1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <linux/bitmap.h>
15#include <linux/clk.h>
16#include <linux/completion.h>
17#include <linux/delay.h>
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
20#include <linux/err.h>
21#include <linux/gpio.h>
22#include <linux/gpio/consumer.h>
23#include <linux/interrupt.h>
24#include <linux/io.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/of_device.h>
29#include <linux/platform_device.h>
30#include <linux/pm_runtime.h>
31#include <linux/sh_dma.h>
32
33#include <linux/spi/sh_msiof.h>
34#include <linux/spi/spi.h>
35
36#include <asm/unaligned.h>
37
38struct sh_msiof_chipdata {
39 u16 tx_fifo_size;
40 u16 rx_fifo_size;
41 u16 master_flags;
42 u16 min_div;
43};
44
45struct sh_msiof_spi_priv {
46 struct spi_master *master;
47 void __iomem *mapbase;
48 struct clk *clk;
49 struct platform_device *pdev;
50 struct sh_msiof_spi_info *info;
51 struct completion done;
52 unsigned int tx_fifo_size;
53 unsigned int rx_fifo_size;
54 unsigned int min_div;
55 void *tx_dma_page;
56 void *rx_dma_page;
57 dma_addr_t tx_dma_addr;
58 dma_addr_t rx_dma_addr;
59 unsigned short unused_ss;
60 bool native_cs_inited;
61 bool native_cs_high;
62 bool slave_aborted;
63};
64
65#define MAX_SS 3
66
67#define TMDR1 0x00
68#define TMDR2 0x04
69#define TMDR3 0x08
70#define RMDR1 0x10
71#define RMDR2 0x14
72#define RMDR3 0x18
73#define TSCR 0x20
74#define RSCR 0x22
75#define CTR 0x28
76#define FCTR 0x30
77#define STR 0x40
78#define IER 0x44
79#define TDR1 0x48
80#define TDR2 0x4c
81#define TFDR 0x50
82#define RDR1 0x58
83#define RDR2 0x5c
84#define RFDR 0x60
85
86
87#define MDR1_TRMD 0x80000000
88#define MDR1_SYNCMD_MASK 0x30000000
89#define MDR1_SYNCMD_SPI 0x20000000
90#define MDR1_SYNCMD_LR 0x30000000
91#define MDR1_SYNCAC_SHIFT 25
92#define MDR1_BITLSB_SHIFT 24
93#define MDR1_DTDL_SHIFT 20
94#define MDR1_SYNCDL_SHIFT 16
95#define MDR1_FLD_MASK 0x0000000c
96#define MDR1_FLD_SHIFT 2
97#define MDR1_XXSTP 0x00000001
98
99#define TMDR1_PCON 0x40000000
100#define TMDR1_SYNCCH_MASK 0xc000000
101#define TMDR1_SYNCCH_SHIFT 26
102
103
104#define MDR2_BITLEN1(i) (((i) - 1) << 24)
105#define MDR2_WDLEN1(i) (((i) - 1) << 16)
106#define MDR2_GRPMASK1 0x00000001
107
108
109#define SCR_BRPS_MASK 0x1f00
110#define SCR_BRPS(i) (((i) - 1) << 8)
111#define SCR_BRDV_MASK 0x0007
112#define SCR_BRDV_DIV_2 0x0000
113#define SCR_BRDV_DIV_4 0x0001
114#define SCR_BRDV_DIV_8 0x0002
115#define SCR_BRDV_DIV_16 0x0003
116#define SCR_BRDV_DIV_32 0x0004
117#define SCR_BRDV_DIV_1 0x0007
118
119
120#define CTR_TSCKIZ_MASK 0xc0000000
121#define CTR_TSCKIZ_SCK 0x80000000
122#define CTR_TSCKIZ_POL_SHIFT 30
123#define CTR_RSCKIZ_MASK 0x30000000
124#define CTR_RSCKIZ_SCK 0x20000000
125#define CTR_RSCKIZ_POL_SHIFT 28
126#define CTR_TEDG_SHIFT 27
127#define CTR_REDG_SHIFT 26
128#define CTR_TXDIZ_MASK 0x00c00000
129#define CTR_TXDIZ_LOW 0x00000000
130#define CTR_TXDIZ_HIGH 0x00400000
131#define CTR_TXDIZ_HIZ 0x00800000
132#define CTR_TSCKE 0x00008000
133#define CTR_TFSE 0x00004000
134#define CTR_TXE 0x00000200
135#define CTR_RXE 0x00000100
136
137
138#define FCTR_TFWM_MASK 0xe0000000
139#define FCTR_TFWM_64 0x00000000
140#define FCTR_TFWM_32 0x20000000
141#define FCTR_TFWM_24 0x40000000
142#define FCTR_TFWM_16 0x60000000
143#define FCTR_TFWM_12 0x80000000
144#define FCTR_TFWM_8 0xa0000000
145#define FCTR_TFWM_4 0xc0000000
146#define FCTR_TFWM_1 0xe0000000
147#define FCTR_TFUA_MASK 0x07f00000
148#define FCTR_TFUA_SHIFT 20
149#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
150#define FCTR_RFWM_MASK 0x0000e000
151#define FCTR_RFWM_1 0x00000000
152#define FCTR_RFWM_4 0x00002000
153#define FCTR_RFWM_8 0x00004000
154#define FCTR_RFWM_16 0x00006000
155#define FCTR_RFWM_32 0x00008000
156#define FCTR_RFWM_64 0x0000a000
157#define FCTR_RFWM_128 0x0000c000
158#define FCTR_RFWM_256 0x0000e000
159#define FCTR_RFUA_MASK 0x00001ff0
160#define FCTR_RFUA_SHIFT 4
161#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
162
163
164#define STR_TFEMP 0x20000000
165#define STR_TDREQ 0x10000000
166#define STR_TEOF 0x00800000
167#define STR_TFSERR 0x00200000
168#define STR_TFOVF 0x00100000
169#define STR_TFUDF 0x00080000
170#define STR_RFFUL 0x00002000
171#define STR_RDREQ 0x00001000
172#define STR_REOF 0x00000080
173#define STR_RFSERR 0x00000020
174#define STR_RFUDF 0x00000010
175#define STR_RFOVF 0x00000008
176
177
178#define IER_TDMAE 0x80000000
179#define IER_TFEMPE 0x20000000
180#define IER_TDREQE 0x10000000
181#define IER_TEOFE 0x00800000
