linux/drivers/soc/ti/knav_qmss_queue.c
<<
>>
Prefs
   1/*
   2 * Keystone Queue Manager subsystem driver
   3 *
   4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
   5 * Authors:     Sandeep Nair <sandeep_n@ti.com>
   6 *              Cyril Chemparathy <cyril@ti.com>
   7 *              Santosh Shilimkar <santosh.shilimkar@ti.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * version 2 as published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 */
  18
  19#include <linux/debugfs.h>
  20#include <linux/dma-mapping.h>
  21#include <linux/firmware.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/module.h>
  25#include <linux/of_address.h>
  26#include <linux/of_device.h>
  27#include <linux/of_irq.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/slab.h>
  30#include <linux/soc/ti/knav_qmss.h>
  31
  32#include "knav_qmss.h"
  33
  34static struct knav_device *kdev;
  35static DEFINE_MUTEX(knav_dev_lock);
  36
  37/* Queue manager register indices in DTS */
  38#define KNAV_QUEUE_PEEK_REG_INDEX       0
  39#define KNAV_QUEUE_STATUS_REG_INDEX     1
  40#define KNAV_QUEUE_CONFIG_REG_INDEX     2
  41#define KNAV_QUEUE_REGION_REG_INDEX     3
  42#define KNAV_QUEUE_PUSH_REG_INDEX       4
  43#define KNAV_QUEUE_POP_REG_INDEX        5
  44
  45/* PDSP register indices in DTS */
  46#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
  47#define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
  48#define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
  49#define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
  50
  51#define knav_queue_idx_to_inst(kdev, idx)                       \
  52        (kdev->instances + (idx << kdev->inst_shift))
  53
  54#define for_each_handle_rcu(qh, inst)                   \
  55        list_for_each_entry_rcu(qh, &inst->handles, list)
  56
  57#define for_each_instance(idx, inst, kdev)              \
  58        for (idx = 0, inst = kdev->instances;           \
  59             idx < (kdev)->num_queues_in_use;                   \
  60             idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  61
  62/* All firmware file names end up here. List the firmware file names below.
  63 * Newest followed by older ones. Search is done from start of the array
  64 * until a firmware file is found.
  65 */
  66const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
  67
  68/**
  69 * knav_queue_notify: qmss queue notfier call
  70 *
  71 * @inst:               qmss queue instance like accumulator
  72 */
  73void knav_queue_notify(struct knav_queue_inst *inst)
  74{
  75        struct knav_queue *qh;
  76
  77        if (!inst)
  78                return;
  79
  80        rcu_read_lock();
  81        for_each_handle_rcu(qh, inst) {
  82                if (atomic_read(&qh->notifier_enabled) <= 0)
  83                        continue;
  84                if (WARN_ON(!qh->notifier_fn))
  85                        continue;
  86                atomic_inc(&qh->stats.notifies);
  87                qh->notifier_fn(qh->notifier_fn_arg);
  88        }
  89        rcu_read_unlock();
  90}
  91EXPORT_SYMBOL_GPL(knav_queue_notify);
  92
  93static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
  94{
  95        struct knav_queue_inst *inst = _instdata;
  96
  97        knav_queue_notify(inst);
  98        return IRQ_HANDLED;
  99}
 100
 101static int knav_queue_setup_irq(struct knav_range_info *range,
 102                          struct knav_queue_inst *inst)
 103{
 104        unsigned queue = inst->id - range->queue_base;
 105        unsigned long cpu_map;
 106        int ret = 0, irq;
 107
 108        if (range->flags & RANGE_HAS_IRQ) {
 109                irq = range->irqs[queue].irq;
 110                cpu_map = range->irqs[queue].cpu_map;
 111                ret = request_irq(irq, knav_queue_int_handler, 0,
 112                                        inst->irq_name, inst);
 113                if (ret)
 114                        return ret;
 115                disable_irq(irq);
 116                if (cpu_map) {
 117                        ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
 118                        if (ret) {
 119                                dev_warn(range->kdev->dev,
 120                                         "Failed to set IRQ affinity\n");
 121                                return ret;
 122                        }
 123                }
 124        }
 125        return ret;
 126}
 127
 128static void knav_queue_free_irq(struct knav_queue_inst *inst)
 129{
 130        struct knav_range_info *range = inst->range;
 131        unsigned queue = inst->id - inst->range->queue_base;
 132        int irq;
 133
 134        if (range->flags & RANGE_HAS_IRQ) {
 135                irq = range->irqs[queue].irq;
 136                irq_set_affinity_hint(irq, NULL);
 137                free_irq(irq, inst);
 138        }
 139}
 140
 141static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
 142{
 143        return !list_empty(&inst->handles);
 144}
 145
 146static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
 147{
 148        return inst->range->flags & RANGE_RESERVED;
 149}
 150
 151static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
 152{
 153        struct knav_queue *tmp;
 154
 155        rcu_read_lock();
 156        for_each_handle_rcu(tmp, inst) {
 157                if (tmp->flags & KNAV_QUEUE_SHARED) {
 158                        rcu_read_unlock();
 159                        return true;
 160                }
 161        }
 162        rcu_read_unlock();
 163        return false;
 164}
 165
 166static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
 167                                                unsigned type)
 168{
 169        if ((type == KNAV_QUEUE_QPEND) &&
 170            (inst->range->flags & RANGE_HAS_IRQ)) {
 171                return true;
 172        } else if ((type == KNAV_QUEUE_ACC) &&
 173                (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
 174                return true;
 175        } else if ((type == KNAV_QUEUE_GP) &&
 176                !(inst->range->flags &
 177                        (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
 178                return true;
 179        }
 180        return false;
 181}
 182
 183static inline struct knav_queue_inst *
 184knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
 185{
 186        struct knav_queue_inst *inst;
 187        int idx;
 188
 189        for_each_instance(idx, inst, kdev) {
 190                if (inst->id == id)
 191                        return inst;
 192        }
 193        return NULL;
 194}
 195
 196static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
 197{
 198        if (kdev->base_id <= id &&
 199            kdev->base_id + kdev->num_queues > id) {
 200                id -= kdev->base_id;
 201                return knav_queue_match_id_to_inst(kdev, id);
 202        }
 203        return NULL;
 204}
 205
 206static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
 207                                      const char *name, unsigned flags)
 208{
 209        struct knav_queue *qh;
 210        unsigned id;
 211        int ret = 0;
 212
 213        qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
 214        if (!qh)
 215                return ERR_PTR(-ENOMEM);
 216
 217        qh->flags = flags;
 218        qh->inst = inst;
 219        id = inst->id - inst->qmgr->start_queue;
 220        qh->reg_push = &inst->qmgr->reg_push[id];
 221        qh->reg_pop = &inst->qmgr->reg_pop[id];
 222        qh->reg_peek = &inst->qmgr->reg_peek[id];
 223
 224        /* first opener? */
 225        if (!knav_queue_is_busy(inst)) {
 226                struct knav_range_info *range = inst->range;
 227
 228                inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
 229                if (range->ops && range->ops->open_queue)
 230                        ret = range->ops->open_queue(range, inst, flags);
 231
 232                if (ret) {
 233                        devm_kfree(inst->kdev->dev, qh);
 234                        return ERR_PTR(ret);
 235                }
 236        }
 237        list_add_tail_rcu(&qh->list, &inst->handles);
 238        return qh;
 239}
 240
 241static struct knav_queue *
 242knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
 243{
 244        struct knav_queue_inst *inst;
 245        struct knav_queue *qh;
 246
 247        mutex_lock(&knav_dev_lock);
 248
 249        qh = ERR_PTR(-ENODEV);
 250        inst = knav_queue_find_by_id(id);
