linux/drivers/spi/spi.c
<<
>>
Prefs
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/property.h>
  35#include <linux/export.h>
  36#include <linux/sched/rt.h>
  37#include <uapi/linux/sched/types.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/ioport.h>
  41#include <linux/acpi.h>
  42#include <linux/highmem.h>
  43#include <linux/idr.h>
  44#include <linux/platform_data/x86/apple.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/spi.h>
  48
  49static DEFINE_IDR(spi_master_idr);
  50
  51static void spidev_release(struct device *dev)
  52{
  53        struct spi_device       *spi = to_spi_device(dev);
  54
  55        /* spi controllers may cleanup for released devices */
  56        if (spi->controller->cleanup)
  57                spi->controller->cleanup(spi);
  58
  59        spi_controller_put(spi->controller);
  60        kfree(spi);
  61}
  62
  63static ssize_t
  64modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  65{
  66        const struct spi_device *spi = to_spi_device(dev);
  67        int len;
  68
  69        len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  70        if (len != -ENODEV)
  71                return len;
  72
  73        return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  74}
  75static DEVICE_ATTR_RO(modalias);
  76
  77#define SPI_STATISTICS_ATTRS(field, file)                               \
  78static ssize_t spi_controller_##field##_show(struct device *dev,        \
  79                                             struct device_attribute *attr, \
  80                                             char *buf)                 \
  81{                                                                       \
  82        struct spi_controller *ctlr = container_of(dev,                 \
  83                                         struct spi_controller, dev);   \
  84        return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
  85}                                                                       \
  86static struct device_attribute dev_attr_spi_controller_##field = {      \
  87        .attr = { .name = file, .mode = 0444 },                         \
  88        .show = spi_controller_##field##_show,                          \
  89};                                                                      \
  90static ssize_t spi_device_##field##_show(struct device *dev,            \
  91                                         struct device_attribute *attr, \
  92                                        char *buf)                      \
  93{                                                                       \
  94        struct spi_device *spi = to_spi_device(dev);                    \
  95        return spi_statistics_##field##_show(&spi->statistics, buf);    \
  96}                                                                       \
  97static struct device_attribute dev_attr_spi_device_##field = {          \
  98        .attr = { .name = file, .mode = 0444 },                         \
  99        .show = spi_device_##field##_show,                              \
 100}
 101
 102#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
 103static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 104                                            char *buf)                  \
 105{                                                                       \
 106        unsigned long flags;                                            \
 107        ssize_t len;                                                    \
 108        spin_lock_irqsave(&stat->lock, flags);                          \
 109        len = sprintf(buf, format_string, stat->field);                 \
 110        spin_unlock_irqrestore(&stat->lock, flags);                     \
 111        return len;                                                     \
 112}                                                                       \
 113SPI_STATISTICS_ATTRS(name, file)
 114
 115#define SPI_STATISTICS_SHOW(field, format_string)                       \
 116        SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
 117                                 field, format_string)
 118
 119SPI_STATISTICS_SHOW(messages, "%lu");
 120SPI_STATISTICS_SHOW(transfers, "%lu");
 121SPI_STATISTICS_SHOW(errors, "%lu");
 122SPI_STATISTICS_SHOW(timedout, "%lu");
 123
 124SPI_STATISTICS_SHOW(spi_sync, "%lu");
 125SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 126SPI_STATISTICS_SHOW(spi_async, "%lu");
 127
 128SPI_STATISTICS_SHOW(bytes, "%llu");
 129SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 130SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 131
 132#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
 133        SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
 134                                 "transfer_bytes_histo_" number,        \
 135                                 transfer_bytes_histo[index],  "%lu")
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 147SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 148SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 149SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 150SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 151SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 152SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 153
 154SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 155
 156static struct attribute *spi_dev_attrs[] = {
 157        &dev_attr_modalias.attr,
 158        NULL,
 159};
 160
 161static const struct attribute_group spi_dev_group = {
 162        .attrs  = spi_dev_attrs,
 163};
 164
 165static struct attribute *spi_device_statistics_attrs[] = {
 166        &dev_attr_spi_device_messages.attr,
 167        &dev_attr_spi_device_transfers.attr,
 168        &dev_attr_spi_device_errors.attr,
 169        &dev_attr_spi_device_timedout.attr,
 170        &dev_attr_spi_device_spi_sync.attr,
 171        &dev_attr_spi_device_spi_sync_immediate.attr,
 172        &dev_attr_spi_device_spi_async.attr,
 173        &dev_attr_spi_device_bytes.attr,
 174        &dev_attr_spi_device_bytes_rx.attr,
 175        &dev_attr_spi_device_bytes_tx.attr,
 176        &dev_attr_spi_device_transfer_bytes_histo0.attr,
 177        &dev_attr_spi_device_transfer_bytes_histo1.attr,
 178        &dev_attr_spi_device_transfer_bytes_histo2.attr,
 179        &dev_attr_spi_device_transfer_bytes_histo3.attr,
 180        &dev_attr_spi_device_transfer_bytes_histo4.attr,
 181        &dev_attr_spi_device_transfer_bytes_histo5.attr,
 182        &dev_attr_spi_device_transfer_bytes_histo6.attr,
 183        &dev_attr_spi_device_transfer_bytes_histo7.attr,
 184        &dev_attr_spi_device_transfer_bytes_histo8.attr,
 185        &dev_attr_spi_device_transfer_bytes_histo9.attr,
 186        &dev_attr_spi_device_transfer_bytes_histo10.attr,
 187        &dev_attr_spi_device_transfer_bytes_histo11.attr,
 188        &dev_attr_spi_device_transfer_bytes_histo12.attr,
 189        &dev_attr_spi_device_transfer_bytes_histo13.attr,
 190        &dev_attr_spi_device_transfer_bytes_histo14.attr,
 191        &dev_attr_spi_device_transfer_bytes_histo15.attr,
 192        &dev_attr_spi_device_transfer_bytes_histo16.attr,
 193        &dev_attr_spi_device_transfers_split_maxsize.attr,
 194        NULL,
 195};
 196
 197static const struct attribute_group spi_device_statistics_group = {
 198        .name  = "statistics",
 199        .attrs  = spi_device_statistics_attrs,
 200};
 201
 202static const struct attribute_group *spi_dev_groups[] = {
 203        &spi_dev_group,
 204        &spi_device_statistics_group,
 205        NULL,
 206};
 207
 208static struct attribute *spi_controller_statistics_attrs[] = {
 209        &dev_attr_spi_controller_messages.attr,
 210        &dev_attr_spi_controller_transfers.attr,
 211        &dev_attr_spi_controller_errors.attr,
 212        &dev_attr_spi_controller_timedout.attr,
 213        &dev_attr_spi_controller_spi_sync.attr,
 214        &dev_attr_spi_controller_spi_sync_immediate.attr,
 215        &dev_attr_spi_controller_spi_async.attr,
 216        &dev_attr_spi_controller_bytes.attr,
 217        &dev_attr_spi_controller_bytes_rx.attr,
 218        &dev_attr_spi_controller_bytes_tx.attr,
 219        &dev_attr_spi_controller_transfer_bytes_histo0.attr,
 220        &dev_attr_spi_controller_transfer_bytes_histo1.attr,
 221        &dev_attr_spi_controller_transfer_bytes_histo2.attr,
 222        &dev_attr_spi_controller_transfer_bytes_histo3.attr,
 223        &dev_attr_spi_controller_transfer_bytes_histo4.attr,
 224        &dev_attr_spi_controller_transfer_bytes_histo5.attr,
 225        &dev_attr_spi_controller_transfer_bytes_histo6.attr,
 226        &dev_attr_spi_controller_transfer_bytes_histo7.attr,
 227        &dev_attr_spi_controller_transfer_bytes_histo8.attr,
 228        &dev_attr_spi_controller_transfer_bytes_histo9.attr,
 229        &dev_attr_spi_controller_transfer_bytes_histo10.attr,
 230        &dev_attr_spi_controller_transfer_bytes_histo11.attr,
 231        &dev_attr_spi_controller_transfer_bytes_histo12.attr,
 232        &dev_attr_spi_controller_transfer_bytes_histo13.attr,
 233        &dev_attr_spi_controller_transfer_bytes_histo14.attr,
 234        &dev_attr_spi_controller_transfer_bytes_histo15.attr,
 235        &dev_attr_spi_controller_transfer_bytes_histo16.attr,
 236        &dev_attr_spi_controller_transfers_split_maxsize.attr,
 237        NULL,
 238};
 239
 240static const struct attribute_group spi_controller_statistics_group = {
 241        .name  = "statistics",
 242        .attrs  = spi_controller_statistics_attrs,
 243};
 244
 245static const struct attribute_group *spi_master_groups[] = {
 246        &spi_controller_statistics_group,
 247        NULL,
 248};
 249
 250void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 251                                       struct spi_transfer *xfer,
 252                                       struct spi_controller *ctlr)
 253{
 254        unsigned long flags;
 255        int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 256
 257        if (l2len < 0)
 258                l2len = 0;
 259
 260        spin_lock_irqsave(&stats->lock, flags);
 261
 262        stats->transfers++;
 263        stats->transfer_bytes_histo[l2len]++;
 264
 265        stats->bytes += xfer->len;
 266        if ((xfer->tx_buf) &&
 267            (xfer->tx_buf != ctlr->dummy_tx))
 268                stats->bytes_tx += xfer->len;
 269        if ((xfer->rx_buf) &&
 270            (xfer->rx_buf != ctlr->dummy_rx))
 271                stats->bytes_rx += xfer->len;
 272
 273        spin_unlock_irqrestore(&stats->lock, flags);
 274}
 275EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 276
 277/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 278 * and the sysfs version makes coldplug work too.
 279 */
 280
 281static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 282                                                const struct spi_device *sdev)
 283{
 284        while (id->name[0]) {
 285                if (!strcmp(sdev->modalias, id->name))
 286                        return id;
 287                id++;
 288        }
 289        return NULL;
 290}
 291
 292const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 293{
 294        const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 295
 296        return spi_match_id(sdrv->id_table, sdev);
 297}
 298EXPORT_SYMBOL_GPL(spi_get_device_id);
 299
 300static int spi_match_device(struct device *dev, struct device_driver *drv)
 301{
 302        const struct spi_device *spi = to_spi_device(dev);
 303        const struct spi_driver *sdrv = to_spi_driver(drv);
 304
 305        /* Attempt an OF style match */
 306        if (of_driver_match_device(dev, drv))
 307                return 1;
 308
 309        /* Then try ACPI */
 310        if (acpi_driver_match_device(dev, drv))
 311                return 1;
 312
 313        if (sdrv->id_table)
 314                return !!spi_match_id(sdrv->id_table, spi);
 315
 316        return strcmp(spi->modalias, drv->name) == 0;
 317}
 318
 319static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 320{
 321        const struct spi_device         *spi = to_spi_device(dev);
 322        int rc;
 323
 324        rc = acpi_device_uevent_modalias(dev, env);
 325        if (rc != -ENODEV)
 326                return rc;
 327
 328        return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 329}
 330
 331struct bus_type spi_bus_type = {
 332        .name           = "spi",
 333        .dev_groups     = spi_dev_groups,
 334        .match          = spi_match_device,
 335        .uevent         = spi_uevent,
 336};
 337EXPORT_SYMBOL_GPL(spi_bus_type);
 338
 339
 340static int spi_drv_probe(struct device *dev)
 341{
 342        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 343        struct spi_device               *spi = to_spi_device(dev);
 344        int ret;
 345
 346        ret = of_clk_set_defaults(dev->of_node, false);
 347        if (ret)
 348                return ret;
 349
 350        if (dev->of_node) {
 351                spi->irq = of_irq_get(dev->of_node, 0);
 352                if (spi->irq == -EPROBE_DEFER)
 353                        return -EPROBE_DEFER;
 354                if (spi->irq < 0)
 355                        spi->irq = 0;
 356        }
 357
 358        ret = dev_pm_domain_attach(dev, true);
 359        if (ret != -EPROBE_DEFER) {
 360                ret = sdrv->probe(spi);
 361                if (ret)
 362                        dev_pm_domain_detach(dev, true);
 363        }
 364
 365        return ret;
 366}
 367
 368static int spi_drv_remove(struct device *dev)
 369{
 370        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 371        int ret;
 372
 373        ret = sdrv->remove(to_spi_device(dev));
 374        dev_pm_domain_detach(dev, true);
 375
 376        return ret;
 377}
 378
 379static void spi_drv_shutdown(struct device *dev)
 380{
 381        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 382
 383        sdrv->shutdown(to_spi_device(dev));
 384}
 385
 386/**
 387 * __spi_register_driver - register a SPI driver
 388 * @owner: owner module of the driver to register
 389 * @sdrv: the driver to register
 390 * Context: can sleep
 391 *
 392 * Return: zero on success, else a negative error code.
 393 */
 394int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 395{
 396        sdrv->driver.owner = owner;
 397        sdrv->driver.bus = &spi_bus_type;
 398        if (sdrv->probe)
 399                sdrv->driver.probe = spi_drv_probe;
 400        if (sdrv->remove)
 401                sdrv->driver.remove = spi_drv_remove;
 402        if (sdrv->shutdown)
 403                sdrv->driver.shutdown = spi_drv_shutdown;
 404        return driver_register(&sdrv->driver);
 405}
 406EXPORT_SYMBOL_GPL(__spi_register_driver);
 407
 408/*-------------------------------------------------------------------------*/
 409
 410/* SPI devices should normally not be created by SPI device drivers; that
 411 * would make them board-specific.  Similarly with SPI controller drivers.
 412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 413 * with other readonly (flashable) information about mainboard devices.
