device lun and target assignment are deferred (assigned
4026 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4027*/
4028static void figure_bus_target_lun(struct ctlr_info *h,
4029        u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4030{
4031        u32 lunid = get_unaligned_le32(lunaddrbytes);
4032
4033        if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4034                /* physical device, target and lun filled in later */
4035                if (is_hba_lunid(lunaddrbytes)) {
4036                        int bus = HPSA_HBA_BUS;
4037
4038                        if (!device->rev)
4039                                bus = HPSA_LEGACY_HBA_BUS;
4040                        hpsa_set_bus_target_lun(device,
4041                                        bus, 0, lunid & 0x3fff);
4042                } else
4043                        /* defer target, lun assignment for physical devices */
4044                        hpsa_set_bus_target_lun(device,
4045                                        HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4046                return;
4047        }
4048        /* It's a logical device */
4049        if (device->external) {
4050                hpsa_set_bus_target_lun(device,
4051                        HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4052                        lunid & 0x00ff);
4053                return;
4054        }
4055        hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4056                                0, lunid & 0x3fff);
4057}
4058
4059static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4060        int i, int nphysicals, int nlocal_logicals)
4061{
4062        /* In report logicals, local logicals are listed first,
4063        * then any externals.
4064        */
4065        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4066
4067        if (i == raid_ctlr_position)
4068                return 0;
4069
4070        if (i < logicals_start)
4071                return 0;
4072
4073        /* i is in logicals range, but still within local logicals */
4074        if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4075                return 0;
4076
4077        return 1; /* it's an external lun */
4078}
4079
4080/*
4081 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4082 * logdev.  The number of luns in physdev and logdev are returned in
4083 * *nphysicals and *nlogicals, respectively.
4084 * Returns 0 on success, -1 otherwise.
4085 */
4086static int hpsa_gather_lun_info(struct ctlr_info *h,
4087        struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4088        struct ReportLUNdata *logdev, u32 *nlogicals)
4089{
4090        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4091                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4092                return -1;
4093        }
4094        *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4095        if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4096                dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4097                        HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4098                *nphysicals = HPSA_MAX_PHYS_LUN;
4099        }
4100        if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4101                dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4102                return -1;
4103        }
4104        *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4105        /* Reject Logicals in excess of our max capability. */
4106        if (*nlogicals > HPSA_MAX_LUN) {
4107                dev_warn(&h->pdev->dev,
4108                        "maximum logical LUNs (%d) exceeded.  "
4109                        "%d LUNs ignored.\n", HPSA_MAX_LUN,
4110                        *nlogicals - HPSA_MAX_LUN);
4111                        *nlogicals = HPSA_MAX_LUN;
4112        }
4113        if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4114                dev_warn(&h->pdev->dev,
4115                        "maximum logical + physical LUNs (%d) exceeded. "
4116                        "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4117                        *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4118                *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4119        }
4120        return 0;
4121}
4122
4123static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4124        int i, int nphysicals, int nlogicals,
4125        struct ReportExtendedLUNdata *physdev_list,
4126        struct ReportLUNdata *logdev_list)
4127{
4128        /* Helper function, figure out where the LUN ID info is coming from
4129         * given index i, lists of physical and logical devices, where in
4130         * the list the raid controller is supposed to appear (first or last)
4131         */
4132
4133        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4134        int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4135
4136        if (i == raid_ctlr_position)
4137                return RAID_CTLR_LUNID;
4138
4139        if (i < logicals_start)
4140                return &physdev_list->LUN[i -
4141                                (raid_ctlr_position == 0)].lunid[0];
4142
4143        if (i < last_device)
4144                return &logdev_list->LUN[i - nphysicals -
4145                        (raid_ctlr_position == 0)][0];
4146        BUG();
4147        return NULL;
4148}
4149
4150/* get physical drive ioaccel handle and queue depth */
4151static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4152                struct hpsa_scsi_dev_t *dev,
4153                struct ReportExtendedLUNdata *rlep, int rle_index,
4154                struct bmic_identify_physical_device *id_phys)
4155{
4156        int rc;
4157        struct ext_report_lun_entry *rle;
4158
4159        rle = &rlep->LUN[rle_index];
4160
4161        dev->ioaccel_handle = rle->ioaccel_handle;
4162        if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4163                dev->hba_ioaccel_enabled = 1;
4164        memset(id_phys, 0, sizeof(*id_phys));
4165        rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4166                        GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4167                        sizeof(*id_phys));
4168        if (!rc)
4169                /* Reserve space for FW operations */
4170#define DRIVE_CMDS_RESERVED_FOR_FW 2
4171#define DRIVE_QUEUE_DEPTH 7
4172                dev->queue_depth =
4173                        le16_to_cpu(id_phys->current_queue_depth_limit) -
4174                                DRIVE_CMDS_RESERVED_FOR_FW;
4175        else
4176                dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4177}
4178
4179static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4180        struct ReportExtendedLUNdata *rlep, int rle_index,
4181        struct bmic_identify_physical_device *id_phys)
4182{
4183        struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4184
4185        if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4186                this_device->hba_ioaccel_enabled = 1;
4187
4188        memcpy(&this_device->active_path_index,
4189                &id_phys->active_path_number,
4190                sizeof(this_device->active_path_index));
4191        memcpy(&this_device->path_map,
4192                &id_phys->redundant_path_present_map,
4193                sizeof(this_device->path_map));
4194        memcpy(&this_device->box,
4195                &id_phys->alternate_paths_phys_box_on_port,
4196                sizeof(this_device->box));
4197        memcpy(&this_device->phys_connector,
4198                &id_phys->alternate_paths_phys_connector,
4199                sizeof(this_device->phys_connector));
4200        memcpy(&this_device->bay,
4201                &id_phys->phys_bay_in_box,
4202                sizeof(this_device->bay));
4203}
4204
4205/* get number of local logical disks. */
4206static int hpsa_set_local_logical_count(struct ctlr_info *h,
4207        struct bmic_identify_controller *id_ctlr,
4208        u32 *nlocals)
4209{
4210        int rc;
4211
4212        if (!id_ctlr) {
4213                dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4214                        __func__);
4215                return -ENOMEM;
4216        }
4217        memset(id_ctlr, 0, sizeof(*id_ctlr));
4218        rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4219        if (!rc)
4220                if (id_ctlr->configured_logical_drive_count < 255)
4221                        *nlocals = id_ctlr->configured_logical_drive_count;
4222                else
4223                        *nlocals = le16_to_cpu(
4224                                        id_ctlr->extended_logical_unit_count);
4225        else
4226                *nlocals = -1;
4227        return rc;
4228}
4229
4230static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4231{
4232        struct bmic_identify_physical_device *id_phys;
4233        bool is_spare = false;
4234        int rc;
4235
4236        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4237        if (!id_phys)
4238                return false;
4239
4240        rc = hpsa_bmic_id_physical_device(h,
4241                                        lunaddrbytes,
4242                                        GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4243                                        id_phys, sizeof(*id_phys));
4244        if (rc == 0)
4245                is_spare = (id_phys->more_flags >> 6) & 0x01;
4246
4247        kfree(id_phys);
4248        return is_spare;
4249}
4250
4251#define RPL_DEV_FLAG_NON_DISK                           0x1
4252#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4253#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4254
4255#define BMIC_DEVICE_TYPE_ENCLOSURE  6
4256
4257static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4258                                struct ext_report_lun_entry *rle)
4259{
4260        u8 device_flags;
4261        u8 device_type;
4262
4263        if (!MASKED_DEVICE(lunaddrbytes))
4264                return false;
4265
4266        device_flags = rle->device_flags;
4267        device_type = rle->device_type;
4268
4269        if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4270                if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4271                        return false;
4272                return true;
4273        }
4274
4275        if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4276                return false;
4277
4278        if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4279                return false;
4280
4281        /*
4282         * Spares may be spun down, we do not want to
4283         * do an Inquiry to a RAID set spare drive as
4284         * that would have them spun up, that is a
4285         * performance hit because I/O to the RAID device
4286         * stops while the spin up occurs which can take
4287         * over 50 seconds.
4288         */
4289        if (hpsa_is_disk_spare(h, lunaddrbytes))
4290                return true;
4291
4292        return false;
4293}
4294
4295static void hpsa_update_scsi_devices(struct ctlr_info *h)
4296{
4297        /* the idea here is we could get notified
4298         * that some devices have changed, so we do a report
4299         * physical luns and report logical luns cmd, and adjust
4300         * our list of devices accordingly.
4301         *
4302         * The scsi3addr's of devices won't change so long as the
4303         * adapter is not reset.  That means we can rescan and
4304         * tell which devices we already know about, vs. new
4305         * devices, vs.  disappearing devices.
4306         */
4307        struct ReportExtendedLUNdata *physdev_list = NULL;
4308        struct ReportLUNdata *logdev_list = NULL;
4309        struct bmic_identify_physical_device *id_phys = NULL;
4310        struct bmic_identify_controller *id_ctlr = NULL;
4311        u32 nphysicals = 0;
4312        u32 nlogicals = 0;
4313        u32 nlocal_logicals = 0;
4314        u32 ndev_allocated = 0;
4315        struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4316        int ncurrent = 0;
4317        int i, n_ext_target_devs, ndevs_to_allocate;
4318        int raid_ctlr_position;
4319        bool physical_device;
4320        DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4321
4322        currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4323        physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4324        logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4325        tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4326        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4327        id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4328
4329        if (!currentsd || !physdev_list || !logdev_list ||
4330                !tmpdevice || !id_phys || !id_ctlr) {
4331                dev_err(&h->pdev->dev, "out of memory\n");
4332                goto out;
4333        }
4334        memset(lunzerobits, 0, sizeof(lunzerobits));
4335
4336        h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4337
4338        if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4339                        logdev_list, &nlogicals)) {
4340                h->drv_req_rescan = 1;
4341                goto out;
4342        }
4343
4344        /* Set number of local logicals (non PTRAID) */
4345        if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4346                dev_warn(&h->pdev->dev,
4347                        "%s: Can't determine number of local logical devices.\n",
4348                        __func__);
4349        }
4350
4351        /* We might see up to the maximum number of logical and physical disks
4352         * plus external target devices, and a device for the local RAID
4353         * controller.
4354         */
4355        ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4356
4357        hpsa_ext_ctrl_present(h, physdev_list);
4358
4359        /* Allocate the per device structures */
4360        for (i = 0; i < ndevs_to_allocate; i++) {
4361                if (i >= HPSA_MAX_DEVICES) {
4362                        dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4363                                "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4364                                ndevs_to_allocate - HPSA_MAX_DEVICES);
4365                        break;
4366                }
4367
4368                currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4369                if (!currentsd[i]) {
4370                        h->drv_req_rescan = 1;
4371                        goto out;
4372                }
4373                ndev_allocated++;
4374        }
4375
4376        if (is_scsi_rev_5(h))
4377                raid_ctlr_position = 0;
4378        else
4379                raid_ctlr_position = nphysicals + nlogicals;
4380
4381        /* adjust our table of devices */
4382        n_ext_target_devs = 0;
4383        for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4384                u8 *lunaddrbytes, is_OBDR = 0;
4385                int rc = 0;
4386                int phys_dev_index = i - (raid_ctlr_position == 0);
4387                bool skip_device = false;
4388
4389                memset(tmpdevice, 0, sizeof(*tmpdevice));
4390
4391                physical_device = i < nphysicals + (raid_ctlr_position == 0);
4392
4393                /* Figure out where the LUN ID info is coming from */
4394                lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4395                        i, nphysicals, nlogicals, physdev_list, logdev_list);
4396
4397                /* Determine if this is a lun from an external target array */
4398                tmpdevice->external =
4399                        figure_external_status(h, raid_ctlr_position, i,
4400                                                nphysicals, nlocal_logicals);
4401
4402                /*
4403                 * Skip over some devices such as a spare.
4404                 */
4405                if (!tmpdevice->external && physical_device) {
4406                        skip_device = hpsa_skip_device(h, lunaddrbytes,
4407                                        &physdev_list->LUN[phys_dev_index]);
4408                        if (skip_device)
4409                                continue;
4410                }
4411
4412                /* Get device type, vendor, model, device id, raid_map */
4413                rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4414                                                        &is_OBDR);
4415                if (rc == -ENOMEM) {
4416                        dev_warn(&h->pdev->dev,
4417                                "Out of memory, rescan deferred.\n");
4418                        h->drv_req_rescan = 1;
4419                        goto out;
4420                }
4421                if (rc) {
4422                        h->drv_req_rescan = 1;
4423                        continue;
4424                }
4425
4426                figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4427                this_device = currentsd[ncurrent];
4428
4429                *this_device = *tmpdevice;
4430                this_device->physical_device = physical_device;
4431
4432                /*
4433                 * Expose all devices except for physical devices that
4434                 * are masked.
4435                 */
4436                if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4437                        this_device->expose_device = 0;
4438                else
4439                        this_device->expose_device = 1;
4440
4441
4442                /*
4443                 * Get the SAS address for physical devices that are exposed.
4444                 */
4445                if (this_device->physical_device && this_device->expose_device)
4446                        hpsa_get_sas_address(h, lunaddrbytes, this_device);
4447
4448                switch (this_device->devtype) {
4449                case TYPE_ROM:
4450                        /* We don't *really* support actual CD-ROM devices,
4451                         * just "One Button Disaster Recovery" tape drive
4452                         * which temporarily pretends to be a CD-ROM drive.
4453                         * So we check that the device is really an OBDR tape
4454                         * device by checking for "$DR-10" in bytes 43-48 of
4455                         * the inquiry data.
4456                         */
4457                        if (is_OBDR)
4458                                ncurrent++;
4459                        break;
4460                case TYPE_DISK:
4461                case TYPE_ZBC:
4462                        if (this_device->physical_device) {
4463                                /* The disk is in HBA mode. */
4464                                /* Never use RAID mapper in HBA mode. */
4465                                this_device->offload_enabled = 0;
4466                                hpsa_get_ioaccel_drive_info(h, this_device,
4467                                        physdev_list, phys_dev_index, id_phys);
4468                                hpsa_get_path_info(this_device,
4469                                        physdev_list, phys_dev_index, id_phys);
4470                        }
4471                        ncurrent++;
4472                        break;
4473                case TYPE_TAPE:
4474                case TYPE_MEDIUM_CHANGER:
4475                        ncurrent++;
4476                        break;
4477                case TYPE_ENCLOSURE:
4478                        if (!this_device->external)
4479                                hpsa_get_enclosure_info(h, lunaddrbytes,
4480                                                physdev_list, phys_dev_index,
4481                                                this_device);
4482                        ncurrent++;
4483                        break;
4484                case TYPE_RAID:
4485                        /* Only present the Smartarray HBA as a RAID controller.
4486                         * If it's a RAID controller other than the HBA itself
4487                         * (an external RAID controller, MSA500 or similar)
4488                         * don't present it.
4489                         */
4490                        if (!is_hba_lunid(lunaddrbytes))
4491                                break;
4492                        ncurrent++;
4493                        break;
4494                default:
4495                        break;
4496                }
4497                if (ncurrent >= HPSA_MAX_DEVICES)
4498                        break;
4499        }
4500
4501        if (h->sas_host == NULL) {
4502                int rc = 0;
4503
4504                rc = hpsa_add_sas_host(h);
4505                if (rc) {
4506                        dev_warn(&h->pdev->dev,
4507                                "Could not add sas host %d\n", rc);
4508                        goto out;
4509                }
4510        }
4511
4512        adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4513out:
4514        kfree(tmpdevice);
4515        for (i = 0; i < ndev_allocated; i++)
4516                kfree(currentsd[i]);
4517        kfree(currentsd);
4518        kfree(physdev_list);
4519        kfree(logdev_list);
4520        kfree(id_ctlr);
4521        kfree(id_phys);
4522}
4523
4524static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4525                                   struct scatterlist *sg)
4526{
4527        u64 addr64 = (u64) sg_dma_address(sg);
4528        unsigned int len = sg_dma_len(sg);
4529
4530        desc->Addr = cpu_to_le64(addr64);
4531        desc->Len = cpu_to_le32(len);
4532        desc->Ext = 0;
4533}
4534
4535/*
4536 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4537 * dma mapping  and fills in the scatter gather entries of the
4538 * hpsa command, cp.
4539 */
4540static int hpsa_scatter_gather(struct ctlr_info *h,
4541                struct CommandList *cp,
4542                struct scsi_cmnd *cmd)
4543{
4544        struct scatterlist *sg;
4545        int use_sg, i, sg_limit, chained, last_sg;
4546        struct SGDescriptor *curr_sg;
4547
4548        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549
4550        use_sg = scsi_dma_map(cmd);
4551        if (use_sg < 0)
4552                return use_sg;
4553
4554        if (!use_sg)
4555                goto sglist_finished;
4556
4557        /*
4558         * If the number of entries is greater than the max for a single list,
4559         * then we have a chained list; we will set up all but one entry in the
4560         * first list (the last entry is saved for link information);
4561         * otherwise, we don't have a chained list and we'll set up at each of
4562         * the entries in the one list.
4563         */
4564        curr_sg = cp->SG;
4565        chained = use_sg > h->max_cmd_sg_entries;
4566        sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4567        last_sg = scsi_sg_count(cmd) - 1;
4568        scsi_for_each_sg(cmd, sg, sg_limit, i) {
4569                hpsa_set_sg_descriptor(curr_sg, sg);
4570                curr_sg++;
4571        }
4572
4573        if (chained) {
4574                /*
4575                 * Continue with the chained list.  Set curr_sg to the chained
4576                 * list.  Modify the limit to the total count less the entries
4577                 * we've already set up.  Resume the scan at the list entry
4578                 * where the previous loop left off.
4579                 */
4580                curr_sg = h->cmd_sg_list[cp->cmdindex];
4581                sg_limit = use_sg - sg_limit;
4582                for_each_sg(sg, sg, sg_limit, i) {
4583                        hpsa_set_sg_descriptor(curr_sg, sg);
4584                        curr_sg++;
4585                }
4586        }
4587
4588        /* Back the pointer up to the last entry and mark it as "last". */
4589        (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4590
4591        if (use_sg + chained > h->maxSG)
4592                h->maxSG = use_sg + chained;
4593
4594        if (chained) {
4595                cp->Header.SGList = h->max_cmd_sg_entries;
4596                cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4597                if (hpsa_map_sg_chain_block(h, cp)) {
4598                        scsi_dma_unmap(cmd);
4599                        return -1;
4600                }
4601                return 0;
4602        }
4603
4604sglist_finished:
4605
4606        cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4607        cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4608        return 0;
4609}
4610
4611static inline void warn_zero_length_transfer(struct ctlr_info *h,
4612                                                u8 *cdb, int cdb_len,
4613                                                const char *func)
4614{
4615        dev_warn(&h->pdev->dev,
4616                 "%s: Blocking zero-length request: CDB:%*phN\n",
4617                 func, cdb_len, cdb);
4618}
4619
4620#define IO_ACCEL_INELIGIBLE 1
4621/* zero-length transfers trigger hardware errors. */
4622static bool is_zero_length_transfer(u8 *cdb)
4623{
4624        u32 block_cnt;
4625
4626        /* Block zero-length transfer sizes on certain commands. */
4627        switch (cdb[0]) {
4628        case READ_10:
4629        case WRITE_10:
4630        case VERIFY:            /* 0x2F */
4631        case WRITE_VERIFY:      /* 0x2E */
4632                block_cnt = get_unaligned_be16(&cdb[7]);
4633                break;
4634        case READ_12:
4635        case WRITE_12:
4636        case VERIFY_12: /* 0xAF */
4637        case WRITE_VERIFY_12:   /* 0xAE */
4638                block_cnt = get_unaligned_be32(&cdb[6]);
4639                break;
4640        case READ_16:
4641        case WRITE_16:
4642        case VERIFY_16:         /* 0x8F */
4643                block_cnt = get_unaligned_be32(&cdb[10]);
4644                break;
4645        default:
4646                return false;
4647        }
4648
4649        return block_cnt == 0;
4650}
4651
4652static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4653{
4654        int is_write = 0;
4655        u32 block;
4656        u32 block_cnt;
4657
4658        /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4659        switch (cdb[0]) {
4660        case WRITE_6:
4661        case WRITE_12:
4662                is_write = 1;
4663        case READ_6:
4664        case READ_12:
4665                if (*cdb_len == 6) {
4666                        block = (((cdb[1] & 0x1F) << 16) |
4667                                (cdb[2] << 8) |
4668                                cdb[3]);
4669                        block_cnt = cdb[4];
4670                        if (block_cnt == 0)
4671                                block_cnt = 256;
4672                } else {
4673                        BUG_ON(*cdb_len != 12);
4674                        block = get_unaligned_be32(&cdb[2]);
4675                        block_cnt = get_unaligned_be32(&cdb[6]);
4676                }
4677                if (block_cnt > 0xffff)
4678                        return IO_ACCEL_INELIGIBLE;
4679
4680                cdb[0] = is_write ? WRITE_10 : READ_10;
4681                cdb[1] = 0;
4682                cdb[2] = (u8) (block >> 24);
4683                cdb[3] = (u8) (block >> 16);
4684                cdb[4] = (u8) (block >> 8);
4685                cdb[5] = (u8) (block);
4686                cdb[6] = 0;
4687                cdb[7] = (u8) (block_cnt >> 8);
4688                cdb[8] = (u8) (block_cnt);
4689                cdb[9] = 0;
4690                *cdb_len = 10;
4691                break;
4692        }
4693        return 0;
4694}
4695
4696static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4697        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4698        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4699{
4700        struct scsi_cmnd *cmd = c->scsi_cmd;
4701        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4702        unsigned int len;
4703        unsigned int total_len = 0;
4704        struct scatterlist *sg;
4705        u64 addr64;
4706        int use_sg, i;
4707        struct SGDescriptor *curr_sg;
4708        u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4709
4710        /* TODO: implement chaining support */
4711        if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4712                atomic_dec(&phys_disk->ioaccel_cmds_out);
4713                return IO_ACCEL_INELIGIBLE;
4714        }
4715
4716        BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4717
4718        if (is_zero_length_transfer(cdb)) {
4719                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4720                atomic_dec(&phys_disk->ioaccel_cmds_out);
4721                return IO_ACCEL_INELIGIBLE;
4722        }
4723
4724        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4725                atomic_dec(&phys_disk->ioaccel_cmds_out);
4726                return IO_ACCEL_INELIGIBLE;
4727        }
4728
4729        c->cmd_type = CMD_IOACCEL1;
4730
4731        /* Adjust the DMA address to point to the accelerated command buffer */
4732        c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4733                                (c->cmdindex * sizeof(*cp));
4734        BUG_ON(c->busaddr & 0x0000007F);
4735
4736        use_sg = scsi_dma_map(cmd);
4737        if (use_sg < 0) {
4738                atomic_dec(&phys_disk->ioaccel_cmds_out);
4739                return use_sg;
4740        }
4741
4742        if (use_sg) {
4743                curr_sg = cp->SG;
4744                scsi_for_each_sg(cmd, sg, use_sg, i) {
4745                        addr64 = (u64) sg_dma_address(sg);
4746                        len  = sg_dma_len(sg);
4747                        total_len += len;
4748                        curr_sg->Addr = cpu_to_le64(addr64);
4749                        curr_sg->Len = cpu_to_le32(len);
4750                        curr_sg->Ext = cpu_to_le32(0);
4751                        curr_sg++;
4752                }
4753                (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4754
4755                switch (cmd->sc_data_direction) {
4756                case DMA_TO_DEVICE:
4757                        control |= IOACCEL1_CONTROL_DATA_OUT;
4758                        break;
4759                case DMA_FROM_DEVICE:
4760                        control |= IOACCEL1_CONTROL_DATA_IN;
4761                        break;
4762                case DMA_NONE:
4763                        control |= IOACCEL1_CONTROL_NODATAXFER;
4764                        break;
4765                default:
4766                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4767                        cmd->sc_data_direction);
4768                        BUG();
4769                        break;
4770                }
4771        } else {
4772                control |= IOACCEL1_CONTROL_NODATAXFER;
4773        }
4774
4775        c->Header.SGList = use_sg;
4776        /* Fill out the command structure to submit */
4777        cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4778        cp->transfer_len = cpu_to_le32(total_len);
4779        cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4780                        (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4781        cp->control = cpu_to_le32(control);
4782        memcpy(cp->CDB, cdb, cdb_len);
4783        memcpy(cp->CISS_LUN, scsi3addr, 8);
4784        /* Tag was already set at init time. */
4785        enqueue_cmd_and_start_io(h, c);
4786        return 0;
4787}
4788
4789/*
4790 * Queue a command directly to a device behind the controller using the
4791 * I/O accelerator path.