 251        if (!inst)
 252                goto unlock_ret;
 253
 254        qh = ERR_PTR(-EEXIST);
 255        if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
 256                goto unlock_ret;
 257
 258        qh = ERR_PTR(-EBUSY);
 259        if ((flags & KNAV_QUEUE_SHARED) &&
 260            (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
 261                goto unlock_ret;
 262
 263        qh = __knav_queue_open(inst, name, flags);
 264
 265unlock_ret:
 266        mutex_unlock(&knav_dev_lock);
 267
 268        return qh;
 269}
 270
 271static struct knav_queue *knav_queue_open_by_type(const char *name,
 272                                                unsigned type, unsigned flags)
 273{
 274        struct knav_queue_inst *inst;
 275        struct knav_queue *qh = ERR_PTR(-EINVAL);
 276        int idx;
 277
 278        mutex_lock(&knav_dev_lock);
 279
 280        for_each_instance(idx, inst, kdev) {
 281                if (knav_queue_is_reserved(inst))
 282                        continue;
 283                if (!knav_queue_match_type(inst, type))
 284                        continue;
 285                if (knav_queue_is_busy(inst))
 286                        continue;
 287                qh = __knav_queue_open(inst, name, flags);
 288                goto unlock_ret;
 289        }
 290
 291unlock_ret:
 292        mutex_unlock(&knav_dev_lock);
 293        return qh;
 294}
 295
 296static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
 297{
 298        struct knav_range_info *range = inst->range;
 299
 300        if (range->ops && range->ops->set_notify)
 301                range->ops->set_notify(range, inst, enabled);
 302}
 303
 304static int knav_queue_enable_notifier(struct knav_queue *qh)
 305{
 306        struct knav_queue_inst *inst = qh->inst;
 307        bool first;
 308
 309        if (WARN_ON(!qh->notifier_fn))
 310                return -EINVAL;
 311
 312        /* Adjust the per handle notifier count */
 313        first = (atomic_inc_return(&qh->notifier_enabled) == 1);
 314        if (!first)
 315                return 0; /* nothing to do */
 316
 317        /* Now adjust the per instance notifier count */
 318        first = (atomic_inc_return(&inst->num_notifiers) == 1);
 319        if (first)
 320                knav_queue_set_notify(inst, true);
 321
 322        return 0;
 323}
 324
 325static int knav_queue_disable_notifier(struct knav_queue *qh)
 326{
 327        struct knav_queue_inst *inst = qh->inst;
 328        bool last;
 329
 330        last = (atomic_dec_return(&qh->notifier_enabled) == 0);
 331        if (!last)
 332                return 0; /* nothing to do */
 333
 334        last = (atomic_dec_return(&inst->num_notifiers) == 0);
 335        if (last)
 336                knav_queue_set_notify(inst, false);
 337
 338        return 0;
 339}
 340
 341static int knav_queue_set_notifier(struct knav_queue *qh,
 342                                struct knav_queue_notify_config *cfg)
 343{
 344        knav_queue_notify_fn old_fn = qh->notifier_fn;
 345
 346        if (!cfg)
 347                return -EINVAL;
 348
 349        if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
 350                return -ENOTSUPP;
 351
 352        if (!cfg->fn && old_fn)
 353                knav_queue_disable_notifier(qh);
 354
 355        qh->notifier_fn = cfg->fn;
 356        qh->notifier_fn_arg = cfg->fn_arg;
 357
 358        if (cfg->fn && !old_fn)
 359                knav_queue_enable_notifier(qh);
 360
 361        return 0;
 362}
 363
 364static int knav_gp_set_notify(struct knav_range_info *range,
 365                               struct knav_queue_inst *inst,
 366                               bool enabled)
 367{
 368        unsigned queue;
 369
 370        if (range->flags & RANGE_HAS_IRQ) {
 371                queue = inst->id - range->queue_base;
 372                if (enabled)
 373                        enable_irq(range->irqs[queue].irq);
 374                else
 375                        disable_irq_nosync(range->irqs[queue].irq);
 376        }
 377        return 0;
 378}
 379
 380static int knav_gp_open_queue(struct knav_range_info *range,
 381                                struct knav_queue_inst *inst, unsigned flags)
 382{
 383        return knav_queue_setup_irq(range, inst);
 384}
 385
 386static int knav_gp_close_queue(struct knav_range_info *range,
 387                                struct knav_queue_inst *inst)
 388{
 389        knav_queue_free_irq(inst);
 390        return 0;
 391}
 392
 393struct knav_range_ops knav_gp_range_ops = {
 394        .set_notify     = knav_gp_set_notify,
 395        .open_queue     = knav_gp_open_queue,
 396        .close_queue    = knav_gp_close_queue,
 397};
 398
 399
 400static int knav_queue_get_count(void *qhandle)
 401{
 402        struct knav_queue *qh = qhandle;
 403        struct knav_queue_inst *inst = qh->inst;
 404
 405        return readl_relaxed(&qh->reg_peek[0].entry_count) +
 406                atomic_read(&inst->desc_count);
 407}
 408
 409static void knav_queue_debug_show_instance(struct seq_file *s,
 410                                        struct knav_queue_inst *inst)
 411{
 412        struct knav_device *kdev = inst->kdev;
 413        struct knav_queue *qh;
 414
 415        if (!knav_queue_is_busy(inst))
 416                return;
 417
 418        seq_printf(s, "\tqueue id %d (%s)\n",
 419                   kdev->base_id + inst->id, inst->name);
 420        for_each_handle_rcu(qh, inst) {
 421                seq_printf(s, "\t\thandle %p: ", qh);
 422                seq_printf(s, "pushes %8d, ",
 423                           atomic_read(&qh->stats.pushes));
 424                seq_printf(s, "pops %8d, ",
 425                           atomic_read(&qh->stats.pops));
 426                seq_printf(s, "count %8d, ",
 427                           knav_queue_get_count(qh));
 428                seq_printf(s, "notifies %8d, ",
 429                           atomic_read(&qh->stats.notifies));
 430                seq_printf(s, "push errors %8d, ",
 431                           atomic_read(&qh->stats.push_errors));
 432                seq_printf(s, "pop errors %8d\n",
 433                           atomic_read(&qh->stats.pop_errors));
 434        }
 435}
 436
 437static int knav_queue_debug_show(struct seq_file *s, void *v)
 438{
 439        struct knav_queue_inst *inst;
 440        int idx;
 441
 442        mutex_lock(&knav_dev_lock);
 443        seq_printf(s, "%s: %u-%u\n",
 444                   dev_name(kdev->dev), kdev->base_id,
 445                   kdev->base_id + kdev->num_queues - 1);
 446        for_each_instance(idx, inst, kdev)
 447                knav_queue_debug_show_instance(s, inst);
 448        mutex_unlock(&knav_dev_lock);
 449
 450        return 0;
 451}
 452
 453static int knav_queue_debug_open(struct inode *inode, struct file *file)
 454{
 455        return single_open(file, knav_queue_debug_show, NULL);
 456}
 457
 458static const struct file_operations knav_queue_debug_ops = {
 459        .open           = knav_queue_debug_open,
 460        .read           = seq_read,
 461        .llseek         = seq_lseek,
 462        .release        = single_release,
 463};
 464
 465static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
 466                                        u32 flags)
 467{
 468        unsigned long end;
 469        u32 val = 0;
 470
 471        end = jiffies + msecs_to_jiffies(timeout);
 472        while (time_after(end, jiffies)) {
 473                val = readl_relaxed(addr);
 474                if (flags)
 475                        val &= flags;
 476                if (!val)
 477                        break;
 478                cpu_relax();
 479        }
 480        return val ? -ETIMEDOUT : 0;
 481}
 482
 483
 484static int knav_queue_flush(struct knav_queue *qh)
 485{
 486        struct knav_queue_inst *inst = qh->inst;
 487        unsigned id = inst->id - inst->qmgr->start_queue;
 488
 489        atomic_set(&inst->desc_count, 0);
 490        writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
 491        return 0;
 492}
 493
 494/**
 495 * knav_queue_open()    - open a hardware queue
 496 * @name                - name to give the queue handle
 497 * @id                  - desired queue number if any or specifes the type
 498 *                        of queue
 499 * @flags               - the following flags are applicable to queues:
 500 *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
 501 *                           exclusive by default.