 414 */
 415
 416struct boardinfo {
 417        struct list_head        list;
 418        struct spi_board_info   board_info;
 419};
 420
 421static LIST_HEAD(board_list);
 422static LIST_HEAD(spi_controller_list);
 423
 424/*
 425 * Used to protect add/del opertion for board_info list and
 426 * spi_controller list, and their matching process
 427 * also used to protect object of type struct idr
 428 */
 429static DEFINE_MUTEX(board_lock);
 430
 431/**
 432 * spi_alloc_device - Allocate a new SPI device
 433 * @ctlr: Controller to which device is connected
 434 * Context: can sleep
 435 *
 436 * Allows a driver to allocate and initialize a spi_device without
 437 * registering it immediately.  This allows a driver to directly
 438 * fill the spi_device with device parameters before calling
 439 * spi_add_device() on it.
 440 *
 441 * Caller is responsible to call spi_add_device() on the returned
 442 * spi_device structure to add it to the SPI controller.  If the caller
 443 * needs to discard the spi_device without adding it, then it should
 444 * call spi_dev_put() on it.
 445 *
 446 * Return: a pointer to the new device, or NULL.
 447 */
 448struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 449{
 450        struct spi_device       *spi;
 451
 452        if (!spi_controller_get(ctlr))
 453                return NULL;
 454
 455        spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 456        if (!spi) {
 457                spi_controller_put(ctlr);
 458                return NULL;
 459        }
 460
 461        spi->master = spi->controller = ctlr;
 462        spi->dev.parent = &ctlr->dev;
 463        spi->dev.bus = &spi_bus_type;
 464        spi->dev.release = spidev_release;
 465        spi->cs_gpio = -ENOENT;
 466
 467        spin_lock_init(&spi->statistics.lock);
 468
 469        device_initialize(&spi->dev);
 470        return spi;
 471}
 472EXPORT_SYMBOL_GPL(spi_alloc_device);
 473
 474static void spi_dev_set_name(struct spi_device *spi)
 475{
 476        struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 477
 478        if (adev) {
 479                dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 480                return;
 481        }
 482
 483        dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 484                     spi->chip_select);
 485}
 486
 487static int spi_dev_check(struct device *dev, void *data)
 488{
 489        struct spi_device *spi = to_spi_device(dev);
 490        struct spi_device *new_spi = data;
 491
 492        if (spi->controller == new_spi->controller &&
 493            spi->chip_select == new_spi->chip_select)
 494                return -EBUSY;
 495        return 0;
 496}
 497
 498/**
 499 * spi_add_device - Add spi_device allocated with spi_alloc_device
 500 * @spi: spi_device to register
 501 *
 502 * Companion function to spi_alloc_device.  Devices allocated with
 503 * spi_alloc_device can be added onto the spi bus with this function.
 504 *
 505 * Return: 0 on success; negative errno on failure
 506 */
 507int spi_add_device(struct spi_device *spi)
 508{
 509        static DEFINE_MUTEX(spi_add_lock);
 510        struct spi_controller *ctlr = spi->controller;
 511        struct device *dev = ctlr->dev.parent;
 512        int status;
 513
 514        /* Chipselects are numbered 0..max; validate. */
 515        if (spi->chip_select >= ctlr->num_chipselect) {
 516                dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 517                        ctlr->num_chipselect);
 518                return -EINVAL;
 519        }
 520
 521        /* Set the bus ID string */
 522        spi_dev_set_name(spi);
 523
 524        /* We need to make sure there's no other device with this
 525         * chipselect **BEFORE** we call setup(), else we'll trash
 526         * its configuration.  Lock against concurrent add() calls.
 527         */
 528        mutex_lock(&spi_add_lock);
 529
 530        status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 531        if (status) {
 532                dev_err(dev, "chipselect %d already in use\n",
 533                                spi->chip_select);
 534                goto done;
 535        }
 536
 537        if (ctlr->cs_gpios)
 538                spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 539
 540        /* Drivers may modify this initial i/o setup, but will
 541         * normally rely on the device being setup.  Devices
 542         * using SPI_CS_HIGH can't coexist well otherwise...
 543         */
 544        status = spi_setup(spi);
 545        if (status < 0) {
 546                dev_err(dev, "can't setup %s, status %d\n",
 547                                dev_name(&spi->dev), status);
 548                goto done;
 549        }
 550
 551        /* Device may be bound to an active driver when this returns */
 552        status = device_add(&spi->dev);
 553        if (status < 0)
 554                dev_err(dev, "can't add %s, status %d\n",
 555                                dev_name(&spi->dev), status);
 556        else
 557                dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 558
 559done:
 560        mutex_unlock(&spi_add_lock);
 561        return status;
 562}
 563EXPORT_SYMBOL_GPL(spi_add_device);
 564
 565/**
 566 * spi_new_device - instantiate one new SPI device
 567 * @ctlr: Controller to which device is connected
 568 * @chip: Describes the SPI device
 569 * Context: can sleep
 570 *
 571 * On typical mainboards, this is purely internal; and it's not needed
 572 * after board init creates the hard-wired devices.  Some development
 573 * platforms may not be able to use spi_register_board_info though, and
 574 * this is exported so that for example a USB or parport based adapter
 575 * driver could add devices (which it would learn about out-of-band).
 576 *
 577 * Return: the new device, or NULL.
 578 */
 579struct spi_device *spi_new_device(struct spi_controller *ctlr,
 580                                  struct spi_board_info *chip)
 581{
 582        struct spi_device       *proxy;
 583        int                     status;
 584
 585        /* NOTE:  caller did any chip->bus_num checks necessary.
 586         *
 587         * Also, unless we change the return value convention to use
 588         * error-or-pointer (not NULL-or-pointer), troubleshootability
 589         * suggests syslogged diagnostics are best here (ugh).
 590         */
 591
 592        proxy = spi_alloc_device(ctlr);
 593        if (!proxy)
 594                return NULL;
 595
 596        WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 597
 598        proxy->chip_select = chip->chip_select;
 599        proxy->max_speed_hz = chip->max_speed_hz;
 600        proxy->mode = chip->mode;
 601        proxy->irq = chip->irq;
 602        strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 603        proxy->dev.platform_data = (void *) chip->platform_data;
 604        proxy->controller_data = chip->controller_data;
 605        proxy->controller_state = NULL;
 606
 607        if (chip->properties) {
 608                status = device_add_properties(&proxy->dev, chip->properties);
 609                if (status) {
 610                        dev_err(&ctlr->dev,
 611                                "failed to add properties to '%s': %d\n",
 612                                chip->modalias, status);
 613                        goto err_dev_put;
 614                }
 615        }
 616
 617        status = spi_add_device(proxy);
 618        if (status < 0)
 619                goto err_remove_props;
 620
 621        return proxy;
 622
 623err_remove_props:
 624        if (chip->properties)
 625                device_remove_properties(&proxy->dev);
 626err_dev_put:
 627        spi_dev_put(proxy);
 628        return NULL;
 629}
 630EXPORT_SYMBOL_GPL(spi_new_device);
 631
 632/**
 633 * spi_unregister_device - unregister a single SPI device
 634 * @spi: spi_device to unregister
 635 *
 636 * Start making the passed SPI device vanish. Normally this would be handled
 637 * by spi_unregister_controller().
 638 */
 639void spi_unregister_device(struct spi_device *spi)
 640{
 641        if (!spi)
 642                return;
 643
 644        if (spi->dev.of_node) {
 645                of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 646                of_node_put(spi->dev.of_node);
 647        }
 648        if (ACPI_COMPANION(&spi->dev))
 649                acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 650        device_unregister(&spi->dev);
 651}
 652EXPORT_SYMBOL_GPL(spi_unregister_device);
 653
 654static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 655                                              struct spi_board_info *bi)
 656{
 657        struct spi_device *dev;
 658
 659        if (ctlr->bus_num != bi->bus_num)
 660                return;
 661
 662        dev = spi_new_device(ctlr, bi);
 663        if (!dev)
 664                dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 665                        bi->modalias);
 666}
 667
 668/**
 669 * spi_register_board_info - register SPI devices for a given board
 670 * @info: array of chip descriptors
 671 * @n: how many descriptors are provided
 672 * Context: can sleep
 673 *
 674 * Board-specific early init code calls this (probably during arch_initcall)
 675 * with segments of the SPI device table.  Any device nodes are created later,
 676 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 677 * this table of devices forever, so that reloading a controller driver will
 678 * not make Linux forget about these hard-wired devices.
 679 *
 680 * Other code can also call this, e.g. a particular add-on board might provide
 681 * SPI devices through its expansion connector, so code initializing that board
 682 * would naturally declare its SPI devices.
 683 *
 684 * The board info passed can safely be __initdata ... but be careful of
 685 * any embedded pointers (platform_data, etc), they're copied as-is.
 686 * Device properties are deep-copied though.
 687 *
 688 * Return: zero on success, else a negative error code.
 689 */
 690int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 691{
 692        struct boardinfo *bi;
 693        int i;
 694
 695        if (!n)
 696                return 0;
 697
 698        bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 699        if (!bi)
 700                return -ENOMEM;
 701
 702        for (i = 0; i < n; i++, bi++, info++) {
 703                struct spi_controller *ctlr;
 704
 705                memcpy(&bi->board_info, info, sizeof(*info));
 706                if (info->properties) {
 707                        bi->board_info.properties =
 708                                        property_entries_dup(info->properties);
 709                        if (IS_ERR(bi->board_info.properties))
 710                                return PTR_ERR(bi->board_info.properties);
 711                }
 712
 713                mutex_lock(&board_lock);
 714                list_add_tail(&bi->list, &board_list);
 715                list_for_each_entry(ctlr, &spi_controller_list, list)
 716                        spi_match_controller_to_boardinfo(ctlr,
 717                                                          &bi->board_info);
 718                mutex_unlock(&board_lock);
 719        }
 720
 721        return 0;
 722}
 723
 724/*-------------------------------------------------------------------------*/
 725
 726static void spi_set_cs(struct spi_device *spi, bool enable)
 727{
 728        if (spi->mode & SPI_CS_HIGH)
 729                enable = !enable;
 730
 731        if (gpio_is_valid(spi->cs_gpio)) {
 732                gpio_set_value(spi->cs_gpio, !enable);
 733                /* Some SPI masters need both GPIO CS & slave_select */
 734                if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 735                    spi->controller->set_cs)
 736                        spi->controller->set_cs(spi, !enable);
 737        } else if (spi->controller->set_cs) {
 738                spi->controller->set_cs(spi, !enable);
 739        }
 740}
 741
 742#ifdef CONFIG_HAS_DMA
 743static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 744                       struct sg_table *sgt, void *buf, size_t len,
 745                       enum dma_data_direction dir)
 746{
 747        const bool vmalloced_buf = is_vmalloc_addr(buf);
 748        unsigned int max_seg_size = dma_get_max_seg_size(dev);
 749#ifdef CONFIG_HIGHMEM
 750        const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 751                                (unsigned long)buf < (PKMAP_BASE +
 752                                        (LAST_PKMAP * PAGE_SIZE)));
 753#else
 754        const bool kmap_buf = false;
 755#endif
 756        int desc_len;
 757        int sgs;
 758        struct page *vm_page;
 759        struct scatterlist *sg;
 760        void *sg_buf;
 761        size_t min;
 762        int i, ret;
 763
 764        if (vmalloced_buf || kmap_buf) {
 765                desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 766                sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 767        } else if (virt_addr_valid(buf)) {
 768                desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 769                sgs = DIV_ROUND_UP(len, desc_len);
 770        } else {
 771                return -EINVAL;
 772        }
 773
 774        ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 775        if (ret != 0)
 776                return ret;
 777
 778        sg = &sgt->sgl[0];
 779        for (i = 0; i < sgs; i++) {
 780
 781                if (vmalloced_buf || kmap_buf) {
 782                        /*
 783                         * Next scatterlist entry size is the minimum between
 784                         * the desc_len and the remaining buffer length that
 785                         * fits in a page.
 786                         */
 787                        min = min_t(size_t, desc_len,
 788                                    min_t(size_t, len,
 789                                          PAGE_SIZE - offset_in_page(buf)));
 790                        if (vmalloced_buf)
 791                                vm_page = vmalloc_to_page(buf);
 792                        else
 793                                vm_page = kmap_to_page(buf);
 794                        if (!vm_page) {
 795                                sg_free_table(sgt);
 796                                return -ENOMEM;
 797                        }
 798                        sg_set_page(sg, vm_page,
 799                                    min, offset_in_page(buf));
 800                } else {
 801                        min = min_t(size_t, len, desc_len);
 802                        sg_buf = buf;
 803                        sg_set_buf(sg, sg_buf, min);
 804                }
 805
 806                buf += min;
 807                len -= min;
 808                sg = sg_next(sg);
 809        }
 810
 811        ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 812        if (!ret)
 813                ret = -ENOMEM;
 814        if (ret < 0) {
 815                sg_free_table(sgt);
 816                return ret;
 817        }
 818
 819        sgt->nents = ret;
 820
 821        return 0;
 822}
 823
 824static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 825                          struct sg_table *sgt, enum dma_data_direction dir)
 826{
 827        if (sgt->orig_nents) {
 828                dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 829                sg_free_table(sgt);
 830        }
 831}
 832
 833static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 834{
 835        struct device *tx_dev, *rx_dev;
 836        struct spi_transfer *xfer;
 837        int ret;
 838
 839        if (!ctlr->can_dma)
 840                return 0;
 841
 842        if (ctlr->dma_tx)
 843                tx_dev = ctlr->dma_tx->device->dev;
 844        else
 845                tx_dev = ctlr->dev.parent;
 846
 847        if (ctlr->dma_rx)
 848                rx_dev = ctlr->dma_rx->device->dev;
 849        else
 850                rx_dev = ctlr->dev.parent;
 851
 852        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 853                if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 854                        continue;
 855
 856                if (xfer->tx_buf != NULL) {
 857                        ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 858                                          (void *)xfer->tx_buf, xfer->len,
 859                                          DMA_TO_DEVICE);
 860                        if (ret != 0)
 861                                return ret;
 862                }
 863
 864                if (xfer->rx_buf != NULL) {
 865                        ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 866                                          xfer->rx_buf, xfer->len,
 867                                          DMA_FROM_DEVICE);
 868                        if (ret != 0) {
 869                                spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 870                                              DMA_TO_DEVICE);
 871                                return ret;
 872                        }
 873                }
 874        }
 875
 876        ctlr->cur_msg_mapped = true;
 877
 878        return 0;
 879}
 880
 881static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 882{
 883        struct spi_transfer *xfer;
 884        struct device *tx_dev, *rx_dev;
 885
 886        if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 887                return 0;
 888
 889        if (ctlr->dma_tx)
 890                tx_dev = ctlr->dma_tx->device->dev;
 891        else
 892                tx_dev = ctlr->dev.parent;
 893
 894        if (ctlr->dma_rx)
 895                rx_dev = ctlr->dma_rx->device->dev;
 896        else
 897                rx_dev = ctlr->dev.parent;
 898
 899        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 900                if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 901                        continue;
 902
 903                spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 904                spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 905        }
 906
 907        return 0;
 908}
 909#else /* !CONFIG_HAS_DMA */
 910static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 911                              struct sg_table *sgt, void *buf, size_t len,
 912                              enum dma_data_direction dir)
 913{
 914        return -EINVAL;
 915}
 916
 917static inline void spi_unmap_buf(struct spi_controller *ctlr,
 918                                 struct device *dev, struct sg_table *sgt,
 919                                 enum dma_data_direction dir)
 920{
 921}
 922
 923static inline int __spi_map_msg(struct spi_controller *ctlr,
 924                                struct spi_message *msg)
 925{
 926        return 0;
 927}
 928
 929static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 930                                  struct spi_message *msg)
 931{
 932        return 0;
 933}
 934#endif /* !CONFIG_HAS_DMA */
 935
 936static inline int spi_unmap_msg(struct spi_controller *ctlr,
 937                                struct spi_message *msg)
 938{
 939        struct spi_transfer *xfer;
 940
 941        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 942                /*
 943                 * Restore the original value of tx_buf or rx_buf if they are
 944                 * NULL.