4792 */
4793static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4794        struct CommandList *c)
4795{
4796        struct scsi_cmnd *cmd = c->scsi_cmd;
4797        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4798
4799        if (!dev)
4800                return -1;
4801
4802        c->phys_disk = dev;
4803
4804        return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4805                cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4806}
4807
4808/*
4809 * Set encryption parameters for the ioaccel2 request
4810 */
4811static void set_encrypt_ioaccel2(struct ctlr_info *h,
4812        struct CommandList *c, struct io_accel2_cmd *cp)
4813{
4814        struct scsi_cmnd *cmd = c->scsi_cmd;
4815        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4816        struct raid_map_data *map = &dev->raid_map;
4817        u64 first_block;
4818
4819        /* Are we doing encryption on this device */
4820        if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4821                return;
4822        /* Set the data encryption key index. */
4823        cp->dekindex = map->dekindex;
4824
4825        /* Set the encryption enable flag, encoded into direction field. */
4826        cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4827
4828        /* Set encryption tweak values based on logical block address
4829         * If block size is 512, tweak value is LBA.
4830         * For other block sizes, tweak is (LBA * block size)/ 512)
4831         */
4832        switch (cmd->cmnd[0]) {
4833        /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4834        case READ_6:
4835        case WRITE_6:
4836                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4837                                (cmd->cmnd[2] << 8) |
4838                                cmd->cmnd[3]);
4839                break;
4840        case WRITE_10:
4841        case READ_10:
4842        /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4843        case WRITE_12:
4844        case READ_12:
4845                first_block = get_unaligned_be32(&cmd->cmnd[2]);
4846                break;
4847        case WRITE_16:
4848        case READ_16:
4849                first_block = get_unaligned_be64(&cmd->cmnd[2]);
4850                break;
4851        default:
4852                dev_err(&h->pdev->dev,
4853                        "ERROR: %s: size (0x%x) not supported for encryption\n",
4854                        __func__, cmd->cmnd[0]);
4855                BUG();
4856                break;
4857        }
4858
4859        if (le32_to_cpu(map->volume_blk_size) != 512)
4860                first_block = first_block *
4861                                le32_to_cpu(map->volume_blk_size)/512;
4862
4863        cp->tweak_lower = cpu_to_le32(first_block);
4864        cp->tweak_upper = cpu_to_le32(first_block >> 32);
4865}
4866
4867static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4868        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4869        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4870{
4871        struct scsi_cmnd *cmd = c->scsi_cmd;
4872        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4873        struct ioaccel2_sg_element *curr_sg;
4874        int use_sg, i;
4875        struct scatterlist *sg;
4876        u64 addr64;
4877        u32 len;
4878        u32 total_len = 0;
4879
4880        if (!cmd->device)
4881                return -1;
4882
4883        if (!cmd->device->hostdata)
4884                return -1;
4885
4886        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4887
4888        if (is_zero_length_transfer(cdb)) {
4889                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4890                atomic_dec(&phys_disk->ioaccel_cmds_out);
4891                return IO_ACCEL_INELIGIBLE;
4892        }
4893
4894        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4895                atomic_dec(&phys_disk->ioaccel_cmds_out);
4896                return IO_ACCEL_INELIGIBLE;
4897        }
4898
4899        c->cmd_type = CMD_IOACCEL2;
4900        /* Adjust the DMA address to point to the accelerated command buffer */
4901        c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4902                                (c->cmdindex * sizeof(*cp));
4903        BUG_ON(c->busaddr & 0x0000007F);
4904
4905        memset(cp, 0, sizeof(*cp));
4906        cp->IU_type = IOACCEL2_IU_TYPE;
4907
4908        use_sg = scsi_dma_map(cmd);
4909        if (use_sg < 0) {
4910                atomic_dec(&phys_disk->ioaccel_cmds_out);
4911                return use_sg;
4912        }
4913
4914        if (use_sg) {
4915                curr_sg = cp->sg;
4916                if (use_sg > h->ioaccel_maxsg) {
4917                        addr64 = le64_to_cpu(
4918                                h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4919                        curr_sg->address = cpu_to_le64(addr64);
4920                        curr_sg->length = 0;
4921                        curr_sg->reserved[0] = 0;
4922                        curr_sg->reserved[1] = 0;
4923                        curr_sg->reserved[2] = 0;
4924                        curr_sg->chain_indicator = 0x80;
4925
4926                        curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4927                }
4928                scsi_for_each_sg(cmd, sg, use_sg, i) {
4929                        addr64 = (u64) sg_dma_address(sg);
4930                        len  = sg_dma_len(sg);
4931                        total_len += len;
4932                        curr_sg->address = cpu_to_le64(addr64);
4933                        curr_sg->length = cpu_to_le32(len);
4934                        curr_sg->reserved[0] = 0;
4935                        curr_sg->reserved[1] = 0;
4936                        curr_sg->reserved[2] = 0;
4937                        curr_sg->chain_indicator = 0;
4938                        curr_sg++;
4939                }
4940
4941                switch (cmd->sc_data_direction) {
4942                case DMA_TO_DEVICE:
4943                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4944                        cp->direction |= IOACCEL2_DIR_DATA_OUT;
4945                        break;
4946                case DMA_FROM_DEVICE:
4947                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4948                        cp->direction |= IOACCEL2_DIR_DATA_IN;
4949                        break;
4950                case DMA_NONE:
4951                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4952                        cp->direction |= IOACCEL2_DIR_NO_DATA;
4953                        break;
4954                default:
4955                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4956                                cmd->sc_data_direction);
4957                        BUG();
4958                        break;
4959                }
4960        } else {
4961                cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962                cp->direction |= IOACCEL2_DIR_NO_DATA;
4963        }
4964
4965        /* Set encryption parameters, if necessary */
4966        set_encrypt_ioaccel2(h, c, cp);
4967
4968        cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4969        cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4970        memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4971
4972        cp->data_len = cpu_to_le32(total_len);
4973        cp->err_ptr = cpu_to_le64(c->busaddr +
4974                        offsetof(struct io_accel2_cmd, error_data));
4975        cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4976
4977        /* fill in sg elements */
4978        if (use_sg > h->ioaccel_maxsg) {
4979                cp->sg_count = 1;
4980                cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4981                if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4982                        atomic_dec(&phys_disk->ioaccel_cmds_out);
4983                        scsi_dma_unmap(cmd);
4984                        return -1;
4985                }
4986        } else
4987                cp->sg_count = (u8) use_sg;
4988
4989        enqueue_cmd_and_start_io(h, c);
4990        return 0;
4991}
4992
4993/*
4994 * Queue a command to the correct I/O accelerator path.
4995 */
4996static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4997        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4998        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4999{
5000        if (!c->scsi_cmd->device)
5001                return -1;
5002
5003        if (!c->scsi_cmd->device->hostdata)
5004                return -1;
5005
5006        /* Try to honor the device's queue depth */
5007        if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5008                                        phys_disk->queue_depth) {
5009                atomic_dec(&phys_disk->ioaccel_cmds_out);
5010                return IO_ACCEL_INELIGIBLE;
5011        }
5012        if (h->transMethod & CFGTBL_Trans_io_accel1)
5013                return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5014                                                cdb, cdb_len, scsi3addr,
5015                                                phys_disk);
5016        else
5017                return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5018                                                cdb, cdb_len, scsi3addr,
5019                                                phys_disk);
5020}
5021
5022static void raid_map_helper(struct raid_map_data *map,
5023                int offload_to_mirror, u32 *map_index, u32 *current_group)
5024{
5025        if (offload_to_mirror == 0)  {
5026                /* use physical disk in the first mirrored group. */
5027                *map_index %= le16_to_cpu(map->data_disks_per_row);
5028                return;
5029        }
5030        do {
5031                /* determine mirror group that *map_index indicates */
5032                *current_group = *map_index /
5033                        le16_to_cpu(map->data_disks_per_row);
5034                if (offload_to_mirror == *current_group)
5035                        continue;
5036                if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5037                        /* select map index from next group */
5038                        *map_index += le16_to_cpu(map->data_disks_per_row);
5039                        (*current_group)++;
5040                } else {
5041                        /* select map index from first group */
5042                        *map_index %= le16_to_cpu(map->data_disks_per_row);
5043                        *current_group = 0;
5044                }
5045        } while (offload_to_mirror != *current_group);
5046}
5047
5048/*
5049 * Attempt to perform offload RAID mapping for a logical volume I/O.
5050 */
5051static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5052        struct CommandList *c)
5053{
5054        struct scsi_cmnd *cmd = c->scsi_cmd;
5055        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5056        struct raid_map_data *map = &dev->raid_map;
5057        struct raid_map_disk_data *dd = &map->data[0];
5058        int is_write = 0;
5059        u32 map_index;
5060        u64 first_block, last_block;
5061        u32 block_cnt;
5062        u32 blocks_per_row;
5063        u64 first_row, last_row;
5064        u32 first_row_offset, last_row_offset;
5065        u32 first_column, last_column;
5066        u64 r0_first_row, r0_last_row;
5067        u32 r5or6_blocks_per_row;
5068        u64 r5or6_first_row, r5or6_last_row;
5069        u32 r5or6_first_row_offset, r5or6_last_row_offset;
5070        u32 r5or6_first_column, r5or6_last_column;
5071        u32 total_disks_per_row;
5072        u32 stripesize;
5073        u32 first_group, last_group, current_group;
5074        u32 map_row;
5075        u32 disk_handle;
5076        u64 disk_block;
5077        u32 disk_block_cnt;
5078        u8 cdb[16];
5079        u8 cdb_len;
5080        u16 strip_size;
5081#if BITS_PER_LONG == 32
5082        u64 tmpdiv;
5083#endif
5084        int offload_to_mirror;
5085
5086        if (!dev)
5087                return -1;
5088
5089        /* check for valid opcode, get LBA and block count */
5090        switch (cmd->cmnd[0]) {
5091        case WRITE_6:
5092                is_write = 1;
5093        case READ_6:
5094                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5095                                (cmd->cmnd[2] << 8) |
5096                                cmd->cmnd[3]);
5097                block_cnt = cmd->cmnd[4];
5098                if (block_cnt == 0)
5099                        block_cnt = 256;
5100                break;
5101        case WRITE_10:
5102                is_write = 1;
5103        case READ_10:
5104                first_block =
5105                        (((u64) cmd->cmnd[2]) << 24) |
5106                        (((u64) cmd->cmnd[3]) << 16) |
5107                        (((u64) cmd->cmnd[4]) << 8) |
5108                        cmd->cmnd[5];
5109                block_cnt =
5110                        (((u32) cmd->cmnd[7]) << 8) |
5111                        cmd->cmnd[8];
5112                break;
5113        case WRITE_12:
5114                is_write = 1;
5115        case READ_12:
5116                first_block =
5117                        (((u64) cmd->cmnd[2]) << 24) |
5118                        (((u64) cmd->cmnd[3]) << 16) |
5119                        (((u64) cmd->cmnd[4]) << 8) |
5120                        cmd->cmnd[5];
5121                block_cnt =
5122                        (((u32) cmd->cmnd[6]) << 24) |
5123                        (((u32) cmd->cmnd[7]) << 16) |
5124                        (((u32) cmd->cmnd[8]) << 8) |
5125                cmd->cmnd[9];
5126                break;
5127        case WRITE_16:
5128                is_write = 1;
5129        case READ_16:
5130                first_block =
5131                        (((u64) cmd->cmnd[2]) << 56) |
5132                        (((u64) cmd->cmnd[3]) << 48) |
5133                        (((u64) cmd->cmnd[4]) << 40) |
5134                        (((u64) cmd->cmnd[5]) << 32) |
5135                        (((u64) cmd->cmnd[6]) << 24) |
5136                        (((u64) cmd->cmnd[7]) << 16) |
5137                        (((u64) cmd->cmnd[8]) << 8) |
5138                        cmd->cmnd[9];
5139                block_cnt =
5140                        (((u32) cmd->cmnd[10]) << 24) |
5141                        (((u32) cmd->cmnd[11]) << 16) |
5142                        (((u32) cmd->cmnd[12]) << 8) |
5143                        cmd->cmnd[13];
5144                break;
5145        default:
5146                return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5147        }
5148        last_block = first_block + block_cnt - 1;
5149
5150        /* check for write to non-RAID-0 */
5151        if (is_write && dev->raid_level != 0)
5152                return IO_ACCEL_INELIGIBLE;
5153
5154        /* check for invalid block or wraparound */
5155        if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5156                last_block < first_block)
5157                return IO_ACCEL_INELIGIBLE;
5158
5159        /* calculate stripe information for the request */
5160        blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5161                                le16_to_cpu(map->strip_size);
5162        strip_size = le16_to_cpu(map->strip_size);
5163#if BITS_PER_LONG == 32
5164        tmpdiv = first_block;
5165        (void) do_div(tmpdiv, blocks_per_row);
5166        first_row = tmpdiv;
5167        tmpdiv = last_block;
5168        (void) do_div(tmpdiv, blocks_per_row);
5169        last_row = tmpdiv;
5170        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5171        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5172        tmpdiv = first_row_offset;
5173        (void) do_div(tmpdiv, strip_size);
5174        first_column = tmpdiv;
5175        tmpdiv = last_row_offset;
5176        (void) do_div(tmpdiv, strip_size);
5177        last_column = tmpdiv;
5178#else
5179        first_row = first_block / blocks_per_row;
5180        last_row = last_block / blocks_per_row;
5181        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5182        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5183        first_column = first_row_offset / strip_size;
5184        last_column = last_row_offset / strip_size;
5185#endif
5186
5187        /* if this isn't a single row/column then give to the controller */
5188        if ((first_row != last_row) || (first_column != last_column))
5189                return IO_ACCEL_INELIGIBLE;
5190
5191        /* proceeding with driver mapping */
5192        total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5193                                le16_to_cpu(map->metadata_disks_per_row);
5194        map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5195                                le16_to_cpu(map->row_cnt);
5196        map_index = (map_row * total_disks_per_row) + first_column;
5197
5198        switch (dev->raid_level) {
5199        case HPSA_RAID_0:
5200                break; /* nothing special to do */
5201        case HPSA_RAID_1:
5202                /* Handles load balance across RAID 1 members.
5203                 * (2-drive R1 and R10 with even # of drives.)
5204                 * Appropriate for SSDs, not optimal for HDDs
5205                 */
5206                BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5207                if (dev->offload_to_mirror)
5208                        map_index += le16_to_cpu(map->data_disks_per_row);
5209                dev->offload_to_mirror = !dev->offload_to_mirror;
5210                break;
5211        case HPSA_RAID_ADM:
5212                /* Handles N-way mirrors  (R1-ADM)
5213                 * and R10 with # of drives divisible by 3.)
5214                 */
5215                BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5216
5217                offload_to_mirror = dev->offload_to_mirror;
5218                raid_map_helper(map, offload_to_mirror,
5219                                &map_index, &current_group);
5220                /* set mirror group to use next time */
5221                offload_to_mirror =
5222                        (offload_to_mirror >=
5223                        le16_to_cpu(map->layout_map_count) - 1)
5224                        ? 0 : offload_to_mirror + 1;
5225                dev->offload_to_mirror = offload_to_mirror;
5226                /* Avoid direct use of dev->offload_to_mirror within this
5227                 * function since multiple threads might simultaneously
5228                 * increment it beyond the range of dev->layout_map_count -1.
5229                 */
5230                break;
5231        case HPSA_RAID_5:
5232        case HPSA_RAID_6:
5233                if (le16_to_cpu(map->layout_map_count) <= 1)
5234                        break;
5235
5236                /* Verify first and last block are in same RAID group */
5237                r5or6_blocks_per_row =
5238                        le16_to_cpu(map->strip_size) *
5239                        le16_to_cpu(map->data_disks_per_row);
5240                BUG_ON(r5or6_blocks_per_row == 0);
5241                stripesize = r5or6_blocks_per_row *
5242                        le16_to_cpu(map->layout_map_count);
5243#if BITS_PER_LONG == 32
5244                tmpdiv = first_block;
5245                first_group = do_div(tmpdiv, stripesize);
5246                tmpdiv = first_group;
5247                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5248                first_group = tmpdiv;
5249                tmpdiv = last_block;
5250                last_group = do_div(tmpdiv, stripesize);
5251                tmpdiv = last_group;
5252                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5253                last_group = tmpdiv;
5254#else
5255                first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5256                last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5257#endif
5258                if (first_group != last_group)
5259                        return IO_ACCEL_INELIGIBLE;
5260
5261                /* Verify request is in a single row of RAID 5/6 */
5262#if BITS_PER_LONG == 32
5263                tmpdiv = first_block;
5264                (void) do_div(tmpdiv, stripesize);
5265                first_row = r5or6_first_row = r0_first_row = tmpdiv;
5266                tmpdiv = last_block;
5267                (void) do_div(tmpdiv, stripesize);
5268                r5or6_last_row = r0_last_row = tmpdiv;
5269#else
5270                first_row = r5or6_first_row = r0_first_row =
5271                                                first_block / stripesize;
5272                r5or6_last_row = r0_last_row = last_block / stripesize;
5273#endif
5274                if (r5or6_first_row != r5or6_last_row)
5275                        return IO_ACCEL_INELIGIBLE;
5276
5277
5278                /* Verify request is in a single column */
5279#if BITS_PER_LONG == 32
5280                tmpdiv = first_block;
5281                first_row_offset = do_div(tmpdiv, stripesize);
5282                tmpdiv = first_row_offset;
5283                first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5284                r5or6_first_row_offset = first_row_offset;
5285                tmpdiv = last_block;
5286                r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5287                tmpdiv = r5or6_last_row_offset;
5288                r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5289                tmpdiv = r5or6_first_row_offset;
5290                (void) do_div(tmpdiv, map->strip_size);
5291                first_column = r5or6_first_column = tmpdiv;
5292                tmpdiv = r5or6_last_row_offset;
5293                (void) do_div(tmpdiv, map->strip_size);
5294                r5or6_last_column = tmpdiv;
5295#else
5296                first_row_offset = r5or6_first_row_offset =
5297                        (u32)((first_block % stripesize) %
5298                                                r5or6_blocks_per_row);
5299
5300                r5or6_last_row_offset =
5301                        (u32)((last_block % stripesize) %
5302                                                r5or6_blocks_per_row);
5303
5304                first_column = r5or6_first_column =
5305                        r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5306                r5or6_last_column =
5307                        r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5308#endif
5309                if (r5or6_first_column != r5or6_last_column)
5310                        return IO_ACCEL_INELIGIBLE;
5311
5312                /* Request is eligible */
5313                map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5314                        le16_to_cpu(map->row_cnt);
5315
5316                map_index = (first_group *
5317                        (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5318                        (map_row * total_disks_per_row) + first_column;
5319                break;
5320        default:
5321                return IO_ACCEL_INELIGIBLE;
5322        }
5323
5324        if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5325                return IO_ACCEL_INELIGIBLE;
5326
5327        c->phys_disk = dev->phys_disk[map_index];
5328        if (!c->phys_disk)
5329                return IO_ACCEL_INELIGIBLE;
5330
5331        disk_handle = dd[map_index].ioaccel_handle;
5332        disk_block = le64_to_cpu(map->disk_starting_blk) +
5333                        first_row * le16_to_cpu(map->strip_size) +
5334                        (first_row_offset - first_column *
5335                        le16_to_cpu(map->strip_size));
5336        disk_block_cnt = block_cnt;
5337
5338        /* handle differing logical/physical block sizes */
5339        if (map->phys_blk_shift) {
5340                disk_block <<= map->phys_blk_shift;
5341                disk_block_cnt <<= map->phys_blk_shift;
5342        }
5343        BUG_ON(disk_block_cnt > 0xffff);
5344
5345        /* build the new CDB for the physical disk I/O */
5346        if (disk_block > 0xffffffff) {
5347                cdb[0] = is_write ? WRITE_16 : READ_16;
5348                cdb[1] = 0;
5349                cdb[2] = (u8) (disk_block >> 56);
5350                cdb[3] = (u8) (disk_block >> 48);
5351                cdb[4] = (u8) (disk_block >> 40);
5352                cdb[5] = (u8) (disk_block >> 32);
5353                cdb[6] = (u8) (disk_block >> 24);
5354                cdb[7] = (u8) (disk_block >> 16);
5355                cdb[8] = (u8) (disk_block >> 8);
5356                cdb[9] = (u8) (disk_block);
5357                cdb[10] = (u8) (disk_block_cnt >> 24);
5358                cdb[11] = (u8) (disk_block_cnt >> 16);
5359                cdb[12] = (u8) (disk_block_cnt >> 8);
5360                cdb[13] = (u8) (disk_block_cnt);
5361                cdb[14] = 0;
5362                cdb[15] = 0;
5363                cdb_len = 16;
5364        } else {
5365                cdb[0] = is_write ? WRITE_10 : READ_10;
5366                cdb[1] = 0;
5367                cdb[2] = (u8) (disk_block >> 24);
5368                cdb[3] = (u8) (disk_block >> 16);
5369                cdb[4] = (u8) (disk_block >> 8);
5370                cdb[5] = (u8) (disk_block);
5371                cdb[6] = 0;
5372                cdb[7] = (u8) (disk_block_cnt >> 8);
5373                cdb[8] = (u8) (disk_block_cnt);
5374                cdb[9] = 0;
5375                cdb_len = 10;
5376        }
5377        return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5378                                                dev->scsi3addr,
5379                                                dev->phys_disk[map_index]);
5380}
5381
5382/*
5383 * Submit commands down the "normal" RAID stack path
5384 * All callers to hpsa_ciss_submit must check lockup_detected
5385 * beforehand, before (opt.) and after calling cmd_alloc
5386 */
5387static int hpsa_ciss_submit(struct ctlr_info *h,
5388        struct CommandList *c, struct scsi_cmnd *cmd,
5389        unsigned char scsi3addr[])
5390{
5391        cmd->host_scribble = (unsigned char *) c;
5392        c->cmd_type = CMD_SCSI;
5393        c->scsi_cmd = cmd;
5394        c->Header.ReplyQueue = 0;  /* unused in simple mode */
5395        memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5396        c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5397
5398        /* Fill in the request block... */
5399
5400        c->Request.Timeout = 0;
5401        BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5402        c->Request.CDBLen = cmd->cmd_len;
5403        memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5404        switch (cmd->sc_data_direction) {
5405        case DMA_TO_DEVICE:
5406                c->Request.type_attr_dir =
5407                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5408                break;
5409        case DMA_FROM_DEVICE:
5410                c->Request.type_attr_dir =
5411                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5412                break;
5413        case DMA_NONE:
5414                c->Request.type_attr_dir =
5415                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5416                break;
5417        case DMA_BIDIRECTIONAL:
5418                /* This can happen if a buggy application does a scsi passthru
5419                 * and sets both inlen and outlen to non-zero. ( see
5420                 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5421                 */
5422
5423                c->Request.type_attr_dir =
5424                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5425                /* This is technically wrong, and hpsa controllers should
5426                 * reject it with CMD_INVALID, which is the most correct
5427                 * response, but non-fibre backends appear to let it
5428                 * slide by, and give the same results as if this field
5429                 * were set correctly.  Either way is acceptable for
5430                 * our purposes here.