 502 *                           Subsequent attempts to open a shared queue should
 503 *                           also have this flag.
 504 *
 505 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
 506 * to check the returned value for error codes.
 507 */
 508void *knav_queue_open(const char *name, unsigned id,
 509                                        unsigned flags)
 510{
 511        struct knav_queue *qh = ERR_PTR(-EINVAL);
 512
 513        switch (id) {
 514        case KNAV_QUEUE_QPEND:
 515        case KNAV_QUEUE_ACC:
 516        case KNAV_QUEUE_GP:
 517                qh = knav_queue_open_by_type(name, id, flags);
 518                break;
 519
 520        default:
 521                qh = knav_queue_open_by_id(name, id, flags);
 522                break;
 523        }
 524        return qh;
 525}
 526EXPORT_SYMBOL_GPL(knav_queue_open);
 527
 528/**
 529 * knav_queue_close()   - close a hardware queue handle
 530 * @qh                  - handle to close
 531 */
 532void knav_queue_close(void *qhandle)
 533{
 534        struct knav_queue *qh = qhandle;
 535        struct knav_queue_inst *inst = qh->inst;
 536
 537        while (atomic_read(&qh->notifier_enabled) > 0)
 538                knav_queue_disable_notifier(qh);
 539
 540        mutex_lock(&knav_dev_lock);
 541        list_del_rcu(&qh->list);
 542        mutex_unlock(&knav_dev_lock);
 543        synchronize_rcu();
 544        if (!knav_queue_is_busy(inst)) {
 545                struct knav_range_info *range = inst->range;
 546
 547                if (range->ops && range->ops->close_queue)
 548                        range->ops->close_queue(range, inst);
 549        }
 550        devm_kfree(inst->kdev->dev, qh);
 551}
 552EXPORT_SYMBOL_GPL(knav_queue_close);
 553
 554/**
 555 * knav_queue_device_control()  - Perform control operations on a queue
 556 * @qh                          - queue handle
 557 * @cmd                         - control commands
 558 * @arg                         - command argument
 559 *
 560 * Returns 0 on success, errno otherwise.
 561 */
 562int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
 563                                unsigned long arg)
 564{
 565        struct knav_queue *qh = qhandle;
 566        struct knav_queue_notify_config *cfg;
 567        int ret;
 568
 569        switch ((int)cmd) {
 570        case KNAV_QUEUE_GET_ID:
 571                ret = qh->inst->kdev->base_id + qh->inst->id;
 572                break;
 573
 574        case KNAV_QUEUE_FLUSH:
 575                ret = knav_queue_flush(qh);
 576                break;
 577
 578        case KNAV_QUEUE_SET_NOTIFIER:
 579                cfg = (void *)arg;
 580                ret = knav_queue_set_notifier(qh, cfg);
 581                break;
 582
 583        case KNAV_QUEUE_ENABLE_NOTIFY:
 584                ret = knav_queue_enable_notifier(qh);
 585                break;
 586
 587        case KNAV_QUEUE_DISABLE_NOTIFY:
 588                ret = knav_queue_disable_notifier(qh);
 589                break;
 590
 591        case KNAV_QUEUE_GET_COUNT:
 592                ret = knav_queue_get_count(qh);
 593                break;
 594
 595        default:
 596                ret = -ENOTSUPP;
 597                break;
 598        }
 599        return ret;
 600}
 601EXPORT_SYMBOL_GPL(knav_queue_device_control);
 602
 603
 604
 605/**
 606 * knav_queue_push()    - push data (or descriptor) to the tail of a queue
 607 * @qh                  - hardware queue handle
 608 * @data                - data to push
 609 * @size                - size of data to push
 610 * @flags               - can be used to pass additional information
 611 *
 612 * Returns 0 on success, errno otherwise.
 613 */
 614int knav_queue_push(void *qhandle, dma_addr_t dma,
 615                                        unsigned size, unsigned flags)
 616{
 617        struct knav_queue *qh = qhandle;
 618        u32 val;
 619
 620        val = (u32)dma | ((size / 16) - 1);
 621        writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
 622
 623        atomic_inc(&qh->stats.pushes);
 624        return 0;
 625}
 626EXPORT_SYMBOL_GPL(knav_queue_push);
 627
 628/**
 629 * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
 630 * @qh                  - hardware queue handle
 631 * @size                - (optional) size of the data pop'ed.
 632 *
 633 * Returns a DMA address on success, 0 on failure.
 634 */
 635dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
 636{
 637        struct knav_queue *qh = qhandle;
 638        struct knav_queue_inst *inst = qh->inst;
 639        dma_addr_t dma;
 640        u32 val, idx;
 641
 642        /* are we accumulated? */
 643        if (inst->descs) {
 644                if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
 645                        atomic_inc(&inst->desc_count);
 646                        return 0;
 647                }
 648                idx  = atomic_inc_return(&inst->desc_head);
 649                idx &= ACC_DESCS_MASK;
 650                val = inst->descs[idx];
 651        } else {
 652                val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
 653                if (unlikely(!val))
 654                        return 0;
 655        }
 656
 657        dma = val & DESC_PTR_MASK;
 658        if (size)
 659                *size = ((val & DESC_SIZE_MASK) + 1) * 16;
 660
 661        atomic_inc(&qh->stats.pops);
 662        return dma;
 663}
 664EXPORT_SYMBOL_GPL(knav_queue_pop);
 665
 666/* carve out descriptors and push into queue */
 667static void kdesc_fill_pool(struct knav_pool *pool)
 668{
 669        struct knav_region *region;
 670        int i;
 671
 672        region = pool->region;
 673        pool->desc_size = region->desc_size;
 674        for (i = 0; i < pool->num_desc; i++) {
 675                int index = pool->region_offset + i;
 676                dma_addr_t dma_addr;
 677                unsigned dma_size;
 678                dma_addr = region->dma_start + (region->desc_size * index);
 679                dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
 680                dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
 681                                           DMA_TO_DEVICE);
 682                knav_queue_push(pool->queue, dma_addr, dma_size, 0);
 683        }
 684}
 685
 686/* pop out descriptors and close the queue */
 687static void kdesc_empty_pool(struct knav_pool *pool)
 688{
 689        dma_addr_t dma;
 690        unsigned size;
 691        void *desc;
 692        int i;
 693
 694        if (!pool->queue)
 695                return;
 696
 697        for (i = 0;; i++) {
 698                dma = knav_queue_pop(pool->queue, &size);
 699                if (!dma)
 700                        break;
 701                desc = knav_pool_desc_dma_to_virt(pool, dma);
 702                if (!desc) {
 703                        dev_dbg(pool->kdev->dev,
 704                                "couldn't unmap desc, continuing\n");
 705                        continue;
 706                }
 707        }
 708        WARN_ON(i != pool->num_desc);
 709        knav_queue_close(pool->queue);
 710}
 711
 712
 713/* Get the DMA address of a descriptor */
 714dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
 715{
 716        struct knav_pool *pool = ph;
 717        return pool->region->dma_start + (virt - pool->region->virt_start);
 718}
 719EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
 720
 721void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
 722{
 723        struct knav_pool *pool = ph;
 724        return pool->region->virt_start + (dma - pool->region->dma_start);
 725}
 726EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
 727
 728/**
 729 * knav_pool_create()   - Create a pool of descriptors
 730 * @name                - name to give the pool handle
 731 * @num_desc            - numbers of descriptors in the pool
 732 * @region_id           - QMSS region id from which the descriptors are to be
 733 *                        allocated.