 945                 */
 946                if (xfer->tx_buf == ctlr->dummy_tx)
 947                        xfer->tx_buf = NULL;
 948                if (xfer->rx_buf == ctlr->dummy_rx)
 949                        xfer->rx_buf = NULL;
 950        }
 951
 952        return __spi_unmap_msg(ctlr, msg);
 953}
 954
 955static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 956{
 957        struct spi_transfer *xfer;
 958        void *tmp;
 959        unsigned int max_tx, max_rx;
 960
 961        if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
 962                max_tx = 0;
 963                max_rx = 0;
 964
 965                list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 966                        if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
 967                            !xfer->tx_buf)
 968                                max_tx = max(xfer->len, max_tx);
 969                        if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
 970                            !xfer->rx_buf)
 971                                max_rx = max(xfer->len, max_rx);
 972                }
 973
 974                if (max_tx) {
 975                        tmp = krealloc(ctlr->dummy_tx, max_tx,
 976                                       GFP_KERNEL | GFP_DMA);
 977                        if (!tmp)
 978                                return -ENOMEM;
 979                        ctlr->dummy_tx = tmp;
 980                        memset(tmp, 0, max_tx);
 981                }
 982
 983                if (max_rx) {
 984                        tmp = krealloc(ctlr->dummy_rx, max_rx,
 985                                       GFP_KERNEL | GFP_DMA);
 986                        if (!tmp)
 987                                return -ENOMEM;
 988                        ctlr->dummy_rx = tmp;
 989                }
 990
 991                if (max_tx || max_rx) {
 992                        list_for_each_entry(xfer, &msg->transfers,
 993                                            transfer_list) {
 994                                if (!xfer->tx_buf)
 995                                        xfer->tx_buf = ctlr->dummy_tx;
 996                                if (!xfer->rx_buf)
 997                                        xfer->rx_buf = ctlr->dummy_rx;
 998                        }
 999                }
1000        }
1001
1002        return __spi_map_msg(ctlr, msg);
1003}
1004
1005/*
1006 * spi_transfer_one_message - Default implementation of transfer_one_message()
1007 *
1008 * This is a standard implementation of transfer_one_message() for
1009 * drivers which implement a transfer_one() operation.  It provides
1010 * standard handling of delays and chip select management.
1011 */
1012static int spi_transfer_one_message(struct spi_controller *ctlr,
1013                                    struct spi_message *msg)
1014{
1015        struct spi_transfer *xfer;
1016        bool keep_cs = false;
1017        int ret = 0;
1018        unsigned long long ms = 1;
1019        struct spi_statistics *statm = &ctlr->statistics;
1020        struct spi_statistics *stats = &msg->spi->statistics;
1021
1022        spi_set_cs(msg->spi, true);
1023
1024        SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1025        SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1026
1027        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1028                trace_spi_transfer_start(msg, xfer);
1029
1030                spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1031                spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1032
1033                if (xfer->tx_buf || xfer->rx_buf) {
1034                        reinit_completion(&ctlr->xfer_completion);
1035
1036                        ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1037                        if (ret < 0) {
1038                                SPI_STATISTICS_INCREMENT_FIELD(statm,
1039                                                               errors);
1040                                SPI_STATISTICS_INCREMENT_FIELD(stats,
1041                                                               errors);
1042                                dev_err(&msg->spi->dev,
1043                                        "SPI transfer failed: %d\n", ret);
1044                                goto out;
1045                        }
1046
1047                        if (ret > 0) {
1048                                ret = 0;
1049                                ms = 8LL * 1000LL * xfer->len;
1050                                do_div(ms, xfer->speed_hz);
1051                                ms += ms + 200; /* some tolerance */
1052
1053                                if (ms > UINT_MAX)
1054                                        ms = UINT_MAX;
1055
1056                                ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1057                                                                 msecs_to_jiffies(ms));
1058                        }
1059
1060                        if (ms == 0) {
1061                                SPI_STATISTICS_INCREMENT_FIELD(statm,
1062                                                               timedout);
1063                                SPI_STATISTICS_INCREMENT_FIELD(stats,
1064                                                               timedout);
1065                                dev_err(&msg->spi->dev,
1066                                        "SPI transfer timed out\n");
1067                                msg->status = -ETIMEDOUT;
1068                        }
1069                } else {
1070                        if (xfer->len)
1071                                dev_err(&msg->spi->dev,
1072                                        "Bufferless transfer has length %u\n",
1073                                        xfer->len);
1074                }
1075
1076                trace_spi_transfer_stop(msg, xfer);
1077
1078                if (msg->status != -EINPROGRESS)
1079                        goto out;
1080
1081                if (xfer->delay_usecs) {
1082                        u16 us = xfer->delay_usecs;
1083
1084                        if (us <= 10)
1085                                udelay(us);
1086                        else
1087                                usleep_range(us, us + DIV_ROUND_UP(us, 10));
1088                }
1089
1090                if (xfer->cs_change) {
1091                        if (list_is_last(&xfer->transfer_list,
1092                                         &msg->transfers)) {
1093                                keep_cs = true;
1094                        } else {
1095                                spi_set_cs(msg->spi, false);
1096                                udelay(10);
1097                                spi_set_cs(msg->spi, true);
1098                        }
1099                }
1100
1101                msg->actual_length += xfer->len;
1102        }
1103
1104out:
1105        if (ret != 0 || !keep_cs)
1106                spi_set_cs(msg->spi, false);
1107
1108        if (msg->status == -EINPROGRESS)
1109                msg->status = ret;
1110
1111        if (msg->status && ctlr->handle_err)
1112                ctlr->handle_err(ctlr, msg);
1113
1114        spi_res_release(ctlr, msg);
1115
1116        spi_finalize_current_message(ctlr);
1117
1118        return ret;
1119}
1120
1121/**
1122 * spi_finalize_current_transfer - report completion of a transfer
1123 * @ctlr: the controller reporting completion
1124 *
1125 * Called by SPI drivers using the core transfer_one_message()
1126 * implementation to notify it that the current interrupt driven
1127 * transfer has finished and the next one may be scheduled.
1128 */
1129void spi_finalize_current_transfer(struct spi_controller *ctlr)
1130{
1131        complete(&ctlr->xfer_completion);
1132}
1133EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1134
1135/**
1136 * __spi_pump_messages - function which processes spi message queue
1137 * @ctlr: controller to process queue for
1138 * @in_kthread: true if we are in the context of the message pump thread
1139 *
1140 * This function checks if there is any spi message in the queue that
1141 * needs processing and if so call out to the driver to initialize hardware
1142 * and transfer each message.
1143 *
1144 * Note that it is called both from the kthread itself and also from
1145 * inside spi_sync(); the queue extraction handling at the top of the
1146 * function should deal with this safely.
1147 */
1148static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1149{
1150        unsigned long flags;
1151        bool was_busy = false;
1152        int ret;
1153
1154        /* Lock queue */
1155        spin_lock_irqsave(&ctlr->queue_lock, flags);
1156
1157        /* Make sure we are not already running a message */
1158        if (ctlr->cur_msg) {
1159                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1160                return;
1161        }
1162
1163        /* If another context is idling the device then defer */
1164        if (ctlr->idling) {
1165                kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1166                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1167                return;
1168        }
1169
1170        /* Check if the queue is idle */
1171        if (list_empty(&ctlr->queue) || !ctlr->running) {
1172                if (!ctlr->busy) {
1173                        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1174                        return;
1175                }
1176
1177                /* Only do teardown in the thread */
1178                if (!in_kthread) {
1179                        kthread_queue_work(&ctlr->kworker,
1180                                           &ctlr->pump_messages);
1181                        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182                        return;
1183                }
1184
1185                ctlr->busy = false;
1186                ctlr->idling = true;
1187                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1188
1189                kfree(ctlr->dummy_rx);
1190                ctlr->dummy_rx = NULL;
1191                kfree(ctlr->dummy_tx);
1192                ctlr->dummy_tx = NULL;
1193                if (ctlr->unprepare_transfer_hardware &&
1194                    ctlr->unprepare_transfer_hardware(ctlr))
1195                        dev_err(&ctlr->dev,
1196                                "failed to unprepare transfer hardware\n");
1197                if (ctlr->auto_runtime_pm) {
1198                        pm_runtime_mark_last_busy(ctlr->dev.parent);
1199                        pm_runtime_put_autosuspend(ctlr->dev.parent);
1200                }
1201                trace_spi_controller_idle(ctlr);
1202
1203                spin_lock_irqsave(&ctlr->queue_lock, flags);
1204                ctlr->idling = false;
1205                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1206                return;
1207        }
1208
1209        /* Extract head of queue */
1210        ctlr->cur_msg =
1211                list_first_entry(&ctlr->queue, struct spi_message, queue);
1212
1213        list_del_init(&ctlr->cur_msg->queue);
1214        if (ctlr->busy)
1215                was_busy = true;
1216        else
1217                ctlr->busy = true;
1218        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1219
1220        mutex_lock(&ctlr->io_mutex);
1221
1222        if (!was_busy && ctlr->auto_runtime_pm) {
1223                ret = pm_runtime_get_sync(ctlr->dev.parent);
1224                if (ret < 0) {
1225                        dev_err(&ctlr->dev, "Failed to power device: %d\n",
1226                                ret);
1227                        mutex_unlock(&ctlr->io_mutex);
1228                        return;
1229                }
1230        }
1231
1232        if (!was_busy)
1233                trace_spi_controller_busy(ctlr);
1234
1235        if (!was_busy && ctlr->prepare_transfer_hardware) {
1236                ret = ctlr->prepare_transfer_hardware(ctlr);
1237                if (ret) {
1238                        dev_err(&ctlr->dev,
1239                                "failed to prepare transfer hardware\n");
1240
1241                        if (ctlr->auto_runtime_pm)
1242                                pm_runtime_put(ctlr->dev.parent);
1243                        mutex_unlock(&ctlr->io_mutex);
1244                        return;
1245                }
1246        }
1247
1248        trace_spi_message_start(ctlr->cur_msg);
1249
1250        if (ctlr->prepare_message) {
1251                ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1252                if (ret) {
1253                        dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1254                                ret);
1255                        ctlr->cur_msg->status = ret;
1256                        spi_finalize_current_message(ctlr);
1257                        goto out;
1258                }
1259                ctlr->cur_msg_prepared = true;
1260        }
1261
1262        ret = spi_map_msg(ctlr, ctlr->cur_msg);
1263        if (ret) {
1264                ctlr->cur_msg->status = ret;
1265                spi_finalize_current_message(ctlr);
1266                goto out;
1267        }
1268
1269        ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1270        if (ret) {
1271                dev_err(&ctlr->dev,
1272                        "failed to transfer one message from queue\n");
1273                goto out;
1274        }
1275
1276out:
1277        mutex_unlock(&ctlr->io_mutex);
1278
1279        /* Prod the scheduler in case transfer_one() was busy waiting */
1280        if (!ret)
1281                cond_resched();
1282}
1283
1284/**
1285 * spi_pump_messages - kthread work function which processes spi message queue
1286 * @work: pointer to kthread work struct contained in the controller struct
1287 */
1288static void spi_pump_messages(struct kthread_work *work)
1289{
1290        struct spi_controller *ctlr =
1291                container_of(work, struct spi_controller, pump_messages);
1292
1293        __spi_pump_messages(ctlr, true);
1294}
1295
1296static int spi_init_queue(struct spi_controller *ctlr)
1297{
1298        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1299
1300        ctlr->running = false;
1301        ctlr->busy = false;
1302
1303        kthread_init_worker(&ctlr->kworker);
1304        ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1305                                         "%s", dev_name(&ctlr->dev));
1306        if (IS_ERR(ctlr->kworker_task)) {
1307                dev_err(&ctlr->dev, "failed to create message pump task\n");
1308                return PTR_ERR(ctlr->kworker_task);
1309        }
1310        kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1311
1312        /*
1313         * Controller config will indicate if this controller should run the
1314         * message pump with high (realtime) priority to reduce the transfer
1315         * latency on the bus by minimising the delay between a transfer
1316         * request and the scheduling of the message pump thread. Without this
1317         * setting the message pump thread will remain at default priority.