5431                 */
5432
5433                break;
5434
5435        default:
5436                dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5437                        cmd->sc_data_direction);
5438                BUG();
5439                break;
5440        }
5441
5442        if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5443                hpsa_cmd_resolve_and_free(h, c);
5444                return SCSI_MLQUEUE_HOST_BUSY;
5445        }
5446        enqueue_cmd_and_start_io(h, c);
5447        /* the cmd'll come back via intr handler in complete_scsi_command()  */
5448        return 0;
5449}
5450
5451static void hpsa_cmd_init(struct ctlr_info *h, int index,
5452                                struct CommandList *c)
5453{
5454        dma_addr_t cmd_dma_handle, err_dma_handle;
5455
5456        /* Zero out all of commandlist except the last field, refcount */
5457        memset(c, 0, offsetof(struct CommandList, refcount));
5458        c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5459        cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5460        c->err_info = h->errinfo_pool + index;
5461        memset(c->err_info, 0, sizeof(*c->err_info));
5462        err_dma_handle = h->errinfo_pool_dhandle
5463            + index * sizeof(*c->err_info);
5464        c->cmdindex = index;
5465        c->busaddr = (u32) cmd_dma_handle;
5466        c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5467        c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5468        c->h = h;
5469        c->scsi_cmd = SCSI_CMD_IDLE;
5470}
5471
5472static void hpsa_preinitialize_commands(struct ctlr_info *h)
5473{
5474        int i;
5475
5476        for (i = 0; i < h->nr_cmds; i++) {
5477                struct CommandList *c = h->cmd_pool + i;
5478
5479                hpsa_cmd_init(h, i, c);
5480                atomic_set(&c->refcount, 0);
5481        }
5482}
5483
5484static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5485                                struct CommandList *c)
5486{
5487        dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5488
5489        BUG_ON(c->cmdindex != index);
5490
5491        memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5492        memset(c->err_info, 0, sizeof(*c->err_info));
5493        c->busaddr = (u32) cmd_dma_handle;
5494}
5495
5496static int hpsa_ioaccel_submit(struct ctlr_info *h,
5497                struct CommandList *c, struct scsi_cmnd *cmd,
5498                unsigned char *scsi3addr)
5499{
5500        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5501        int rc = IO_ACCEL_INELIGIBLE;
5502
5503        if (!dev)
5504                return SCSI_MLQUEUE_HOST_BUSY;
5505
5506        cmd->host_scribble = (unsigned char *) c;
5507
5508        if (dev->offload_enabled) {
5509                hpsa_cmd_init(h, c->cmdindex, c);
5510                c->cmd_type = CMD_SCSI;
5511                c->scsi_cmd = cmd;
5512                rc = hpsa_scsi_ioaccel_raid_map(h, c);
5513                if (rc < 0)     /* scsi_dma_map failed. */
5514                        rc = SCSI_MLQUEUE_HOST_BUSY;
5515        } else if (dev->hba_ioaccel_enabled) {
5516                hpsa_cmd_init(h, c->cmdindex, c);
5517                c->cmd_type = CMD_SCSI;
5518                c->scsi_cmd = cmd;
5519                rc = hpsa_scsi_ioaccel_direct_map(h, c);
5520                if (rc < 0)     /* scsi_dma_map failed. */
5521                        rc = SCSI_MLQUEUE_HOST_BUSY;
5522        }
5523        return rc;
5524}
5525
5526static void hpsa_command_resubmit_worker(struct work_struct *work)
5527{
5528        struct scsi_cmnd *cmd;
5529        struct hpsa_scsi_dev_t *dev;
5530        struct CommandList *c = container_of(work, struct CommandList, work);
5531
5532        cmd = c->scsi_cmd;
5533        dev = cmd->device->hostdata;
5534        if (!dev) {
5535                cmd->result = DID_NO_CONNECT << 16;
5536                return hpsa_cmd_free_and_done(c->h, c, cmd);
5537        }
5538        if (c->reset_pending)
5539                return hpsa_cmd_free_and_done(c->h, c, cmd);
5540        if (c->cmd_type == CMD_IOACCEL2) {
5541                struct ctlr_info *h = c->h;
5542                struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5543                int rc;
5544
5545                if (c2->error_data.serv_response ==
5546                                IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5547                        rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5548                        if (rc == 0)
5549                                return;
5550                        if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5551                                /*
5552                                 * If we get here, it means dma mapping failed.
5553                                 * Try again via scsi mid layer, which will
5554                                 * then get SCSI_MLQUEUE_HOST_BUSY.
5555                                 */
5556                                cmd->result = DID_IMM_RETRY << 16;
5557                                return hpsa_cmd_free_and_done(h, c, cmd);
5558                        }
5559                        /* else, fall thru and resubmit down CISS path */
5560                }
5561        }
5562        hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5563        if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5564                /*
5565                 * If we get here, it means dma mapping failed. Try
5566                 * again via scsi mid layer, which will then get
5567                 * SCSI_MLQUEUE_HOST_BUSY.
5568                 *
5569                 * hpsa_ciss_submit will have already freed c
5570                 * if it encountered a dma mapping failure.
5571                 */
5572                cmd->result = DID_IMM_RETRY << 16;
5573                cmd->scsi_done(cmd);
5574        }
5575}
5576
5577/* Running in struct Scsi_Host->host_lock less mode */
5578static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5579{
5580        struct ctlr_info *h;
5581        struct hpsa_scsi_dev_t *dev;
5582        unsigned char scsi3addr[8];
5583        struct CommandList *c;
5584        int rc = 0;
5585
5586        /* Get the ptr to our adapter structure out of cmd->host. */
5587        h = sdev_to_hba(cmd->device);
5588
5589        BUG_ON(cmd->request->tag < 0);
5590
5591        dev = cmd->device->hostdata;
5592        if (!dev) {
5593                cmd->result = DID_NO_CONNECT << 16;
5594                cmd->scsi_done(cmd);
5595                return 0;
5596        }
5597
5598        if (dev->removed) {
5599                cmd->result = DID_NO_CONNECT << 16;
5600                cmd->scsi_done(cmd);
5601                return 0;
5602        }
5603
5604        memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5605
5606        if (unlikely(lockup_detected(h))) {
5607                cmd->result = DID_NO_CONNECT << 16;
5608                cmd->scsi_done(cmd);
5609                return 0;
5610        }
5611        c = cmd_tagged_alloc(h, cmd);
5612
5613        /*
5614         * Call alternate submit routine for I/O accelerated commands.
5615         * Retries always go down the normal I/O path.
5616         */
5617        if (likely(cmd->retries == 0 &&
5618                        !blk_rq_is_passthrough(cmd->request) &&
5619                        h->acciopath_status)) {
5620                rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5621                if (rc == 0)
5622                        return 0;
5623                if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5624                        hpsa_cmd_resolve_and_free(h, c);
5625                        return SCSI_MLQUEUE_HOST_BUSY;
5626                }
5627        }
5628        return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5629}
5630
5631static void hpsa_scan_complete(struct ctlr_info *h)
5632{
5633        unsigned long flags;
5634
5635        spin_lock_irqsave(&h->scan_lock, flags);
5636        h->scan_finished = 1;
5637        wake_up(&h->scan_wait_queue);
5638        spin_unlock_irqrestore(&h->scan_lock, flags);
5639}
5640
5641static void hpsa_scan_start(struct Scsi_Host *sh)
5642{
5643        struct ctlr_info *h = shost_to_hba(sh);
5644        unsigned long flags;
5645
5646        /*
5647         * Don't let rescans be initiated on a controller known to be locked
5648         * up.  If the controller locks up *during* a rescan, that thread is
5649         * probably hosed, but at least we can prevent new rescan threads from
5650         * piling up on a locked up controller.
5651         */
5652        if (unlikely(lockup_detected(h)))
5653                return hpsa_scan_complete(h);
5654
5655        /*
5656         * If a scan is already waiting to run, no need to add another
5657         */
5658        spin_lock_irqsave(&h->scan_lock, flags);
5659        if (h->scan_waiting) {
5660                spin_unlock_irqrestore(&h->scan_lock, flags);
5661                return;
5662        }
5663
5664        spin_unlock_irqrestore(&h->scan_lock, flags);
5665
5666        /* wait until any scan already in progress is finished. */
5667        while (1) {
5668                spin_lock_irqsave(&h->scan_lock, flags);
5669                if (h->scan_finished)
5670                        break;
5671                h->scan_waiting = 1;
5672                spin_unlock_irqrestore(&h->scan_lock, flags);
5673                wait_event(h->scan_wait_queue, h->scan_finished);
5674                /* Note: We don't need to worry about a race between this
5675                 * thread and driver unload because the midlayer will
5676                 * have incremented the reference count, so unload won't
5677                 * happen if we're in here.
5678                 */
5679        }
5680        h->scan_finished = 0; /* mark scan as in progress */
5681        h->scan_waiting = 0;
5682        spin_unlock_irqrestore(&h->scan_lock, flags);
5683
5684        if (unlikely(lockup_detected(h)))
5685                return hpsa_scan_complete(h);
5686
5687        /*
5688         * Do the scan after a reset completion
5689         */
5690        spin_lock_irqsave(&h->reset_lock, flags);
5691        if (h->reset_in_progress) {
5692                h->drv_req_rescan = 1;
5693                spin_unlock_irqrestore(&h->reset_lock, flags);
5694                hpsa_scan_complete(h);
5695                return;
5696        }
5697        spin_unlock_irqrestore(&h->reset_lock, flags);
5698
5699        hpsa_update_scsi_devices(h);
5700
5701        hpsa_scan_complete(h);
5702}
5703
5704static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5705{
5706        struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5707
5708        if (!logical_drive)
5709                return -ENODEV;
5710
5711        if (qdepth < 1)
5712                qdepth = 1;
5713        else if (qdepth > logical_drive->queue_depth)
5714                qdepth = logical_drive->queue_depth;
5715
5716        return scsi_change_queue_depth(sdev, qdepth);
5717}
5718
5719static int hpsa_scan_finished(struct Scsi_Host *sh,
5720        unsigned long elapsed_time)
5721{
5722        struct ctlr_info *h = shost_to_hba(sh);
5723        unsigned long flags;
5724        int finished;
5725
5726        spin_lock_irqsave(&h->scan_lock, flags);
5727        finished = h->scan_finished;
5728        spin_unlock_irqrestore(&h->scan_lock, flags);
5729        return finished;
5730}
5731
5732static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5733{
5734        struct Scsi_Host *sh;
5735
5736        sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5737        if (sh == NULL) {
5738                dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5739                return -ENOMEM;
5740        }
5741
5742        sh->io_port = 0;
5743        sh->n_io_port = 0;
5744        sh->this_id = -1;
5745        sh->max_channel = 3;
5746        sh->max_cmd_len = MAX_COMMAND_SIZE;
5747        sh->max_lun = HPSA_MAX_LUN;
5748        sh->max_id = HPSA_MAX_LUN;
5749        sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5750        sh->cmd_per_lun = sh->can_queue;
5751        sh->sg_tablesize = h->maxsgentries;
5752        sh->transportt = hpsa_sas_transport_template;
5753        sh->hostdata[0] = (unsigned long) h;
5754        sh->irq = pci_irq_vector(h->pdev, 0);
5755        sh->unique_id = sh->irq;
5756
5757        h->scsi_host = sh;
5758        return 0;
5759}
5760
5761static int hpsa_scsi_add_host(struct ctlr_info *h)
5762{
5763        int rv;
5764
5765        rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5766        if (rv) {
5767                dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5768                return rv;
5769        }
5770        scsi_scan_host(h->scsi_host);
5771        return 0;
5772}
5773
5774/*
5775 * The block layer has already gone to the trouble of picking out a unique,
5776 * small-integer tag for this request.  We use an offset from that value as
5777 * an index to select our command block.  (The offset allows us to reserve the
5778 * low-numbered entries for our own uses.)
5779 */
5780static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5781{
5782        int idx = scmd->request->tag;
5783
5784        if (idx < 0)
5785                return idx;
5786
5787        /* Offset to leave space for internal cmds. */
5788        return idx += HPSA_NRESERVED_CMDS;
5789}
5790
5791/*
5792 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5793 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5794 */
5795static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5796                                struct CommandList *c, unsigned char lunaddr[],
5797                                int reply_queue)
5798{
5799        int rc;
5800
5801        /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5802        (void) fill_cmd(c, TEST_UNIT_READY, h,
5803                        NULL, 0, 0, lunaddr, TYPE_CMD);
5804        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5805        if (rc)
5806                return rc;
5807        /* no unmap needed here because no data xfer. */
5808
5809        /* Check if the unit is already ready. */
5810        if (c->err_info->CommandStatus == CMD_SUCCESS)
5811                return 0;
5812
5813        /*
5814         * The first command sent after reset will receive "unit attention" to
5815         * indicate that the LUN has been reset...this is actually what we're
5816         * looking for (but, success is good too).
5817         */
5818        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5819                c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5820                        (c->err_info->SenseInfo[2] == NO_SENSE ||
5821                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5822                return 0;
5823
5824        return 1;
5825}
5826
5827/*
5828 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5829 * returns zero when the unit is ready, and non-zero when giving up.
5830 */
5831static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5832                                struct CommandList *c,
5833                                unsigned char lunaddr[], int reply_queue)
5834{
5835        int rc;
5836        int count = 0;
5837        int waittime = 1; /* seconds */
5838
5839        /* Send test unit ready until device ready, or give up. */
5840        for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5841
5842                /*
5843                 * Wait for a bit.  do this first, because if we send
5844                 * the TUR right away, the reset will just abort it.
5845                 */
5846                msleep(1000 * waittime);
5847
5848                rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5849                if (!rc)
5850                        break;
5851
5852                /* Increase wait time with each try, up to a point. */
5853                if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5854                        waittime *= 2;
5855
5856                dev_warn(&h->pdev->dev,
5857                         "waiting %d secs for device to become ready.\n",
5858                         waittime);
5859        }
5860
5861        return rc;
5862}
5863
5864static int wait_for_device_to_become_ready(struct ctlr_info *h,
5865                                           unsigned char lunaddr[],
5866                                           int reply_queue)
5867{
5868        int first_queue;
5869        int last_queue;
5870        int rq;
5871        int rc = 0;
5872        struct CommandList *c;
5873
5874        c = cmd_alloc(h);
5875
5876        /*
5877         * If no specific reply queue was requested, then send the TUR
5878         * repeatedly, requesting a reply on each reply queue; otherwise execute
5879         * the loop exactly once using only the specified queue.
5880         */
5881        if (reply_queue == DEFAULT_REPLY_QUEUE) {
5882                first_queue = 0;
5883                last_queue = h->nreply_queues - 1;
5884        } else {
5885                first_queue = reply_queue;
5886                last_queue = reply_queue;
5887        }
5888
5889        for (rq = first_queue; rq <= last_queue; rq++) {
5890                rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5891                if (rc)
5892                        break;
5893        }
5894
5895        if (rc)
5896                dev_warn(&h->pdev->dev, "giving up on device.\n");
5897        else
5898                dev_warn(&h->pdev->dev, "device is ready.\n");
5899
5900        cmd_free(h, c);
5901        return rc;
5902}
5903
5904/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5905 * complaining.  Doing a host- or bus-reset can't do anything good here.
5906 */
5907static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5908{
5909        int rc = SUCCESS;
5910        struct ctlr_info *h;
5911        struct hpsa_scsi_dev_t *dev;
5912        u8 reset_type;
5913        char msg[48];
5914        unsigned long flags;
5915
5916        /* find the controller to which the command to be aborted was sent */
5917        h = sdev_to_hba(scsicmd->device);
5918        if (h == NULL) /* paranoia */
5919                return FAILED;
5920
5921        spin_lock_irqsave(&h->reset_lock, flags);
5922        h->reset_in_progress = 1;
5923        spin_unlock_irqrestore(&h->reset_lock, flags);
5924
5925        if (lockup_detected(h)) {
5926                rc = FAILED;
5927                goto return_reset_status;
5928        }
5929
5930        dev = scsicmd->device->hostdata;
5931        if (!dev) {
5932                dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5933                rc = FAILED;
5934                goto return_reset_status;
5935        }
5936
5937        if (dev->devtype == TYPE_ENCLOSURE) {
5938                rc = SUCCESS;
5939                goto return_reset_status;
5940        }
5941
5942        /* if controller locked up, we can guarantee command won't complete */
5943        if (lockup_detected(h)) {
5944                snprintf(msg, sizeof(msg),
5945                         "cmd %d RESET FAILED, lockup detected",
5946                         hpsa_get_cmd_index(scsicmd));
5947                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5948                rc = FAILED;
5949                goto return_reset_status;
5950        }
5951
5952        /* this reset request might be the result of a lockup; check */
5953        if (detect_controller_lockup(h)) {
5954                snprintf(msg, sizeof(msg),
5955                         "cmd %d RESET FAILED, new lockup detected",
5956                         hpsa_get_cmd_index(scsicmd));
5957                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5958                rc = FAILED;
5959                goto return_reset_status;
5960        }
5961
5962        /* Do not attempt on controller */
5963        if (is_hba_lunid(dev->scsi3addr)) {
5964                rc = SUCCESS;
5965                goto return_reset_status;
5966        }
5967
5968        if (is_logical_dev_addr_mode(dev->scsi3addr))
5969                reset_type = HPSA_DEVICE_RESET_MSG;
5970        else
5971                reset_type = HPSA_PHYS_TARGET_RESET;
5972
5973        sprintf(msg, "resetting %s",
5974                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5975        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5976
5977        /* send a reset to the SCSI LUN which the command was sent to */
5978        rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5979                           DEFAULT_REPLY_QUEUE);
5980        if (rc == 0)
5981                rc = SUCCESS;
5982        else
5983                rc = FAILED;
5984
5985        sprintf(msg, "reset %s %s",
5986                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5987                rc == SUCCESS ? "completed successfully" : "failed");
5988        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5989
5990return_reset_status:
5991        spin_lock_irqsave(&h->reset_lock, flags);
5992        h->reset_in_progress = 0;
5993        spin_unlock_irqrestore(&h->reset_lock, flags);
5994        return rc;
5995}
5996
5997/*
5998 * For operations with an associated SCSI command, a command block is allocated
5999 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6000 * block request tag as an index into a table of entries.  cmd_tagged_free() is
6001 * the complement, although cmd_free() may be called instead.
6002 */
6003static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6004                                            struct scsi_cmnd *scmd)
6005{
6006        int idx = hpsa_get_cmd_index(scmd);
6007        struct CommandList *c = h->cmd_pool + idx;
6008
6009        if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6010                dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6011                        idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6012                /* The index value comes from the block layer, so if it's out of
6013                 * bounds, it's probably not our bug.
6014                 */
6015                BUG();
6016        }
6017
6018        atomic_inc(&c->refcount);
6019        if (unlikely(!hpsa_is_cmd_idle(c))) {
6020                /*
6021                 * We expect that the SCSI layer will hand us a unique tag
6022                 * value.  Thus, there should never be a collision here between
6023                 * two requests...because if the selected command isn't idle
6024                 * then someone is going to be very disappointed.
6025                 */
6026                dev_err(&h->pdev->dev,
6027                        "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6028                        idx);
6029                if (c->scsi_cmd != NULL)
6030                        scsi_print_command(c->scsi_cmd);
6031                scsi_print_command(scmd);
6032        }
6033
6034        hpsa_cmd_partial_init(h, idx, c);
6035        return c;
6036}
6037
6038static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6039{
6040        /*
6041         * Release our reference to the block.  We don't need to do anything
6042         * else to free it, because it is accessed by index.
6043         */
6044        (void)atomic_dec(&c->refcount);
6045}
6046
6047/*
6048 * For operations that cannot sleep, a command block is allocated at init,
6049 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6050 * which ones are free or in use.  Lock must be held when calling this.
6051 * cmd_free() is the complement.
6052 * This function never gives up and returns NULL.  If it hangs,
6053 * another thread must call cmd_free() to free some tags.
6054 */
6055
6056static struct CommandList *cmd_alloc(struct ctlr_info *h)
6057{
6058        struct CommandList *c;
6059        int refcount, i;
6060        int offset = 0;
6061
6062        /*
6063         * There is some *extremely* small but non-zero chance that that
6064         * multiple threads could get in here, and one thread could
6065         * be scanning through the list of bits looking for a free
6066         * one, but the free ones are always behind him, and other
6067         * threads sneak in behind him and eat them before he can
6068         * get to them, so that while there is always a free one, a
6069         * very unlucky thread might be starved anyway, never able to
6070         * beat the other threads.  In reality, this happens so
6071         * infrequently as to be indistinguishable from never.
6072         *
6073         * Note that we start allocating commands before the SCSI host structure
6074         * is initialized.  Since the search starts at bit zero, this
6075         * all works, since we have at least one command structure available;
6076         * however, it means that the structures with the low indexes have to be
6077         * reserved for driver-initiated requests, while requests from the block
6078         * layer will use the higher indexes.
6079         */
6080
6081        for (;;) {
6082                i = find_next_zero_bit(h->cmd_pool_bits,
6083                                        HPSA_NRESERVED_CMDS,
6084                                        offset);
6085                if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6086                        offset = 0;
6087                        continue;
6088                }
6089                c = h->cmd_pool + i;
6090                refcount = atomic_inc_return(&c->refcount);
6091                if (unlikely(refcount > 1)) {
6092                        cmd_free(h, c); /* already in use */
6093                        offset = (i + 1) % HPSA_NRESERVED_CMDS;
6094                        continue;
6095                }
6096                set_bit(i & (BITS_PER_LONG - 1),
6097                        h->cmd_pool_bits + (i / BITS_PER_LONG));
6098                break; /* it's ours now. */
6099        }
6100        hpsa_cmd_partial_init(h, i, c);
6101        return c;
6102}
6103
6104/*
6105 * This is the complementary operation to cmd_alloc().  Note, however, in some
6106 * corner cases it may also be used to free blocks allocated by
6107 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6108 * the clear-bit is harmless.