182#define IER_TFSERRE 0x00200000
183#define IER_TFOVFE 0x00100000
184#define IER_TFUDFE 0x00080000
185#define IER_RDMAE 0x00008000
186#define IER_RFFULE 0x00002000
187#define IER_RDREQE 0x00001000
188#define IER_REOFE 0x00000080
189#define IER_RFSERRE 0x00000020
190#define IER_RFUDFE 0x00000010
191#define IER_RFOVFE 0x00000008
192
193
194static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
195{
196 switch (reg_offs) {
197 case TSCR:
198 case RSCR:
199 return ioread16(p->mapbase + reg_offs);
200 default:
201 return ioread32(p->mapbase + reg_offs);
202 }
203}
204
205static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
206 u32 value)
207{
208 switch (reg_offs) {
209 case TSCR:
210 case RSCR:
211 iowrite16(value, p->mapbase + reg_offs);
212 break;
213 default:
214 iowrite32(value, p->mapbase + reg_offs);
215 break;
216 }
217}
218
219static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220 u32 clr, u32 set)
221{
222 u32 mask = clr | set;
223 u32 data;
224 int k;
225
226 data = sh_msiof_read(p, CTR);
227 data &= ~clr;
228 data |= set;
229 sh_msiof_write(p, CTR, data);
230
231 for (k = 100; k > 0; k--) {
232 if ((sh_msiof_read(p, CTR) & mask) == set)
233 break;
234
235 udelay(10);
236 }
237
238 return k > 0 ? 0 : -ETIMEDOUT;
239}
240
241static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
242{
243 struct sh_msiof_spi_priv *p = data;
244
245
246 sh_msiof_write(p, IER, 0);
247 complete(&p->done);
248
249 return IRQ_HANDLED;
250}
251
252static struct {
253 unsigned short div;
254 unsigned short brdv;
255} const sh_msiof_spi_div_table[] = {
256 { 1, SCR_BRDV_DIV_1 },
257 { 2, SCR_BRDV_DIV_2 },
258 { 4, SCR_BRDV_DIV_4 },
259 { 8, SCR_BRDV_DIV_8 },
260 { 16, SCR_BRDV_DIV_16 },
261 { 32, SCR_BRDV_DIV_32 },
262};
263
264static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
265 unsigned long parent_rate, u32 spi_hz)
266{
267 unsigned long div = 1024;
268 u32 brps, scr;
269 size_t k;
270
271 if (!WARN_ON(!spi_hz || !parent_rate))
272 div = DIV_ROUND_UP(parent_rate, spi_hz);
273
274 div = max_t(unsigned long, div, p->min_div);
275
276 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
277 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
278
279 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
280 continue;
281 if (brps <= 32)
282 break;
283 }
284
285 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
286 brps = min_t(int, brps, 32);
287
288 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
289 sh_msiof_write(p, TSCR, scr);
290 if (!(p->master->flags & SPI_MASTER_MUST_TX))
291 sh_msiof_write(p, RSCR, scr);
292}
293
294static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
295{
296
297
298
299
300
301
302
303
304
305 if (dtdl_or_syncdl % 100)
306 return dtdl_or_syncdl / 100 + 5;
307 else
308 return dtdl_or_syncdl / 100;
309}
310
311static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
312{
313 u32 val;
314
315 if (!p->info)
316 return 0;
317
318
319 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
320 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
321 return 0;
322 }
323
324
325 if ((p->info->dtdl + p->info->syncdl) % 100) {
326 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
327 return 0;
328 }
329
330 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
331 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
332
333 return val;
334}
335
336static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
337 u32 cpol, u32 cpha,
338 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
339{
340 u32 tmp;
341 int edge;
342
343
344
345
346
347
348
349
350 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
351 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
352 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
353 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
354 if (spi_controller_is_slave(p->master)) {
355 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
356 } else {
357 sh_msiof_write(p, TMDR1,
358 tmp | MDR1_TRMD | TMDR1_PCON |
359 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
360 }
361 if (p->master->flags & SPI_MASTER_MUST_TX) {
362
363 tmp &= ~0x0000ffff;
364 }
365 sh_msiof_write(p, RMDR1, tmp);
366
367 tmp = 0;
368 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
369 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
370
371 edge = cpol ^ !cpha;
372
373 tmp |= edge << CTR_TEDG_SHIFT;
374 tmp |= edge << CTR_REDG_SHIFT;
375 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