1318         */
1319        if (ctlr->rt) {
1320                dev_info(&ctlr->dev,
1321                        "will run message pump with realtime priority\n");
1322                sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1323        }
1324
1325        return 0;
1326}
1327
1328/**
1329 * spi_get_next_queued_message() - called by driver to check for queued
1330 * messages
1331 * @ctlr: the controller to check for queued messages
1332 *
1333 * If there are more messages in the queue, the next message is returned from
1334 * this call.
1335 *
1336 * Return: the next message in the queue, else NULL if the queue is empty.
1337 */
1338struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1339{
1340        struct spi_message *next;
1341        unsigned long flags;
1342
1343        /* get a pointer to the next message, if any */
1344        spin_lock_irqsave(&ctlr->queue_lock, flags);
1345        next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1346                                        queue);
1347        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1348
1349        return next;
1350}
1351EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1352
1353/**
1354 * spi_finalize_current_message() - the current message is complete
1355 * @ctlr: the controller to return the message to
1356 *
1357 * Called by the driver to notify the core that the message in the front of the
1358 * queue is complete and can be removed from the queue.
1359 */
1360void spi_finalize_current_message(struct spi_controller *ctlr)
1361{
1362        struct spi_message *mesg;
1363        unsigned long flags;
1364        int ret;
1365
1366        spin_lock_irqsave(&ctlr->queue_lock, flags);
1367        mesg = ctlr->cur_msg;
1368        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1369
1370        spi_unmap_msg(ctlr, mesg);
1371
1372        if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1373                ret = ctlr->unprepare_message(ctlr, mesg);
1374                if (ret) {
1375                        dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1376                                ret);
1377                }
1378        }
1379
1380        spin_lock_irqsave(&ctlr->queue_lock, flags);
1381        ctlr->cur_msg = NULL;
1382        ctlr->cur_msg_prepared = false;
1383        kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1384        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1385
1386        trace_spi_message_done(mesg);
1387
1388        mesg->state = NULL;
1389        if (mesg->complete)
1390                mesg->complete(mesg->context);
1391}
1392EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1393
1394static int spi_start_queue(struct spi_controller *ctlr)
1395{
1396        unsigned long flags;
1397
1398        spin_lock_irqsave(&ctlr->queue_lock, flags);
1399
1400        if (ctlr->running || ctlr->busy) {
1401                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402                return -EBUSY;
1403        }
1404
1405        ctlr->running = true;
1406        ctlr->cur_msg = NULL;
1407        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1408
1409        kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1410
1411        return 0;
1412}
1413
1414static int spi_stop_queue(struct spi_controller *ctlr)
1415{
1416        unsigned long flags;
1417        unsigned limit = 500;
1418        int ret = 0;
1419
1420        spin_lock_irqsave(&ctlr->queue_lock, flags);
1421
1422        /*
1423         * This is a bit lame, but is optimized for the common execution path.
1424         * A wait_queue on the ctlr->busy could be used, but then the common
1425         * execution path (pump_messages) would be required to call wake_up or
1426         * friends on every SPI message. Do this instead.
1427         */
1428        while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1429                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1430                usleep_range(10000, 11000);
1431                spin_lock_irqsave(&ctlr->queue_lock, flags);
1432        }
1433
1434        if (!list_empty(&ctlr->queue) || ctlr->busy)
1435                ret = -EBUSY;
1436        else
1437                ctlr->running = false;
1438
1439        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1440
1441        if (ret) {
1442                dev_warn(&ctlr->dev, "could not stop message queue\n");
1443                return ret;
1444        }
1445        return ret;
1446}
1447
1448static int spi_destroy_queue(struct spi_controller *ctlr)
1449{
1450        int ret;
1451
1452        ret = spi_stop_queue(ctlr);
1453
1454        /*
1455         * kthread_flush_worker will block until all work is done.
1456         * If the reason that stop_queue timed out is that the work will never
1457         * finish, then it does no good to call flush/stop thread, so
1458         * return anyway.
1459         */
1460        if (ret) {
1461                dev_err(&ctlr->dev, "problem destroying queue\n");
1462                return ret;
1463        }
1464
1465        kthread_flush_worker(&ctlr->kworker);
1466        kthread_stop(ctlr->kworker_task);
1467
1468        return 0;
1469}
1470
1471static int __spi_queued_transfer(struct spi_device *spi,
1472                                 struct spi_message *msg,
1473                                 bool need_pump)
1474{
1475        struct spi_controller *ctlr = spi->controller;
1476        unsigned long flags;
1477
1478        spin_lock_irqsave(&ctlr->queue_lock, flags);
1479
1480        if (!ctlr->running) {
1481                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1482                return -ESHUTDOWN;
1483        }
1484        msg->actual_length = 0;
1485        msg->status = -EINPROGRESS;
1486
1487        list_add_tail(&msg->queue, &ctlr->queue);
1488        if (!ctlr->busy && need_pump)
1489                kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1490
1491        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492        return 0;
1493}
1494
1495/**
1496 * spi_queued_transfer - transfer function for queued transfers
1497 * @spi: spi device which is requesting transfer
1498 * @msg: spi message which is to handled is queued to driver queue
1499 *
1500 * Return: zero on success, else a negative error code.
1501 */
1502static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1503{
1504        return __spi_queued_transfer(spi, msg, true);
1505}
1506
1507static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1508{
1509        int ret;
1510
1511        ctlr->transfer = spi_queued_transfer;
1512        if (!ctlr->transfer_one_message)
1513                ctlr->transfer_one_message = spi_transfer_one_message;
1514
1515        /* Initialize and start queue */
1516        ret = spi_init_queue(ctlr);
1517        if (ret) {
1518                dev_err(&ctlr->dev, "problem initializing queue\n");
1519                goto err_init_queue;
1520        }
1521        ctlr->queued = true;
1522        ret = spi_start_queue(ctlr);
1523        if (ret) {
1524                dev_err(&ctlr->dev, "problem starting queue\n");
1525                goto err_start_queue;
1526        }
1527
1528        return 0;
1529
1530err_start_queue:
1531        spi_destroy_queue(ctlr);
1532err_init_queue:
1533        return ret;
1534}
1535
1536/*-------------------------------------------------------------------------*/
1537
1538#if defined(CONFIG_OF)
1539static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1540                           struct device_node *nc)
1541{
1542        u32 value;
1543        int rc;
1544
1545        /* Mode (clock phase/polarity/etc.) */
1546        if (of_property_read_bool(nc, "spi-cpha"))
1547                spi->mode |= SPI_CPHA;
1548        if (of_property_read_bool(nc, "spi-cpol"))
1549                spi->mode |= SPI_CPOL;
1550        if (of_property_read_bool(nc, "spi-cs-high"))
1551                spi->mode |= SPI_CS_HIGH;
1552        if (of_property_read_bool(nc, "spi-3wire"))
1553                spi->mode |= SPI_3WIRE;
1554        if (of_property_read_bool(nc, "spi-lsb-first"))
1555                spi->mode |= SPI_LSB_FIRST;
1556
1557        /* Device DUAL/QUAD mode */
1558        if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1559                switch (value) {
1560                case 1:
1561                        break;
1562                case 2:
1563                        spi->mode |= SPI_TX_DUAL;
1564                        break;
1565                case 4:
1566                        spi->mode |= SPI_TX_QUAD;
1567                        break;
1568                default:
1569                        dev_warn(&ctlr->dev,
1570                                "spi-tx-bus-width %d not supported\n",
1571                                value);
1572                        break;
1573                }
1574        }
1575
1576        if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1577                switch (value) {
1578                case 1:
1579                        break;
1580                case 2:
1581                        spi->mode |= SPI_RX_DUAL;
1582                        break;
1583                case 4:
1584                        spi->mode |= SPI_RX_QUAD;
1585                        break;
1586                default:
1587                        dev_warn(&ctlr->dev,
1588                                "spi-rx-bus-width %d not supported\n",
1589                                value);
1590                        break;
1591                }
1592        }
1593
1594        if (spi_controller_is_slave(ctlr)) {
1595                if (strcmp(nc->name, "slave")) {
1596                        dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1597                                nc);
1598                        return -EINVAL;
1599                }
1600                return 0;
1601        }
1602
1603        /* Device address */
1604        rc = of_property_read_u32(nc, "reg", &value);
1605        if (rc) {
1606                dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1607                        nc, rc);
1608                return rc;
1609        }
1610        spi->chip_select = value;
1611
1612        /* Device speed */
1613        rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1614        if (rc) {
1615                dev_err(&ctlr->dev,
1616                        "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1617                return rc;
1618        }
1619        spi->max_speed_hz = value;
1620
1621        return 0;
1622}
1623
1624static struct spi_device *
1625of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1626{
1627        struct spi_device *spi;
1628        int rc;
1629
1630        /* Alloc an spi_device */
1631        spi = spi_alloc_device(ctlr);
1632        if (!spi) {
1633                dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1634                rc = -ENOMEM;
1635                goto err_out;
1636        }
1637
1638        /* Select device driver */
1639        rc = of_modalias_node(nc, spi->modalias,
1640                                sizeof(spi->modalias));
1641        if (rc < 0) {
1642                dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1643                goto err_out;
1644        }
1645
1646        rc = of_spi_parse_dt(ctlr, spi, nc);
1647        if (rc)
1648                goto err_out;
1649
1650        /* Store a pointer to the node in the device structure */
1651        of_node_get(nc);
1652        spi->dev.of_node = nc;
1653
1654        /* Register the new device */
1655        rc = spi_add_device(spi);
1656        if (rc) {
1657                dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1658                goto err_of_node_put;
1659        }
1660
1661        return spi;
1662
1663err_of_node_put:
1664        of_node_put(nc);
1665err_out:
1666        spi_dev_put(spi);
1667        return ERR_PTR(rc);
1668}
1669
1670/**
1671 * of_register_spi_devices() - Register child devices onto the SPI bus
1672 * @ctlr:       Pointer to spi_controller device
1673 *
1674 * Registers an spi_device for each child node of controller node which
1675 * represents a valid SPI slave.
1676 */
1677static void of_register_spi_devices(struct spi_controller *ctlr)
1678{
1679        struct spi_device *spi;
1680        struct device_node *nc;
1681
1682        if (!ctlr->dev.of_node)
1683                return;
1684
1685        for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1686                if (of_node_test_and_set_flag(nc, OF_POPULATED))
1687                        continue;
1688                spi = of_register_spi_device(ctlr, nc);
1689                if (IS_ERR(spi)) {
1690                        dev_warn(&ctlr->dev,
1691                                 "Failed to create SPI device for %pOF\n", nc);
1692                        of_node_clear_flag(nc, OF_POPULATED);
1693                }
1694        }
1695}
1696#else
1697static void of_register_spi_devices(struct spi_controller *ctlr) { }
1698#endif
1699
1700#ifdef CONFIG_ACPI
1701static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1702{
1703        struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1704        const union acpi_object *obj;
1705
1706        if (!x86_apple_machine)
1707                return;
1708
1709        if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1710            && obj->buffer.length >= 4)
1711                spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1712
1713        if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1714            && obj->buffer.length == 8)
1715                spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1716
1717        if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1718            && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1719                spi->mode |= SPI_LSB_FIRST;
1720
1721        if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1722            && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1723                spi->mode |= SPI_CPOL;
1724
1725        if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1726            && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1727                spi->mode |= SPI_CPHA;
1728}
1729
1730static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1731{
1732        struct spi_device *spi = data;
1733        struct spi_controller *ctlr = spi->controller;
1734
1735        if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1736                struct acpi_resource_spi_serialbus *sb;
1737
1738                sb = &ares->data.spi_serial_bus;
1739                if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1740                        /*
1741                         * ACPI DeviceSelection numbering is handled by the
1742                         * host controller driver in Windows and can vary
1743                         * from driver to driver. In Linux we always expect
1744                         * 0 .. max - 1 so we need to ask the driver to
1745                         * translate between the two schemes.