 734 *
 735 * Returns a pool handle on success.
 736 * Use IS_ERR_OR_NULL() to identify error values on return.
 737 */
 738void *knav_pool_create(const char *name,
 739                                        int num_desc, int region_id)
 740{
 741        struct knav_region *reg_itr, *region = NULL;
 742        struct knav_pool *pool, *pi;
 743        struct list_head *node;
 744        unsigned last_offset;
 745        bool slot_found;
 746        int ret;
 747
 748        if (!kdev)
 749                return ERR_PTR(-EPROBE_DEFER);
 750
 751        if (!kdev->dev)
 752                return ERR_PTR(-ENODEV);
 753
 754        pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
 755        if (!pool) {
 756                dev_err(kdev->dev, "out of memory allocating pool\n");
 757                return ERR_PTR(-ENOMEM);
 758        }
 759
 760        for_each_region(kdev, reg_itr) {
 761                if (reg_itr->id != region_id)
 762                        continue;
 763                region = reg_itr;
 764                break;
 765        }
 766
 767        if (!region) {
 768                dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
 769                ret = -EINVAL;
 770                goto err;
 771        }
 772
 773        pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
 774        if (IS_ERR_OR_NULL(pool->queue)) {
 775                dev_err(kdev->dev,
 776                        "failed to open queue for pool(%s), error %ld\n",
 777                        name, PTR_ERR(pool->queue));
 778                ret = PTR_ERR(pool->queue);
 779                goto err;
 780        }
 781
 782        pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
 783        pool->kdev = kdev;
 784        pool->dev = kdev->dev;
 785
 786        mutex_lock(&knav_dev_lock);
 787
 788        if (num_desc > (region->num_desc - region->used_desc)) {
 789                dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
 790                        region_id, name);
 791                ret = -ENOMEM;
 792                goto err_unlock;
 793        }
 794
 795        /* Region maintains a sorted (by region offset) list of pools
 796         * use the first free slot which is large enough to accomodate
 797         * the request
 798         */
 799        last_offset = 0;
 800        slot_found = false;
 801        node = &region->pools;
 802        list_for_each_entry(pi, &region->pools, region_inst) {
 803                if ((pi->region_offset - last_offset) >= num_desc) {
 804                        slot_found = true;
 805                        break;
 806                }
 807                last_offset = pi->region_offset + pi->num_desc;
 808        }
 809        node = &pi->region_inst;
 810
 811        if (slot_found) {
 812                pool->region = region;
 813                pool->num_desc = num_desc;
 814                pool->region_offset = last_offset;
 815                region->used_desc += num_desc;
 816                list_add_tail(&pool->list, &kdev->pools);
 817                list_add_tail(&pool->region_inst, node);
 818        } else {
 819                dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
 820                        name, region_id);
 821                ret = -ENOMEM;
 822                goto err_unlock;
 823        }
 824
 825        mutex_unlock(&knav_dev_lock);
 826        kdesc_fill_pool(pool);
 827        return pool;
 828
 829err_unlock:
 830        mutex_unlock(&knav_dev_lock);
 831err:
 832        kfree(pool->name);
 833        devm_kfree(kdev->dev, pool);
 834        return ERR_PTR(ret);
 835}
 836EXPORT_SYMBOL_GPL(knav_pool_create);
 837
 838/**
 839 * knav_pool_destroy()  - Free a pool of descriptors
 840 * @pool                - pool handle
 841 */
 842void knav_pool_destroy(void *ph)
 843{
 844        struct knav_pool *pool = ph;
 845
 846        if (!pool)
 847                return;
 848
 849        if (!pool->region)
 850                return;
 851
 852        kdesc_empty_pool(pool);
 853        mutex_lock(&knav_dev_lock);
 854
 855        pool->region->used_desc -= pool->num_desc;
 856        list_del(&pool->region_inst);
 857        list_del(&pool->list);
 858
 859        mutex_unlock(&knav_dev_lock);
 860        kfree(pool->name);
 861        devm_kfree(kdev->dev, pool);
 862}
 863EXPORT_SYMBOL_GPL(knav_pool_destroy);
 864
 865
 866/**
 867 * knav_pool_desc_get() - Get a descriptor from the pool
 868 * @pool                        - pool handle
 869 *
 870 * Returns descriptor from the pool.
 871 */
 872void *knav_pool_desc_get(void *ph)
 873{
 874        struct knav_pool *pool = ph;
 875        dma_addr_t dma;
 876        unsigned size;
 877        void *data;
 878
 879        dma = knav_queue_pop(pool->queue, &size);
 880        if (unlikely(!dma))
 881                return ERR_PTR(-ENOMEM);
 882        data = knav_pool_desc_dma_to_virt(pool, dma);
 883        return data;
 884}
 885EXPORT_SYMBOL_GPL(knav_pool_desc_get);
 886
 887/**
 888 * knav_pool_desc_put() - return a descriptor to the pool
 889 * @pool                        - pool handle
 890 */
 891void knav_pool_desc_put(void *ph, void *desc)
 892{
 893        struct knav_pool *pool = ph;
 894        dma_addr_t dma;
 895        dma = knav_pool_desc_virt_to_dma(pool, desc);
 896        knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
 897}
 898EXPORT_SYMBOL_GPL(knav_pool_desc_put);
 899
 900/**
 901 * knav_pool_desc_map() - Map descriptor for DMA transfer
 902 * @pool                        - pool handle
 903 * @desc                        - address of descriptor to map
 904 * @size                        - size of descriptor to map
 905 * @dma                         - DMA address return pointer
 906 * @dma_sz                      - adjusted return pointer
 907 *
 908 * Returns 0 on success, errno otherwise.
 909 */
 910int knav_pool_desc_map(void *ph, void *desc, unsigned size,
 911                                        dma_addr_t *dma, unsigned *dma_sz)
 912{
 913        struct knav_pool *pool = ph;
 914        *dma = knav_pool_desc_virt_to_dma(pool, desc);
 915        size = min(size, pool->region->desc_size);
 916        size = ALIGN(size, SMP_CACHE_BYTES);
 917        *dma_sz = size;
 918        dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
 919
 920        /* Ensure the descriptor reaches to the memory */
 921        __iowmb();
 922
 923        return 0;
 924}
 925EXPORT_SYMBOL_GPL(knav_pool_desc_map);
 926
 927/**
 928 * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
 929 * @pool                        - pool handle
 930 * @dma                         - DMA address of descriptor to unmap
 931 * @dma_sz                      - size of descriptor to unmap
 932 *
 933 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
 934 * error values on return.