6109 */
6110static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6111{
6112        if (atomic_dec_and_test(&c->refcount)) {
6113                int i;
6114
6115                i = c - h->cmd_pool;
6116                clear_bit(i & (BITS_PER_LONG - 1),
6117                          h->cmd_pool_bits + (i / BITS_PER_LONG));
6118        }
6119}
6120
6121#ifdef CONFIG_COMPAT
6122
6123static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6124        void __user *arg)
6125{
6126        IOCTL32_Command_struct __user *arg32 =
6127            (IOCTL32_Command_struct __user *) arg;
6128        IOCTL_Command_struct arg64;
6129        IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6130        int err;
6131        u32 cp;
6132
6133        memset(&arg64, 0, sizeof(arg64));
6134        err = 0;
6135        err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6136                           sizeof(arg64.LUN_info));
6137        err |= copy_from_user(&arg64.Request, &arg32->Request,
6138                           sizeof(arg64.Request));
6139        err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6140                           sizeof(arg64.error_info));
6141        err |= get_user(arg64.buf_size, &arg32->buf_size);
6142        err |= get_user(cp, &arg32->buf);
6143        arg64.buf = compat_ptr(cp);
6144        err |= copy_to_user(p, &arg64, sizeof(arg64));
6145
6146        if (err)
6147                return -EFAULT;
6148
6149        err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6150        if (err)
6151                return err;
6152        err |= copy_in_user(&arg32->error_info, &p->error_info,
6153                         sizeof(arg32->error_info));
6154        if (err)
6155                return -EFAULT;
6156        return err;
6157}
6158
6159static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6160        int cmd, void __user *arg)
6161{
6162        BIG_IOCTL32_Command_struct __user *arg32 =
6163            (BIG_IOCTL32_Command_struct __user *) arg;
6164        BIG_IOCTL_Command_struct arg64;
6165        BIG_IOCTL_Command_struct __user *p =
6166            compat_alloc_user_space(sizeof(arg64));
6167        int err;
6168        u32 cp;
6169
6170        memset(&arg64, 0, sizeof(arg64));
6171        err = 0;
6172        err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6173                           sizeof(arg64.LUN_info));
6174        err |= copy_from_user(&arg64.Request, &arg32->Request,
6175                           sizeof(arg64.Request));
6176        err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6177                           sizeof(arg64.error_info));
6178        err |= get_user(arg64.buf_size, &arg32->buf_size);
6179        err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6180        err |= get_user(cp, &arg32->buf);
6181        arg64.buf = compat_ptr(cp);
6182        err |= copy_to_user(p, &arg64, sizeof(arg64));
6183
6184        if (err)
6185                return -EFAULT;
6186
6187        err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6188        if (err)
6189                return err;
6190        err |= copy_in_user(&arg32->error_info, &p->error_info,
6191                         sizeof(arg32->error_info));
6192        if (err)
6193                return -EFAULT;
6194        return err;
6195}
6196
6197static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6198{
6199        switch (cmd) {
6200        case CCISS_GETPCIINFO:
6201        case CCISS_GETINTINFO:
6202        case CCISS_SETINTINFO:
6203        case CCISS_GETNODENAME:
6204        case CCISS_SETNODENAME:
6205        case CCISS_GETHEARTBEAT:
6206        case CCISS_GETBUSTYPES:
6207        case CCISS_GETFIRMVER:
6208        case CCISS_GETDRIVVER:
6209        case CCISS_REVALIDVOLS:
6210        case CCISS_DEREGDISK:
6211        case CCISS_REGNEWDISK:
6212        case CCISS_REGNEWD:
6213        case CCISS_RESCANDISK:
6214        case CCISS_GETLUNINFO:
6215                return hpsa_ioctl(dev, cmd, arg);
6216
6217        case CCISS_PASSTHRU32:
6218                return hpsa_ioctl32_passthru(dev, cmd, arg);
6219        case CCISS_BIG_PASSTHRU32:
6220                return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6221
6222        default:
6223                return -ENOIOCTLCMD;
6224        }
6225}
6226#endif
6227
6228static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6229{
6230        struct hpsa_pci_info pciinfo;
6231
6232        if (!argp)
6233                return -EINVAL;
6234        pciinfo.domain = pci_domain_nr(h->pdev->bus);
6235        pciinfo.bus = h->pdev->bus->number;
6236        pciinfo.dev_fn = h->pdev->devfn;
6237        pciinfo.board_id = h->board_id;
6238        if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6239                return -EFAULT;
6240        return 0;
6241}
6242
6243static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6244{
6245        DriverVer_type DriverVer;
6246        unsigned char vmaj, vmin, vsubmin;
6247        int rc;
6248
6249        rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6250                &vmaj, &vmin, &vsubmin);
6251        if (rc != 3) {
6252                dev_info(&h->pdev->dev, "driver version string '%s' "
6253                        "unrecognized.", HPSA_DRIVER_VERSION);
6254                vmaj = 0;
6255                vmin = 0;
6256                vsubmin = 0;
6257        }
6258        DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6259        if (!argp)
6260                return -EINVAL;
6261        if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6262                return -EFAULT;
6263        return 0;
6264}
6265
6266static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6267{
6268        IOCTL_Command_struct iocommand;
6269        struct CommandList *c;
6270        char *buff = NULL;
6271        u64 temp64;
6272        int rc = 0;
6273
6274        if (!argp)
6275                return -EINVAL;
6276        if (!capable(CAP_SYS_RAWIO))
6277                return -EPERM;
6278        if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6279                return -EFAULT;
6280        if ((iocommand.buf_size < 1) &&
6281            (iocommand.Request.Type.Direction != XFER_NONE)) {
6282                return -EINVAL;
6283        }
6284        if (iocommand.buf_size > 0) {
6285                buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6286                if (buff == NULL)
6287                        return -ENOMEM;
6288                if (iocommand.Request.Type.Direction & XFER_WRITE) {
6289                        /* Copy the data into the buffer we created */
6290                        if (copy_from_user(buff, iocommand.buf,
6291                                iocommand.buf_size)) {
6292                                rc = -EFAULT;
6293                                goto out_kfree;
6294                        }
6295                } else {
6296                        memset(buff, 0, iocommand.buf_size);
6297                }
6298        }
6299        c = cmd_alloc(h);
6300
6301        /* Fill in the command type */
6302        c->cmd_type = CMD_IOCTL_PEND;
6303        c->scsi_cmd = SCSI_CMD_BUSY;
6304        /* Fill in Command Header */
6305        c->Header.ReplyQueue = 0; /* unused in simple mode */
6306        if (iocommand.buf_size > 0) {   /* buffer to fill */
6307                c->Header.SGList = 1;
6308                c->Header.SGTotal = cpu_to_le16(1);
6309        } else  { /* no buffers to fill */
6310                c->Header.SGList = 0;
6311                c->Header.SGTotal = cpu_to_le16(0);
6312        }
6313        memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6314
6315        /* Fill in Request block */
6316        memcpy(&c->Request, &iocommand.Request,
6317                sizeof(c->Request));
6318
6319        /* Fill in the scatter gather information */
6320        if (iocommand.buf_size > 0) {
6321                temp64 = pci_map_single(h->pdev, buff,
6322                        iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6323                if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6324                        c->SG[0].Addr = cpu_to_le64(0);
6325                        c->SG[0].Len = cpu_to_le32(0);
6326                        rc = -ENOMEM;
6327                        goto out;
6328                }
6329                c->SG[0].Addr = cpu_to_le64(temp64);
6330                c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6331                c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6332        }
6333        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6334                                        NO_TIMEOUT);
6335        if (iocommand.buf_size > 0)
6336                hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6337        check_ioctl_unit_attention(h, c);
6338        if (rc) {
6339                rc = -EIO;
6340                goto out;
6341        }
6342
6343        /* Copy the error information out */
6344        memcpy(&iocommand.error_info, c->err_info,
6345                sizeof(iocommand.error_info));
6346        if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6347                rc = -EFAULT;
6348                goto out;
6349        }
6350        if ((iocommand.Request.Type.Direction & XFER_READ) &&
6351                iocommand.buf_size > 0) {
6352                /* Copy the data out of the buffer we created */
6353                if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6354                        rc = -EFAULT;
6355                        goto out;
6356                }
6357        }
6358out:
6359        cmd_free(h, c);
6360out_kfree:
6361        kfree(buff);
6362        return rc;
6363}
6364
6365static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6366{
6367        BIG_IOCTL_Command_struct *ioc;
6368        struct CommandList *c;
6369        unsigned char **buff = NULL;
6370        int *buff_size = NULL;
6371        u64 temp64;
6372        BYTE sg_used = 0;
6373        int status = 0;
6374        u32 left;
6375        u32 sz;
6376        BYTE __user *data_ptr;
6377
6378        if (!argp)
6379                return -EINVAL;
6380        if (!capable(CAP_SYS_RAWIO))
6381                return -EPERM;
6382        ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6383        if (!ioc) {
6384                status = -ENOMEM;
6385                goto cleanup1;
6386        }
6387        if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6388                status = -EFAULT;
6389                goto cleanup1;
6390        }
6391        if ((ioc->buf_size < 1) &&
6392            (ioc->Request.Type.Direction != XFER_NONE)) {
6393                status = -EINVAL;
6394                goto cleanup1;
6395        }
6396        /* Check kmalloc limits  using all SGs */
6397        if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6398                status = -EINVAL;
6399                goto cleanup1;
6400        }
6401        if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6402                status = -EINVAL;
6403                goto cleanup1;
6404        }
6405        buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6406        if (!buff) {
6407                status = -ENOMEM;
6408                goto cleanup1;
6409        }
6410        buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6411        if (!buff_size) {
6412                status = -ENOMEM;
6413                goto cleanup1;
6414        }
6415        left = ioc->buf_size;
6416        data_ptr = ioc->buf;
6417        while (left) {
6418                sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6419                buff_size[sg_used] = sz;
6420                buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6421                if (buff[sg_used] == NULL) {
6422                        status = -ENOMEM;
6423                        goto cleanup1;
6424                }
6425                if (ioc->Request.Type.Direction & XFER_WRITE) {
6426                        if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6427                                status = -EFAULT;
6428                                goto cleanup1;
6429                        }
6430                } else
6431                        memset(buff[sg_used], 0, sz);
6432                left -= sz;
6433                data_ptr += sz;
6434                sg_used++;
6435        }
6436        c = cmd_alloc(h);
6437
6438        c->cmd_type = CMD_IOCTL_PEND;
6439        c->scsi_cmd = SCSI_CMD_BUSY;
6440        c->Header.ReplyQueue = 0;
6441        c->Header.SGList = (u8) sg_used;
6442        c->Header.SGTotal = cpu_to_le16(sg_used);
6443        memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6444        memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6445        if (ioc->buf_size > 0) {
6446                int i;
6447                for (i = 0; i < sg_used; i++) {
6448                        temp64 = pci_map_single(h->pdev, buff[i],
6449                                    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6450                        if (dma_mapping_error(&h->pdev->dev,
6451                                                        (dma_addr_t) temp64)) {
6452                                c->SG[i].Addr = cpu_to_le64(0);
6453                                c->SG[i].Len = cpu_to_le32(0);
6454                                hpsa_pci_unmap(h->pdev, c, i,
6455                                        PCI_DMA_BIDIRECTIONAL);
6456                                status = -ENOMEM;
6457                                goto cleanup0;
6458                        }
6459                        c->SG[i].Addr = cpu_to_le64(temp64);
6460                        c->SG[i].Len = cpu_to_le32(buff_size[i]);
6461                        c->SG[i].Ext = cpu_to_le32(0);
6462                }
6463                c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6464        }
6465        status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6466                                                NO_TIMEOUT);
6467        if (sg_used)
6468                hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6469        check_ioctl_unit_attention(h, c);
6470        if (status) {
6471                status = -EIO;
6472                goto cleanup0;
6473        }
6474
6475        /* Copy the error information out */
6476        memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6477        if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6478                status = -EFAULT;
6479                goto cleanup0;
6480        }
6481        if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6482                int i;
6483
6484                /* Copy the data out of the buffer we created */
6485                BYTE __user *ptr = ioc->buf;
6486                for (i = 0; i < sg_used; i++) {
6487                        if (copy_to_user(ptr, buff[i], buff_size[i])) {
6488                                status = -EFAULT;
6489                                goto cleanup0;
6490                        }
6491                        ptr += buff_size[i];
6492                }
6493        }
6494        status = 0;
6495cleanup0:
6496        cmd_free(h, c);
6497cleanup1:
6498        if (buff) {
6499                int i;
6500
6501                for (i = 0; i < sg_used; i++)
6502                        kfree(buff[i]);
6503                kfree(buff);
6504        }
6505        kfree(buff_size);
6506        kfree(ioc);
6507        return status;
6508}
6509
6510static void check_ioctl_unit_attention(struct ctlr_info *h,
6511        struct CommandList *c)
6512{
6513        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6514                        c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6515                (void) check_for_unit_attention(h, c);
6516}
6517
6518/*
6519 * ioctl
6520 */
6521static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6522{
6523        struct ctlr_info *h;
6524        void __user *argp = (void __user *)arg;
6525        int rc;
6526
6527        h = sdev_to_hba(dev);
6528
6529        switch (cmd) {
6530        case CCISS_DEREGDISK:
6531        case CCISS_REGNEWDISK:
6532        case CCISS_REGNEWD:
6533                hpsa_scan_start(h->scsi_host);
6534                return 0;
6535        case CCISS_GETPCIINFO:
6536                return hpsa_getpciinfo_ioctl(h, argp);
6537        case CCISS_GETDRIVVER:
6538                return hpsa_getdrivver_ioctl(h, argp);
6539        case CCISS_PASSTHRU:
6540                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6541                        return -EAGAIN;
6542                rc = hpsa_passthru_ioctl(h, argp);
6543                atomic_inc(&h->passthru_cmds_avail);
6544                return rc;
6545        case CCISS_BIG_PASSTHRU:
6546                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6547                        return -EAGAIN;
6548                rc = hpsa_big_passthru_ioctl(h, argp);
6549                atomic_inc(&h->passthru_cmds_avail);
6550                return rc;
6551        default:
6552                return -ENOTTY;
6553        }
6554}
6555
6556static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6557                                u8 reset_type)
6558{
6559        struct CommandList *c;
6560
6561        c = cmd_alloc(h);
6562
6563        /* fill_cmd can't fail here, no data buffer to map */
6564        (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6565                RAID_CTLR_LUNID, TYPE_MSG);
6566        c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6567        c->waiting = NULL;
6568        enqueue_cmd_and_start_io(h, c);
6569        /* Don't wait for completion, the reset won't complete.  Don't free
6570         * the command either.  This is the last command we will send before
6571         * re-initializing everything, so it doesn't matter and won't leak.
6572         */
6573        return;
6574}
6575
6576static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6577        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6578        int cmd_type)
6579{
6580        int pci_dir = XFER_NONE;
6581
6582        c->cmd_type = CMD_IOCTL_PEND;
6583        c->scsi_cmd = SCSI_CMD_BUSY;
6584        c->Header.ReplyQueue = 0;
6585        if (buff != NULL && size > 0) {
6586                c->Header.SGList = 1;
6587                c->Header.SGTotal = cpu_to_le16(1);
6588        } else {
6589                c->Header.SGList = 0;
6590                c->Header.SGTotal = cpu_to_le16(0);
6591        }
6592        memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6593
6594        if (cmd_type == TYPE_CMD) {
6595                switch (cmd) {
6596                case HPSA_INQUIRY:
6597                        /* are we trying to read a vital product page */
6598                        if (page_code & VPD_PAGE) {
6599                                c->Request.CDB[1] = 0x01;
6600                                c->Request.CDB[2] = (page_code & 0xff);
6601                        }
6602                        c->Request.CDBLen = 6;
6603                        c->Request.type_attr_dir =
6604                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6605                        c->Request.Timeout = 0;
6606                        c->Request.CDB[0] = HPSA_INQUIRY;
6607                        c->Request.CDB[4] = size & 0xFF;
6608                        break;
6609                case RECEIVE_DIAGNOSTIC:
6610                        c->Request.CDBLen = 6;
6611                        c->Request.type_attr_dir =
6612                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6613                        c->Request.Timeout = 0;
6614                        c->Request.CDB[0] = cmd;
6615                        c->Request.CDB[1] = 1;
6616                        c->Request.CDB[2] = 1;
6617                        c->Request.CDB[3] = (size >> 8) & 0xFF;
6618                        c->Request.CDB[4] = size & 0xFF;
6619                        break;
6620                case HPSA_REPORT_LOG:
6621                case HPSA_REPORT_PHYS:
6622                        /* Talking to controller so It's a physical command
6623                           mode = 00 target = 0.  Nothing to write.
6624                         */
6625                        c->Request.CDBLen = 12;
6626                        c->Request.type_attr_dir =
6627                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6628                        c->Request.Timeout = 0;
6629                        c->Request.CDB[0] = cmd;
6630                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6631                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6632                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6633                        c->Request.CDB[9] = size & 0xFF;
6634                        break;
6635                case BMIC_SENSE_DIAG_OPTIONS:
6636                        c->Request.CDBLen = 16;
6637                        c->Request.type_attr_dir =
6638                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639                        c->Request.Timeout = 0;
6640                        /* Spec says this should be BMIC_WRITE */
6641                        c->Request.CDB[0] = BMIC_READ;
6642                        c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6643                        break;
6644                case BMIC_SET_DIAG_OPTIONS:
6645                        c->Request.CDBLen = 16;
6646                        c->Request.type_attr_dir =
6647                                        TYPE_ATTR_DIR(cmd_type,
6648                                                ATTR_SIMPLE, XFER_WRITE);
6649                        c->Request.Timeout = 0;
6650                        c->Request.CDB[0] = BMIC_WRITE;
6651                        c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6652                        break;
6653                case HPSA_CACHE_FLUSH:
6654                        c->Request.CDBLen = 12;
6655                        c->Request.type_attr_dir =
6656                                        TYPE_ATTR_DIR(cmd_type,
6657                                                ATTR_SIMPLE, XFER_WRITE);
6658                        c->Request.Timeout = 0;
6659                        c->Request.CDB[0] = BMIC_WRITE;
6660                        c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6661                        c->Request.CDB[7] = (size >> 8) & 0xFF;
6662                        c->Request.CDB[8] = size & 0xFF;
6663                        break;
6664                case TEST_UNIT_READY:
6665                        c->Request.CDBLen = 6;
6666                        c->Request.type_attr_dir =
6667                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6668                        c->Request.Timeout = 0;
6669                        break;
6670                case HPSA_GET_RAID_MAP:
6671                        c->Request.CDBLen = 12;
6672                        c->Request.type_attr_dir =
6673                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6674                        c->Request.Timeout = 0;
6675                        c->Request.CDB[0] = HPSA_CISS_READ;
6676                        c->Request.CDB[1] = cmd;
6677                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6678                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6679                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6680                        c->Request.CDB[9] = size & 0xFF;
6681                        break;
6682                case BMIC_SENSE_CONTROLLER_PARAMETERS:
6683                        c->Request.CDBLen = 10;
6684                        c->Request.type_attr_dir =
6685                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6686                        c->Request.Timeout = 0;
6687                        c->Request.CDB[0] = BMIC_READ;
6688                        c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6689                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6690                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6691                        break;
6692                case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6693                        c->Request.CDBLen = 10;
6694                        c->Request.type_attr_dir =
6695                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696                        c->Request.Timeout = 0;
6697                        c->Request.CDB[0] = BMIC_READ;
6698                        c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6699                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6700                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6701                        break;
6702                case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6703                        c->Request.CDBLen = 10;
6704                        c->Request.type_attr_dir =
6705                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6706                        c->Request.Timeout = 0;
6707                        c->Request.CDB[0] = BMIC_READ;
6708                        c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6709                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6710                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6711                        break;
6712                case BMIC_SENSE_STORAGE_BOX_PARAMS:
6713                        c->Request.CDBLen = 10;
6714                        c->Request.type_attr_dir =
6715                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6716                        c->Request.Timeout = 0;
6717                        c->Request.CDB[0] = BMIC_READ;
6718                        c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6719                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6720                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6721                        break;
6722                case BMIC_IDENTIFY_CONTROLLER:
6723                        c->Request.CDBLen = 10;
6724                        c->Request.type_attr_dir =
6725                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6726                        c->Request.Timeout = 0;
6727                        c->Request.CDB[0] = BMIC_READ;
6728                        c->Request.CDB[1] = 0;
6729                        c->Request.CDB[2] = 0;
6730                        c->Request.CDB[3] = 0;
6731                        c->Request.CDB[4] = 0;
6732                        c->Request.CDB[5] = 0;
6733                        c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6734                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6735                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6736                        c->Request.CDB[9] = 0;
6737                        break;
6738                default:
6739                        dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6740                        BUG();
6741                }
6742        } else if (cmd_type == TYPE_MSG) {
6743                switch (cmd) {
6744
6745                case  HPSA_PHYS_TARGET_RESET:
6746                        c->Request.CDBLen = 16;
6747                        c->Request.type_attr_dir =
6748                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6749                        c->Request.Timeout = 0; /* Don't time out */
6750                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6751                        c->Request.CDB[0] = HPSA_RESET;
6752                        c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6753                        /* Physical target reset needs no control bytes 4-7*/
6754                        c->Request.CDB[4] = 0x00;
6755                        c->Request.CDB[5] = 0x00;
6756                        c->Request.CDB[6] = 0x00;
6757                        c->Request.CDB[7] = 0x00;
6758                        break;
6759                case  HPSA_DEVICE_RESET_MSG:
6760                        c->Request.CDBLen = 16;
6761                        c->Request.type_attr_dir =
6762                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6763                        c->Request.Timeout = 0; /* Don't time out */
6764                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6765                        c->Request.CDB[0] =  cmd;
6766                        c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6767                        /* If bytes 4-7 are zero, it means reset the */
6768                        /* LunID device */
6769                        c->Request.CDB[4] = 0x00;
6770                        c->Request.CDB[5] = 0x00;
6771                        c->Request.CDB[6] = 0x00;
6772                        c->Request.CDB[7] = 0x00;
6773                        break;
6774                default:
6775                        dev_warn(&h->pdev->dev, "unknown message type %d\n",
6776                                cmd);
6777                        BUG();
6778                }
6779        } else {
6780                dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6781                BUG();
6782        }
6783
6784        switch (GET_DIR(c->Request.type_attr_dir)) {
6785        case XFER_READ:
6786                pci_dir = PCI_DMA_FROMDEVICE;
6787                break;
6788        case XFER_WRITE:
6789                pci_dir = PCI_DMA_TODEVICE;
6790                break;
6791        case XFER_NONE:
6792                pci_dir = PCI_DMA_NONE;
6793                break;
6794        default:
6795                pci_dir = PCI_DMA_BIDIRECTIONAL;
6796        }
6797        if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6798                return -1;
6799        return 0;
6800}
6801
6802/*
6803 * Map (physical) PCI mem into (virtual) kernel space
6804 */
6805static void __iomem *remap_pci_mem(ulong base, ulong size)
6806{
6807        ulong page_base = ((ulong) base) & PAGE_MASK;
6808        ulong page_offs = ((ulong) base) - page_base;
6809        void __iomem *page_remapped = ioremap_nocache(page_base,
6810                page_offs + size);
6811
6812        return page_remapped ? (page_remapped + page_offs) : NULL;
6813}
6814
6815static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6816{
6817        return h->access.command_completed(h, q);
6818}
6819
6820static inline bool interrupt_pending(struct ctlr_info *h)
6821{
6822        return h->access.intr_pending(h);
6823}
6824
6825static inline long interrupt_not_for_us(struct ctlr_info *h)
6826{
6827        return (h->access.intr_pending(h) == 0) ||
6828                (h->interrupts_enabled == 0);
6829}
6830
6831static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6832        u32 raw_tag)
6833{
6834        if (unlikely(tag_index >= h->nr_cmds)) {
6835                dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6836                return 1;
6837        }
6838        return 0;
6839}
6840
6841static inline void finish_cmd(struct CommandList *c)
6842{
6843        dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6844        if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6845                        || c->cmd_type == CMD_IOACCEL2))
6846                complete_scsi_command(c);
6847        else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6848                complete(c->waiting);
6849}
6850
6851/* process completion of an indexed ("direct lookup") command */
6852static inline void process_indexed_cmd(struct ctlr_info *h,
6853        u32 raw_tag)
6854{
6855        u32 tag_index;
6856        struct CommandList *c;
6857
6858        tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6859        if (!bad_tag(h, tag_index, raw_tag)) {
6860                c = h->cmd_pool + tag_index;
6861                finish_cmd(c);
6862        }
6863}
6864
6865/* Some controllers, like p400, will give us one interrupt
6866 * after a soft reset, even if we turned interrupts off.
6867 * Only need to check for this in the hpsa_xxx_discard_completions
6868 * functions.
6869 */
6870static int ignore_bogus_interrupt(struct ctlr_info *h)
6871{
6872        if (likely(!reset_devices))
6873                return 0;
6874
6875        if (likely(h->interrupts_enabled))
6876                return 0;
6877
6878        dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6879                "(known firmware bug.)  Ignoring.\n");
6880
6881        return 1;
6882}
6883
6884/*
6885 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6886 * Relies on (h-q[x] == x) being true for x such that
6887 * 0 <= x < MAX_REPLY_QUEUES.