376 sh_msiof_write(p, CTR, tmp);
377}
378
379static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
380 const void *tx_buf, void *rx_buf,
381 u32 bits, u32 words)
382{
383 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
384
385 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
386 sh_msiof_write(p, TMDR2, dr2);
387 else
388 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
389
390 if (rx_buf)
391 sh_msiof_write(p, RMDR2, dr2);
392}
393
394static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
395{
396 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
397}
398
399static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
400 const void *tx_buf, int words, int fs)
401{
402 const u8 *buf_8 = tx_buf;
403 int k;
404
405 for (k = 0; k < words; k++)
406 sh_msiof_write(p, TFDR, buf_8[k] << fs);
407}
408
409static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
410 const void *tx_buf, int words, int fs)
411{
412 const u16 *buf_16 = tx_buf;
413 int k;
414
415 for (k = 0; k < words; k++)
416 sh_msiof_write(p, TFDR, buf_16[k] << fs);
417}
418
419static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
420 const void *tx_buf, int words, int fs)
421{
422 const u16 *buf_16 = tx_buf;
423 int k;
424
425 for (k = 0; k < words; k++)
426 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
427}
428
429static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
430 const void *tx_buf, int words, int fs)
431{
432 const u32 *buf_32 = tx_buf;
433 int k;
434
435 for (k = 0; k < words; k++)
436 sh_msiof_write(p, TFDR, buf_32[k] << fs);
437}
438
439static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
440 const void *tx_buf, int words, int fs)
441{
442 const u32 *buf_32 = tx_buf;
443 int k;
444
445 for (k = 0; k < words; k++)
446 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
447}
448
449static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
450 const void *tx_buf, int words, int fs)
451{
452 const u32 *buf_32 = tx_buf;
453 int k;
454
455 for (k = 0; k < words; k++)
456 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
457}
458
459static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
460 const void *tx_buf, int words, int fs)
461{
462 const u32 *buf_32 = tx_buf;
463 int k;
464
465 for (k = 0; k < words; k++)
466 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
467}
468
469static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
470 void *rx_buf, int words, int fs)
471{
472 u8 *buf_8 = rx_buf;
473 int k;
474
475 for (k = 0; k < words; k++)
476 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
477}
478
479static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
480 void *rx_buf, int words, int fs)
481{
482 u16 *buf_16 = rx_buf;
483 int k;
484
485 for (k = 0; k < words; k++)
486 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
487}
488
489static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
490 void *rx_buf, int words, int fs)
491{
492 u16 *buf_16 = rx_buf;
493 int k;
494
495 for (k = 0; k < words; k++)
496 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
497}
498
499static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
500 void *rx_buf, int words, int fs)
501{
502 u32 *buf_32 = rx_buf;
503 int k;
504
505 for (k = 0; k < words; k++)
506 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
507}
508
509static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
510 void *rx_buf, int words, int fs)
511{
512 u32 *buf_32 = rx_buf;
513 int k;
514
515 for (k = 0; k < words; k++)
516 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
517}
518
519static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
520 void *rx_buf, int words, int fs)
521{
522 u32 *buf_32 = rx_buf;
523 int k;
524
525 for (k = 0; k < words; k++)
526 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
527}
528
529static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
530 void *rx_buf, int words, int fs)
531{
532 u32 *buf_32 = rx_buf;
533 int k;
534
535 for (k = 0; k < words; k++)
536 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
537}
538
539static int sh_msiof_spi_setup(struct spi_device *spi)
540{
541 struct device_node *np = spi->master->dev.of_node;
542 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
543 u32 clr, set, tmp;
544
545 if (!np) {
546
547
548
549
550 spi->cs_gpio = (uintptr_t)spi->controller_data;
551 }
552
553 if (gpio_is_valid(spi->cs_gpio)) {
554 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
555 return 0;
556 }
557