 935 */
 936void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
 937{
 938        struct knav_pool *pool = ph;
 939        unsigned desc_sz;
 940        void *desc;
 941
 942        desc_sz = min(dma_sz, pool->region->desc_size);
 943        desc = knav_pool_desc_dma_to_virt(pool, dma);
 944        dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
 945        prefetch(desc);
 946        return desc;
 947}
 948EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
 949
 950/**
 951 * knav_pool_count()    - Get the number of descriptors in pool.
 952 * @pool                - pool handle
 953 * Returns number of elements in the pool.
 954 */
 955int knav_pool_count(void *ph)
 956{
 957        struct knav_pool *pool = ph;
 958        return knav_queue_get_count(pool->queue);
 959}
 960EXPORT_SYMBOL_GPL(knav_pool_count);
 961
 962static void knav_queue_setup_region(struct knav_device *kdev,
 963                                        struct knav_region *region)
 964{
 965        unsigned hw_num_desc, hw_desc_size, size;
 966        struct knav_reg_region __iomem  *regs;
 967        struct knav_qmgr_info *qmgr;
 968        struct knav_pool *pool;
 969        int id = region->id;
 970        struct page *page;
 971
 972        /* unused region? */
 973        if (!region->num_desc) {
 974                dev_warn(kdev->dev, "unused region %s\n", region->name);
 975                return;
 976        }
 977
 978        /* get hardware descriptor value */
 979        hw_num_desc = ilog2(region->num_desc - 1) + 1;
 980
 981        /* did we force fit ourselves into nothingness? */
 982        if (region->num_desc < 32) {
 983                region->num_desc = 0;
 984                dev_warn(kdev->dev, "too few descriptors in region %s\n",
 985                         region->name);
 986                return;
 987        }
 988
 989        size = region->num_desc * region->desc_size;
 990        region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
 991                                                GFP_DMA32);
 992        if (!region->virt_start) {
 993                region->num_desc = 0;
 994                dev_err(kdev->dev, "memory alloc failed for region %s\n",
 995                        region->name);
 996                return;
 997        }
 998        region->virt_end = region->virt_start + size;
 999        page = virt_to_page(region->virt_start);
1000
1001        region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1002                                         DMA_BIDIRECTIONAL);
1003        if (dma_mapping_error(kdev->dev, region->dma_start)) {
1004                dev_err(kdev->dev, "dma map failed for region %s\n",
1005                        region->name);
1006                goto fail;
1007        }
1008        region->dma_end = region->dma_start + size;
1009
1010        pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1011        if (!pool) {
1012                dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1013                goto fail;
1014        }
1015        pool->num_desc = 0;
1016        pool->region_offset = region->num_desc;
1017        list_add(&pool->region_inst, &region->pools);
1018
1019        dev_dbg(kdev->dev,
1020                "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1021                region->name, id, region->desc_size, region->num_desc,
1022                region->link_index, &region->dma_start, &region->dma_end,
1023                region->virt_start, region->virt_end);
1024
1025        hw_desc_size = (region->desc_size / 16) - 1;
1026        hw_num_desc -= 5;
1027
1028        for_each_qmgr(kdev, qmgr) {
1029                regs = qmgr->reg_region + id;
1030                writel_relaxed((u32)region->dma_start, &regs->base);
1031                writel_relaxed(region->link_index, &regs->start_index);
1032                writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1033                               &regs->size_count);
1034        }
1035        return;
1036
1037fail:
1038        if (region->dma_start)
1039                dma_unmap_page(kdev->dev, region->dma_start, size,
1040                                DMA_BIDIRECTIONAL);
1041        if (region->virt_start)
1042                free_pages_exact(region->virt_start, size);
1043        region->num_desc = 0;
1044        return;
1045}
1046
1047static const char *knav_queue_find_name(struct device_node *node)
1048{
1049        const char *name;
1050
1051        if (of_property_read_string(node, "label", &name) < 0)
1052                name = node->name;
1053        if (!name)
1054                name = "unknown";
1055        return name;
1056}
1057
1058static int knav_queue_setup_regions(struct knav_device *kdev,
1059                                        struct device_node *regions)
1060{
1061        struct device *dev = kdev->dev;
1062        struct knav_region *region;
1063        struct device_node *child;
1064        u32 temp[2];
1065        int ret;
1066
1067        for_each_child_of_node(regions, child) {
1068                region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1069                if (!region) {
1070                        dev_err(dev, "out of memory allocating region\n");
1071                        return -ENOMEM;
1072                }
1073
1074                region->name = knav_queue_find_name(child);
1075                of_property_read_u32(child, "id", &region->id);
1076                ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1077                if (!ret) {
1078                        region->num_desc  = temp[0];
1079                        region->desc_size = temp[1];
1080                } else {
1081                        dev_err(dev, "invalid region info %s\n", region->name);
1082                        devm_kfree(dev, region);
1083                        continue;
1084                }
1085
1086                if (!of_get_property(child, "link-index", NULL)) {
1087                        dev_err(dev, "No link info for %s\n", region->name);
1088                        devm_kfree(dev, region);
1089                        continue;
1090                }
1091                ret = of_property_read_u32(child, "link-index",
1092                                           &region->link_index);
1093                if (ret) {
1094                        dev_err(dev, "link index not found for %s\n",
1095                                region->name);
1096                        devm_kfree(dev, region);
1097                        continue;
1098                }
1099
1100                INIT_LIST_HEAD(&region->pools);
1101                list_add_tail(&region->list, &kdev->regions);
1102        }
1103        if (list_empty(&kdev->regions)) {
1104                dev_err(dev, "no valid region information found\n");
1105                return -ENODEV;
1106        }
1107
1108        /* Next, we run through the regions and set things up */
1109        for_each_region(kdev, region)
1110                knav_queue_setup_region(kdev, region);
1111
1112        return 0;
1113}
1114
1115static int knav_get_link_ram(struct knav_device *kdev,
1116                                       const char *name,
1117                                       struct knav_link_ram_block *block)
1118{
1119        struct platform_device *pdev = to_platform_device(kdev->dev);
1120        struct device_node *node = pdev->dev.of_node;
1121        u32 temp[2];
1122
1123        /*
1124         * Note: link ram resources are specified in "entry" sized units. In
1125         * reality, although entries are ~40bits in hardware, we treat them as
1126         * 64-bit entities here.
1127         *
1128         * For example, to specify the internal link ram for Keystone-I class
1129         * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1130         *
1131         * This gets a bit weird when other link rams are used.  For example,
1132         * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1133         * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1134         * which accounts for 64-bits per entry, for 16K entries.