6888 */
6889static struct ctlr_info *queue_to_hba(u8 *queue)
6890{
6891        return container_of((queue - *queue), struct ctlr_info, q[0]);
6892}
6893
6894static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6895{
6896        struct ctlr_info *h = queue_to_hba(queue);
6897        u8 q = *(u8 *) queue;
6898        u32 raw_tag;
6899
6900        if (ignore_bogus_interrupt(h))
6901                return IRQ_NONE;
6902
6903        if (interrupt_not_for_us(h))
6904                return IRQ_NONE;
6905        h->last_intr_timestamp = get_jiffies_64();
6906        while (interrupt_pending(h)) {
6907                raw_tag = get_next_completion(h, q);
6908                while (raw_tag != FIFO_EMPTY)
6909                        raw_tag = next_command(h, q);
6910        }
6911        return IRQ_HANDLED;
6912}
6913
6914static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6915{
6916        struct ctlr_info *h = queue_to_hba(queue);
6917        u32 raw_tag;
6918        u8 q = *(u8 *) queue;
6919
6920        if (ignore_bogus_interrupt(h))
6921                return IRQ_NONE;
6922
6923        h->last_intr_timestamp = get_jiffies_64();
6924        raw_tag = get_next_completion(h, q);
6925        while (raw_tag != FIFO_EMPTY)
6926                raw_tag = next_command(h, q);
6927        return IRQ_HANDLED;
6928}
6929
6930static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6931{
6932        struct ctlr_info *h = queue_to_hba((u8 *) queue);
6933        u32 raw_tag;
6934        u8 q = *(u8 *) queue;
6935
6936        if (interrupt_not_for_us(h))
6937                return IRQ_NONE;
6938        h->last_intr_timestamp = get_jiffies_64();
6939        while (interrupt_pending(h)) {
6940                raw_tag = get_next_completion(h, q);
6941                while (raw_tag != FIFO_EMPTY) {
6942                        process_indexed_cmd(h, raw_tag);
6943                        raw_tag = next_command(h, q);
6944                }
6945        }
6946        return IRQ_HANDLED;
6947}
6948
6949static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6950{
6951        struct ctlr_info *h = queue_to_hba(queue);
6952        u32 raw_tag;
6953        u8 q = *(u8 *) queue;
6954
6955        h->last_intr_timestamp = get_jiffies_64();
6956        raw_tag = get_next_completion(h, q);
6957        while (raw_tag != FIFO_EMPTY) {
6958                process_indexed_cmd(h, raw_tag);
6959                raw_tag = next_command(h, q);
6960        }
6961        return IRQ_HANDLED;
6962}
6963
6964/* Send a message CDB to the firmware. Careful, this only works
6965 * in simple mode, not performant mode due to the tag lookup.
6966 * We only ever use this immediately after a controller reset.
6967 */
6968static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6969                        unsigned char type)
6970{
6971        struct Command {
6972                struct CommandListHeader CommandHeader;
6973                struct RequestBlock Request;
6974                struct ErrDescriptor ErrorDescriptor;
6975        };
6976        struct Command *cmd;
6977        static const size_t cmd_sz = sizeof(*cmd) +
6978                                        sizeof(cmd->ErrorDescriptor);
6979        dma_addr_t paddr64;
6980        __le32 paddr32;
6981        u32 tag;
6982        void __iomem *vaddr;
6983        int i, err;
6984
6985        vaddr = pci_ioremap_bar(pdev, 0);
6986        if (vaddr == NULL)
6987                return -ENOMEM;
6988
6989        /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6990         * CCISS commands, so they must be allocated from the lower 4GiB of
6991         * memory.
6992         */
6993        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6994        if (err) {
6995                iounmap(vaddr);
6996                return err;
6997        }
6998
6999        cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7000        if (cmd == NULL) {
7001                iounmap(vaddr);
7002                return -ENOMEM;
7003        }
7004
7005        /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7006         * although there's no guarantee, we assume that the address is at
7007         * least 4-byte aligned (most likely, it's page-aligned).
7008         */
7009        paddr32 = cpu_to_le32(paddr64);
7010
7011        cmd->CommandHeader.ReplyQueue = 0;
7012        cmd->CommandHeader.SGList = 0;
7013        cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7014        cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7015        memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7016
7017        cmd->Request.CDBLen = 16;
7018        cmd->Request.type_attr_dir =
7019                        TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7020        cmd->Request.Timeout = 0; /* Don't time out */
7021        cmd->Request.CDB[0] = opcode;
7022        cmd->Request.CDB[1] = type;
7023        memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7024        cmd->ErrorDescriptor.Addr =
7025                        cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7026        cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7027
7028        writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7029
7030        for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7031                tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7032                if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7033                        break;
7034                msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7035        }
7036
7037        iounmap(vaddr);
7038
7039        /* we leak the DMA buffer here ... no choice since the controller could
7040         *  still complete the command.
7041         */
7042        if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7043                dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7044                        opcode, type);
7045                return -ETIMEDOUT;
7046        }
7047
7048        pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7049
7050        if (tag & HPSA_ERROR_BIT) {
7051                dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7052                        opcode, type);
7053                return -EIO;
7054        }
7055
7056        dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7057                opcode, type);
7058        return 0;
7059}
7060
7061#define hpsa_noop(p) hpsa_message(p, 3, 0)
7062
7063static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7064        void __iomem *vaddr, u32 use_doorbell)
7065{
7066
7067        if (use_doorbell) {
7068                /* For everything after the P600, the PCI power state method
7069                 * of resetting the controller doesn't work, so we have this
7070                 * other way using the doorbell register.
7071                 */
7072                dev_info(&pdev->dev, "using doorbell to reset controller\n");
7073                writel(use_doorbell, vaddr + SA5_DOORBELL);
7074
7075                /* PMC hardware guys tell us we need a 10 second delay after
7076                 * doorbell reset and before any attempt to talk to the board
7077                 * at all to ensure that this actually works and doesn't fall
7078                 * over in some weird corner cases.
7079                 */
7080                msleep(10000);
7081        } else { /* Try to do it the PCI power state way */
7082
7083                /* Quoting from the Open CISS Specification: "The Power
7084                 * Management Control/Status Register (CSR) controls the power
7085                 * state of the device.  The normal operating state is D0,
7086                 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7087                 * the controller, place the interface device in D3 then to D0,
7088                 * this causes a secondary PCI reset which will reset the
7089                 * controller." */
7090
7091                int rc = 0;
7092
7093                dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7094
7095                /* enter the D3hot power management state */
7096                rc = pci_set_power_state(pdev, PCI_D3hot);
7097                if (rc)
7098                        return rc;
7099
7100                msleep(500);
7101
7102                /* enter the D0 power management state */
7103                rc = pci_set_power_state(pdev, PCI_D0);
7104                if (rc)
7105                        return rc;
7106
7107                /*
7108                 * The P600 requires a small delay when changing states.
7109                 * Otherwise we may think the board did not reset and we bail.
7110                 * This for kdump only and is particular to the P600.
7111                 */
7112                msleep(500);
7113        }
7114        return 0;
7115}
7116
7117static void init_driver_version(char *driver_version, int len)
7118{
7119        memset(driver_version, 0, len);
7120        strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7121}
7122
7123static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7124{
7125        char *driver_version;
7126        int i, size = sizeof(cfgtable->driver_version);
7127
7128        driver_version = kmalloc(size, GFP_KERNEL);
7129        if (!driver_version)
7130                return -ENOMEM;
7131
7132        init_driver_version(driver_version, size);
7133        for (i = 0; i < size; i++)
7134                writeb(driver_version[i], &cfgtable->driver_version[i]);
7135        kfree(driver_version);
7136        return 0;
7137}
7138
7139static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7140                                          unsigned char *driver_ver)
7141{
7142        int i;
7143
7144        for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7145                driver_ver[i] = readb(&cfgtable->driver_version[i]);
7146}
7147
7148static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7149{
7150
7151        char *driver_ver, *old_driver_ver;
7152        int rc, size = sizeof(cfgtable->driver_version);
7153
7154        old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7155        if (!old_driver_ver)
7156                return -ENOMEM;
7157        driver_ver = old_driver_ver + size;
7158
7159        /* After a reset, the 32 bytes of "driver version" in the cfgtable
7160         * should have been changed, otherwise we know the reset failed.
7161         */
7162        init_driver_version(old_driver_ver, size);
7163        read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7164        rc = !memcmp(driver_ver, old_driver_ver, size);
7165        kfree(old_driver_ver);
7166        return rc;
7167}
7168/* This does a hard reset of the controller using PCI power management
7169 * states or the using the doorbell register.
7170 */
7171static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7172{
7173        u64 cfg_offset;
7174        u32 cfg_base_addr;
7175        u64 cfg_base_addr_index;
7176        void __iomem *vaddr;
7177        unsigned long paddr;
7178        u32 misc_fw_support;
7179        int rc;
7180        struct CfgTable __iomem *cfgtable;
7181        u32 use_doorbell;
7182        u16 command_register;
7183
7184        /* For controllers as old as the P600, this is very nearly
7185         * the same thing as
7186         *
7187         * pci_save_state(pci_dev);
7188         * pci_set_power_state(pci_dev, PCI_D3hot);
7189         * pci_set_power_state(pci_dev, PCI_D0);
7190         * pci_restore_state(pci_dev);
7191         *
7192         * For controllers newer than the P600, the pci power state
7193         * method of resetting doesn't work so we have another way
7194         * using the doorbell register.
7195         */
7196
7197        if (!ctlr_is_resettable(board_id)) {
7198                dev_warn(&pdev->dev, "Controller not resettable\n");
7199                return -ENODEV;
7200        }
7201
7202        /* if controller is soft- but not hard resettable... */
7203        if (!ctlr_is_hard_resettable(board_id))
7204                return -ENOTSUPP; /* try soft reset later. */
7205
7206        /* Save the PCI command register */
7207        pci_read_config_word(pdev, 4, &command_register);
7208        pci_save_state(pdev);
7209
7210        /* find the first memory BAR, so we can find the cfg table */
7211        rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7212        if (rc)
7213                return rc;
7214        vaddr = remap_pci_mem(paddr, 0x250);
7215        if (!vaddr)
7216                return -ENOMEM;
7217
7218        /* find cfgtable in order to check if reset via doorbell is supported */
7219        rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7220                                        &cfg_base_addr_index, &cfg_offset);
7221        if (rc)
7222                goto unmap_vaddr;
7223        cfgtable = remap_pci_mem(pci_resource_start(pdev,
7224                       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7225        if (!cfgtable) {
7226                rc = -ENOMEM;
7227                goto unmap_vaddr;
7228        }
7229        rc = write_driver_ver_to_cfgtable(cfgtable);
7230        if (rc)
7231                goto unmap_cfgtable;
7232
7233        /* If reset via doorbell register is supported, use that.
7234         * There are two such methods.  Favor the newest method.
7235         */
7236        misc_fw_support = readl(&cfgtable->misc_fw_support);
7237        use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7238        if (use_doorbell) {
7239                use_doorbell = DOORBELL_CTLR_RESET2;
7240        } else {
7241                use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7242                if (use_doorbell) {
7243                        dev_warn(&pdev->dev,
7244                                "Soft reset not supported. Firmware update is required.\n");
7245                        rc = -ENOTSUPP; /* try soft reset */
7246                        goto unmap_cfgtable;
7247                }
7248        }
7249
7250        rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7251        if (rc)
7252                goto unmap_cfgtable;
7253
7254        pci_restore_state(pdev);
7255        pci_write_config_word(pdev, 4, command_register);
7256
7257        /* Some devices (notably the HP Smart Array 5i Controller)
7258           need a little pause here */
7259        msleep(HPSA_POST_RESET_PAUSE_MSECS);
7260
7261        rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7262        if (rc) {
7263                dev_warn(&pdev->dev,
7264                        "Failed waiting for board to become ready after hard reset\n");
7265                goto unmap_cfgtable;
7266        }
7267
7268        rc = controller_reset_failed(vaddr);
7269        if (rc < 0)
7270                goto unmap_cfgtable;
7271        if (rc) {
7272                dev_warn(&pdev->dev, "Unable to successfully reset "
7273                        "controller. Will try soft reset.\n");
7274                rc = -ENOTSUPP;
7275        } else {
7276                dev_info(&pdev->dev, "board ready after hard reset.\n");
7277        }
7278
7279unmap_cfgtable:
7280        iounmap(cfgtable);
7281
7282unmap_vaddr:
7283        iounmap(vaddr);
7284        return rc;
7285}
7286
7287/*
7288 *  We cannot read the structure directly, for portability we must use
7289 *   the io functions.
7290 *   This is for debug only.
7291 */
7292static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7293{
7294#ifdef HPSA_DEBUG
7295        int i;
7296        char temp_name[17];
7297
7298        dev_info(dev, "Controller Configuration information\n");
7299        dev_info(dev, "------------------------------------\n");
7300        for (i = 0; i < 4; i++)
7301                temp_name[i] = readb(&(tb->Signature[i]));
7302        temp_name[4] = '\0';
7303        dev_info(dev, "   Signature = %s\n", temp_name);
7304        dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7305        dev_info(dev, "   Transport methods supported = 0x%x\n",
7306               readl(&(tb->TransportSupport)));
7307        dev_info(dev, "   Transport methods active = 0x%x\n",
7308               readl(&(tb->TransportActive)));
7309        dev_info(dev, "   Requested transport Method = 0x%x\n",
7310               readl(&(tb->HostWrite.TransportRequest)));
7311        dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7312               readl(&(tb->HostWrite.CoalIntDelay)));
7313        dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7314               readl(&(tb->HostWrite.CoalIntCount)));
7315        dev_info(dev, "   Max outstanding commands = %d\n",
7316               readl(&(tb->CmdsOutMax)));
7317        dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7318        for (i = 0; i < 16; i++)
7319                temp_name[i] = readb(&(tb->ServerName[i]));
7320        temp_name[16] = '\0';
7321        dev_info(dev, "   Server Name = %s\n", temp_name);
7322        dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7323                readl(&(tb->HeartBeat)));
7324#endif                          /* HPSA_DEBUG */
7325}
7326
7327static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7328{
7329        int i, offset, mem_type, bar_type;
7330
7331        if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7332                return 0;
7333        offset = 0;
7334        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7335                bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7336                if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7337                        offset += 4;
7338                else {
7339                        mem_type = pci_resource_flags(pdev, i) &
7340                            PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7341                        switch (mem_type) {
7342                        case PCI_BASE_ADDRESS_MEM_TYPE_32:
7343                        case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7344                                offset += 4;    /* 32 bit */
7345                                break;
7346                        case PCI_BASE_ADDRESS_MEM_TYPE_64:
7347                                offset += 8;
7348                                break;
7349                        default:        /* reserved in PCI 2.2 */
7350                                dev_warn(&pdev->dev,
7351                                       "base address is invalid\n");
7352                                return -1;
7353                                break;
7354                        }
7355                }
7356                if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7357                        return i + 1;
7358        }
7359        return -1;
7360}
7361
7362static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7363{
7364        pci_free_irq_vectors(h->pdev);
7365        h->msix_vectors = 0;
7366}
7367
7368static void hpsa_setup_reply_map(struct ctlr_info *h)
7369{
7370        const struct cpumask *mask;
7371        unsigned int queue, cpu;
7372
7373        for (queue = 0; queue < h->msix_vectors; queue++) {
7374                mask = pci_irq_get_affinity(h->pdev, queue);
7375                if (!mask)
7376                        goto fallback;
7377
7378                for_each_cpu(cpu, mask)
7379                        h->reply_map[cpu] = queue;
7380        }
7381        return;
7382
7383fallback:
7384        for_each_possible_cpu(cpu)
7385                h->reply_map[cpu] = 0;
7386}
7387
7388/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7389 * controllers that are capable. If not, we use legacy INTx mode.
7390 */
7391static int hpsa_interrupt_mode(struct ctlr_info *h)
7392{
7393        unsigned int flags = PCI_IRQ_LEGACY;
7394        int ret;
7395
7396        /* Some boards advertise MSI but don't really support it */
7397        switch (h->board_id) {
7398        case 0x40700E11:
7399        case 0x40800E11:
7400        case 0x40820E11:
7401        case 0x40830E11:
7402                break;
7403        default:
7404                ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7405                                PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7406                if (ret > 0) {
7407                        h->msix_vectors = ret;
7408                        return 0;
7409                }
7410
7411                flags |= PCI_IRQ_MSI;
7412                break;
7413        }
7414
7415        ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7416        if (ret < 0)
7417                return ret;
7418        return 0;
7419}
7420
7421static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7422                                bool *legacy_board)
7423{
7424        int i;
7425        u32 subsystem_vendor_id, subsystem_device_id;
7426
7427        subsystem_vendor_id = pdev->subsystem_vendor;
7428        subsystem_device_id = pdev->subsystem_device;
7429        *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7430                    subsystem_vendor_id;
7431
7432        if (legacy_board)
7433                *legacy_board = false;
7434        for (i = 0; i < ARRAY_SIZE(products); i++)
7435                if (*board_id == products[i].board_id) {
7436                        if (products[i].access != &SA5A_access &&
7437                            products[i].access != &SA5B_access)
7438                                return i;
7439                        dev_warn(&pdev->dev,
7440                                 "legacy board ID: 0x%08x\n",
7441                                 *board_id);
7442                        if (legacy_board)
7443                            *legacy_board = true;
7444                        return i;
7445                }
7446
7447        dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7448        if (legacy_board)
7449                *legacy_board = true;
7450        return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7451}
7452
7453static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7454                                    unsigned long *memory_bar)
7455{
7456        int i;
7457
7458        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7459                if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7460                        /* addressing mode bits already removed */
7461                        *memory_bar = pci_resource_start(pdev, i);
7462                        dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7463                                *memory_bar);
7464                        return 0;
7465                }
7466        dev_warn(&pdev->dev, "no memory BAR found\n");
7467        return -ENODEV;
7468}
7469
7470static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7471                                     int wait_for_ready)
7472{
7473        int i, iterations;
7474        u32 scratchpad;
7475        if (wait_for_ready)
7476                iterations = HPSA_BOARD_READY_ITERATIONS;
7477        else
7478                iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7479
7480        for (i = 0; i < iterations; i++) {
7481                scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7482                if (wait_for_ready) {
7483                        if (scratchpad == HPSA_FIRMWARE_READY)
7484                                return 0;
7485                } else {
7486                        if (scratchpad != HPSA_FIRMWARE_READY)
7487                                return 0;
7488                }
7489                msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7490        }
7491        dev_warn(&pdev->dev, "board not ready, timed out.\n");
7492        return -ENODEV;
7493}
7494
7495static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7496                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7497                               u64 *cfg_offset)
7498{
7499        *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7500        *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7501        *cfg_base_addr &= (u32) 0x0000ffff;
7502        *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7503        if (*cfg_base_addr_index == -1) {
7504                dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7505                return -ENODEV;
7506        }
7507        return 0;
7508}
7509
7510static void hpsa_free_cfgtables(struct ctlr_info *h)
7511{
7512        if (h->transtable) {
7513                iounmap(h->transtable);
7514                h->transtable = NULL;
7515        }
7516        if (h->cfgtable) {
7517                iounmap(h->cfgtable);
7518                h->cfgtable = NULL;
7519        }
7520}
7521
7522/* Find and map CISS config table and transfer table
7523+ * several items must be unmapped (freed) later
7524+ * */
7525static int hpsa_find_cfgtables(struct ctlr_info *h)
7526{
7527        u64 cfg_offset;
7528        u32 cfg_base_addr;
7529        u64 cfg_base_addr_index;
7530        u32 trans_offset;
7531        int rc;
7532
7533        rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7534                &cfg_base_addr_index, &cfg_offset);
7535        if (rc)
7536                return rc;
7537        h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7538                       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7539        if (!h->cfgtable) {
7540                dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7541                return -ENOMEM;
7542        }
7543        rc = write_driver_ver_to_cfgtable(h->cfgtable);
7544        if (rc)
7545                return rc;
7546        /* Find performant mode table. */
7547        trans_offset = readl(&h->cfgtable->TransMethodOffset);
7548        h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7549                                cfg_base_addr_index)+cfg_offset+trans_offset,
7550                                sizeof(*h->transtable));
7551        if (!h->transtable) {
7552                dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7553                hpsa_free_cfgtables(h);
7554                return -ENOMEM;
7555        }
7556        return 0;
7557}
7558
7559static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7560{
7561#define MIN_MAX_COMMANDS 16
7562        BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7563
7564        h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7565
7566        /* Limit commands in memory limited kdump scenario. */
7567        if (reset_devices && h->max_commands > 32)
7568                h->max_commands = 32;
7569
7570        if (h->max_commands < MIN_MAX_COMMANDS) {
7571                dev_warn(&h->pdev->dev,
7572                        "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7573                        h->max_commands,
7574                        MIN_MAX_COMMANDS);
7575                h->max_commands = MIN_MAX_COMMANDS;
7576        }
7577}
7578
7579/* If the controller reports that the total max sg entries is greater than 512,
7580 * then we know that chained SG blocks work.  (Original smart arrays did not
7581 * support chained SG blocks and would return zero for max sg entries.)
7582 */
7583static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7584{
7585        return h->maxsgentries > 512;
7586}
7587
7588/* Interrogate the hardware for some limits:
7589 * max commands, max SG elements without chaining, and with chaining,
7590 * SG chain block size, etc.
7591 */
7592static void hpsa_find_board_params(struct ctlr_info *h)
7593{
7594        hpsa_get_max_perf_mode_cmds(h);
7595        h->nr_cmds = h->max_commands;
7596        h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7597        h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7598        if (hpsa_supports_chained_sg_blocks(h)) {
7599                /* Limit in-command s/g elements to 32 save dma'able memory. */
7600                h->max_cmd_sg_entries = 32;
7601                h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7602                h->maxsgentries--; /* save one for chain pointer */
7603        } else {
7604                /*
7605                 * Original smart arrays supported at most 31 s/g entries
7606                 * embedded inline in the command (trying to use more
7607                 * would lock up the controller)
7608                 */
7609                h->max_cmd_sg_entries = 31;
7610                h->maxsgentries = 31; /* default to traditional values */
7611                h->chainsize = 0;
7612        }
7613
7614        /* Find out what task management functions are supported and cache */
7615        h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7616        if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7617                dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7618        if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7619                dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7620        if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7621                dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7622}
7623
7624static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7625{
7626        if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7627                dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7628                return false;
7629        }
7630        return true;
7631}
7632
7633static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7634{
7635        u32 driver_support;
7636
7637        driver_support = readl(&(h->cfgtable->driver_support));
7638        /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7639#ifdef CONFIG_X86
7640        driver_support |= ENABLE_SCSI_PREFETCH;
7641#endif
7642        driver_support |= ENABLE_UNIT_ATTN;
7643        writel(driver_support, &(h->cfgtable->driver_support));
7644}
7645
7646/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7647 * in a prefetch beyond physical memory.
7648 */
7649static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7650{
7651        u32 dma_prefetch;
7652
7653        if (h->board_id != 0x3225103C)
7654                return;
7655        dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7656        dma_prefetch |= 0x8000;
7657        writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7658}
7659
7660static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7661{
7662        int i;
7663        u32 doorbell_value;
7664        unsigned long flags;
7665        /* wait until the clear_event_notify bit 6 is cleared by controller. */
7666        for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7667                spin_lock_irqsave(&h->lock, flags);
7668                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7669                spin_unlock_irqrestore(&h->lock, flags);
7670                if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7671                        goto done;
7672                /* delay and try again */
7673                msleep(CLEAR_EVENT_WAIT_INTERVAL);
7674        }
7675        return -ENODEV;
7676done:
7677        return 0;
7678}
7679
7680static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7681{
7682        int i;
7683        u32 doorbell_value;
7684        unsigned long flags;
7685
7686        /* under certain very rare conditions, this can take awhile.
7687         * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7688         * as we enter this code.)