558 if (spi_controller_is_slave(p->master))
559 return 0;
560
561 if (p->native_cs_inited &&
562 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
563 return 0;
564
565
566 clr = MDR1_SYNCMD_MASK;
567 set = MDR1_TRMD | TMDR1_PCON | MDR1_SYNCMD_SPI;
568 if (spi->mode & SPI_CS_HIGH)
569 clr |= BIT(MDR1_SYNCAC_SHIFT);
570 else
571 set |= BIT(MDR1_SYNCAC_SHIFT);
572 pm_runtime_get_sync(&p->pdev->dev);
573 tmp = sh_msiof_read(p, TMDR1) & ~clr;
574 sh_msiof_write(p, TMDR1, tmp | set);
575 pm_runtime_put(&p->pdev->dev);
576 p->native_cs_high = spi->mode & SPI_CS_HIGH;
577 p->native_cs_inited = true;
578 return 0;
579}
580
581static int sh_msiof_prepare_message(struct spi_master *master,
582 struct spi_message *msg)
583{
584 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
585 const struct spi_device *spi = msg->spi;
586 u32 ss, cs_high;
587
588
589 if (gpio_is_valid(spi->cs_gpio)) {
590 ss = p->unused_ss;
591 cs_high = p->native_cs_high;
592 } else {
593 ss = spi->chip_select;
594 cs_high = !!(spi->mode & SPI_CS_HIGH);
595 }
596 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
597 !!(spi->mode & SPI_CPHA),
598 !!(spi->mode & SPI_3WIRE),
599 !!(spi->mode & SPI_LSB_FIRST), cs_high);
600 return 0;
601}
602
603static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
604{
605 bool slave = spi_controller_is_slave(p->master);
606 int ret = 0;
607
608
609 if (!slave)
610 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
611 if (rx_buf && !ret)
612 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
613 if (!ret)
614 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
615
616
617 if (!ret && !slave)
618 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
619
620 return ret;
621}
622
623static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
624{
625 bool slave = spi_controller_is_slave(p->master);
626 int ret = 0;
627
628
629 if (!slave)
630 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
631 if (!ret)
632 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
633 if (rx_buf && !ret)
634 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
635 if (!ret && !slave)
636 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
637
638 return ret;
639}
640
641static int sh_msiof_slave_abort(struct spi_master *master)
642{
643 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
644
645 p->slave_aborted = true;
646 complete(&p->done);
647 return 0;
648}
649
650static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
651{
652 if (spi_controller_is_slave(p->master)) {
653 if (wait_for_completion_interruptible(&p->done) ||
654 p->slave_aborted) {
655 dev_dbg(&p->pdev->dev, "interrupted\n");
656 return -EINTR;
657 }
658 } else {
659 if (!wait_for_completion_timeout(&p->done, HZ)) {
660 dev_err(&p->pdev->dev, "timeout\n");
661 return -ETIMEDOUT;
662 }
663 }
664
665 return 0;
666}
667
668static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
669 void (*tx_fifo)(struct sh_msiof_spi_priv *,
670 const void *, int, int),
671 void (*rx_fifo)(struct sh_msiof_spi_priv *,
672 void *, int, int),
673 const void *tx_buf, void *rx_buf,
674 int words, int bits)
675{
676 int fifo_shift;
677 int ret;
678
679
680 if (tx_buf)
681 words = min_t(int, words, p->tx_fifo_size);
682 if (rx_buf)
683 words = min_t(int, words, p->rx_fifo_size);
684
685
686 fifo_shift = 32 - bits;
687
688
689 sh_msiof_write(p, FCTR, 0);
690
691
692 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
693 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
694
695
696 if (tx_buf)
697 tx_fifo(p, tx_buf, words, fifo_shift);
698
699 reinit_completion(&p->done);
700 p->slave_aborted = false;
701
702 ret = sh_msiof_spi_start(p, rx_buf);
703 if (ret) {
704 dev_err(&p->pdev->dev, "failed to start hardware\n");
705 goto stop_ier;
706 }
707
708
709 ret = sh_msiof_wait_for_completion(p);
710 if (ret)
711 goto stop_reset;
712
713
714 if (rx_buf)
715 rx_fifo(p, rx_buf, words, fifo_shift);
716
717
718 sh_msiof_reset_str(p);
719
720 ret = sh_msiof_spi_stop(p, rx_buf);
721 if (ret) {
722 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
723 return ret;
724 }
725
726 return words;
727
728stop_reset:
729 sh_msiof_reset_str(p);
730 sh_msiof_spi_stop(p, rx_buf);
731stop_ier:
732 sh_msiof_write(p, IER, 0);
733 return ret;
734}
735
736static void sh_msiof_dma_complete(void *arg)
737{
738 struct sh_msiof_spi_priv *p = arg;
739
740 sh_msiof_write(p, IER, 0);
741 complete(&p->done);
742}
743
744static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