1135         */
1136        if (!of_property_read_u32_array(node, name , temp, 2)) {
1137                if (temp[0]) {
1138                        /*
1139                         * queue_base specified => using internal or onchip
1140                         * link ram WARNING - we do not "reserve" this block
1141                         */
1142                        block->dma = (dma_addr_t)temp[0];
1143                        block->virt = NULL;
1144                        block->size = temp[1];
1145                } else {
1146                        block->size = temp[1];
1147                        /* queue_base not specific => allocate requested size */
1148                        block->virt = dmam_alloc_coherent(kdev->dev,
1149                                                  8 * block->size, &block->dma,
1150                                                  GFP_KERNEL);
1151                        if (!block->virt) {
1152                                dev_err(kdev->dev, "failed to alloc linkram\n");
1153                                return -ENOMEM;
1154                        }
1155                }
1156        } else {
1157                return -ENODEV;
1158        }
1159        return 0;
1160}
1161
1162static int knav_queue_setup_link_ram(struct knav_device *kdev)
1163{
1164        struct knav_link_ram_block *block;
1165        struct knav_qmgr_info *qmgr;
1166
1167        for_each_qmgr(kdev, qmgr) {
1168                block = &kdev->link_rams[0];
1169                dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1170                        &block->dma, block->virt, block->size);
1171                writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1172                writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1173
1174                block++;
1175                if (!block->size)
1176                        continue;
1177
1178                dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1179                        &block->dma, block->virt, block->size);
1180                writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1181        }
1182
1183        return 0;
1184}
1185
1186static int knav_setup_queue_range(struct knav_device *kdev,
1187                                        struct device_node *node)
1188{
1189        struct device *dev = kdev->dev;
1190        struct knav_range_info *range;
1191        struct knav_qmgr_info *qmgr;
1192        u32 temp[2], start, end, id, index;
1193        int ret, i;
1194
1195        range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1196        if (!range) {
1197                dev_err(dev, "out of memory allocating range\n");
1198                return -ENOMEM;
1199        }
1200
1201        range->kdev = kdev;
1202        range->name = knav_queue_find_name(node);
1203        ret = of_property_read_u32_array(node, "qrange", temp, 2);
1204        if (!ret) {
1205                range->queue_base = temp[0] - kdev->base_id;
1206                range->num_queues = temp[1];
1207        } else {
1208                dev_err(dev, "invalid queue range %s\n", range->name);
1209                devm_kfree(dev, range);
1210                return -EINVAL;
1211        }
1212
1213        for (i = 0; i < RANGE_MAX_IRQS; i++) {
1214                struct of_phandle_args oirq;
1215
1216                if (of_irq_parse_one(node, i, &oirq))
1217                        break;
1218
1219                range->irqs[i].irq = irq_create_of_mapping(&oirq);
1220                if (range->irqs[i].irq == IRQ_NONE)
1221                        break;
1222
1223                range->num_irqs++;
1224
1225                if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
1226                        range->irqs[i].cpu_map =
1227                                (oirq.args[2] & 0x0000ff00) >> 8;
1228        }
1229
1230        range->num_irqs = min(range->num_irqs, range->num_queues);
1231        if (range->num_irqs)
1232                range->flags |= RANGE_HAS_IRQ;
1233
1234        if (of_get_property(node, "qalloc-by-id", NULL))
1235                range->flags |= RANGE_RESERVED;
1236
1237        if (of_get_property(node, "accumulator", NULL)) {
1238                ret = knav_init_acc_range(kdev, node, range);
1239                if (ret < 0) {
1240                        devm_kfree(dev, range);
1241                        return ret;
1242                }
1243        } else {
1244                range->ops = &knav_gp_range_ops;
1245        }
1246
1247        /* set threshold to 1, and flush out the queues */
1248        for_each_qmgr(kdev, qmgr) {
1249                start = max(qmgr->start_queue, range->queue_base);
1250                end   = min(qmgr->start_queue + qmgr->num_queues,
1251                            range->queue_base + range->num_queues);
1252                for (id = start; id < end; id++) {
1253                        index = id - qmgr->start_queue;
1254                        writel_relaxed(THRESH_GTE | 1,
1255                                       &qmgr->reg_peek[index].ptr_size_thresh);
1256                        writel_relaxed(0,
1257                                       &qmgr->reg_push[index].ptr_size_thresh);
1258                }
1259        }
1260
1261        list_add_tail(&range->list, &kdev->queue_ranges);
1262        dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1263                range->name, range->queue_base,
1264                range->queue_base + range->num_queues - 1,
1265                range->num_irqs,
1266                (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1267                (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1268                (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1269        kdev->num_queues_in_use += range->num_queues;
1270        return 0;
1271}
1272
1273static int knav_setup_queue_pools(struct knav_device *kdev,
1274                                   struct device_node *queue_pools)
1275{
1276        struct device_node *type, *range;
1277        int ret;
1278
1279        for_each_child_of_node(queue_pools, type) {
1280                for_each_child_of_node(type, range) {
1281                        ret = knav_setup_queue_range(kdev, range);
1282                        /* return value ignored, we init the rest... */
1283                }
1284        }
1285
1286        /* ... and barf if they all failed! */
1287        if (list_empty(&kdev->queue_ranges)) {
1288                dev_err(kdev->dev, "no valid queue range found\n");
1289                return -ENODEV;
1290        }
1291        return 0;
1292}
1293
1294static void knav_free_queue_range(struct knav_device *kdev,
1295                                  struct knav_range_info *range)
1296{
1297        if (range->ops && range->ops->free_range)
1298                range->ops->free_range(range);
1299        list_del(&range->list);
1300        devm_kfree(kdev->dev, range);
1301}
1302
1303static void knav_free_queue_ranges(struct knav_device *kdev)
1304{
1305        struct knav_range_info *range;
1306
1307        for (;;) {
1308                range = first_queue_range(kdev);
1309                if (!range)
1310                        break;
1311                knav_free_queue_range(kdev, range);
1312        }
1313}
1314
1315static void knav_queue_free_regions(struct knav_device *kdev)
1316{
1317        struct knav_region *region;
1318        struct knav_pool *pool, *tmp;
1319        unsigned size;
1320
1321        for (;;) {
1322                region = first_region(kdev);
1323                if (!region)
1324                        break;
1325                list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1326                        knav_pool_destroy(pool);
1327
1328                size = region->virt_end - region->virt_start;
1329                if (size)
1330                        free_pages_exact(region->virt_start, size);
1331                list_del(&region->list);
1332                devm_kfree(kdev->dev, region);
1333        }
1334}
1335
1336static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1337                                        struct device_node *node, int index)
1338{
1339        struct resource res;
1340        void __iomem *regs;
1341        int ret;
1342
1343        ret = of_address_to_resource(node, index, &res);
1344        if (ret) {
1345                dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1346                        node->name, index);
1347                return ERR_PTR(ret);
1348        }
1349
1350        regs = devm_ioremap_resource(kdev->dev, &res);
1351        if (IS_ERR(regs))
1352                dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1353                        index, node->name);
1354        return regs;
1355}
1356
1357static int knav_queue_init_qmgrs(struct knav_device *kdev,
1358                                        struct device_node *qmgrs)
1359{
1360        struct device *dev = kdev->dev;
1361        struct knav_qmgr_info *qmgr;
1362        struct device_node *child;
1363        u32 temp[2];
1364        int ret;
1365
1366        for_each_child_of_node(qmgrs, child) {
1367                qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1368                if (!qmgr) {
1369                        dev_err(dev, "out of memory allocating qmgr\n");
1370                        return -ENOMEM;
1371                }
1372
1373                ret = of_property_read_u32_array(child, "managed-queues",
1374                                                 temp, 2);
1375                if (!ret) {
1376                        qmgr->start_queue = temp[0];
1377                        qmgr->num_queues = temp[1];
1378                } else {