1746                         */
1747                        if (ctlr->fw_translate_cs) {
1748                                int cs = ctlr->fw_translate_cs(ctlr,
1749                                                sb->device_selection);
1750                                if (cs < 0)
1751                                        return cs;
1752                                spi->chip_select = cs;
1753                        } else {
1754                                spi->chip_select = sb->device_selection;
1755                        }
1756
1757                        spi->max_speed_hz = sb->connection_speed;
1758
1759                        if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1760                                spi->mode |= SPI_CPHA;
1761                        if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1762                                spi->mode |= SPI_CPOL;
1763                        if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1764                                spi->mode |= SPI_CS_HIGH;
1765                }
1766        } else if (spi->irq < 0) {
1767                struct resource r;
1768
1769                if (acpi_dev_resource_interrupt(ares, 0, &r))
1770                        spi->irq = r.start;
1771        }
1772
1773        /* Always tell the ACPI core to skip this resource */
1774        return 1;
1775}
1776
1777static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1778                                            struct acpi_device *adev)
1779{
1780        struct list_head resource_list;
1781        struct spi_device *spi;
1782        int ret;
1783
1784        if (acpi_bus_get_status(adev) || !adev->status.present ||
1785            acpi_device_enumerated(adev))
1786                return AE_OK;
1787
1788        spi = spi_alloc_device(ctlr);
1789        if (!spi) {
1790                dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1791                        dev_name(&adev->dev));
1792                return AE_NO_MEMORY;
1793        }
1794
1795        ACPI_COMPANION_SET(&spi->dev, adev);
1796        spi->irq = -1;
1797
1798        INIT_LIST_HEAD(&resource_list);
1799        ret = acpi_dev_get_resources(adev, &resource_list,
1800                                     acpi_spi_add_resource, spi);
1801        acpi_dev_free_resource_list(&resource_list);
1802
1803        acpi_spi_parse_apple_properties(spi);
1804
1805        if (ret < 0 || !spi->max_speed_hz) {
1806                spi_dev_put(spi);
1807                return AE_OK;
1808        }
1809
1810        acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1811                          sizeof(spi->modalias));
1812
1813        if (spi->irq < 0)
1814                spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1815
1816        acpi_device_set_enumerated(adev);
1817
1818        adev->power.flags.ignore_parent = true;
1819        if (spi_add_device(spi)) {
1820                adev->power.flags.ignore_parent = false;
1821                dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1822                        dev_name(&adev->dev));
1823                spi_dev_put(spi);
1824        }
1825
1826        return AE_OK;
1827}
1828
1829static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1830                                       void *data, void **return_value)
1831{
1832        struct spi_controller *ctlr = data;
1833        struct acpi_device *adev;
1834
1835        if (acpi_bus_get_device(handle, &adev))
1836                return AE_OK;
1837
1838        return acpi_register_spi_device(ctlr, adev);
1839}
1840
1841static void acpi_register_spi_devices(struct spi_controller *ctlr)
1842{
1843        acpi_status status;
1844        acpi_handle handle;
1845
1846        handle = ACPI_HANDLE(ctlr->dev.parent);
1847        if (!handle)
1848                return;
1849
1850        status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1851                                     acpi_spi_add_device, NULL, ctlr, NULL);
1852        if (ACPI_FAILURE(status))
1853                dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1854}
1855#else
1856static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1857#endif /* CONFIG_ACPI */
1858
1859static void spi_controller_release(struct device *dev)
1860{
1861        struct spi_controller *ctlr;
1862
1863        ctlr = container_of(dev, struct spi_controller, dev);
1864        kfree(ctlr);
1865}
1866
1867static struct class spi_master_class = {
1868        .name           = "spi_master",
1869        .owner          = THIS_MODULE,
1870        .dev_release    = spi_controller_release,
1871        .dev_groups     = spi_master_groups,
1872};
1873
1874#ifdef CONFIG_SPI_SLAVE
1875/**
1876 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1877 *                   controller
1878 * @spi: device used for the current transfer
1879 */
1880int spi_slave_abort(struct spi_device *spi)
1881{
1882        struct spi_controller *ctlr = spi->controller;
1883
1884        if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1885                return ctlr->slave_abort(ctlr);
1886
1887        return -ENOTSUPP;
1888}
1889EXPORT_SYMBOL_GPL(spi_slave_abort);
1890
1891static int match_true(struct device *dev, void *data)
1892{
1893        return 1;
1894}
1895
1896static ssize_t spi_slave_show(struct device *dev,
1897                              struct device_attribute *attr, char *buf)
1898{
1899        struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1900                                                   dev);
1901        struct device *child;
1902
1903        child = device_find_child(&ctlr->dev, NULL, match_true);
1904        return sprintf(buf, "%s\n",
1905                       child ? to_spi_device(child)->modalias : NULL);
1906}
1907
1908static ssize_t spi_slave_store(struct device *dev,
1909                               struct device_attribute *attr, const char *buf,
1910                               size_t count)
1911{
1912        struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1913                                                   dev);
1914        struct spi_device *spi;
1915        struct device *child;
1916        char name[32];
1917        int rc;
1918
1919        rc = sscanf(buf, "%31s", name);
1920        if (rc != 1 || !name[0])
1921                return -EINVAL;
1922
1923        child = device_find_child(&ctlr->dev, NULL, match_true);
1924        if (child) {
1925                /* Remove registered slave */
1926                device_unregister(child);
1927                put_device(child);
1928        }
1929
1930        if (strcmp(name, "(null)")) {
1931                /* Register new slave */
1932                spi = spi_alloc_device(ctlr);
1933                if (!spi)
1934                        return -ENOMEM;
1935
1936                strlcpy(spi->modalias, name, sizeof(spi->modalias));
1937
1938                rc = spi_add_device(spi);
1939                if (rc) {
1940                        spi_dev_put(spi);
1941                        return rc;
1942                }
1943        }
1944
1945        return count;
1946}
1947
1948static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1949
1950static struct attribute *spi_slave_attrs[] = {
1951        &dev_attr_slave.attr,
1952        NULL,
1953};
1954
1955static const struct attribute_group spi_slave_group = {
1956        .attrs = spi_slave_attrs,
1957};
1958
1959static const struct attribute_group *spi_slave_groups[] = {
1960        &spi_controller_statistics_group,
1961        &spi_slave_group,
1962        NULL,
1963};
1964
1965static struct class spi_slave_class = {
1966        .name           = "spi_slave",
1967        .owner          = THIS_MODULE,
1968        .dev_release    = spi_controller_release,
1969        .dev_groups     = spi_slave_groups,
1970};
1971#else
1972extern struct class spi_slave_class;    /* dummy */
1973#endif
1974
1975/**
1976 * __spi_alloc_controller - allocate an SPI master or slave controller
1977 * @dev: the controller, possibly using the platform_bus
1978 * @size: how much zeroed driver-private data to allocate; the pointer to this
1979 *      memory is in the driver_data field of the returned device,
1980 *      accessible with spi_controller_get_devdata().
1981 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1982 *      slave (true) controller
1983 * Context: can sleep
1984 *
1985 * This call is used only by SPI controller drivers, which are the
1986 * only ones directly touching chip registers.  It's how they allocate
1987 * an spi_controller structure, prior to calling spi_register_controller().
1988 *
1989 * This must be called from context that can sleep.
1990 *
1991 * The caller is responsible for assigning the bus number and initializing the
1992 * controller's methods before calling spi_register_controller(); and (after
1993 * errors adding the device) calling spi_controller_put() to prevent a memory
1994 * leak.
1995 *
1996 * Return: the SPI controller structure on success, else NULL.
1997 */
1998struct spi_controller *__spi_alloc_controller(struct device *dev,
1999                                              unsigned int size, bool slave)
2000{
2001        struct spi_controller   *ctlr;
2002
2003        if (!dev)
2004                return NULL;
2005
2006        ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2007        if (!ctlr)
2008                return NULL;
2009
2010        device_initialize(&ctlr->dev);
2011        ctlr->bus_num = -1;
2012        ctlr->num_chipselect = 1;
2013        ctlr->slave = slave;
2014        if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2015                ctlr->dev.class = &spi_slave_class;
2016        else
2017                ctlr->dev.class = &spi_master_class;
2018        ctlr->dev.parent = dev;
2019        pm_suspend_ignore_children(&ctlr->dev, true);
2020        spi_controller_set_devdata(ctlr, &ctlr[1]);
2021
2022        return ctlr;
2023}
2024EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2025
2026#ifdef CONFIG_OF
2027static int of_spi_register_master(struct spi_controller *ctlr)
2028{
2029        int nb, i, *cs;
2030        struct device_node *np = ctlr->dev.of_node;
2031
2032        if (!np)
2033                return 0;
2034
2035        nb = of_gpio_named_count(np, "cs-gpios");
2036        ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2037
2038        /* Return error only for an incorrectly formed cs-gpios property */
2039        if (nb == 0 || nb == -ENOENT)
2040                return 0;
2041        else if (nb < 0)
2042                return nb;
2043
2044        cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2045                          GFP_KERNEL);
2046        ctlr->cs_gpios = cs;
2047
2048        if (!ctlr->cs_gpios)
2049                return -ENOMEM;
2050
2051        for (i = 0; i < ctlr->num_chipselect; i++)
2052                cs[i] = -ENOENT;
2053
2054        for (i = 0; i < nb; i++)
2055                cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2056
2057        return 0;
2058}
2059#else
2060static int of_spi_register_master(struct spi_controller *ctlr)
2061{
2062        return 0;
2063}
2064#endif
2065
2066/**
2067 * spi_register_controller - register SPI master or slave controller
2068 * @ctlr: initialized master, originally from spi_alloc_master() or
2069 *      spi_alloc_slave()
2070 * Context: can sleep
2071 *
2072 * SPI controllers connect to their drivers using some non-SPI bus,
2073 * such as the platform bus.  The final stage of probe() in that code
2074 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2075 *
2076 * SPI controllers use board specific (often SOC specific) bus numbers,
2077 * and board-specific addressing for SPI devices combines those numbers
2078 * with chip select numbers.  Since SPI does not directly support dynamic
2079 * device identification, boards need configuration tables telling which
2080 * chip is at which address.
2081 *
2082 * This must be called from context that can sleep.  It returns zero on
2083 * success, else a negative error code (dropping the controller's refcount).
2084 * After a successful return, the caller is responsible for calling
2085 * spi_unregister_controller().
2086 *
2087 * Return: zero on success, else a negative error code.
2088 */
2089int spi_register_controller(struct spi_controller *ctlr)
2090{
2091        struct device           *dev = ctlr->dev.parent;
2092        struct boardinfo        *bi;
2093        int                     status = -ENODEV;
2094        int                     id, first_dynamic;
2095
2096        if (!dev)
2097                return -ENODEV;
2098
2099        if (!spi_controller_is_slave(ctlr)) {
2100                status = of_spi_register_master(ctlr);
2101                if (status)
2102                        return status;
2103        }
2104
2105        /* even if it's just one always-selected device, there must
2106         * be at least one chipselect
2107         */
2108        if (ctlr->num_chipselect == 0)
2109                return -EINVAL;
2110        /* allocate dynamic bus number using Linux idr */
2111        if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2112                id = of_alias_get_id(ctlr->dev.of_node, "spi");
2113                if (id >= 0) {
2114                        ctlr->bus_num = id;
2115                        mutex_lock(&board_lock);
2116                        id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2117                                       ctlr->bus_num + 1, GFP_KERNEL);
2118                        mutex_unlock(&board_lock);
2119                        if (WARN(id < 0, "couldn't get idr"))
2120                                return id == -ENOSPC ? -EBUSY : id;
2121                }
2122        }
2123        if (ctlr->bus_num < 0) {
2124                first_dynamic = of_alias_get_highest_id("spi");
2125                if (first_dynamic < 0)
2126                        first_dynamic = 0;
2127                else
2128                        first_dynamic++;
2129
2130                mutex_lock(&board_lock);
2131                id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2132                               0, GFP_KERNEL);
2133                mutex_unlock(&board_lock);
2134                if (WARN(id < 0, "couldn't get idr"))
2135                        return id;
2136                ctlr->bus_num = id;
2137        }
2138        INIT_LIST_HEAD(&ctlr->queue);
2139        spin_lock_init(&ctlr->queue_lock);
2140        spin_lock_init(&ctlr->bus_lock_spinlock);
2141        mutex_init(&ctlr->bus_lock_mutex);
2142        mutex_init(&ctlr->io_mutex);
2143        ctlr->bus_lock_flag = 0;
2144        init_completion(&ctlr->xfer_completion);
2145        if (!ctlr->max_dma_len)
2146                ctlr->max_dma_len = INT_MAX;
2147
2148        /* register the device, then userspace will see it.
2149         * registration fails if the bus ID is in use.
2150         */
2151        dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2152        status = device_add(&ctlr->dev);
2153        if (status < 0) {
2154                /* free bus id */
2155                mutex_lock(&board_lock);
2156                idr_remove(&spi_master_idr, ctlr->bus_num);
2157                mutex_unlock(&board_lock);
2158                goto done;
2159        }
2160        dev_dbg(dev, "registered %s %s\n",
2161                        spi_controller_is_slave(ctlr) ? "slave" : "master",
2162                        dev_name(&ctlr->dev));
2163
2164        /* If we're using a queued driver, start the queue */
2165        if (ctlr->transfer)
2166                dev_info(dev, "controller is unqueued, this is deprecated\n");
2167        else {
2168                status = spi_controller_initialize_queue(ctlr);
2169                if (status) {
2170                        device_del(&ctlr->dev);
2171                        /* free bus id */
2172                        mutex_lock(&board_lock);
2173                        idr_remove(&spi_master_idr, ctlr->bus_num);
2174                        mutex_unlock(&board_lock);
2175                        goto done;
2176                }
2177        }
2178        /* add statistics */
2179        spin_lock_init(&ctlr->statistics.lock);
2180
2181        mutex_lock(&board_lock);
2182        list_add_tail(&ctlr->list, &spi_controller_list);
2183        list_for_each_entry(bi, &board_list, list)
2184                spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2185        mutex_unlock(&board_lock);
2186
2187        /* Register devices from the device tree and ACPI */
2188        of_register_spi_devices(ctlr);
2189        acpi_register_spi_devices(ctlr);
2190done:
2191        return status;
2192}
2193EXPORT_SYMBOL_GPL(spi_register_controller);
2194
2195static void devm_spi_unregister(struct device *dev, void *res)
2196{
2197        spi_unregister_controller(*(struct spi_controller **)res);
2198}
2199
2200/**
2201 * devm_spi_register_controller - register managed SPI master or slave
2202 *      controller
2203 * @dev:    device managing SPI controller
2204 * @ctlr: initialized controller, originally from spi_alloc_master() or
2205 *      spi_alloc_slave()
2206 * Context: can sleep
2207 *
2208 * Register a SPI device as with spi_register_controller() which will
2209 * automatically be unregistered and freed.
2210 *
2211 * Return: zero on success, else a negative error code.
2212 */
2213int devm_spi_register_controller(struct device *dev,
2214                                 struct spi_controller *ctlr)
2215{
2216        struct spi_controller **ptr;
2217        int ret;
2218
2219        ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2220        if (!ptr)
2221                return -ENOMEM;
2222
2223        ret = spi_register_controller(ctlr);
2224        if (!ret) {
2225                *ptr = ctlr;
2226                devres_add(dev, ptr);
2227        } else {
2228                devres_free(ptr);
2229        }
2230
2231        return ret;
2232}
2233EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2234
2235static int __unregister(struct device *dev, void *null)
2236{
2237        spi_unregister_device(to_spi_device(dev));
2238        return 0;
2239}
2240
2241/**
2242 * spi_unregister_controller - unregister SPI master or slave controller
2243 * @ctlr: the controller being unregistered
2244 * Context: can sleep
2245 *
2246 * This call is used only by SPI controller drivers, which are the
2247 * only ones directly touching chip registers.