745 void *rx, unsigned int len)
746{
747 u32 ier_bits = 0;
748 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
749 dma_cookie_t cookie;
750 int ret;
751
752
753 if (rx) {
754 ier_bits |= IER_RDREQE | IER_RDMAE;
755 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
756 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
757 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
758 if (!desc_rx)
759 return -EAGAIN;
760
761 desc_rx->callback = sh_msiof_dma_complete;
762 desc_rx->callback_param = p;
763 cookie = dmaengine_submit(desc_rx);
764 if (dma_submit_error(cookie))
765 return cookie;
766 }
767
768 if (tx) {
769 ier_bits |= IER_TDREQE | IER_TDMAE;
770 dma_sync_single_for_device(p->master->dma_tx->device->dev,
771 p->tx_dma_addr, len, DMA_TO_DEVICE);
772 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
773 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
774 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
775 if (!desc_tx) {
776 ret = -EAGAIN;
777 goto no_dma_tx;
778 }
779
780 if (rx) {
781
782 desc_tx->callback = NULL;
783 } else {
784 desc_tx->callback = sh_msiof_dma_complete;
785 desc_tx->callback_param = p;
786 }
787 cookie = dmaengine_submit(desc_tx);
788 if (dma_submit_error(cookie)) {
789 ret = cookie;
790 goto no_dma_tx;
791 }
792 }
793
794
795 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
796
797
798 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
799
800 sh_msiof_write(p, IER, ier_bits);
801
802 reinit_completion(&p->done);
803 p->slave_aborted = false;
804
805
806 if (rx)
807 dma_async_issue_pending(p->master->dma_rx);
808 if (tx)
809 dma_async_issue_pending(p->master->dma_tx);
810
811 ret = sh_msiof_spi_start(p, rx);
812 if (ret) {
813 dev_err(&p->pdev->dev, "failed to start hardware\n");
814 goto stop_dma;
815 }
816
817
818 ret = sh_msiof_wait_for_completion(p);
819 if (ret)
820 goto stop_reset;
821
822 if (!rx) {
823 reinit_completion(&p->done);
824 sh_msiof_write(p, IER, IER_TEOFE);
825
826
827 ret = sh_msiof_wait_for_completion(p);
828 if (ret)
829 goto stop_reset;
830 }
831
832
833 sh_msiof_reset_str(p);
834
835 ret = sh_msiof_spi_stop(p, rx);
836 if (ret) {
837 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
838 return ret;
839 }
840
841 if (rx)
842 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
843 p->rx_dma_addr, len,
844 DMA_FROM_DEVICE);
845
846 return 0;
847
848stop_reset:
849 sh_msiof_reset_str(p);
850 sh_msiof_spi_stop(p, rx);
851stop_dma:
852 if (tx)
853 dmaengine_terminate_all(p->master->dma_tx);
854no_dma_tx:
855 if (rx)
856 dmaengine_terminate_all(p->master->dma_rx);
857 sh_msiof_write(p, IER, 0);
858 return ret;
859}
860
861static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
862{
863
864 if ((unsigned long)src & 3) {
865 while (words--) {
866 *dst++ = swab32(get_unaligned(src));
867 src++;
868 }
869 } else if ((unsigned long)dst & 3) {
870 while (words--) {
871 put_unaligned(swab32(*src++), dst);
872 dst++;
873 }
874 } else {
875 while (words--)
876 *dst++ = swab32(*src++);
877 }
878}
879
880static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
881{
882
883 if ((unsigned long)src & 3) {
884 while (words--) {
885 *dst++ = swahw32(get_unaligned(src));
886 src++;
887 }
888 } else if ((unsigned long)dst & 3) {
889 while (words--) {
890 put_unaligned(swahw32(*src++), dst);
891 dst++;
892 }
893 } else {
894 while (words--)
895 *dst++ = swahw32(*src++);
896 }
897}
898
899static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
900{
901 memcpy(dst, src, words * 4);
902}
903
904static int sh_msiof_transfer_one(struct spi_master *master,
905 struct spi_device *spi,
906 struct spi_transfer *t)
907{
908 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
909 void (*copy32)(u32 *, const u32 *, unsigned int);
910 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
911 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
912 const void *tx_buf = t->tx_buf;
913 void *rx_buf = t->rx_buf;
914 unsigned int len = t->len;
915 unsigned int bits = t->bits_per_word;
916 unsigned int bytes_per_word;
917 unsigned int words;
918 int n;
919 bool swab;
920 int ret;
921
922
923 if (!spi_controller_is_slave(p->master))
924 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
925
926 while (master->dma_tx && len > 15) {
927
928
929
930
931 unsigned int l = 0;
932
933 if (tx_buf)
934 l = min(len, p->tx_fifo_size * 4);
935 if (rx_buf)
936 l = min(len, p->rx_fifo_size * 4);
937
938 if (bits <= 8) {
939 if (l & 3)
940 break;