1379                        dev_err(dev, "invalid qmgr queue range\n");
1380                        devm_kfree(dev, qmgr);
1381                        continue;
1382                }
1383
1384                dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1385                         qmgr->start_queue, qmgr->num_queues);
1386
1387                qmgr->reg_peek =
1388                        knav_queue_map_reg(kdev, child,
1389                                           KNAV_QUEUE_PEEK_REG_INDEX);
1390                qmgr->reg_status =
1391                        knav_queue_map_reg(kdev, child,
1392                                           KNAV_QUEUE_STATUS_REG_INDEX);
1393                qmgr->reg_config =
1394                        knav_queue_map_reg(kdev, child,
1395                                           KNAV_QUEUE_CONFIG_REG_INDEX);
1396                qmgr->reg_region =
1397                        knav_queue_map_reg(kdev, child,
1398                                           KNAV_QUEUE_REGION_REG_INDEX);
1399                qmgr->reg_push =
1400                        knav_queue_map_reg(kdev, child,
1401                                           KNAV_QUEUE_PUSH_REG_INDEX);
1402                qmgr->reg_pop =
1403                        knav_queue_map_reg(kdev, child,
1404                                           KNAV_QUEUE_POP_REG_INDEX);
1405
1406                if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1407                    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1408                    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1409                        dev_err(dev, "failed to map qmgr regs\n");
1410                        if (!IS_ERR(qmgr->reg_peek))
1411                                devm_iounmap(dev, qmgr->reg_peek);
1412                        if (!IS_ERR(qmgr->reg_status))
1413                                devm_iounmap(dev, qmgr->reg_status);
1414                        if (!IS_ERR(qmgr->reg_config))
1415                                devm_iounmap(dev, qmgr->reg_config);
1416                        if (!IS_ERR(qmgr->reg_region))
1417                                devm_iounmap(dev, qmgr->reg_region);
1418                        if (!IS_ERR(qmgr->reg_push))
1419                                devm_iounmap(dev, qmgr->reg_push);
1420                        if (!IS_ERR(qmgr->reg_pop))
1421                                devm_iounmap(dev, qmgr->reg_pop);
1422                        devm_kfree(dev, qmgr);
1423                        continue;
1424                }
1425
1426                list_add_tail(&qmgr->list, &kdev->qmgrs);
1427                dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1428                         qmgr->start_queue, qmgr->num_queues,
1429                         qmgr->reg_peek, qmgr->reg_status,
1430                         qmgr->reg_config, qmgr->reg_region,
1431                         qmgr->reg_push, qmgr->reg_pop);
1432        }
1433        return 0;
1434}
1435
1436static int knav_queue_init_pdsps(struct knav_device *kdev,
1437                                        struct device_node *pdsps)
1438{
1439        struct device *dev = kdev->dev;
1440        struct knav_pdsp_info *pdsp;
1441        struct device_node *child;
1442
1443        for_each_child_of_node(pdsps, child) {
1444                pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1445                if (!pdsp) {
1446                        dev_err(dev, "out of memory allocating pdsp\n");
1447                        return -ENOMEM;
1448                }
1449                pdsp->name = knav_queue_find_name(child);
1450                pdsp->iram =
1451                        knav_queue_map_reg(kdev, child,
1452                                           KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1453                pdsp->regs =
1454                        knav_queue_map_reg(kdev, child,
1455                                           KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1456                pdsp->intd =
1457                        knav_queue_map_reg(kdev, child,
1458                                           KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1459                pdsp->command =
1460                        knav_queue_map_reg(kdev, child,
1461                                           KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1462
1463                if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1464                    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1465                        dev_err(dev, "failed to map pdsp %s regs\n",
1466                                pdsp->name);
1467                        if (!IS_ERR(pdsp->command))
1468                                devm_iounmap(dev, pdsp->command);
1469                        if (!IS_ERR(pdsp->iram))
1470                                devm_iounmap(dev, pdsp->iram);
1471                        if (!IS_ERR(pdsp->regs))
1472                                devm_iounmap(dev, pdsp->regs);
1473                        if (!IS_ERR(pdsp->intd))
1474                                devm_iounmap(dev, pdsp->intd);
1475                        devm_kfree(dev, pdsp);
1476                        continue;
1477                }
1478                of_property_read_u32(child, "id", &pdsp->id);
1479                list_add_tail(&pdsp->list, &kdev->pdsps);
1480                dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1481                        pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1482                        pdsp->intd);
1483        }
1484        return 0;
1485}
1486
1487static int knav_queue_stop_pdsp(struct knav_device *kdev,
1488                          struct knav_pdsp_info *pdsp)
1489{
1490        u32 val, timeout = 1000;
1491        int ret;
1492
1493        val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1494        writel_relaxed(val, &pdsp->regs->control);
1495        ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1496                                        PDSP_CTRL_RUNNING);
1497        if (ret < 0) {
1498                dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1499                return ret;
1500        }
1501        pdsp->loaded = false;
1502        pdsp->started = false;
1503        return 0;
1504}
1505
1506static int knav_queue_load_pdsp(struct knav_device *kdev,
1507                          struct knav_pdsp_info *pdsp)
1508{
1509        int i, ret, fwlen;
1510        const struct firmware *fw;
1511        bool found = false;
1512        u32 *fwdata;
1513
1514        for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1515                if (knav_acc_firmwares[i]) {
1516                        ret = request_firmware_direct(&fw,
1517                                                      knav_acc_firmwares[i],
1518                                                      kdev->dev);
1519                        if (!ret) {
1520                                found = true;
1521                                break;
1522                        }
1523                }
1524        }
1525
1526        if (!found) {
1527                dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1528                return -ENODEV;
1529        }
1530
1531        dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1532                 knav_acc_firmwares[i]);
1533
1534        writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1535        /* download the firmware */
1536        fwdata = (u32 *)fw->data;
1537        fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1538        for (i = 0; i < fwlen; i++)
1539                writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1540
1541        release_firmware(fw);
1542        return 0;
1543}
1544
1545static int knav_queue_start_pdsp(struct knav_device *kdev,
1546                           struct knav_pdsp_info *pdsp)
1547{
1548        u32 val, timeout = 1000;
1549        int ret;
1550
1551        /* write a command for sync */
1552        writel_relaxed(0xffffffff, pdsp->command);
1553        while (readl_relaxed(pdsp->command) != 0xffffffff)
1554                cpu_relax();
1555
1556        /* soft reset the PDSP */
1557        val  = readl_relaxed(&pdsp->regs->control);
1558        val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1559        writel_relaxed(val, &pdsp->regs->control);
1560
1561        /* enable pdsp */
1562        val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1563        writel_relaxed(val, &pdsp->regs->control);
1564
1565        /* wait for command register to clear */
1566        ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1567        if (ret < 0) {
1568                dev_err(kdev->dev,
1569                        "timed out on pdsp %s command register wait\n",
1570                        pdsp->name);
1571                return ret;
1572        }
1573        return 0;
1574}
1575
1576static void knav_queue_stop_pdsps(struct knav_device *kdev)
1577{
1578        struct knav_pdsp_info *pdsp;
1579
1580        /* disable all pdsps */
1581        for_each_pdsp(kdev, pdsp)
1582                knav_queue_stop_pdsp(kdev, pdsp);
1583}
1584
1585static int knav_queue_start_pdsps(struct knav_device *kdev)
1586{
1587        struct knav_pdsp_info *pdsp;
1588        int ret;
1589
1590        knav_queue_stop_pdsps(kdev);
1591        /* now load them all. We return success even if pdsp
1592         * is not loaded as acc channels are optional on having
1593         * firmware availability in the system. We set the loaded
1594         * and stated flag and when initialize the acc range, check
1595         * it and init the range only if pdsp is started.