7689         */
7690        for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7691                if (h->remove_in_progress)
7692                        goto done;
7693                spin_lock_irqsave(&h->lock, flags);
7694                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695                spin_unlock_irqrestore(&h->lock, flags);
7696                if (!(doorbell_value & CFGTBL_ChangeReq))
7697                        goto done;
7698                /* delay and try again */
7699                msleep(MODE_CHANGE_WAIT_INTERVAL);
7700        }
7701        return -ENODEV;
7702done:
7703        return 0;
7704}
7705
7706/* return -ENODEV or other reason on error, 0 on success */
7707static int hpsa_enter_simple_mode(struct ctlr_info *h)
7708{
7709        u32 trans_support;
7710
7711        trans_support = readl(&(h->cfgtable->TransportSupport));
7712        if (!(trans_support & SIMPLE_MODE))
7713                return -ENOTSUPP;
7714
7715        h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7716
7717        /* Update the field, and then ring the doorbell */
7718        writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7719        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7720        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7721        if (hpsa_wait_for_mode_change_ack(h))
7722                goto error;
7723        print_cfg_table(&h->pdev->dev, h->cfgtable);
7724        if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7725                goto error;
7726        h->transMethod = CFGTBL_Trans_Simple;
7727        return 0;
7728error:
7729        dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7730        return -ENODEV;
7731}
7732
7733/* free items allocated or mapped by hpsa_pci_init */
7734static void hpsa_free_pci_init(struct ctlr_info *h)
7735{
7736        hpsa_free_cfgtables(h);                 /* pci_init 4 */
7737        iounmap(h->vaddr);                      /* pci_init 3 */
7738        h->vaddr = NULL;
7739        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7740        /*
7741         * call pci_disable_device before pci_release_regions per
7742         * Documentation/PCI/pci.txt
7743         */
7744        pci_disable_device(h->pdev);            /* pci_init 1 */
7745        pci_release_regions(h->pdev);           /* pci_init 2 */
7746}
7747
7748/* several items must be freed later */
7749static int hpsa_pci_init(struct ctlr_info *h)
7750{
7751        int prod_index, err;
7752        bool legacy_board;
7753
7754        prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7755        if (prod_index < 0)
7756                return prod_index;
7757        h->product_name = products[prod_index].product_name;
7758        h->access = *(products[prod_index].access);
7759        h->legacy_board = legacy_board;
7760        pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7761                               PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7762
7763        err = pci_enable_device(h->pdev);
7764        if (err) {
7765                dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7766                pci_disable_device(h->pdev);
7767                return err;
7768        }
7769
7770        err = pci_request_regions(h->pdev, HPSA);
7771        if (err) {
7772                dev_err(&h->pdev->dev,
7773                        "failed to obtain PCI resources\n");
7774                pci_disable_device(h->pdev);
7775                return err;
7776        }
7777
7778        pci_set_master(h->pdev);
7779
7780        err = hpsa_interrupt_mode(h);
7781        if (err)
7782                goto clean1;
7783
7784        /* setup mapping between CPU and reply queue */
7785        hpsa_setup_reply_map(h);
7786
7787        err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7788        if (err)
7789                goto clean2;    /* intmode+region, pci */
7790        h->vaddr = remap_pci_mem(h->paddr, 0x250);
7791        if (!h->vaddr) {
7792                dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7793                err = -ENOMEM;
7794                goto clean2;    /* intmode+region, pci */
7795        }
7796        err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7797        if (err)
7798                goto clean3;    /* vaddr, intmode+region, pci */
7799        err = hpsa_find_cfgtables(h);
7800        if (err)
7801                goto clean3;    /* vaddr, intmode+region, pci */
7802        hpsa_find_board_params(h);
7803
7804        if (!hpsa_CISS_signature_present(h)) {
7805                err = -ENODEV;
7806                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7807        }
7808        hpsa_set_driver_support_bits(h);
7809        hpsa_p600_dma_prefetch_quirk(h);
7810        err = hpsa_enter_simple_mode(h);
7811        if (err)
7812                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7813        return 0;
7814
7815clean4: /* cfgtables, vaddr, intmode+region, pci */
7816        hpsa_free_cfgtables(h);
7817clean3: /* vaddr, intmode+region, pci */
7818        iounmap(h->vaddr);
7819        h->vaddr = NULL;
7820clean2: /* intmode+region, pci */
7821        hpsa_disable_interrupt_mode(h);
7822clean1:
7823        /*
7824         * call pci_disable_device before pci_release_regions per
7825         * Documentation/PCI/pci.txt
7826         */
7827        pci_disable_device(h->pdev);
7828        pci_release_regions(h->pdev);
7829        return err;
7830}
7831
7832static void hpsa_hba_inquiry(struct ctlr_info *h)
7833{
7834        int rc;
7835
7836#define HBA_INQUIRY_BYTE_COUNT 64
7837        h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7838        if (!h->hba_inquiry_data)
7839                return;
7840        rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7841                h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7842        if (rc != 0) {
7843                kfree(h->hba_inquiry_data);
7844                h->hba_inquiry_data = NULL;
7845        }
7846}
7847
7848static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7849{
7850        int rc, i;
7851        void __iomem *vaddr;
7852
7853        if (!reset_devices)
7854                return 0;
7855
7856        /* kdump kernel is loading, we don't know in which state is
7857         * the pci interface. The dev->enable_cnt is equal zero
7858         * so we call enable+disable, wait a while and switch it on.
7859         */
7860        rc = pci_enable_device(pdev);
7861        if (rc) {
7862                dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7863                return -ENODEV;
7864        }
7865        pci_disable_device(pdev);
7866        msleep(260);                    /* a randomly chosen number */
7867        rc = pci_enable_device(pdev);
7868        if (rc) {
7869                dev_warn(&pdev->dev, "failed to enable device.\n");
7870                return -ENODEV;
7871        }
7872
7873        pci_set_master(pdev);
7874
7875        vaddr = pci_ioremap_bar(pdev, 0);
7876        if (vaddr == NULL) {
7877                rc = -ENOMEM;
7878                goto out_disable;
7879        }
7880        writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7881        iounmap(vaddr);
7882
7883        /* Reset the controller with a PCI power-cycle or via doorbell */
7884        rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7885
7886        /* -ENOTSUPP here means we cannot reset the controller
7887         * but it's already (and still) up and running in
7888         * "performant mode".  Or, it might be 640x, which can't reset
7889         * due to concerns about shared bbwc between 6402/6404 pair.
7890         */
7891        if (rc)
7892                goto out_disable;
7893
7894        /* Now try to get the controller to respond to a no-op */
7895        dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7896        for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7897                if (hpsa_noop(pdev) == 0)
7898                        break;
7899                else
7900                        dev_warn(&pdev->dev, "no-op failed%s\n",
7901                                        (i < 11 ? "; re-trying" : ""));
7902        }
7903
7904out_disable:
7905
7906        pci_disable_device(pdev);
7907        return rc;
7908}
7909
7910static void hpsa_free_cmd_pool(struct ctlr_info *h)
7911{
7912        kfree(h->cmd_pool_bits);
7913        h->cmd_pool_bits = NULL;
7914        if (h->cmd_pool) {
7915                pci_free_consistent(h->pdev,
7916                                h->nr_cmds * sizeof(struct CommandList),
7917                                h->cmd_pool,
7918                                h->cmd_pool_dhandle);
7919                h->cmd_pool = NULL;
7920                h->cmd_pool_dhandle = 0;
7921        }
7922        if (h->errinfo_pool) {
7923                pci_free_consistent(h->pdev,
7924                                h->nr_cmds * sizeof(struct ErrorInfo),
7925                                h->errinfo_pool,
7926                                h->errinfo_pool_dhandle);
7927                h->errinfo_pool = NULL;
7928                h->errinfo_pool_dhandle = 0;
7929        }
7930}
7931
7932static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7933{
7934        h->cmd_pool_bits = kzalloc(
7935                DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7936                sizeof(unsigned long), GFP_KERNEL);
7937        h->cmd_pool = pci_alloc_consistent(h->pdev,
7938                    h->nr_cmds * sizeof(*h->cmd_pool),
7939                    &(h->cmd_pool_dhandle));
7940        h->errinfo_pool = pci_alloc_consistent(h->pdev,
7941                    h->nr_cmds * sizeof(*h->errinfo_pool),
7942                    &(h->errinfo_pool_dhandle));
7943        if ((h->cmd_pool_bits == NULL)
7944            || (h->cmd_pool == NULL)
7945            || (h->errinfo_pool == NULL)) {
7946                dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7947                goto clean_up;
7948        }
7949        hpsa_preinitialize_commands(h);
7950        return 0;
7951clean_up:
7952        hpsa_free_cmd_pool(h);
7953        return -ENOMEM;
7954}
7955
7956/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7957static void hpsa_free_irqs(struct ctlr_info *h)
7958{
7959        int i;
7960
7961        if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7962                /* Single reply queue, only one irq to free */
7963                free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7964                h->q[h->intr_mode] = 0;
7965                return;
7966        }
7967
7968        for (i = 0; i < h->msix_vectors; i++) {
7969                free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7970                h->q[i] = 0;
7971        }
7972        for (; i < MAX_REPLY_QUEUES; i++)
7973                h->q[i] = 0;
7974}
7975
7976/* returns 0 on success; cleans up and returns -Enn on error */
7977static int hpsa_request_irqs(struct ctlr_info *h,
7978        irqreturn_t (*msixhandler)(int, void *),
7979        irqreturn_t (*intxhandler)(int, void *))
7980{
7981        int rc, i;
7982
7983        /*
7984         * initialize h->q[x] = x so that interrupt handlers know which
7985         * queue to process.
7986         */
7987        for (i = 0; i < MAX_REPLY_QUEUES; i++)
7988                h->q[i] = (u8) i;
7989
7990        if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7991                /* If performant mode and MSI-X, use multiple reply queues */
7992                for (i = 0; i < h->msix_vectors; i++) {
7993                        sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7994                        rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7995                                        0, h->intrname[i],
7996                                        &h->q[i]);
7997                        if (rc) {
7998                                int j;
7999
8000                                dev_err(&h->pdev->dev,
8001                                        "failed to get irq %d for %s\n",
8002                                       pci_irq_vector(h->pdev, i), h->devname);
8003                                for (j = 0; j < i; j++) {
8004                                        free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8005                                        h->q[j] = 0;
8006                                }
8007                                for (; j < MAX_REPLY_QUEUES; j++)
8008                                        h->q[j] = 0;
8009                                return rc;
8010                        }
8011                }
8012        } else {
8013                /* Use single reply pool */
8014                if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8015                        sprintf(h->intrname[0], "%s-msi%s", h->devname,
8016                                h->msix_vectors ? "x" : "");
8017                        rc = request_irq(pci_irq_vector(h->pdev, 0),
8018                                msixhandler, 0,
8019                                h->intrname[0],
8020                                &h->q[h->intr_mode]);
8021                } else {
8022                        sprintf(h->intrname[h->intr_mode],
8023                                "%s-intx", h->devname);
8024                        rc = request_irq(pci_irq_vector(h->pdev, 0),
8025                                intxhandler, IRQF_SHARED,
8026                                h->intrname[0],
8027                                &h->q[h->intr_mode]);
8028                }
8029        }
8030        if (rc) {
8031                dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8032                       pci_irq_vector(h->pdev, 0), h->devname);
8033                hpsa_free_irqs(h);
8034                return -ENODEV;
8035        }
8036        return 0;
8037}
8038
8039static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8040{
8041        int rc;
8042        hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8043
8044        dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8045        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8046        if (rc) {
8047                dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8048                return rc;
8049        }
8050
8051        dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8052        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8053        if (rc) {
8054                dev_warn(&h->pdev->dev, "Board failed to become ready "
8055                        "after soft reset.\n");
8056                return rc;
8057        }
8058
8059        return 0;
8060}
8061
8062static void hpsa_free_reply_queues(struct ctlr_info *h)
8063{
8064        int i;
8065
8066        for (i = 0; i < h->nreply_queues; i++) {
8067                if (!h->reply_queue[i].head)
8068                        continue;
8069                pci_free_consistent(h->pdev,
8070                                        h->reply_queue_size,
8071                                        h->reply_queue[i].head,
8072                                        h->reply_queue[i].busaddr);
8073                h->reply_queue[i].head = NULL;
8074                h->reply_queue[i].busaddr = 0;
8075        }
8076        h->reply_queue_size = 0;
8077}
8078
8079static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8080{
8081        hpsa_free_performant_mode(h);           /* init_one 7 */
8082        hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8083        hpsa_free_cmd_pool(h);                  /* init_one 5 */
8084        hpsa_free_irqs(h);                      /* init_one 4 */
8085        scsi_host_put(h->scsi_host);            /* init_one 3 */
8086        h->scsi_host = NULL;                    /* init_one 3 */
8087        hpsa_free_pci_init(h);                  /* init_one 2_5 */
8088        free_percpu(h->lockup_detected);        /* init_one 2 */
8089        h->lockup_detected = NULL;              /* init_one 2 */
8090        if (h->resubmit_wq) {
8091                destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8092                h->resubmit_wq = NULL;
8093        }
8094        if (h->rescan_ctlr_wq) {
8095                destroy_workqueue(h->rescan_ctlr_wq);
8096                h->rescan_ctlr_wq = NULL;
8097        }
8098        kfree(h);                               /* init_one 1 */
8099}
8100
8101/* Called when controller lockup detected. */
8102static void fail_all_outstanding_cmds(struct ctlr_info *h)
8103{
8104        int i, refcount;
8105        struct CommandList *c;
8106        int failcount = 0;
8107
8108        flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8109        for (i = 0; i < h->nr_cmds; i++) {
8110                c = h->cmd_pool + i;
8111                refcount = atomic_inc_return(&c->refcount);
8112                if (refcount > 1) {
8113                        c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8114                        finish_cmd(c);
8115                        atomic_dec(&h->commands_outstanding);
8116                        failcount++;
8117                }
8118                cmd_free(h, c);
8119        }
8120        dev_warn(&h->pdev->dev,
8121                "failed %d commands in fail_all\n", failcount);
8122}
8123
8124static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8125{
8126        int cpu;
8127
8128        for_each_online_cpu(cpu) {
8129                u32 *lockup_detected;
8130                lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8131                *lockup_detected = value;
8132        }
8133        wmb(); /* be sure the per-cpu variables are out to memory */
8134}
8135
8136static void controller_lockup_detected(struct ctlr_info *h)
8137{
8138        unsigned long flags;
8139        u32 lockup_detected;
8140
8141        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8142        spin_lock_irqsave(&h->lock, flags);
8143        lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8144        if (!lockup_detected) {
8145                /* no heartbeat, but controller gave us a zero. */
8146                dev_warn(&h->pdev->dev,
8147                        "lockup detected after %d but scratchpad register is zero\n",
8148                        h->heartbeat_sample_interval / HZ);
8149                lockup_detected = 0xffffffff;
8150        }
8151        set_lockup_detected_for_all_cpus(h, lockup_detected);
8152        spin_unlock_irqrestore(&h->lock, flags);
8153        dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8154                        lockup_detected, h->heartbeat_sample_interval / HZ);
8155        if (lockup_detected == 0xffff0000) {
8156                dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8157                writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8158        }
8159        pci_disable_device(h->pdev);
8160        fail_all_outstanding_cmds(h);
8161}
8162
8163static int detect_controller_lockup(struct ctlr_info *h)
8164{
8165        u64 now;
8166        u32 heartbeat;
8167        unsigned long flags;
8168
8169        now = get_jiffies_64();
8170        /* If we've received an interrupt recently, we're ok. */
8171        if (time_after64(h->last_intr_timestamp +
8172                                (h->heartbeat_sample_interval), now))
8173                return false;
8174
8175        /*
8176         * If we've already checked the heartbeat recently, we're ok.
8177         * This could happen if someone sends us a signal. We
8178         * otherwise don't care about signals in this thread.
8179         */
8180        if (time_after64(h->last_heartbeat_timestamp +
8181                                (h->heartbeat_sample_interval), now))
8182                return false;
8183
8184        /* If heartbeat has not changed since we last looked, we're not ok. */
8185        spin_lock_irqsave(&h->lock, flags);
8186        heartbeat = readl(&h->cfgtable->HeartBeat);
8187        spin_unlock_irqrestore(&h->lock, flags);
8188        if (h->last_heartbeat == heartbeat) {
8189                controller_lockup_detected(h);
8190                return true;
8191        }
8192
8193        /* We're ok. */
8194        h->last_heartbeat = heartbeat;
8195        h->last_heartbeat_timestamp = now;
8196        return false;
8197}
8198
8199/*
8200 * Set ioaccel status for all ioaccel volumes.
8201 *
8202 * Called from monitor controller worker (hpsa_event_monitor_worker)
8203 *
8204 * A Volume (or Volumes that comprise an Array set may be undergoing a
8205 * transformation, so we will be turning off ioaccel for all volumes that
8206 * make up the Array.
8207 */
8208static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8209{
8210        int rc;
8211        int i;
8212        u8 ioaccel_status;
8213        unsigned char *buf;
8214        struct hpsa_scsi_dev_t *device;
8215
8216        if (!h)
8217                return;
8218
8219        buf = kmalloc(64, GFP_KERNEL);
8220        if (!buf)
8221                return;
8222
8223        /*
8224         * Run through current device list used during I/O requests.
8225         */
8226        for (i = 0; i < h->ndevices; i++) {
8227                device = h->dev[i];
8228
8229                if (!device)
8230                        continue;
8231                if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8232                                                HPSA_VPD_LV_IOACCEL_STATUS))
8233                        continue;
8234
8235                memset(buf, 0, 64);
8236
8237                rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8238                                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8239                                        buf, 64);
8240                if (rc != 0)
8241                        continue;
8242
8243                ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8244                device->offload_config =
8245                                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8246                if (device->offload_config)
8247                        device->offload_to_be_enabled =
8248                                !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8249
8250                /*
8251                 * Immediately turn off ioaccel for any volume the
8252                 * controller tells us to. Some of the reasons could be:
8253                 *    transformation - change to the LVs of an Array.
8254                 *    degraded volume - component failure
8255                 *
8256                 * If ioaccel is to be re-enabled, re-enable later during the
8257                 * scan operation so the driver can get a fresh raidmap
8258                 * before turning ioaccel back on.
8259                 *
8260                 */
8261                if (!device->offload_to_be_enabled)
8262                        device->offload_enabled = 0;
8263        }
8264
8265        kfree(buf);
8266}
8267
8268static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8269{
8270        char *event_type;
8271
8272        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8273                return;
8274
8275        /* Ask the controller to clear the events we're handling. */
8276        if ((h->transMethod & (CFGTBL_Trans_io_accel1
8277                        | CFGTBL_Trans_io_accel2)) &&
8278                (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8279                 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8280
8281                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8282                        event_type = "state change";
8283                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8284                        event_type = "configuration change";
8285                /* Stop sending new RAID offload reqs via the IO accelerator */
8286                scsi_block_requests(h->scsi_host);
8287                hpsa_set_ioaccel_status(h);
8288                hpsa_drain_accel_commands(h);
8289                /* Set 'accelerator path config change' bit */
8290                dev_warn(&h->pdev->dev,
8291                        "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8292                        h->events, event_type);
8293                writel(h->events, &(h->cfgtable->clear_event_notify));
8294                /* Set the "clear event notify field update" bit 6 */
8295                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8296                /* Wait until ctlr clears 'clear event notify field', bit 6 */
8297                hpsa_wait_for_clear_event_notify_ack(h);
8298                scsi_unblock_requests(h->scsi_host);
8299        } else {
8300                /* Acknowledge controller notification events. */
8301                writel(h->events, &(h->cfgtable->clear_event_notify));
8302                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8303                hpsa_wait_for_clear_event_notify_ack(h);
8304        }
8305        return;
8306}
8307
8308/* Check a register on the controller to see if there are configuration
8309 * changes (added/changed/removed logical drives, etc.) which mean that
8310 * we should rescan the controller for devices.
8311 * Also check flag for driver-initiated rescan.
8312 */
8313static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8314{
8315        if (h->drv_req_rescan) {
8316                h->drv_req_rescan = 0;
8317                return 1;
8318        }
8319
8320        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8321                return 0;
8322
8323        h->events = readl(&(h->cfgtable->event_notify));
8324        return h->events & RESCAN_REQUIRED_EVENT_BITS;
8325}
8326
8327/*
8328 * Check if any of the offline devices have become ready
8329 */
8330static int hpsa_offline_devices_ready(struct ctlr_info *h)
8331{
8332        unsigned long flags;
8333        struct offline_device_entry *d;
8334        struct list_head *this, *tmp;
8335
8336        spin_lock_irqsave(&h->offline_device_lock, flags);
8337        list_for_each_safe(this, tmp, &h->offline_device_list) {
8338                d = list_entry(this, struct offline_device_entry,
8339                                offline_list);
8340                spin_unlock_irqrestore(&h->offline_device_lock, flags);
8341                if (!hpsa_volume_offline(h, d->scsi3addr)) {
8342                        spin_lock_irqsave(&h->offline_device_lock, flags);
8343                        list_del(&d->offline_list);
8344                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8345                        return 1;
8346                }
8347                spin_lock_irqsave(&h->offline_device_lock, flags);
8348        }
8349        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8350        return 0;
8351}
8352
8353static int hpsa_luns_changed(struct ctlr_info *h)
8354{
8355        int rc = 1; /* assume there are changes */
8356        struct ReportLUNdata *logdev = NULL;
8357
8358        /* if we can't find out if lun data has changed,
8359         * assume that it has.