941 copy32 = copy_bswap32;
942 } else if (bits <= 16) {
943 if (l & 3)
944 break;
945 copy32 = copy_wswap32;
946 } else {
947 copy32 = copy_plain32;
948 }
949
950 if (tx_buf)
951 copy32(p->tx_dma_page, tx_buf, l / 4);
952
953 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
954 if (ret == -EAGAIN) {
955 dev_warn_once(&p->pdev->dev,
956 "DMA not available, falling back to PIO\n");
957 break;
958 }
959 if (ret)
960 return ret;
961
962 if (rx_buf) {
963 copy32(rx_buf, p->rx_dma_page, l / 4);
964 rx_buf += l;
965 }
966 if (tx_buf)
967 tx_buf += l;
968
969 len -= l;
970 if (!len)
971 return 0;
972 }
973
974 if (bits <= 8 && len > 15 && !(len & 3)) {
975 bits = 32;
976 swab = true;
977 } else {
978 swab = false;
979 }
980
981
982 if (bits <= 8) {
983 bytes_per_word = 1;
984 tx_fifo = sh_msiof_spi_write_fifo_8;
985 rx_fifo = sh_msiof_spi_read_fifo_8;
986 } else if (bits <= 16) {
987 bytes_per_word = 2;
988 if ((unsigned long)tx_buf & 0x01)
989 tx_fifo = sh_msiof_spi_write_fifo_16u;
990 else
991 tx_fifo = sh_msiof_spi_write_fifo_16;
992
993 if ((unsigned long)rx_buf & 0x01)
994 rx_fifo = sh_msiof_spi_read_fifo_16u;
995 else
996 rx_fifo = sh_msiof_spi_read_fifo_16;
997 } else if (swab) {
998 bytes_per_word = 4;
999 if ((unsigned long)tx_buf & 0x03)
1000 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1001 else
1002 tx_fifo = sh_msiof_spi_write_fifo_s32;
1003
1004 if ((unsigned long)rx_buf & 0x03)
1005 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1006 else
1007 rx_fifo = sh_msiof_spi_read_fifo_s32;
1008 } else {
1009 bytes_per_word = 4;
1010 if ((unsigned long)tx_buf & 0x03)
1011 tx_fifo = sh_msiof_spi_write_fifo_32u;
1012 else
1013 tx_fifo = sh_msiof_spi_write_fifo_32;
1014
1015 if ((unsigned long)rx_buf & 0x03)
1016 rx_fifo = sh_msiof_spi_read_fifo_32u;
1017 else
1018 rx_fifo = sh_msiof_spi_read_fifo_32;
1019 }
1020
1021
1022 words = len / bytes_per_word;
1023
1024 while (words > 0) {
1025 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1026 words, bits);
1027 if (n < 0)
1028 return n;
1029
1030 if (tx_buf)
1031 tx_buf += n * bytes_per_word;
1032 if (rx_buf)
1033 rx_buf += n * bytes_per_word;
1034 words -= n;
1035 }
1036
1037 return 0;
1038}
1039
1040static const struct sh_msiof_chipdata sh_data = {
1041 .tx_fifo_size = 64,
1042 .rx_fifo_size = 64,
1043 .master_flags = 0,
1044 .min_div = 1,
1045};
1046
1047static const struct sh_msiof_chipdata rcar_gen2_data = {
1048 .tx_fifo_size = 64,
1049 .rx_fifo_size = 64,
1050 .master_flags = SPI_MASTER_MUST_TX,
1051 .min_div = 1,
1052};
1053
1054static const struct sh_msiof_chipdata rcar_gen3_data = {
1055 .tx_fifo_size = 64,
1056 .rx_fifo_size = 64,
1057 .master_flags = SPI_MASTER_MUST_TX,
1058 .min_div = 2,
1059};
1060
1061static const struct of_device_id sh_msiof_match[] = {
1062 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1063 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1064 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1065 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1066 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1067 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1068 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1069 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1070 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1071 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1072 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1073 { .compatible = "renesas,sh-msiof", .data = &sh_data },
1074 {},
1075};
1076MODULE_DEVICE_TABLE(of, sh_msiof_match);
1077
1078#ifdef CONFIG_OF
1079static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1080{
1081 struct sh_msiof_spi_info *info;
1082 struct device_node *np = dev->of_node;
1083 u32 num_cs = 1;
1084
1085 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1086 if (!info)
1087 return NULL;
1088
1089 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1090 : MSIOF_SPI_MASTER;
1091
1092
1093 if (info->mode == MSIOF_SPI_MASTER)
1094 of_property_read_u32(np, "num-cs", &num_cs);
1095 of_property_read_u32(np, "renesas,tx-fifo-size",
1096 &info->tx_fifo_override);
1097 of_property_read_u32(np, "renesas,rx-fifo-size",
1098 &info->rx_fifo_override);
1099 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1100 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1101
1102 info->num_chipselect = num_cs;
1103
1104 return info;
1105}
1106#else
1107static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1108{
1109 return NULL;
1110}
1111#endif