1596         */
1597        for_each_pdsp(kdev, pdsp) {
1598                ret = knav_queue_load_pdsp(kdev, pdsp);
1599                if (!ret)
1600                        pdsp->loaded = true;
1601        }
1602
1603        for_each_pdsp(kdev, pdsp) {
1604                if (pdsp->loaded) {
1605                        ret = knav_queue_start_pdsp(kdev, pdsp);
1606                        if (!ret)
1607                                pdsp->started = true;
1608                }
1609        }
1610        return 0;
1611}
1612
1613static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1614{
1615        struct knav_qmgr_info *qmgr;
1616
1617        for_each_qmgr(kdev, qmgr) {
1618                if ((id >= qmgr->start_queue) &&
1619                    (id < qmgr->start_queue + qmgr->num_queues))
1620                        return qmgr;
1621        }
1622        return NULL;
1623}
1624
1625static int knav_queue_init_queue(struct knav_device *kdev,
1626                                        struct knav_range_info *range,
1627                                        struct knav_queue_inst *inst,
1628                                        unsigned id)
1629{
1630        char irq_name[KNAV_NAME_SIZE];
1631        inst->qmgr = knav_find_qmgr(id);
1632        if (!inst->qmgr)
1633                return -1;
1634
1635        INIT_LIST_HEAD(&inst->handles);
1636        inst->kdev = kdev;
1637        inst->range = range;
1638        inst->irq_num = -1;
1639        inst->id = id;
1640        scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1641        inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1642
1643        if (range->ops && range->ops->init_queue)
1644                return range->ops->init_queue(range, inst);
1645        else
1646                return 0;
1647}
1648
1649static int knav_queue_init_queues(struct knav_device *kdev)
1650{
1651        struct knav_range_info *range;
1652        int size, id, base_idx;
1653        int idx = 0, ret = 0;
1654
1655        /* how much do we need for instance data? */
1656        size = sizeof(struct knav_queue_inst);
1657
1658        /* round this up to a power of 2, keep the index to instance
1659         * arithmetic fast.
1660         * */
1661        kdev->inst_shift = order_base_2(size);
1662        size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1663        kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1664        if (!kdev->instances)
1665                return -ENOMEM;
1666
1667        for_each_queue_range(kdev, range) {
1668                if (range->ops && range->ops->init_range)
1669                        range->ops->init_range(range);
1670                base_idx = idx;
1671                for (id = range->queue_base;
1672                     id < range->queue_base + range->num_queues; id++, idx++) {
1673                        ret = knav_queue_init_queue(kdev, range,
1674                                        knav_queue_idx_to_inst(kdev, idx), id);
1675                        if (ret < 0)
1676                                return ret;
1677                }
1678                range->queue_base_inst =
1679                        knav_queue_idx_to_inst(kdev, base_idx);
1680        }
1681        return 0;
1682}
1683
1684static int knav_queue_probe(struct platform_device *pdev)
1685{
1686        struct device_node *node = pdev->dev.of_node;
1687        struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1688        struct device *dev = &pdev->dev;
1689        u32 temp[2];
1690        int ret;
1691
1692        if (!node) {
1693                dev_err(dev, "device tree info unavailable\n");
1694                return -ENODEV;
1695        }
1696
1697        kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1698        if (!kdev) {
1699                dev_err(dev, "memory allocation failed\n");
1700                return -ENOMEM;
1701        }
1702
1703        platform_set_drvdata(pdev, kdev);
1704        kdev->dev = dev;
1705        INIT_LIST_HEAD(&kdev->queue_ranges);
1706        INIT_LIST_HEAD(&kdev->qmgrs);
1707        INIT_LIST_HEAD(&kdev->pools);
1708        INIT_LIST_HEAD(&kdev->regions);
1709        INIT_LIST_HEAD(&kdev->pdsps);
1710
1711        pm_runtime_enable(&pdev->dev);
1712        ret = pm_runtime_get_sync(&pdev->dev);
1713        if (ret < 0) {
1714                dev_err(dev, "Failed to enable QMSS\n");
1715                return ret;
1716        }
1717
1718        if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1719                dev_err(dev, "queue-range not specified\n");
1720                ret = -ENODEV;
1721                goto err;
1722        }
1723        kdev->base_id    = temp[0];
1724        kdev->num_queues = temp[1];
1725
1726        /* Initialize queue managers using device tree configuration */
1727        qmgrs =  of_get_child_by_name(node, "qmgrs");
1728        if (!qmgrs) {
1729                dev_err(dev, "queue manager info not specified\n");
1730                ret = -ENODEV;
1731                goto err;
1732        }
1733        ret = knav_queue_init_qmgrs(kdev, qmgrs);
1734        of_node_put(qmgrs);
1735        if (ret)
1736                goto err;
1737
1738        /* get pdsp configuration values from device tree */
1739        pdsps =  of_get_child_by_name(node, "pdsps");
1740        if (pdsps) {
1741                ret = knav_queue_init_pdsps(kdev, pdsps);
1742                if (ret)
1743                        goto err;
1744
1745                ret = knav_queue_start_pdsps(kdev);
1746                if (ret)
1747                        goto err;
1748        }
1749        of_node_put(pdsps);
1750
1751        /* get usable queue range values from device tree */
1752        queue_pools = of_get_child_by_name(node, "queue-pools");
1753        if (!queue_pools) {
1754                dev_err(dev, "queue-pools not specified\n");
1755                ret = -ENODEV;
1756                goto err;
1757        }
1758        ret = knav_setup_queue_pools(kdev, queue_pools);
1759        of_node_put(queue_pools);
1760        if (ret)
1761                goto err;
1762
1763        ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1764        if (ret) {
1765                dev_err(kdev->dev, "could not setup linking ram\n");
1766                goto err;
1767        }
1768
1769        ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1770        if (ret) {
1771                /*
1772                 * nothing really, we have one linking ram already, so we just
1773                 * live within our means
1774                 */
1775        }
1776
1777        ret = knav_queue_setup_link_ram(kdev);
1778        if (ret)
1779                goto err;
1780
1781        regions =  of_get_child_by_name(node, "descriptor-regions");
1782        if (!regions) {
1783                dev_err(dev, "descriptor-regions not specified\n");
1784                goto err;
1785        }
1786        ret = knav_queue_setup_regions(kdev, regions);
1787        of_node_put(regions);
1788        if (ret)
1789                goto err;
1790
1791        ret = knav_queue_init_queues(kdev);
1792        if (ret < 0) {
1793                dev_err(dev, "hwqueue initialization failed\n");
1794                goto err;
1795        }
1796
1797        debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1798                            &knav_queue_debug_ops);
1799        return 0;
1800
1801err:
1802        knav_queue_stop_pdsps(kdev);
1803        knav_queue_free_regions(kdev);
1804        knav_free_queue_ranges(kdev);
1805        pm_runtime_put_sync(&pdev->dev);
1806        pm_runtime_disable(&pdev->dev);
1807        return ret;
1808}
1809
1810static int knav_queue_remove(struct platform_device *pdev)
1811{
1812        /* TODO: Free resources */
1813        pm_runtime_put_sync(&pdev->dev);
1814        pm_runtime_disable(&pdev->dev);
1815        return 0;
1816}
1817
1818/* Match table for of_platform binding */
1819static struct of_device_id keystone_qmss_of_match[] = {
1820        { .compatible = "ti,keystone-navigator-qmss", },
1821        {},
1822};
1823MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1824
1825static struct platform_driver keystone_qmss_driver = {
1826        .probe          = knav_queue_probe,
1827        .remove         = knav_queue_remove,
1828        .driver         = {
1829                .name   = "keystone-navigator-qmss",
1830                .of_match_table = keystone_qmss_of_match,
1831        },
1832};
1833module_platform_driver(keystone_qmss_driver);
1834
1835MODULE_LICENSE("GPL v2");
1836MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1837MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1838MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1839