8360         */
8361
8362        if (!h->lastlogicals)
8363                return rc;
8364
8365        logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8366        if (!logdev)
8367                return rc;
8368
8369        if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8370                dev_warn(&h->pdev->dev,
8371                        "report luns failed, can't track lun changes.\n");
8372                goto out;
8373        }
8374        if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8375                dev_info(&h->pdev->dev,
8376                        "Lun changes detected.\n");
8377                memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8378                goto out;
8379        } else
8380                rc = 0; /* no changes detected. */
8381out:
8382        kfree(logdev);
8383        return rc;
8384}
8385
8386static void hpsa_perform_rescan(struct ctlr_info *h)
8387{
8388        struct Scsi_Host *sh = NULL;
8389        unsigned long flags;
8390
8391        /*
8392         * Do the scan after the reset
8393         */
8394        spin_lock_irqsave(&h->reset_lock, flags);
8395        if (h->reset_in_progress) {
8396                h->drv_req_rescan = 1;
8397                spin_unlock_irqrestore(&h->reset_lock, flags);
8398                return;
8399        }
8400        spin_unlock_irqrestore(&h->reset_lock, flags);
8401
8402        sh = scsi_host_get(h->scsi_host);
8403        if (sh != NULL) {
8404                hpsa_scan_start(sh);
8405                scsi_host_put(sh);
8406                h->drv_req_rescan = 0;
8407        }
8408}
8409
8410/*
8411 * watch for controller events
8412 */
8413static void hpsa_event_monitor_worker(struct work_struct *work)
8414{
8415        struct ctlr_info *h = container_of(to_delayed_work(work),
8416                                        struct ctlr_info, event_monitor_work);
8417        unsigned long flags;
8418
8419        spin_lock_irqsave(&h->lock, flags);
8420        if (h->remove_in_progress) {
8421                spin_unlock_irqrestore(&h->lock, flags);
8422                return;
8423        }
8424        spin_unlock_irqrestore(&h->lock, flags);
8425
8426        if (hpsa_ctlr_needs_rescan(h)) {
8427                hpsa_ack_ctlr_events(h);
8428                hpsa_perform_rescan(h);
8429        }
8430
8431        spin_lock_irqsave(&h->lock, flags);
8432        if (!h->remove_in_progress)
8433                schedule_delayed_work(&h->event_monitor_work,
8434                                        HPSA_EVENT_MONITOR_INTERVAL);
8435        spin_unlock_irqrestore(&h->lock, flags);
8436}
8437
8438static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8439{
8440        unsigned long flags;
8441        struct ctlr_info *h = container_of(to_delayed_work(work),
8442                                        struct ctlr_info, rescan_ctlr_work);
8443
8444        spin_lock_irqsave(&h->lock, flags);
8445        if (h->remove_in_progress) {
8446                spin_unlock_irqrestore(&h->lock, flags);
8447                return;
8448        }
8449        spin_unlock_irqrestore(&h->lock, flags);
8450
8451        if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8452                hpsa_perform_rescan(h);
8453        } else if (h->discovery_polling) {
8454                if (hpsa_luns_changed(h)) {
8455                        dev_info(&h->pdev->dev,
8456                                "driver discovery polling rescan.\n");
8457                        hpsa_perform_rescan(h);
8458                }
8459        }
8460        spin_lock_irqsave(&h->lock, flags);
8461        if (!h->remove_in_progress)
8462                queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8463                                h->heartbeat_sample_interval);
8464        spin_unlock_irqrestore(&h->lock, flags);
8465}
8466
8467static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8468{
8469        unsigned long flags;
8470        struct ctlr_info *h = container_of(to_delayed_work(work),
8471                                        struct ctlr_info, monitor_ctlr_work);
8472
8473        detect_controller_lockup(h);
8474        if (lockup_detected(h))
8475                return;
8476
8477        spin_lock_irqsave(&h->lock, flags);
8478        if (!h->remove_in_progress)
8479                schedule_delayed_work(&h->monitor_ctlr_work,
8480                                h->heartbeat_sample_interval);
8481        spin_unlock_irqrestore(&h->lock, flags);
8482}
8483
8484static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8485                                                char *name)
8486{
8487        struct workqueue_struct *wq = NULL;
8488
8489        wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8490        if (!wq)
8491                dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8492
8493        return wq;
8494}
8495
8496static void hpda_free_ctlr_info(struct ctlr_info *h)
8497{
8498        kfree(h->reply_map);
8499        kfree(h);
8500}
8501
8502static struct ctlr_info *hpda_alloc_ctlr_info(void)
8503{
8504        struct ctlr_info *h;
8505
8506        h = kzalloc(sizeof(*h), GFP_KERNEL);
8507        if (!h)
8508                return NULL;
8509
8510        h->reply_map = kzalloc(sizeof(*h->reply_map) * nr_cpu_ids, GFP_KERNEL);
8511        if (!h->reply_map) {
8512                kfree(h);
8513                return NULL;
8514        }
8515        return h;
8516}
8517
8518static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8519{
8520        int dac, rc;
8521        struct ctlr_info *h;
8522        int try_soft_reset = 0;
8523        unsigned long flags;
8524        u32 board_id;
8525
8526        if (number_of_controllers == 0)
8527                printk(KERN_INFO DRIVER_NAME "\n");
8528
8529        rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8530        if (rc < 0) {
8531                dev_warn(&pdev->dev, "Board ID not found\n");
8532                return rc;
8533        }
8534
8535        rc = hpsa_init_reset_devices(pdev, board_id);
8536        if (rc) {
8537                if (rc != -ENOTSUPP)
8538                        return rc;
8539                /* If the reset fails in a particular way (it has no way to do
8540                 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8541                 * a soft reset once we get the controller configured up to the
8542                 * point that it can accept a command.
8543                 */
8544                try_soft_reset = 1;
8545                rc = 0;
8546        }
8547
8548reinit_after_soft_reset:
8549
8550        /* Command structures must be aligned on a 32-byte boundary because
8551         * the 5 lower bits of the address are used by the hardware. and by
8552         * the driver.  See comments in hpsa.h for more info.
8553         */
8554        BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8555        h = hpda_alloc_ctlr_info();
8556        if (!h) {
8557                dev_err(&pdev->dev, "Failed to allocate controller head\n");
8558                return -ENOMEM;
8559        }
8560
8561        h->pdev = pdev;
8562
8563        h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8564        INIT_LIST_HEAD(&h->offline_device_list);
8565        spin_lock_init(&h->lock);
8566        spin_lock_init(&h->offline_device_lock);
8567        spin_lock_init(&h->scan_lock);
8568        spin_lock_init(&h->reset_lock);
8569        atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8570
8571        /* Allocate and clear per-cpu variable lockup_detected */
8572        h->lockup_detected = alloc_percpu(u32);
8573        if (!h->lockup_detected) {
8574                dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8575                rc = -ENOMEM;
8576                goto clean1;    /* aer/h */
8577        }
8578        set_lockup_detected_for_all_cpus(h, 0);
8579
8580        rc = hpsa_pci_init(h);
8581        if (rc)
8582                goto clean2;    /* lu, aer/h */
8583
8584        /* relies on h-> settings made by hpsa_pci_init, including
8585         * interrupt_mode h->intr */
8586        rc = hpsa_scsi_host_alloc(h);
8587        if (rc)
8588                goto clean2_5;  /* pci, lu, aer/h */
8589
8590        sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8591        h->ctlr = number_of_controllers;
8592        number_of_controllers++;
8593
8594        /* configure PCI DMA stuff */
8595        rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8596        if (rc == 0) {
8597                dac = 1;
8598        } else {
8599                rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8600                if (rc == 0) {
8601                        dac = 0;
8602                } else {
8603                        dev_err(&pdev->dev, "no suitable DMA available\n");
8604                        goto clean3;    /* shost, pci, lu, aer/h */
8605                }
8606        }
8607
8608        /* make sure the board interrupts are off */
8609        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8610
8611        rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8612        if (rc)
8613                goto clean3;    /* shost, pci, lu, aer/h */
8614        rc = hpsa_alloc_cmd_pool(h);
8615        if (rc)
8616                goto clean4;    /* irq, shost, pci, lu, aer/h */
8617        rc = hpsa_alloc_sg_chain_blocks(h);
8618        if (rc)
8619                goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8620        init_waitqueue_head(&h->scan_wait_queue);
8621        init_waitqueue_head(&h->event_sync_wait_queue);
8622        mutex_init(&h->reset_mutex);
8623        h->scan_finished = 1; /* no scan currently in progress */
8624        h->scan_waiting = 0;
8625
8626        pci_set_drvdata(pdev, h);
8627        h->ndevices = 0;
8628
8629        spin_lock_init(&h->devlock);
8630        rc = hpsa_put_ctlr_into_performant_mode(h);
8631        if (rc)
8632                goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8633
8634        /* create the resubmit workqueue */
8635        h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8636        if (!h->rescan_ctlr_wq) {
8637                rc = -ENOMEM;
8638                goto clean7;
8639        }
8640
8641        h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8642        if (!h->resubmit_wq) {
8643                rc = -ENOMEM;
8644                goto clean7;    /* aer/h */
8645        }
8646
8647        /*
8648         * At this point, the controller is ready to take commands.
8649         * Now, if reset_devices and the hard reset didn't work, try
8650         * the soft reset and see if that works.
8651         */
8652        if (try_soft_reset) {
8653
8654                /* This is kind of gross.  We may or may not get a completion
8655                 * from the soft reset command, and if we do, then the value
8656                 * from the fifo may or may not be valid.  So, we wait 10 secs
8657                 * after the reset throwing away any completions we get during
8658                 * that time.  Unregister the interrupt handler and register
8659                 * fake ones to scoop up any residual completions.
8660                 */
8661                spin_lock_irqsave(&h->lock, flags);
8662                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8663                spin_unlock_irqrestore(&h->lock, flags);
8664                hpsa_free_irqs(h);
8665                rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8666                                        hpsa_intx_discard_completions);
8667                if (rc) {
8668                        dev_warn(&h->pdev->dev,
8669                                "Failed to request_irq after soft reset.\n");
8670                        /*
8671                         * cannot goto clean7 or free_irqs will be called
8672                         * again. Instead, do its work
8673                         */
8674                        hpsa_free_performant_mode(h);   /* clean7 */
8675                        hpsa_free_sg_chain_blocks(h);   /* clean6 */
8676                        hpsa_free_cmd_pool(h);          /* clean5 */
8677                        /*
8678                         * skip hpsa_free_irqs(h) clean4 since that
8679                         * was just called before request_irqs failed
8680                         */
8681                        goto clean3;
8682                }
8683
8684                rc = hpsa_kdump_soft_reset(h);
8685                if (rc)
8686                        /* Neither hard nor soft reset worked, we're hosed. */
8687                        goto clean7;
8688
8689                dev_info(&h->pdev->dev, "Board READY.\n");
8690                dev_info(&h->pdev->dev,
8691                        "Waiting for stale completions to drain.\n");
8692                h->access.set_intr_mask(h, HPSA_INTR_ON);
8693                msleep(10000);
8694                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8695
8696                rc = controller_reset_failed(h->cfgtable);
8697                if (rc)
8698                        dev_info(&h->pdev->dev,
8699                                "Soft reset appears to have failed.\n");
8700
8701                /* since the controller's reset, we have to go back and re-init
8702                 * everything.  Easiest to just forget what we've done and do it
8703                 * all over again.
8704                 */
8705                hpsa_undo_allocations_after_kdump_soft_reset(h);
8706                try_soft_reset = 0;
8707                if (rc)
8708                        /* don't goto clean, we already unallocated */
8709                        return -ENODEV;
8710
8711                goto reinit_after_soft_reset;
8712        }
8713
8714        /* Enable Accelerated IO path at driver layer */
8715        h->acciopath_status = 1;
8716        /* Disable discovery polling.*/
8717        h->discovery_polling = 0;
8718
8719
8720        /* Turn the interrupts on so we can service requests */
8721        h->access.set_intr_mask(h, HPSA_INTR_ON);
8722
8723        hpsa_hba_inquiry(h);
8724
8725        h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8726        if (!h->lastlogicals)
8727                dev_info(&h->pdev->dev,
8728                        "Can't track change to report lun data\n");
8729
8730        /* hook into SCSI subsystem */
8731        rc = hpsa_scsi_add_host(h);
8732        if (rc)
8733                goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8734
8735        /* Monitor the controller for firmware lockups */
8736        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8737        INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8738        schedule_delayed_work(&h->monitor_ctlr_work,
8739                                h->heartbeat_sample_interval);
8740        INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8741        queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8742                                h->heartbeat_sample_interval);
8743        INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8744        schedule_delayed_work(&h->event_monitor_work,
8745                                HPSA_EVENT_MONITOR_INTERVAL);
8746        return 0;
8747
8748clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8749        hpsa_free_performant_mode(h);
8750        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8751clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8752        hpsa_free_sg_chain_blocks(h);
8753clean5: /* cmd, irq, shost, pci, lu, aer/h */
8754        hpsa_free_cmd_pool(h);
8755clean4: /* irq, shost, pci, lu, aer/h */
8756        hpsa_free_irqs(h);
8757clean3: /* shost, pci, lu, aer/h */
8758        scsi_host_put(h->scsi_host);
8759        h->scsi_host = NULL;
8760clean2_5: /* pci, lu, aer/h */
8761        hpsa_free_pci_init(h);
8762clean2: /* lu, aer/h */
8763        if (h->lockup_detected) {
8764                free_percpu(h->lockup_detected);
8765                h->lockup_detected = NULL;
8766        }
8767clean1: /* wq/aer/h */
8768        if (h->resubmit_wq) {
8769                destroy_workqueue(h->resubmit_wq);
8770                h->resubmit_wq = NULL;
8771        }
8772        if (h->rescan_ctlr_wq) {
8773                destroy_workqueue(h->rescan_ctlr_wq);
8774                h->rescan_ctlr_wq = NULL;
8775        }
8776        kfree(h);
8777        return rc;
8778}
8779
8780static void hpsa_flush_cache(struct ctlr_info *h)
8781{
8782        char *flush_buf;
8783        struct CommandList *c;
8784        int rc;
8785
8786        if (unlikely(lockup_detected(h)))
8787                return;
8788        flush_buf = kzalloc(4, GFP_KERNEL);
8789        if (!flush_buf)
8790                return;
8791
8792        c = cmd_alloc(h);
8793
8794        if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8795                RAID_CTLR_LUNID, TYPE_CMD)) {
8796                goto out;
8797        }
8798        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8799                                        PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8800        if (rc)
8801                goto out;
8802        if (c->err_info->CommandStatus != 0)
8803out:
8804                dev_warn(&h->pdev->dev,
8805                        "error flushing cache on controller\n");
8806        cmd_free(h, c);
8807        kfree(flush_buf);
8808}
8809
8810/* Make controller gather fresh report lun data each time we
8811 * send down a report luns request
8812 */
8813static void hpsa_disable_rld_caching(struct ctlr_info *h)
8814{
8815        u32 *options;
8816        struct CommandList *c;
8817        int rc;
8818
8819        /* Don't bother trying to set diag options if locked up */
8820        if (unlikely(h->lockup_detected))
8821                return;
8822
8823        options = kzalloc(sizeof(*options), GFP_KERNEL);
8824        if (!options)
8825                return;
8826
8827        c = cmd_alloc(h);
8828
8829        /* first, get the current diag options settings */
8830        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8831                RAID_CTLR_LUNID, TYPE_CMD))
8832                goto errout;
8833
8834        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8835                PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8836        if ((rc != 0) || (c->err_info->CommandStatus != 0))
8837                goto errout;
8838
8839        /* Now, set the bit for disabling the RLD caching */
8840        *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8841
8842        if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8843                RAID_CTLR_LUNID, TYPE_CMD))
8844                goto errout;
8845
8846        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8847                PCI_DMA_TODEVICE, NO_TIMEOUT);
8848        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8849                goto errout;
8850
8851        /* Now verify that it got set: */
8852        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8853                RAID_CTLR_LUNID, TYPE_CMD))
8854                goto errout;
8855
8856        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8857                PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8858        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8859                goto errout;
8860
8861        if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8862                goto out;
8863
8864errout:
8865        dev_err(&h->pdev->dev,
8866                        "Error: failed to disable report lun data caching.\n");
8867out:
8868        cmd_free(h, c);
8869        kfree(options);
8870}
8871
8872static void hpsa_shutdown(struct pci_dev *pdev)
8873{
8874        struct ctlr_info *h;
8875
8876        h = pci_get_drvdata(pdev);
8877        /* Turn board interrupts off  and send the flush cache command
8878         * sendcmd will turn off interrupt, and send the flush...
8879         * To write all data in the battery backed cache to disks
8880         */
8881        hpsa_flush_cache(h);
8882        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8883        hpsa_free_irqs(h);                      /* init_one 4 */
8884        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8885}
8886
8887static void hpsa_free_device_info(struct ctlr_info *h)
8888{
8889        int i;
8890
8891        for (i = 0; i < h->ndevices; i++) {
8892                kfree(h->dev[i]);
8893                h->dev[i] = NULL;
8894        }
8895}
8896
8897static void hpsa_remove_one(struct pci_dev *pdev)
8898{
8899        struct ctlr_info *h;
8900        unsigned long flags;
8901
8902        if (pci_get_drvdata(pdev) == NULL) {
8903                dev_err(&pdev->dev, "unable to remove device\n");
8904                return;
8905        }
8906        h = pci_get_drvdata(pdev);
8907
8908        /* Get rid of any controller monitoring work items */
8909        spin_lock_irqsave(&h->lock, flags);
8910        h->remove_in_progress = 1;
8911        spin_unlock_irqrestore(&h->lock, flags);
8912        cancel_delayed_work_sync(&h->monitor_ctlr_work);
8913        cancel_delayed_work_sync(&h->rescan_ctlr_work);
8914        cancel_delayed_work_sync(&h->event_monitor_work);
8915        destroy_workqueue(h->rescan_ctlr_wq);
8916        destroy_workqueue(h->resubmit_wq);
8917
8918        hpsa_delete_sas_host(h);
8919
8920        /*
8921         * Call before disabling interrupts.
8922         * scsi_remove_host can trigger I/O operations especially
8923         * when multipath is enabled. There can be SYNCHRONIZE CACHE
8924         * operations which cannot complete and will hang the system.
8925         */
8926        if (h->scsi_host)
8927                scsi_remove_host(h->scsi_host);         /* init_one 8 */
8928        /* includes hpsa_free_irqs - init_one 4 */
8929        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8930        hpsa_shutdown(pdev);
8931
8932        hpsa_free_device_info(h);               /* scan */
8933
8934        kfree(h->hba_inquiry_data);                     /* init_one 10 */
8935        h->hba_inquiry_data = NULL;                     /* init_one 10 */
8936        hpsa_free_ioaccel2_sg_chain_blocks(h);
8937        hpsa_free_performant_mode(h);                   /* init_one 7 */
8938        hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8939        hpsa_free_cmd_pool(h);                          /* init_one 5 */
8940        kfree(h->lastlogicals);
8941
8942        /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8943
8944        scsi_host_put(h->scsi_host);                    /* init_one 3 */
8945        h->scsi_host = NULL;                            /* init_one 3 */
8946
8947        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8948        hpsa_free_pci_init(h);                          /* init_one 2.5 */
8949
8950        free_percpu(h->lockup_detected);                /* init_one 2 */
8951        h->lockup_detected = NULL;                      /* init_one 2 */
8952        /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8953
8954        hpda_free_ctlr_info(h);                         /* init_one 1 */
8955}
8956
8957static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8958        __attribute__((unused)) pm_message_t state)
8959{
8960        return -ENOSYS;
8961}
8962
8963static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8964{
8965        return -ENOSYS;
8966}
8967
8968static struct pci_driver hpsa_pci_driver = {
8969        .name = HPSA,
8970        .probe = hpsa_init_one,
8971        .remove = hpsa_remove_one,
8972        .id_table = hpsa_pci_device_id, /* id_table */
8973        .shutdown = hpsa_shutdown,
8974        .suspend = hpsa_suspend,
8975        .resume = hpsa_resume,
8976};
8977
8978/* Fill in bucket_map[], given nsgs (the max number of
8979 * scatter gather elements supported) and bucket[],
8980 * which is an array of 8 integers.  The bucket[] array
8981 * contains 8 different DMA transfer sizes (in 16
8982 * byte increments) which the controller uses to fetch
8983 * commands.  This function fills in bucket_map[], which
8984 * maps a given number of scatter gather elements to one of
8985 * the 8 DMA transfer sizes.  The point of it is to allow the
8986 * controller to only do as much DMA as needed to fetch the
8987 * command, with the DMA transfer size encoded in the lower
8988 * bits of the command address.
8989 */
8990static void  calc_bucket_map(int bucket[], int num_buckets,
8991        int nsgs, int min_blocks, u32 *bucket_map)
8992{
8993        int i, j, b, size;
8994
8995        /* Note, bucket_map must have nsgs+1 entries. */
8996        for (i = 0; i <= nsgs; i++) {
8997                /* Compute size of a command with i SG entries */
8998                size = i + min_blocks;
8999                b = num_buckets; /* Assume the biggest bucket */
9000                /* Find the bucket that is just big enough */
9001                for (j = 0; j < num_buckets; j++) {
9002                        if (bucket[j] >= size) {
9003                                b = j;
9004                                break;
9005                        }
9006                }
9007                /* for a command with i SG entries, use bucket b. */
9008                bucket_map[i] = b;
9009        }
9010}
9011
9012/*
9013 * return -ENODEV on err, 0 on success (or no action)
9014 * allocates numerous items that must be freed later
9015 */
9016static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9017{
9018        int i;
9019        unsigned long register_value;
9020        unsigned long transMethod = CFGTBL_Trans_Performant |
9021                        (trans_support & CFGTBL_Trans_use_short_tags) |
9022                                CFGTBL_Trans_enable_directed_msix |
9023                        (trans_support & (CFGTBL_Trans_io_accel1 |
9024                                CFGTBL_Trans_io_accel2));
9025        struct access_method access = SA5_performant_access;
9026
9027        /* This is a bit complicated.  There are 8 registers on
9028         * the controller which we write to to tell it 8 different
9029         * sizes of commands which there may be.  It's a way of
9030         * reducing the DMA done to fetch each command.  Encoded into
9031         * each command's tag are 3 bits which communicate to the controller
9032         * which of the eight sizes that command fits within.  The size of
9033         * each command depends on how many scatter gather entries there are.
9034         * Each SG entry requires 16 bytes.  The eight registers are programmed
9035         * with the number of 16-byte blocks a command of that size requires.
9036         * The smallest command possible requires 5 such 16 byte blocks.
9037         * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9038         * blocks.  Note, this only extends to the SG entries contained
9039         * within the command block, and does not extend to chained blocks
9040         * of SG elements.   bft[] contains the eight values we write to
9041         * the registers.  They are not evenly distributed, but have more
9042         * sizes for small commands, and fewer sizes for larger commands.
9043         */
9044        int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9045#define MIN_IOACCEL2_BFT_ENTRY 5
9046#define HPSA_IOACCEL2_HEADER_SZ 4
9047        int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9048                        13, 14, 15, 16, 17, 18, 19,
9049                        HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9050        BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9051        BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9052        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9053                                 16 * MIN_IOACCEL2_BFT_ENTRY);
9054        BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9055        BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9056        /*  5 = 1 s/g entry or 4k
9057         *  6 = 2 s/g entry or 8k
9058         *  8 = 4 s/g entry or 16k
9059         * 10 = 6 s/g entry or 24k
9060         */
9061
9062        /* If the controller supports either ioaccel method then
9063         * we can also use the RAID stack submit path that does not
9064         * perform the superfluous readl() after each command submission.
9065         */
9066        if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9067                access = SA5_performant_access_no_read;
9068
9069        /* Controller spec: zero out this buffer. */
9070        for (i = 0; i < h->nreply_queues; i++)
9071                memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9072
9073        bft[7] = SG_ENTRIES_IN_CMD + 4;
9074        calc_bucket_map(bft, ARRAY_SIZE(bft),
9075                                SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9076        for (i = 0; i < 8; i++)
9077                writel(bft[i], &h->transtable->BlockFetch[i]);
9078
9079        /* size of controller ring buffer */
9080        writel(h->max_commands, &h->transtable->RepQSize);
9081        writel(h->nreply_queues, &h->transtable->RepQCount);
9082        writel(0, &h->transtable->RepQCtrAddrLow32);
9083        writel(0, &h->transtable->RepQCtrAddrHigh32);
9084
9085        for (i = 0; i < h->nreply_queues; i++) {
9086                writel(0, &h->transtable->RepQAddr[i].upper);
9087                writel(h->reply_queue[i].busaddr,
9088                        &h->transtable->RepQAddr[i].lower);
9089        }
9090
9091        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9092        writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9093        /*
9094         * enable outbound interrupt coalescing in accelerator mode;
9095         */
9096        if (trans_support & CFGTBL_Trans_io_accel1) {
9097                access = SA5_ioaccel_mode1_access;
9098                writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9099                writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9100        } else
9101                if (trans_support & CFGTBL_Trans_io_accel2)
9102                        access = SA5_ioaccel_mode2_access;
9103        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9104        if (hpsa_wait_for_mode_change_ack(h)) {
9105                dev_err(&h->pdev->dev,
9106                        "performant mode problem - doorbell timeout\n");
9107                return -ENODEV;
9108        }
9109        register_value = readl(&(h->cfgtable->TransportActive));
9110        if (!(register_value & CFGTBL_Trans_Performant)) {
9111                dev_err(&h->pdev->dev,
9112                        "performant mode problem - transport not active\n");
9113                return -ENODEV;
9114        }
9115        /* Change the access methods to the performant access methods */
9116        h->access = access;
9117        h->transMethod = transMethod;
9118
9119        if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9120                (trans_support & CFGTBL_Trans_io_accel2)))
9121                return 0;
9122
9123        if (trans_support & CFGTBL_Trans_io_accel1) {
9124                /* Set up I/O accelerator mode */
9125                for (i = 0; i < h->nreply_queues; i++) {
9126                        writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9127                        h->reply_queue[i].current_entry =
9128                                readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9129                }
9130                bft[7] = h->ioaccel_maxsg + 8;
9131                calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9132                                h->ioaccel1_blockFetchTable);
9133
9134                /* initialize all reply queue entries to unused */
9135                for (i = 0; i < h->nreply_queues; i++)
9136                        memset(h->reply_queue[i].head,
9137                                (u8) IOACCEL_MODE1_REPLY_UNUSED,
9138                                h->reply_queue_size);
9139
9140                /* set all the constant fields in the accelerator command
9141                 * frames once at init time to save CPU cycles later.