1112
1113static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1114{
1115 struct device *dev = &p->pdev->dev;
1116 unsigned int used_ss_mask = 0;
1117 unsigned int cs_gpios = 0;
1118 unsigned int num_cs, i;
1119 int ret;
1120
1121 ret = gpiod_count(dev, "cs");
1122 if (ret <= 0)
1123 return 0;
1124
1125 num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1126 for (i = 0; i < num_cs; i++) {
1127 struct gpio_desc *gpiod;
1128
1129 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1130 if (!IS_ERR(gpiod)) {
1131 cs_gpios++;
1132 continue;
1133 }
1134
1135 if (PTR_ERR(gpiod) != -ENOENT)
1136 return PTR_ERR(gpiod);
1137
1138 if (i >= MAX_SS) {
1139 dev_err(dev, "Invalid native chip select %d\n", i);
1140 return -EINVAL;
1141 }
1142 used_ss_mask |= BIT(i);
1143 }
1144 p->unused_ss = ffz(used_ss_mask);
1145 if (cs_gpios && p->unused_ss >= MAX_SS) {
1146 dev_err(dev, "No unused native chip select available\n");
1147 return -EINVAL;
1148 }
1149 return 0;
1150}
1151
1152static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1153 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1154{
1155 dma_cap_mask_t mask;
1156 struct dma_chan *chan;
1157 struct dma_slave_config cfg;
1158 int ret;
1159
1160 dma_cap_zero(mask);
1161 dma_cap_set(DMA_SLAVE, mask);
1162
1163 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1164 (void *)(unsigned long)id, dev,
1165 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1166 if (!chan) {
1167 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1168 return NULL;
1169 }
1170
1171 memset(&cfg, 0, sizeof(cfg));
1172 cfg.direction = dir;
1173 if (dir == DMA_MEM_TO_DEV) {
1174 cfg.dst_addr = port_addr;
1175 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1176 } else {
1177 cfg.src_addr = port_addr;
1178 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1179 }
1180
1181 ret = dmaengine_slave_config(chan, &cfg);
1182 if (ret) {
1183 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1184 dma_release_channel(chan);
1185 return NULL;
1186 }
1187
1188 return chan;
1189}
1190
1191static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1192{
1193 struct platform_device *pdev = p->pdev;
1194 struct device *dev = &pdev->dev;
1195 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1196 unsigned int dma_tx_id, dma_rx_id;
1197 const struct resource *res;
1198 struct spi_master *master;
1199 struct device *tx_dev, *rx_dev;
1200
1201 if (dev->of_node) {
1202
1203 dma_tx_id = 0;
1204 dma_rx_id = 0;
1205 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1206 dma_tx_id = info->dma_tx_id;
1207 dma_rx_id = info->dma_rx_id;
1208 } else {
1209
1210 return 0;
1211 }
1212
1213
1214 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1215 if (!res)
1216 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1217
1218 master = p->master;
1219 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1220 dma_tx_id,
1221 res->start + TFDR);
1222 if (!master->dma_tx)
1223 return -ENODEV;
1224
1225 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1226 dma_rx_id,
1227 res->start + RFDR);
1228 if (!master->dma_rx)
1229 goto free_tx_chan;
1230
1231 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1232 if (!p->tx_dma_page)
1233 goto free_rx_chan;
1234
1235 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1236 if (!p->rx_dma_page)
1237 goto free_tx_page;
1238
1239 tx_dev = master->dma_tx->device->dev;
1240 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1241 DMA_TO_DEVICE);
1242 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1243 goto free_rx_page;
1244
1245 rx_dev = master->dma_rx->device->dev;
1246 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1247 DMA_FROM_DEVICE);
1248 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1249 goto unmap_tx_page;
1250
1251 dev_info(dev, "DMA available");
1252 return 0;
1253
1254unmap_tx_page:
1255 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1256free_rx_page:
1257 free_page((unsigned long)p->rx_dma_page);
1258free_tx_page:
1259 free_page((unsigned long)p->tx_dma_page);
1260free_rx_chan:
1261 dma_release_channel(master->dma_rx);
1262free_tx_chan:
1263 dma_release_channel(master->dma_tx);
1264 master->dma_tx = NULL;
1265 return -ENODEV;
1266}
1267
1268static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1269{
1270 struct spi_master *master = p->master;
1271
1272 if (!master->dma_tx)
1273 return;
1274
1275 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1276 PAGE_SIZE, DMA_FROM_DEVICE);