2248 *
2249 * This must be called from context that can sleep.
2250 *
2251 * Note that this function also drops a reference to the controller.
2252 */
2253void spi_unregister_controller(struct spi_controller *ctlr)
2254{
2255        struct spi_controller *found;
2256        int id = ctlr->bus_num;
2257        int dummy;
2258
2259        /* First make sure that this controller was ever added */
2260        mutex_lock(&board_lock);
2261        found = idr_find(&spi_master_idr, id);
2262        mutex_unlock(&board_lock);
2263        if (ctlr->queued) {
2264                if (spi_destroy_queue(ctlr))
2265                        dev_err(&ctlr->dev, "queue remove failed\n");
2266        }
2267        mutex_lock(&board_lock);
2268        list_del(&ctlr->list);
2269        mutex_unlock(&board_lock);
2270
2271        dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2272        device_unregister(&ctlr->dev);
2273        /* free bus id */
2274        mutex_lock(&board_lock);
2275        if (found == ctlr)
2276                idr_remove(&spi_master_idr, id);
2277        mutex_unlock(&board_lock);
2278}
2279EXPORT_SYMBOL_GPL(spi_unregister_controller);
2280
2281int spi_controller_suspend(struct spi_controller *ctlr)
2282{
2283        int ret;
2284
2285        /* Basically no-ops for non-queued controllers */
2286        if (!ctlr->queued)
2287                return 0;
2288
2289        ret = spi_stop_queue(ctlr);
2290        if (ret)
2291                dev_err(&ctlr->dev, "queue stop failed\n");
2292
2293        return ret;
2294}
2295EXPORT_SYMBOL_GPL(spi_controller_suspend);
2296
2297int spi_controller_resume(struct spi_controller *ctlr)
2298{
2299        int ret;
2300
2301        if (!ctlr->queued)
2302                return 0;
2303
2304        ret = spi_start_queue(ctlr);
2305        if (ret)
2306                dev_err(&ctlr->dev, "queue restart failed\n");
2307
2308        return ret;
2309}
2310EXPORT_SYMBOL_GPL(spi_controller_resume);
2311
2312static int __spi_controller_match(struct device *dev, const void *data)
2313{
2314        struct spi_controller *ctlr;
2315        const u16 *bus_num = data;
2316
2317        ctlr = container_of(dev, struct spi_controller, dev);
2318        return ctlr->bus_num == *bus_num;
2319}
2320
2321/**
2322 * spi_busnum_to_master - look up master associated with bus_num
2323 * @bus_num: the master's bus number
2324 * Context: can sleep
2325 *
2326 * This call may be used with devices that are registered after
2327 * arch init time.  It returns a refcounted pointer to the relevant
2328 * spi_controller (which the caller must release), or NULL if there is
2329 * no such master registered.
2330 *
2331 * Return: the SPI master structure on success, else NULL.
2332 */
2333struct spi_controller *spi_busnum_to_master(u16 bus_num)
2334{
2335        struct device           *dev;
2336        struct spi_controller   *ctlr = NULL;
2337
2338        dev = class_find_device(&spi_master_class, NULL, &bus_num,
2339                                __spi_controller_match);
2340        if (dev)
2341                ctlr = container_of(dev, struct spi_controller, dev);
2342        /* reference got in class_find_device */
2343        return ctlr;
2344}
2345EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2346
2347/*-------------------------------------------------------------------------*/
2348
2349/* Core methods for SPI resource management */
2350
2351/**
2352 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2353 *                 during the processing of a spi_message while using
2354 *                 spi_transfer_one
2355 * @spi:     the spi device for which we allocate memory
2356 * @release: the release code to execute for this resource
2357 * @size:    size to alloc and return
2358 * @gfp:     GFP allocation flags
2359 *
2360 * Return: the pointer to the allocated data
2361 *
2362 * This may get enhanced in the future to allocate from a memory pool
2363 * of the @spi_device or @spi_controller to avoid repeated allocations.
2364 */
2365void *spi_res_alloc(struct spi_device *spi,
2366                    spi_res_release_t release,
2367                    size_t size, gfp_t gfp)
2368{
2369        struct spi_res *sres;
2370
2371        sres = kzalloc(sizeof(*sres) + size, gfp);
2372        if (!sres)
2373                return NULL;
2374
2375        INIT_LIST_HEAD(&sres->entry);
2376        sres->release = release;
2377
2378        return sres->data;
2379}
2380EXPORT_SYMBOL_GPL(spi_res_alloc);
2381
2382/**
2383 * spi_res_free - free an spi resource
2384 * @res: pointer to the custom data of a resource
2385 *
2386 */
2387void spi_res_free(void *res)
2388{
2389        struct spi_res *sres = container_of(res, struct spi_res, data);
2390
2391        if (!res)
2392                return;
2393
2394        WARN_ON(!list_empty(&sres->entry));
2395        kfree(sres);
2396}
2397EXPORT_SYMBOL_GPL(spi_res_free);
2398
2399/**
2400 * spi_res_add - add a spi_res to the spi_message
2401 * @message: the spi message
2402 * @res:     the spi_resource
2403 */
2404void spi_res_add(struct spi_message *message, void *res)
2405{
2406        struct spi_res *sres = container_of(res, struct spi_res, data);
2407
2408        WARN_ON(!list_empty(&sres->entry));
2409        list_add_tail(&sres->entry, &message->resources);
2410}
2411EXPORT_SYMBOL_GPL(spi_res_add);
2412
2413/**
2414 * spi_res_release - release all spi resources for this message
2415 * @ctlr:  the @spi_controller
2416 * @message: the @spi_message
2417 */
2418void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2419{
2420        struct spi_res *res;
2421
2422        while (!list_empty(&message->resources)) {
2423                res = list_last_entry(&message->resources,
2424                                      struct spi_res, entry);
2425
2426                if (res->release)
2427                        res->release(ctlr, message, res->data);
2428
2429                list_del(&res->entry);
2430
2431                kfree(res);
2432        }
2433}
2434EXPORT_SYMBOL_GPL(spi_res_release);
2435
2436/*-------------------------------------------------------------------------*/
2437
2438/* Core methods for spi_message alterations */
2439
2440static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2441                                            struct spi_message *msg,
2442                                            void *res)
2443{
2444        struct spi_replaced_transfers *rxfer = res;
2445        size_t i;
2446
2447        /* call extra callback if requested */
2448        if (rxfer->release)
2449                rxfer->release(ctlr, msg, res);
2450
2451        /* insert replaced transfers back into the message */
2452        list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2453
2454        /* remove the formerly inserted entries */
2455        for (i = 0; i < rxfer->inserted; i++)
2456                list_del(&rxfer->inserted_transfers[i].transfer_list);
2457}
2458
2459/**
2460 * spi_replace_transfers - replace transfers with several transfers
2461 *                         and register change with spi_message.resources
2462 * @msg:           the spi_message we work upon
2463 * @xfer_first:    the first spi_transfer we want to replace
2464 * @remove:        number of transfers to remove
2465 * @insert:        the number of transfers we want to insert instead
2466 * @release:       extra release code necessary in some circumstances
2467 * @extradatasize: extra data to allocate (with alignment guarantees
2468 *                 of struct @spi_transfer)
2469 * @gfp:           gfp flags
2470 *
2471 * Returns: pointer to @spi_replaced_transfers,
2472 *          PTR_ERR(...) in case of errors.
2473 */
2474struct spi_replaced_transfers *spi_replace_transfers(
2475        struct spi_message *msg,
2476        struct spi_transfer *xfer_first,
2477        size_t remove,
2478        size_t insert,
2479        spi_replaced_release_t release,
2480        size_t extradatasize,
2481        gfp_t gfp)
2482{
2483        struct spi_replaced_transfers *rxfer;
2484        struct spi_transfer *xfer;
2485        size_t i;
2486
2487        /* allocate the structure using spi_res */
2488        rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2489                              insert * sizeof(struct spi_transfer)
2490                              + sizeof(struct spi_replaced_transfers)
2491                              + extradatasize,
2492                              gfp);
2493        if (!rxfer)
2494                return ERR_PTR(-ENOMEM);
2495
2496        /* the release code to invoke before running the generic release */
2497        rxfer->release = release;
2498
2499        /* assign extradata */
2500        if (extradatasize)
2501                rxfer->extradata =
2502                        &rxfer->inserted_transfers[insert];
2503
2504        /* init the replaced_transfers list */
2505        INIT_LIST_HEAD(&rxfer->replaced_transfers);
2506
2507        /* assign the list_entry after which we should reinsert
2508         * the @replaced_transfers - it may be spi_message.messages!
2509         */
2510        rxfer->replaced_after = xfer_first->transfer_list.prev;
2511
2512        /* remove the requested number of transfers */
2513        for (i = 0; i < remove; i++) {
2514                /* if the entry after replaced_after it is msg->transfers
2515                 * then we have been requested to remove more transfers
2516                 * than are in the list
2517                 */
2518                if (rxfer->replaced_after->next == &msg->transfers) {
2519                        dev_err(&msg->spi->dev,
2520                                "requested to remove more spi_transfers than are available\n");
2521                        /* insert replaced transfers back into the message */
2522                        list_splice(&rxfer->replaced_transfers,
2523                                    rxfer->replaced_after);
2524
2525                        /* free the spi_replace_transfer structure */
2526                        spi_res_free(rxfer);
2527
2528                        /* and return with an error */
2529                        return ERR_PTR(-EINVAL);
2530                }
2531
2532                /* remove the entry after replaced_after from list of
2533                 * transfers and add it to list of replaced_transfers
2534                 */
2535                list_move_tail(rxfer->replaced_after->next,
2536                               &rxfer->replaced_transfers);
2537        }
2538
2539        /* create copy of the given xfer with identical settings
2540         * based on the first transfer to get removed
2541         */
2542        for (i = 0; i < insert; i++) {
2543                /* we need to run in reverse order */
2544                xfer = &rxfer->inserted_transfers[insert - 1 - i];
2545
2546                /* copy all spi_transfer data */
2547                memcpy(xfer, xfer_first, sizeof(*xfer));
2548
2549                /* add to list */
2550                list_add(&xfer->transfer_list, rxfer->replaced_after);
2551
2552                /* clear cs_change and delay_usecs for all but the last */
2553                if (i) {
2554                        xfer->cs_change = false;
2555                        xfer->delay_usecs = 0;
2556                }
2557        }
2558
2559        /* set up inserted */
2560        rxfer->inserted = insert;
2561
2562        /* and register it with spi_res/spi_message */
2563        spi_res_add(msg, rxfer);
2564
2565        return rxfer;
2566}
2567EXPORT_SYMBOL_GPL(spi_replace_transfers);
2568
2569static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2570                                        struct spi_message *msg,
2571                                        struct spi_transfer **xferp,
2572                                        size_t maxsize,
2573                                        gfp_t gfp)
2574{
2575        struct spi_transfer *xfer = *xferp, *xfers;
2576        struct spi_replaced_transfers *srt;
2577        size_t offset;
2578        size_t count, i;
2579
2580        /* warn once about this fact that we are splitting a transfer */
2581        dev_warn_once(&msg->spi->dev,
2582                      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2583                      xfer->len, maxsize);
2584
2585        /* calculate how many we have to replace */
2586        count = DIV_ROUND_UP(xfer->len, maxsize);
2587
2588        /* create replacement */
2589        srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2590        if (IS_ERR(srt))
2591                return PTR_ERR(srt);
2592        xfers = srt->inserted_transfers;
2593
2594        /* now handle each of those newly inserted spi_transfers
2595         * note that the replacements spi_transfers all are preset
2596         * to the same values as *xferp, so tx_buf, rx_buf and len
2597         * are all identical (as well as most others)
2598         * so we just have to fix up len and the pointers.
2599         *
2600         * this also includes support for the depreciated
2601         * spi_message.is_dma_mapped interface
2602         */
2603
2604        /* the first transfer just needs the length modified, so we
2605         * run it outside the loop
2606         */
2607        xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2608
2609        /* all the others need rx_buf/tx_buf also set */
2610        for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2611                /* update rx_buf, tx_buf and dma */
2612                if (xfers[i].rx_buf)
2613                        xfers[i].rx_buf += offset;
2614                if (xfers[i].rx_dma)
2615                        xfers[i].rx_dma += offset;
2616                if (xfers[i].tx_buf)
2617                        xfers[i].tx_buf += offset;
2618                if (xfers[i].tx_dma)
2619                        xfers[i].tx_dma += offset;
2620
2621                /* update length */
2622                xfers[i].len = min(maxsize, xfers[i].len - offset);
2623        }
2624
2625        /* we set up xferp to the last entry we have inserted,
2626         * so that we skip those already split transfers
2627         */
2628        *xferp = &xfers[count - 1];
2629
2630        /* increment statistics counters */
2631        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2632                                       transfers_split_maxsize);
2633        SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2634                                       transfers_split_maxsize);
2635
2636        return 0;
2637}
2638
2639/**
2640 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2641 *                              when an individual transfer exceeds a
2642 *                              certain size
2643 * @ctlr:    the @spi_controller for this transfer
2644 * @msg:   the @spi_message to transform
2645 * @maxsize:  the maximum when to apply this
2646 * @gfp: GFP allocation flags
2647 *
2648 * Return: status of transformation
2649 */
2650int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2651                                struct spi_message *msg,
2652                                size_t maxsize,
2653                                gfp_t gfp)
2654{
2655        struct spi_transfer *xfer;
2656        int ret;
2657
2658        /* iterate over the transfer_list,
2659         * but note that xfer is advanced to the last transfer inserted
2660         * to avoid checking sizes again unnecessarily (also xfer does
2661         * potentiall belong to a different list by the time the
2662         * replacement has happened
2663         */
2664        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2665                if (xfer->len > maxsize) {
2666                        ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2667                                                           maxsize, gfp);
2668                        if (ret)
2669                                return ret;
2670                }
2671        }
2672
2673        return 0;
2674}
2675EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2676
2677/*-------------------------------------------------------------------------*/
2678
2679/* Core methods for SPI controller protocol drivers.  Some of the
2680 * other core methods are currently defined as inline functions.