9142                 */
9143                for (i = 0; i < h->nr_cmds; i++) {
9144                        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9145
9146                        cp->function = IOACCEL1_FUNCTION_SCSIIO;
9147                        cp->err_info = (u32) (h->errinfo_pool_dhandle +
9148                                        (i * sizeof(struct ErrorInfo)));
9149                        cp->err_info_len = sizeof(struct ErrorInfo);
9150                        cp->sgl_offset = IOACCEL1_SGLOFFSET;
9151                        cp->host_context_flags =
9152                                cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9153                        cp->timeout_sec = 0;
9154                        cp->ReplyQueue = 0;
9155                        cp->tag =
9156                                cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9157                        cp->host_addr =
9158                                cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9159                                        (i * sizeof(struct io_accel1_cmd)));
9160                }
9161        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9162                u64 cfg_offset, cfg_base_addr_index;
9163                u32 bft2_offset, cfg_base_addr;
9164                int rc;
9165
9166                rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9167                        &cfg_base_addr_index, &cfg_offset);
9168                BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9169                bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9170                calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9171                                4, h->ioaccel2_blockFetchTable);
9172                bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9173                BUILD_BUG_ON(offsetof(struct CfgTable,
9174                                io_accel_request_size_offset) != 0xb8);
9175                h->ioaccel2_bft2_regs =
9176                        remap_pci_mem(pci_resource_start(h->pdev,
9177                                        cfg_base_addr_index) +
9178                                        cfg_offset + bft2_offset,
9179                                        ARRAY_SIZE(bft2) *
9180                                        sizeof(*h->ioaccel2_bft2_regs));
9181                for (i = 0; i < ARRAY_SIZE(bft2); i++)
9182                        writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9183        }
9184        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9185        if (hpsa_wait_for_mode_change_ack(h)) {
9186                dev_err(&h->pdev->dev,
9187                        "performant mode problem - enabling ioaccel mode\n");
9188                return -ENODEV;
9189        }
9190        return 0;
9191}
9192
9193/* Free ioaccel1 mode command blocks and block fetch table */
9194static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9195{
9196        if (h->ioaccel_cmd_pool) {
9197                pci_free_consistent(h->pdev,
9198                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9199                        h->ioaccel_cmd_pool,
9200                        h->ioaccel_cmd_pool_dhandle);
9201                h->ioaccel_cmd_pool = NULL;
9202                h->ioaccel_cmd_pool_dhandle = 0;
9203        }
9204        kfree(h->ioaccel1_blockFetchTable);
9205        h->ioaccel1_blockFetchTable = NULL;
9206}
9207
9208/* Allocate ioaccel1 mode command blocks and block fetch table */
9209static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9210{
9211        h->ioaccel_maxsg =
9212                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9213        if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9214                h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9215
9216        /* Command structures must be aligned on a 128-byte boundary
9217         * because the 7 lower bits of the address are used by the
9218         * hardware.
9219         */
9220        BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9221                        IOACCEL1_COMMANDLIST_ALIGNMENT);
9222        h->ioaccel_cmd_pool =
9223                pci_alloc_consistent(h->pdev,
9224                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9225                        &(h->ioaccel_cmd_pool_dhandle));
9226
9227        h->ioaccel1_blockFetchTable =
9228                kmalloc(((h->ioaccel_maxsg + 1) *
9229                                sizeof(u32)), GFP_KERNEL);
9230
9231        if ((h->ioaccel_cmd_pool == NULL) ||
9232                (h->ioaccel1_blockFetchTable == NULL))
9233                goto clean_up;
9234
9235        memset(h->ioaccel_cmd_pool, 0,
9236                h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9237        return 0;
9238
9239clean_up:
9240        hpsa_free_ioaccel1_cmd_and_bft(h);
9241        return -ENOMEM;
9242}
9243
9244/* Free ioaccel2 mode command blocks and block fetch table */
9245static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9246{
9247        hpsa_free_ioaccel2_sg_chain_blocks(h);
9248
9249        if (h->ioaccel2_cmd_pool) {
9250                pci_free_consistent(h->pdev,
9251                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9252                        h->ioaccel2_cmd_pool,
9253                        h->ioaccel2_cmd_pool_dhandle);
9254                h->ioaccel2_cmd_pool = NULL;
9255                h->ioaccel2_cmd_pool_dhandle = 0;
9256        }
9257        kfree(h->ioaccel2_blockFetchTable);
9258        h->ioaccel2_blockFetchTable = NULL;
9259}
9260
9261/* Allocate ioaccel2 mode command blocks and block fetch table */
9262static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9263{
9264        int rc;
9265
9266        /* Allocate ioaccel2 mode command blocks and block fetch table */
9267
9268        h->ioaccel_maxsg =
9269                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9270        if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9271                h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9272
9273        BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9274                        IOACCEL2_COMMANDLIST_ALIGNMENT);
9275        h->ioaccel2_cmd_pool =
9276                pci_alloc_consistent(h->pdev,
9277                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9278                        &(h->ioaccel2_cmd_pool_dhandle));
9279
9280        h->ioaccel2_blockFetchTable =
9281                kmalloc(((h->ioaccel_maxsg + 1) *
9282                                sizeof(u32)), GFP_KERNEL);
9283
9284        if ((h->ioaccel2_cmd_pool == NULL) ||
9285                (h->ioaccel2_blockFetchTable == NULL)) {
9286                rc = -ENOMEM;
9287                goto clean_up;
9288        }
9289
9290        rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9291        if (rc)
9292                goto clean_up;
9293
9294        memset(h->ioaccel2_cmd_pool, 0,
9295                h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9296        return 0;
9297
9298clean_up:
9299        hpsa_free_ioaccel2_cmd_and_bft(h);
9300        return rc;
9301}
9302
9303/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9304static void hpsa_free_performant_mode(struct ctlr_info *h)
9305{
9306        kfree(h->blockFetchTable);
9307        h->blockFetchTable = NULL;
9308        hpsa_free_reply_queues(h);
9309        hpsa_free_ioaccel1_cmd_and_bft(h);
9310        hpsa_free_ioaccel2_cmd_and_bft(h);
9311}
9312
9313/* return -ENODEV on error, 0 on success (or no action)
9314 * allocates numerous items that must be freed later
9315 */
9316static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9317{
9318        u32 trans_support;
9319        unsigned long transMethod = CFGTBL_Trans_Performant |
9320                                        CFGTBL_Trans_use_short_tags;
9321        int i, rc;
9322
9323        if (hpsa_simple_mode)
9324                return 0;
9325
9326        trans_support = readl(&(h->cfgtable->TransportSupport));
9327        if (!(trans_support & PERFORMANT_MODE))
9328                return 0;
9329
9330        /* Check for I/O accelerator mode support */
9331        if (trans_support & CFGTBL_Trans_io_accel1) {
9332                transMethod |= CFGTBL_Trans_io_accel1 |
9333                                CFGTBL_Trans_enable_directed_msix;
9334                rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9335                if (rc)
9336                        return rc;
9337        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9338                transMethod |= CFGTBL_Trans_io_accel2 |
9339                                CFGTBL_Trans_enable_directed_msix;
9340                rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9341                if (rc)
9342                        return rc;
9343        }
9344
9345        h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9346        hpsa_get_max_perf_mode_cmds(h);
9347        /* Performant mode ring buffer and supporting data structures */
9348        h->reply_queue_size = h->max_commands * sizeof(u64);
9349
9350        for (i = 0; i < h->nreply_queues; i++) {
9351                h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9352                                                h->reply_queue_size,
9353                                                &(h->reply_queue[i].busaddr));
9354                if (!h->reply_queue[i].head) {
9355                        rc = -ENOMEM;
9356                        goto clean1;    /* rq, ioaccel */
9357                }
9358                h->reply_queue[i].size = h->max_commands;
9359                h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9360                h->reply_queue[i].current_entry = 0;
9361        }
9362
9363        /* Need a block fetch table for performant mode */
9364        h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9365                                sizeof(u32)), GFP_KERNEL);
9366        if (!h->blockFetchTable) {
9367                rc = -ENOMEM;
9368                goto clean1;    /* rq, ioaccel */
9369        }
9370
9371        rc = hpsa_enter_performant_mode(h, trans_support);
9372        if (rc)
9373                goto clean2;    /* bft, rq, ioaccel */
9374        return 0;
9375
9376clean2: /* bft, rq, ioaccel */
9377        kfree(h->blockFetchTable);
9378        h->blockFetchTable = NULL;
9379clean1: /* rq, ioaccel */
9380        hpsa_free_reply_queues(h);
9381        hpsa_free_ioaccel1_cmd_and_bft(h);
9382        hpsa_free_ioaccel2_cmd_and_bft(h);
9383        return rc;
9384}
9385
9386static int is_accelerated_cmd(struct CommandList *c)
9387{
9388        return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9389}
9390
9391static void hpsa_drain_accel_commands(struct ctlr_info *h)
9392{
9393        struct CommandList *c = NULL;
9394        int i, accel_cmds_out;
9395        int refcount;
9396
9397        do { /* wait for all outstanding ioaccel commands to drain out */
9398                accel_cmds_out = 0;
9399                for (i = 0; i < h->nr_cmds; i++) {
9400                        c = h->cmd_pool + i;
9401                        refcount = atomic_inc_return(&c->refcount);
9402                        if (refcount > 1) /* Command is allocated */
9403                                accel_cmds_out += is_accelerated_cmd(c);
9404                        cmd_free(h, c);
9405                }
9406                if (accel_cmds_out <= 0)
9407                        break;
9408                msleep(100);
9409        } while (1);
9410}
9411
9412static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9413                                struct hpsa_sas_port *hpsa_sas_port)
9414{
9415        struct hpsa_sas_phy *hpsa_sas_phy;
9416        struct sas_phy *phy;
9417
9418        hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9419        if (!hpsa_sas_phy)
9420                return NULL;
9421
9422        phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9423                hpsa_sas_port->next_phy_index);
9424        if (!phy) {
9425                kfree(hpsa_sas_phy);
9426                return NULL;
9427        }
9428
9429        hpsa_sas_port->next_phy_index++;
9430        hpsa_sas_phy->phy = phy;
9431        hpsa_sas_phy->parent_port = hpsa_sas_port;
9432
9433        return hpsa_sas_phy;
9434}
9435
9436static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9437{
9438        struct sas_phy *phy = hpsa_sas_phy->phy;
9439
9440        sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9441        if (hpsa_sas_phy->added_to_port)
9442                list_del(&hpsa_sas_phy->phy_list_entry);
9443        sas_phy_delete(phy);
9444        kfree(hpsa_sas_phy);
9445}
9446
9447static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9448{
9449        int rc;
9450        struct hpsa_sas_port *hpsa_sas_port;
9451        struct sas_phy *phy;
9452        struct sas_identify *identify;
9453
9454        hpsa_sas_port = hpsa_sas_phy->parent_port;
9455        phy = hpsa_sas_phy->phy;
9456
9457        identify = &phy->identify;
9458        memset(identify, 0, sizeof(*identify));
9459        identify->sas_address = hpsa_sas_port->sas_address;
9460        identify->device_type = SAS_END_DEVICE;
9461        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9462        identify->target_port_protocols = SAS_PROTOCOL_STP;
9463        phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9464        phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9465        phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9466        phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9467        phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9468
9469        rc = sas_phy_add(hpsa_sas_phy->phy);
9470        if (rc)
9471                return rc;
9472
9473        sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9474        list_add_tail(&hpsa_sas_phy->phy_list_entry,
9475                        &hpsa_sas_port->phy_list_head);
9476        hpsa_sas_phy->added_to_port = true;
9477
9478        return 0;
9479}
9480
9481static int
9482        hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9483                                struct sas_rphy *rphy)
9484{
9485        struct sas_identify *identify;
9486
9487        identify = &rphy->identify;
9488        identify->sas_address = hpsa_sas_port->sas_address;
9489        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9490        identify->target_port_protocols = SAS_PROTOCOL_STP;
9491
9492        return sas_rphy_add(rphy);
9493}
9494
9495static struct hpsa_sas_port
9496        *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9497                                u64 sas_address)
9498{
9499        int rc;
9500        struct hpsa_sas_port *hpsa_sas_port;
9501        struct sas_port *port;
9502
9503        hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9504        if (!hpsa_sas_port)
9505                return NULL;
9506
9507        INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9508        hpsa_sas_port->parent_node = hpsa_sas_node;
9509
9510        port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9511        if (!port)
9512                goto free_hpsa_port;
9513
9514        rc = sas_port_add(port);
9515        if (rc)
9516                goto free_sas_port;
9517
9518        hpsa_sas_port->port = port;
9519        hpsa_sas_port->sas_address = sas_address;
9520        list_add_tail(&hpsa_sas_port->port_list_entry,
9521                        &hpsa_sas_node->port_list_head);
9522
9523        return hpsa_sas_port;
9524
9525free_sas_port:
9526        sas_port_free(port);
9527free_hpsa_port:
9528        kfree(hpsa_sas_port);
9529
9530        return NULL;
9531}
9532
9533static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9534{
9535        struct hpsa_sas_phy *hpsa_sas_phy;
9536        struct hpsa_sas_phy *next;
9537
9538        list_for_each_entry_safe(hpsa_sas_phy, next,
9539                        &hpsa_sas_port->phy_list_head, phy_list_entry)
9540                hpsa_free_sas_phy(hpsa_sas_phy);
9541
9542        sas_port_delete(hpsa_sas_port->port);
9543        list_del(&hpsa_sas_port->port_list_entry);
9544        kfree(hpsa_sas_port);
9545}
9546
9547static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9548{
9549        struct hpsa_sas_node *hpsa_sas_node;
9550
9551        hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9552        if (hpsa_sas_node) {
9553                hpsa_sas_node->parent_dev = parent_dev;
9554                INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9555        }
9556
9557        return hpsa_sas_node;
9558}
9559
9560static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9561{
9562        struct hpsa_sas_port *hpsa_sas_port;
9563        struct hpsa_sas_port *next;
9564
9565        if (!hpsa_sas_node)
9566                return;
9567
9568        list_for_each_entry_safe(hpsa_sas_port, next,
9569                        &hpsa_sas_node->port_list_head, port_list_entry)
9570                hpsa_free_sas_port(hpsa_sas_port);
9571
9572        kfree(hpsa_sas_node);
9573}
9574
9575static struct hpsa_scsi_dev_t
9576        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9577                                        struct sas_rphy *rphy)
9578{
9579        int i;
9580        struct hpsa_scsi_dev_t *device;
9581
9582        for (i = 0; i < h->ndevices; i++) {
9583                device = h->dev[i];
9584                if (!device->sas_port)
9585                        continue;
9586                if (device->sas_port->rphy == rphy)
9587                        return device;
9588        }
9589
9590        return NULL;
9591}
9592
9593static int hpsa_add_sas_host(struct ctlr_info *h)
9594{
9595        int rc;
9596        struct device *parent_dev;
9597        struct hpsa_sas_node *hpsa_sas_node;
9598        struct hpsa_sas_port *hpsa_sas_port;
9599        struct hpsa_sas_phy *hpsa_sas_phy;
9600
9601        parent_dev = &h->scsi_host->shost_dev;
9602
9603        hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9604        if (!hpsa_sas_node)
9605                return -ENOMEM;
9606
9607        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9608        if (!hpsa_sas_port) {
9609                rc = -ENODEV;
9610                goto free_sas_node;
9611        }
9612
9613        hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9614        if (!hpsa_sas_phy) {
9615                rc = -ENODEV;
9616                goto free_sas_port;
9617        }
9618
9619        rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9620        if (rc)
9621                goto free_sas_phy;
9622
9623        h->sas_host = hpsa_sas_node;
9624
9625        return 0;
9626
9627free_sas_phy:
9628        hpsa_free_sas_phy(hpsa_sas_phy);
9629free_sas_port:
9630        hpsa_free_sas_port(hpsa_sas_port);
9631free_sas_node:
9632        hpsa_free_sas_node(hpsa_sas_node);
9633
9634        return rc;
9635}
9636
9637static void hpsa_delete_sas_host(struct ctlr_info *h)
9638{
9639        hpsa_free_sas_node(h->sas_host);
9640}
9641
9642static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9643                                struct hpsa_scsi_dev_t *device)
9644{
9645        int rc;
9646        struct hpsa_sas_port *hpsa_sas_port;
9647        struct sas_rphy *rphy;
9648
9649        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9650        if (!hpsa_sas_port)
9651                return -ENOMEM;
9652
9653        rphy = sas_end_device_alloc(hpsa_sas_port->port);
9654        if (!rphy) {
9655                rc = -ENODEV;
9656                goto free_sas_port;
9657        }
9658
9659        hpsa_sas_port->rphy = rphy;
9660        device->sas_port = hpsa_sas_port;
9661
9662        rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9663        if (rc)
9664                goto free_sas_port;
9665
9666        return 0;
9667
9668free_sas_port:
9669        hpsa_free_sas_port(hpsa_sas_port);
9670        device->sas_port = NULL;
9671
9672        return rc;
9673}
9674
9675static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9676{
9677        if (device->sas_port) {
9678                hpsa_free_sas_port(device->sas_port);
9679                device->sas_port = NULL;
9680        }
9681}
9682
9683static int
9684hpsa_sas_get_linkerrors(struct sas_phy *phy)
9685{
9686        return 0;
9687}
9688
9689static int
9690hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9691{
9692        *identifier = rphy->identify.sas_address;
9693        return 0;
9694}
9695
9696static int
9697hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9698{
9699        return -ENXIO;
9700}
9701
9702static int
9703hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9704{
9705        return 0;
9706}
9707
9708static int
9709hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9710{
9711        return 0;
9712}
9713
9714static int
9715hpsa_sas_phy_setup(struct sas_phy *phy)
9716{
9717        return 0;
9718}
9719
9720static void
9721hpsa_sas_phy_release(struct sas_phy *phy)
9722{
9723}
9724
9725static int
9726hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9727{
9728        return -EINVAL;
9729}
9730
9731static struct sas_function_template hpsa_sas_transport_functions = {
9732        .get_linkerrors = hpsa_sas_get_linkerrors,
9733        .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9734        .get_bay_identifier = hpsa_sas_get_bay_identifier,
9735        .phy_reset = hpsa_sas_phy_reset,
9736        .phy_enable = hpsa_sas_phy_enable,
9737        .phy_setup = hpsa_sas_phy_setup,
9738        .phy_release = hpsa_sas_phy_release,
9739        .set_phy_speed = hpsa_sas_phy_speed,
9740};
9741
9742/*
9743 *  This is it.  Register the PCI driver information for the cards we control
9744 *  the OS will call our registered routines when it finds one of our cards.
9745 */
9746static int __init hpsa_init(void)
9747{
9748        int rc;
9749
9750        hpsa_sas_transport_template =
9751                sas_attach_transport(&hpsa_sas_transport_functions);
9752        if (!hpsa_sas_transport_template)
9753                return -ENODEV;
9754
9755        rc = pci_register_driver(&hpsa_pci_driver);
9756
9757        if (rc)
9758                sas_release_transport(hpsa_sas_transport_template);
9759
9760        return rc;
9761}
9762
9763static void __exit hpsa_cleanup(void)
9764{
9765        pci_unregister_driver(&hpsa_pci_driver);
9766        sas_release_transport(hpsa_sas_transport_template);
9767}
9768
9769static void __attribute__((unused)) verify_offsets(void)
9770{
9771#define VERIFY_OFFSET(member, offset) \
9772        BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9773
9774        VERIFY_OFFSET(structure_size, 0);
9775        VERIFY_OFFSET(volume_blk_size, 4);
9776        VERIFY_OFFSET(volume_blk_cnt, 8);
9777        VERIFY_OFFSET(phys_blk_shift, 16);
9778        VERIFY_OFFSET(parity_rotation_shift, 17);
9779        VERIFY_OFFSET(strip_size, 18);
9780        VERIFY_OFFSET(disk_starting_blk, 20);
9781        VERIFY_OFFSET(disk_blk_cnt, 28);
9782        VERIFY_OFFSET(data_disks_per_row, 36);
9783        VERIFY_OFFSET(metadata_disks_per_row, 38);
9784        VERIFY_OFFSET(row_cnt, 40);
9785        VERIFY_OFFSET(layout_map_count, 42);
9786        VERIFY_OFFSET(flags, 44);
9787        VERIFY_OFFSET(dekindex, 46);
9788        /* VERIFY_OFFSET(reserved, 48 */
9789        VERIFY_OFFSET(data, 64);
9790
9791#undef VERIFY_OFFSET
9792
9793#define VERIFY_OFFSET(member, offset) \
9794        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9795
9796        VERIFY_OFFSET(IU_type, 0);
9797        VERIFY_OFFSET(direction, 1);
9798        VERIFY_OFFSET(reply_queue, 2);
9799        /* VERIFY_OFFSET(reserved1, 3);  */
9800        VERIFY_OFFSET(scsi_nexus, 4);
9801        VERIFY_OFFSET(Tag, 8);
9802        VERIFY_OFFSET(cdb, 16);
9803        VERIFY_OFFSET(cciss_lun, 32);
9804        VERIFY_OFFSET(data_len, 40);
9805        VERIFY_OFFSET(cmd_priority_task_attr, 44);
9806        VERIFY_OFFSET(sg_count, 45);
9807        /* VERIFY_OFFSET(reserved3 */
9808        VERIFY_OFFSET(err_ptr, 48);
9809        VERIFY_OFFSET(err_len, 56);
9810        /* VERIFY_OFFSET(reserved4  */
9811        VERIFY_OFFSET(sg, 64);
9812
9813#undef VERIFY_OFFSET
9814
9815#define VERIFY_OFFSET(member, offset) \
9816        BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9817
9818        VERIFY_OFFSET(dev_handle, 0x00);
9819        VERIFY_OFFSET(reserved1, 0x02);
9820        VERIFY_OFFSET(function, 0x03);
9821        VERIFY_OFFSET(reserved2, 0x04);
9822        VERIFY_OFFSET(err_info, 0x0C);
9823        VERIFY_OFFSET(reserved3, 0x10);
9824        VERIFY_OFFSET(err_info_len, 0x12);
9825        VERIFY_OFFSET(reserved4, 0x13);
9826        VERIFY_OFFSET(sgl_offset, 0x14);
9827        VERIFY_OFFSET(reserved5, 0x15);
9828        VERIFY_OFFSET(transfer_len, 0x1C);
9829        VERIFY_OFFSET(reserved6, 0x20);
9830        VERIFY_OFFSET(io_flags, 0x24);
9831        VERIFY_OFFSET(reserved7, 0x26);
9832        VERIFY_OFFSET(LUN, 0x34);
9833        VERIFY_OFFSET(control, 0x3C);
9834        VERIFY_OFFSET(CDB, 0x40);
9835        VERIFY_OFFSET(reserved8, 0x50);
9836        VERIFY_OFFSET(host_context_flags, 0x60);
9837        VERIFY_OFFSET(timeout_sec, 0x62);
9838        VERIFY_OFFSET(ReplyQueue, 0x64);
9839        VERIFY_OFFSET(reserved9, 0x65);
9840        VERIFY_OFFSET(tag, 0x68);
9841        VERIFY_OFFSET(host_addr, 0x70);
9842        VERIFY_OFFSET(CISS_LUN, 0x78);
9843        VERIFY_OFFSET(SG, 0x78 + 8);
9844#undef VERIFY_OFFSET
9845}
9846
9847module_init(hpsa_init);
9848module_exit(hpsa_cleanup);
9849