1277 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1278 PAGE_SIZE, DMA_TO_DEVICE);
1279 free_page((unsigned long)p->rx_dma_page);
1280 free_page((unsigned long)p->tx_dma_page);
1281 dma_release_channel(master->dma_rx);
1282 dma_release_channel(master->dma_tx);
1283}
1284
1285static int sh_msiof_spi_probe(struct platform_device *pdev)
1286{
1287 struct resource *r;
1288 struct spi_master *master;
1289 const struct sh_msiof_chipdata *chipdata;
1290 struct sh_msiof_spi_info *info;
1291 struct sh_msiof_spi_priv *p;
1292 int i;
1293 int ret;
1294
1295 chipdata = of_device_get_match_data(&pdev->dev);
1296 if (chipdata) {
1297 info = sh_msiof_spi_parse_dt(&pdev->dev);
1298 } else {
1299 chipdata = (const void *)pdev->id_entry->driver_data;
1300 info = dev_get_platdata(&pdev->dev);
1301 }
1302
1303 if (!info) {
1304 dev_err(&pdev->dev, "failed to obtain device info\n");
1305 return -ENXIO;
1306 }
1307
1308 if (info->mode == MSIOF_SPI_SLAVE)
1309 master = spi_alloc_slave(&pdev->dev,
1310 sizeof(struct sh_msiof_spi_priv));
1311 else
1312 master = spi_alloc_master(&pdev->dev,
1313 sizeof(struct sh_msiof_spi_priv));
1314 if (master == NULL)
1315 return -ENOMEM;
1316
1317 p = spi_master_get_devdata(master);
1318
1319 platform_set_drvdata(pdev, p);
1320 p->master = master;
1321 p->info = info;
1322 p->min_div = chipdata->min_div;
1323
1324 init_completion(&p->done);
1325
1326 p->clk = devm_clk_get(&pdev->dev, NULL);
1327 if (IS_ERR(p->clk)) {
1328 dev_err(&pdev->dev, "cannot get clock\n");
1329 ret = PTR_ERR(p->clk);
1330 goto err1;
1331 }
1332
1333 i = platform_get_irq(pdev, 0);
1334 if (i < 0) {
1335 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1336 ret = -ENOENT;
1337 goto err1;
1338 }
1339
1340 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1341 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1342 if (IS_ERR(p->mapbase)) {
1343 ret = PTR_ERR(p->mapbase);
1344 goto err1;
1345 }
1346
1347 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1348 dev_name(&pdev->dev), p);
1349 if (ret) {
1350 dev_err(&pdev->dev, "unable to request irq\n");
1351 goto err1;
1352 }
1353
1354 p->pdev = pdev;
1355 pm_runtime_enable(&pdev->dev);
1356
1357
1358 p->tx_fifo_size = chipdata->tx_fifo_size;
1359 p->rx_fifo_size = chipdata->rx_fifo_size;
1360 if (p->info->tx_fifo_override)
1361 p->tx_fifo_size = p->info->tx_fifo_override;
1362 if (p->info->rx_fifo_override)
1363 p->rx_fifo_size = p->info->rx_fifo_override;
1364
1365
1366 master->num_chipselect = p->info->num_chipselect;
1367 ret = sh_msiof_get_cs_gpios(p);
1368 if (ret)
1369 goto err1;
1370
1371
1372 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1373 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1374 master->flags = chipdata->master_flags;
1375 master->bus_num = pdev->id;
1376 master->dev.of_node = pdev->dev.of_node;
1377 master->setup = sh_msiof_spi_setup;
1378 master->prepare_message = sh_msiof_prepare_message;
1379 master->slave_abort = sh_msiof_slave_abort;
1380 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1381 master->auto_runtime_pm = true;
1382 master->transfer_one = sh_msiof_transfer_one;
1383
1384 ret = sh_msiof_request_dma(p);
1385 if (ret < 0)
1386 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1387
1388 ret = devm_spi_register_master(&pdev->dev, master);
1389 if (ret < 0) {
1390 dev_err(&pdev->dev, "spi_register_master error.\n");
1391 goto err2;
1392 }
1393
1394 return 0;
1395
1396 err2:
1397 sh_msiof_release_dma(p);
1398 pm_runtime_disable(&pdev->dev);
1399 err1:
1400 spi_master_put(master);
1401 return ret;
1402}
1403
1404static int sh_msiof_spi_remove(struct platform_device *pdev)
1405{
1406 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1407
1408 sh_msiof_release_dma(p);
1409 pm_runtime_disable(&pdev->dev);
1410 return 0;
1411}
1412
1413static const struct platform_device_id spi_driver_ids[] = {
1414 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1415 {},
1416};
1417MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1418
1419static struct platform_driver sh_msiof_spi_drv = {
1420 .probe = sh_msiof_spi_probe,
1421 .remove = sh_msiof_spi_remove,
1422 .id_table = spi_driver_ids,
1423 .driver = {
1424 .name = "spi_sh_msiof",
1425 .of_match_table = of_match_ptr(sh_msiof_match),
1426 },
1427};
1428module_platform_driver(sh_msiof_spi_drv);
1429
1430MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1431MODULE_AUTHOR("Magnus Damm");
1432MODULE_LICENSE("GPL v2");
1433MODULE_ALIAS("platform:spi_sh_msiof");
1434