2681 */
2682
2683static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2684                                        u8 bits_per_word)
2685{
2686        if (ctlr->bits_per_word_mask) {
2687                /* Only 32 bits fit in the mask */
2688                if (bits_per_word > 32)
2689                        return -EINVAL;
2690                if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2691                        return -EINVAL;
2692        }
2693
2694        return 0;
2695}
2696
2697/**
2698 * spi_setup - setup SPI mode and clock rate
2699 * @spi: the device whose settings are being modified
2700 * Context: can sleep, and no requests are queued to the device
2701 *
2702 * SPI protocol drivers may need to update the transfer mode if the
2703 * device doesn't work with its default.  They may likewise need
2704 * to update clock rates or word sizes from initial values.  This function
2705 * changes those settings, and must be called from a context that can sleep.
2706 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2707 * effect the next time the device is selected and data is transferred to
2708 * or from it.  When this function returns, the spi device is deselected.
2709 *
2710 * Note that this call will fail if the protocol driver specifies an option
2711 * that the underlying controller or its driver does not support.  For
2712 * example, not all hardware supports wire transfers using nine bit words,
2713 * LSB-first wire encoding, or active-high chipselects.
2714 *
2715 * Return: zero on success, else a negative error code.
2716 */
2717int spi_setup(struct spi_device *spi)
2718{
2719        unsigned        bad_bits, ugly_bits;
2720        int             status;
2721
2722        /* check mode to prevent that DUAL and QUAD set at the same time
2723         */
2724        if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2725                ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2726                dev_err(&spi->dev,
2727                "setup: can not select dual and quad at the same time\n");
2728                return -EINVAL;
2729        }
2730        /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2731         */
2732        if ((spi->mode & SPI_3WIRE) && (spi->mode &
2733                (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2734                return -EINVAL;
2735        /* help drivers fail *cleanly* when they need options
2736         * that aren't supported with their current controller
2737         */
2738        bad_bits = spi->mode & ~spi->controller->mode_bits;
2739        ugly_bits = bad_bits &
2740                    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2741        if (ugly_bits) {
2742                dev_warn(&spi->dev,
2743                         "setup: ignoring unsupported mode bits %x\n",
2744                         ugly_bits);
2745                spi->mode &= ~ugly_bits;
2746                bad_bits &= ~ugly_bits;
2747        }
2748        if (bad_bits) {
2749                dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2750                        bad_bits);
2751                return -EINVAL;
2752        }
2753
2754        if (!spi->bits_per_word)
2755                spi->bits_per_word = 8;
2756
2757        status = __spi_validate_bits_per_word(spi->controller,
2758                                              spi->bits_per_word);
2759        if (status)
2760                return status;
2761
2762        if (!spi->max_speed_hz)
2763                spi->max_speed_hz = spi->controller->max_speed_hz;
2764
2765        if (spi->controller->setup)
2766                status = spi->controller->setup(spi);
2767
2768        spi_set_cs(spi, false);
2769
2770        dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2771                        (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2772                        (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2773                        (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2774                        (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2775                        (spi->mode & SPI_LOOP) ? "loopback, " : "",
2776                        spi->bits_per_word, spi->max_speed_hz,
2777                        status);
2778
2779        return status;
2780}
2781EXPORT_SYMBOL_GPL(spi_setup);
2782
2783static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2784{
2785        struct spi_controller *ctlr = spi->controller;
2786        struct spi_transfer *xfer;
2787        int w_size;
2788
2789        if (list_empty(&message->transfers))
2790                return -EINVAL;
2791
2792        /* Half-duplex links include original MicroWire, and ones with
2793         * only one data pin like SPI_3WIRE (switches direction) or where
2794         * either MOSI or MISO is missing.  They can also be caused by
2795         * software limitations.
2796         */
2797        if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2798            (spi->mode & SPI_3WIRE)) {
2799                unsigned flags = ctlr->flags;
2800
2801                list_for_each_entry(xfer, &message->transfers, transfer_list) {
2802                        if (xfer->rx_buf && xfer->tx_buf)
2803                                return -EINVAL;
2804                        if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2805                                return -EINVAL;
2806                        if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2807                                return -EINVAL;
2808                }
2809        }
2810
2811        /**
2812         * Set transfer bits_per_word and max speed as spi device default if
2813         * it is not set for this transfer.
2814         * Set transfer tx_nbits and rx_nbits as single transfer default
2815         * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2816         */
2817        message->frame_length = 0;
2818        list_for_each_entry(xfer, &message->transfers, transfer_list) {
2819                message->frame_length += xfer->len;
2820                if (!xfer->bits_per_word)
2821                        xfer->bits_per_word = spi->bits_per_word;
2822
2823                if (!xfer->speed_hz)
2824                        xfer->speed_hz = spi->max_speed_hz;
2825                if (!xfer->speed_hz)
2826                        xfer->speed_hz = ctlr->max_speed_hz;
2827
2828                if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2829                        xfer->speed_hz = ctlr->max_speed_hz;
2830
2831                if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2832                        return -EINVAL;
2833
2834                /*
2835                 * SPI transfer length should be multiple of SPI word size
2836                 * where SPI word size should be power-of-two multiple
2837                 */
2838                if (xfer->bits_per_word <= 8)
2839                        w_size = 1;
2840                else if (xfer->bits_per_word <= 16)
2841                        w_size = 2;
2842                else
2843                        w_size = 4;
2844
2845                /* No partial transfers accepted */
2846                if (xfer->len % w_size)
2847                        return -EINVAL;
2848
2849                if (xfer->speed_hz && ctlr->min_speed_hz &&
2850                    xfer->speed_hz < ctlr->min_speed_hz)
2851                        return -EINVAL;
2852
2853                if (xfer->tx_buf && !xfer->tx_nbits)
2854                        xfer->tx_nbits = SPI_NBITS_SINGLE;
2855                if (xfer->rx_buf && !xfer->rx_nbits)
2856                        xfer->rx_nbits = SPI_NBITS_SINGLE;
2857                /* check transfer tx/rx_nbits:
2858                 * 1. check the value matches one of single, dual and quad
2859                 * 2. check tx/rx_nbits match the mode in spi_device
2860                 */
2861                if (xfer->tx_buf) {
2862                        if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2863                                xfer->tx_nbits != SPI_NBITS_DUAL &&
2864                                xfer->tx_nbits != SPI_NBITS_QUAD)
2865                                return -EINVAL;
2866                        if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2867                                !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2868                                return -EINVAL;
2869                        if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2870                                !(spi->mode & SPI_TX_QUAD))
2871                                return -EINVAL;
2872                }
2873                /* check transfer rx_nbits */
2874                if (xfer->rx_buf) {
2875                        if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2876                                xfer->rx_nbits != SPI_NBITS_DUAL &&
2877                                xfer->rx_nbits != SPI_NBITS_QUAD)
2878                                return -EINVAL;
2879                        if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2880                                !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2881                                return -EINVAL;
2882                        if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2883                                !(spi->mode & SPI_RX_QUAD))
2884                                return -EINVAL;
2885                }
2886        }
2887
2888        message->status = -EINPROGRESS;
2889
2890        return 0;
2891}
2892
2893static int __spi_async(struct spi_device *spi, struct spi_message *message)
2894{
2895        struct spi_controller *ctlr = spi->controller;
2896
2897        message->spi = spi;
2898
2899        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2900        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2901
2902        trace_spi_message_submit(message);
2903
2904        return ctlr->transfer(spi, message);
2905}
2906
2907/**
2908 * spi_async - asynchronous SPI transfer
2909 * @spi: device with which data will be exchanged
2910 * @message: describes the data transfers, including completion callback
2911 * Context: any (irqs may be blocked, etc)
2912 *
2913 * This call may be used in_irq and other contexts which can't sleep,
2914 * as well as from task contexts which can sleep.
2915 *
2916 * The completion callback is invoked in a context which can't sleep.
2917 * Before that invocation, the value of message->status is undefined.
2918 * When the callback is issued, message->status holds either zero (to
2919 * indicate complete success) or a negative error code.  After that
2920 * callback returns, the driver which issued the transfer request may
2921 * deallocate the associated memory; it's no longer in use by any SPI
2922 * core or controller driver code.
2923 *
2924 * Note that although all messages to a spi_device are handled in
2925 * FIFO order, messages may go to different devices in other orders.
2926 * Some device might be higher priority, or have various "hard" access
2927 * time requirements, for example.
2928 *
2929 * On detection of any fault during the transfer, processing of
2930 * the entire message is aborted, and the device is deselected.
2931 * Until returning from the associated message completion callback,
2932 * no other spi_message queued to that device will be processed.
2933 * (This rule applies equally to all the synchronous transfer calls,
2934 * which are wrappers around this core asynchronous primitive.)
2935 *
2936 * Return: zero on success, else a negative error code.
2937 */
2938int spi_async(struct spi_device *spi, struct spi_message *message)
2939{
2940        struct spi_controller *ctlr = spi->controller;
2941        int ret;
2942        unsigned long flags;
2943
2944        ret = __spi_validate(spi, message);
2945        if (ret != 0)
2946                return ret;
2947
2948        spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2949
2950        if (ctlr->bus_lock_flag)
2951                ret = -EBUSY;
2952        else
2953                ret = __spi_async(spi, message);
2954
2955        spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2956
2957        return ret;
2958}
2959EXPORT_SYMBOL_GPL(spi_async);
2960
2961/**
2962 * spi_async_locked - version of spi_async with exclusive bus usage
2963 * @spi: device with which data will be exchanged
2964 * @message: describes the data transfers, including completion callback
2965 * Context: any (irqs may be blocked, etc)
2966 *
2967 * This call may be used in_irq and other contexts which can't sleep,
2968 * as well as from task contexts which can sleep.
2969 *
2970 * The completion callback is invoked in a context which can't sleep.
2971 * Before that invocation, the value of message->status is undefined.
2972 * When the callback is issued, message->status holds either zero (to
2973 * indicate complete success) or a negative error code.  After that
2974 * callback returns, the driver which issued the transfer request may
2975 * deallocate the associated memory; it's no longer in use by any SPI
2976 * core or controller driver code.
2977 *
2978 * Note that although all messages to a spi_device are handled in
2979 * FIFO order, messages may go to different devices in other orders.
2980 * Some device might be higher priority, or have various "hard" access
2981 * time requirements, for example.
2982 *
2983 * On detection of any fault during the transfer, processing of
2984 * the entire message is aborted, and the device is deselected.
2985 * Until returning from the associated message completion callback,
2986 * no other spi_message queued to that device will be processed.
2987 * (This rule applies equally to all the synchronous transfer calls,
2988 * which are wrappers around this core asynchronous primitive.)
2989 *
2990 * Return: zero on success, else a negative error code.
2991 */
2992int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2993{
2994        struct spi_controller *ctlr = spi->controller;
2995        int ret;
2996        unsigned long flags;
2997
2998        ret = __spi_validate(spi, message);
2999        if (ret != 0)
3000                return ret;
3001
3002        spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3003
3004        ret = __spi_async(spi, message);
3005
3006        spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3007
3008        return ret;
3009
3010}
3011EXPORT_SYMBOL_GPL(spi_async_locked);
3012
3013
3014int spi_flash_read(struct spi_device *spi,
3015                   struct spi_flash_read_message *msg)
3016
3017{
3018        struct spi_controller *master = spi->controller;
3019        struct device *rx_dev = NULL;
3020        int ret;
3021
3022        if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3023             msg->addr_nbits == SPI_NBITS_DUAL) &&
3024            !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3025                return -EINVAL;
3026        if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3027             msg->addr_nbits == SPI_NBITS_QUAD) &&
3028            !(spi->mode & SPI_TX_QUAD))
3029                return -EINVAL;
3030        if (msg->data_nbits == SPI_NBITS_DUAL &&
3031            !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3032                return -EINVAL;
3033        if (msg->data_nbits == SPI_NBITS_QUAD &&
3034            !(spi->mode &  SPI_RX_QUAD))
3035                return -EINVAL;
3036
3037        if (master->auto_runtime_pm) {
3038                ret = pm_runtime_get_sync(master->dev.parent);
3039                if (ret < 0) {
3040                        dev_err(&master->dev, "Failed to power device: %d\n",
3041                                ret);
3042                        return ret;
3043                }
3044        }
3045
3046        mutex_lock(&master->bus_lock_mutex);
3047        mutex_lock(&master->io_mutex);
3048        if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3049                rx_dev = master->dma_rx->device->dev;
3050                ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3051                                  msg->buf, msg->len,
3052                                  DMA_FROM_DEVICE);
3053                if (!ret)
3054                        msg->cur_msg_mapped = true;
3055        }
3056        ret = master->spi_flash_read(spi, msg);
3057        if (msg->cur_msg_mapped)
3058                spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3059                              DMA_FROM_DEVICE);
3060        mutex_unlock(&master->io_mutex);
3061        mutex_unlock(&master->bus_lock_mutex);
3062
3063        if (master->auto_runtime_pm)
3064                pm_runtime_put(master->dev.parent);
3065
3066        return ret;
3067}
3068EXPORT_SYMBOL_GPL(spi_flash_read);
3069
3070/*-------------------------------------------------------------------------*/
3071
3072/* Utility methods for SPI protocol drivers, layered on
3073 * top of the core.  Some other utility methods are defined as
3074 * inline functions.
3075 */
3076
3077static void spi_complete(void *arg)
3078{
3079        complete(arg);
3080}
3081
3082static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3083{
3084        DECLARE_COMPLETION_ONSTACK(done);
3085        int status;
3086        struct spi_controller *ctlr = spi->controller;
3087        unsigned long flags;
3088
3089        status = __spi_validate(spi, message);
3090        if (status != 0)
3091                return status;
3092
3093        message->complete = spi_complete;
3094        message->context = &done;
3095        message->spi = spi;
3096
3097        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3098        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3099
3100        /* If we're not using the legacy transfer method then we will
3101         * try to transfer in the calling context so special case.
3102         * This code would be less tricky if we could remove the
3103         * support for driver implemented message queues.
3104         */
3105        if (ctlr->transfer == spi_queued_transfer) {
3106                spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3107
3108                trace_spi_message_submit(message);
3109
3110                status = __spi_queued_transfer(spi, message, false);
3111
3112                spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3113        } else {
3114                status = spi_async_locked(spi, message);
3115        }
3116
3117        if (status == 0) {
3118                /* Push out the messages in the calling context if we
3119                 * can.
3120                 */
3121                if (ctlr->transfer == spi_queued_transfer) {
3122                        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3123                                                       spi_sync_immediate);
3124                        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3125                                                       spi_sync_immediate);
3126                        __spi_pump_messages(ctlr, false);
3127                }
3128
3129                wait_for_completion(&done);
3130                status = message->status;
3131        }
3132        message->context = NULL;
3133        return status;
3134}
3135
3136/**
3137 * spi_sync - blocking/synchronous SPI data transfers
3138 * @spi: device with which data will be exchanged
3139 * @message: describes the data transfers
3140 * Context: can sleep
3141 *
3142 * This call may only be used from a context that may sleep.  The sleep
3143 * is non-interruptible, and has no timeout.  Low-overhead controller
3144 * drivers may DMA directly into and out of the message buffers.
3145 *
3146 * Note that the SPI device's chip select is active during the message,
3147 * and then is normally disabled between messages.  Drivers for some
3148 * frequently-used devices may want to minimize costs of selecting a chip,
3149 * by leaving it selected in anticipation that the next message will go
3150 * to the same chip.  (That may increase power usage.)
3151 *
3152 * Also, the caller is guaranteeing that the memory associated with the
3153 * message will not be freed before this call returns.
3154 *
3155 * Return: zero on success, else a negative error code.
3156 */
3157int spi_sync(struct spi_device *spi, struct spi_message *message)
3158{
3159        int ret;
3160
3161        mutex_lock(&spi->controller->bus_lock_mutex);
3162        ret = __spi_sync(spi, message);
3163        mutex_unlock(&spi->controller->bus_lock_mutex);
3164
3165        return ret;
3166}
3167EXPORT_SYMBOL_GPL(spi_sync);
3168
3169/**
3170 * spi_sync_locked - version of spi_sync with exclusive bus usage
3171 * @spi: device with which data will be exchanged
3172 * @message: describes the data transfers
3173 * Context: can sleep
3174 *
3175 * This call may only be used from a context that may sleep.  The sleep
3176 * is non-interruptible, and has no timeout.  Low-overhead controller
3177 * drivers may DMA directly into and out of the message buffers.
3178 *
3179 * This call should be used by drivers that require exclusive access to the
3180 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3181 * be released by a spi_bus_unlock call when the exclusive access is over.
3182 *
3183 * Return: zero on success, else a negative error code.
3184 */
3185int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3186{
3187        return __spi_sync(spi, message);
3188}
3189EXPORT_SYMBOL_GPL(spi_sync_locked);
3190
3191/**
3192 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3193 * @ctlr: SPI bus master that should be locked for exclusive bus access
3194 * Context: can sleep
3195 *
3196 * This call may only be used from a context that may sleep.  The sleep
3197 * is non-interruptible, and has no timeout.
3198 *
3199 * This call should be used by drivers that require exclusive access to the
3200 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3201 * exclusive access is over. Data transfer must be done by spi_sync_locked
3202 * and spi_async_locked calls when the SPI bus lock is held.
3203 *
3204 * Return: always zero.
3205 */
3206int spi_bus_lock(struct spi_controller *ctlr)
3207{
3208        unsigned long flags;
3209
3210        mutex_lock(&ctlr->bus_lock_mutex);
3211
3212        spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3213        ctlr->bus_lock_flag = 1;
3214        spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3215
3216        /* mutex remains locked until spi_bus_unlock is called */
3217
3218        return 0;
3219}
3220EXPORT_SYMBOL_GPL(spi_bus_lock);
3221
3222/**
3223 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3224 * @ctlr: SPI bus master that was locked for exclusive bus access
3225 * Context: can sleep
3226 *
3227 * This call may only be used from a context that may sleep.  The sleep
3228 * is non-interruptible, and has no timeout.
3229 *
3230 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3231 * call.
3232 *
3233 * Return: always zero.
3234 */
3235int spi_bus_unlock(struct spi_controller *ctlr)
3236{
3237        ctlr->bus_lock_flag = 0;
3238
3239        mutex_unlock(&ctlr->bus_lock_mutex);
3240
3241        return 0;
3242}
3243EXPORT_SYMBOL_GPL(spi_bus_unlock);
3244
3245/* portable code must never pass more than 32 bytes */
3246#define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3247
3248static u8       *buf;
3249
3250/**
3251 * spi_write_then_read - SPI synchronous write followed by read
3252 * @spi: device with which data will be exchanged
3253 * @txbuf: data to be written (need not be dma-safe)
3254 * @n_tx: size of txbuf, in bytes
3255 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3256 * @n_rx: size of rxbuf, in bytes
3257 * Context: can sleep
3258 *
3259 * This performs a half duplex MicroWire style transaction with the
3260 * device, sending txbuf and then reading rxbuf.  The return value
3261 * is zero for success, else a negative errno status code.
3262 * This call may only be used from a context that may sleep.
3263 *
3264 * Parameters to this routine are always copied using a small buffer;
3265 * portable code should never use this for more than 32 bytes.
3266 * Performance-sensitive or bulk transfer code should instead use
3267 * spi_{async,sync}() calls with dma-safe buffers.
3268 *
3269 * Return: zero on success, else a negative error code.
3270 */
3271int spi_write_then_read(struct spi_device *spi,
3272                const void *txbuf, unsigned n_tx,
3273                void *rxbuf, unsigned n_rx)
3274{
3275        static DEFINE_MUTEX(lock);
3276
3277        int                     status;
3278        struct spi_message      message;
3279        struct spi_transfer     x[2];
3280        u8                      *local_buf;
3281
3282        /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3283         * copying here, (as a pure convenience thing), but we can
3284         * keep heap costs out of the hot path unless someone else is
3285         * using the pre-allocated buffer or the transfer is too large.
3286         */
3287        if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3288                local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3289                                    GFP_KERNEL | GFP_DMA);
3290                if (!local_buf)
3291                        return -ENOMEM;
3292        } else {
3293                local_buf = buf;
3294        }
3295
3296        spi_message_init(&message);
3297        memset(x, 0, sizeof(x));
3298        if (n_tx) {
3299                x[0].len = n_tx;
3300                spi_message_add_tail(&x[0], &message);
3301        }
3302        if (n_rx) {
3303                x[1].len = n_rx;
3304                spi_message_add_tail(&x[1], &message);
3305        }
3306
3307        memcpy(local_buf, txbuf, n_tx);
3308        x[0].tx_buf = local_buf;
3309        x[1].rx_buf = local_buf + n_tx;
3310
3311        /* do the i/o */
3312        status = spi_sync(spi, &message);
3313        if (status == 0)
3314                memcpy(rxbuf, x[1].rx_buf, n_rx);
3315
3316        if (x[0].tx_buf == buf)
3317                mutex_unlock(&lock);
3318        else
3319                kfree(local_buf);
3320
3321        return status;
3322}
3323EXPORT_SYMBOL_GPL(spi_write_then_read);
3324
3325/*-------------------------------------------------------------------------*/
3326
3327#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3328static int __spi_of_device_match(struct device *dev, void *data)
3329{
3330        return dev->of_node == data;
3331}
3332
3333/* must call put_device() when done with returned spi_device device */
3334static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3335{
3336        struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3337                                                __spi_of_device_match);
3338        return dev ? to_spi_device(dev) : NULL;
3339}
3340
3341static int __spi_of_controller_match(struct device *dev, const void *data)
3342{
3343        return dev->of_node == data;
3344}
3345
3346/* the spi controllers are not using spi_bus, so we find it with another way */
3347static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3348{
3349        struct device *dev;
3350
3351        dev = class_find_device(&spi_master_class, NULL, node,
3352                                __spi_of_controller_match);
3353        if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3354                dev = class_find_device(&spi_slave_class, NULL, node,
3355                                        __spi_of_controller_match);
3356        if (!dev)
3357                return NULL;
3358
3359        /* reference got in class_find_device */
3360        return container_of(dev, struct spi_controller, dev);
3361}
3362
3363static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3364                         void *arg)
3365{
3366        struct of_reconfig_data *rd = arg;
3367        struct spi_controller *ctlr;
3368        struct spi_device *spi;
3369
3370        switch (of_reconfig_get_state_change(action, arg)) {
3371        case OF_RECONFIG_CHANGE_ADD:
3372                ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3373                if (ctlr == NULL)
3374                        return NOTIFY_OK;       /* not for us */
3375
3376                if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3377                        put_device(&ctlr->dev);
3378                        return NOTIFY_OK;
3379                }
3380
3381                spi = of_register_spi_device(ctlr, rd->dn);
3382                put_device(&ctlr->dev);
3383
3384                if (IS_ERR(spi)) {
3385                        pr_err("%s: failed to create for '%pOF'\n",
3386                                        __func__, rd->dn);
3387                        of_node_clear_flag(rd->dn, OF_POPULATED);
3388                        return notifier_from_errno(PTR_ERR(spi));
3389                }
3390                break;
3391
3392        case OF_RECONFIG_CHANGE_REMOVE:
3393                /* already depopulated? */
3394                if (!of_node_check_flag(rd->dn, OF_POPULATED))
3395                        return NOTIFY_OK;
3396
3397                /* find our device by node */
3398                spi = of_find_spi_device_by_node(rd->dn);
3399                if (spi == NULL)
3400                        return NOTIFY_OK;       /* no? not meant for us */
3401
3402                /* unregister takes one ref away */
3403                spi_unregister_device(spi);
3404
3405                /* and put the reference of the find */
3406                put_device(&spi->dev);
3407                break;
3408        }
3409
3410        return NOTIFY_OK;
3411}
3412
3413static struct notifier_block spi_of_notifier = {
3414        .notifier_call = of_spi_notify,
3415};
3416#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3417extern struct notifier_block spi_of_notifier;
3418#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3419
3420#if IS_ENABLED(CONFIG_ACPI)
3421static int spi_acpi_controller_match(struct device *dev, const void *data)
3422{
3423        return ACPI_COMPANION(dev->parent) == data;
3424}
3425
3426static int spi_acpi_device_match(struct device *dev, void *data)
3427{
3428        return ACPI_COMPANION(dev) == data;
3429}
3430
3431static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3432{
3433        struct device *dev;
3434
3435        dev = class_find_device(&spi_master_class, NULL, adev,
3436                                spi_acpi_controller_match);
3437        if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3438                dev = class_find_device(&spi_slave_class, NULL, adev,
3439                                        spi_acpi_controller_match);
3440        if (!dev)
3441                return NULL;
3442
3443        return container_of(dev, struct spi_controller, dev);
3444}
3445
3446static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3447{
3448        struct device *dev;
3449
3450        dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3451
3452        return dev ? to_spi_device(dev) : NULL;
3453}
3454
3455static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3456                           void *arg)
3457{
3458        struct acpi_device *adev = arg;
3459        struct spi_controller *ctlr;
3460        struct spi_device *spi;
3461
3462        switch (value) {
3463        case ACPI_RECONFIG_DEVICE_ADD:
3464                ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3465                if (!ctlr)
3466                        break;
3467
3468                acpi_register_spi_device(ctlr, adev);
3469                put_device(&ctlr->dev);
3470                break;
3471        case ACPI_RECONFIG_DEVICE_REMOVE:
3472                if (!acpi_device_enumerated(adev))
3473                        break;
3474
3475                spi = acpi_spi_find_device_by_adev(adev);
3476                if (!spi)
3477                        break;
3478
3479                spi_unregister_device(spi);
3480                put_device(&spi->dev);
3481                break;
3482        }
3483
3484        return NOTIFY_OK;
3485}
3486
3487static struct notifier_block spi_acpi_notifier = {
3488        .notifier_call = acpi_spi_notify,
3489};
3490#else
3491extern struct notifier_block spi_acpi_notifier;
3492#endif
3493
3494static int __init spi_init(void)
3495{
3496        int     status;
3497
3498        buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3499        if (!buf) {
3500                status = -ENOMEM;
3501                goto err0;
3502        }
3503
3504        status = bus_register(&spi_bus_type);
3505        if (status < 0)
3506                goto err1;
3507
3508        status = class_register(&spi_master_class);
3509        if (status < 0)
3510                goto err2;
3511
3512        if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3513                status = class_register(&spi_slave_class);
3514                if (status < 0)
3515                        goto err3;
3516        }
3517
3518        if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3519                WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3520        if (IS_ENABLED(CONFIG_ACPI))
3521                WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3522
3523        return 0;
3524
3525err3:
3526        class_unregister(&spi_master_class);
3527err2:
3528        bus_unregister(&spi_bus_type);
3529err1:
3530        kfree(buf);
3531        buf = NULL;
3532err0:
3533        return status;
3534}
3535
3536/* board_info is normally registered in arch_initcall(),
3537 * but even essential drivers wait till later
3538 *
3539 * REVISIT only boardinfo really needs static linking. the rest (device and
3540 * driver registration) _could_ be dynamically linked (modular) ... costs
3541 * include needing to have boardinfo data structures be much more public.
3542 */
3543postcore_initcall(spi_init);
3544
3545