linux/drivers/tty/vt/keyboard.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
  29#include <linux/module.h>
  30#include <linux/sched/signal.h>
  31#include <linux/sched/debug.h>
  32#include <linux/tty.h>
  33#include <linux/tty_flip.h>
  34#include <linux/mm.h>
  35#include <linux/string.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/leds.h>
  39
  40#include <linux/kbd_kern.h>
  41#include <linux/kbd_diacr.h>
  42#include <linux/vt_kern.h>
  43#include <linux/input.h>
  44#include <linux/reboot.h>
  45#include <linux/notifier.h>
  46#include <linux/jiffies.h>
  47#include <linux/uaccess.h>
  48
  49#include <asm/irq_regs.h>
  50
  51extern void ctrl_alt_del(void);
  52
  53/*
  54 * Exported functions/variables
  55 */
  56
  57#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  58
  59#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  60#include <asm/kbdleds.h>
  61#else
  62static inline int kbd_defleds(void)
  63{
  64        return 0;
  65}
  66#endif
  67
  68#define KBD_DEFLOCK 0
  69
  70/*
  71 * Handler Tables.
  72 */
  73
  74#define K_HANDLERS\
  75        k_self,         k_fn,           k_spec,         k_pad,\
  76        k_dead,         k_cons,         k_cur,          k_shift,\
  77        k_meta,         k_ascii,        k_lock,         k_lowercase,\
  78        k_slock,        k_dead2,        k_brl,          k_ignore
  79
  80typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  81                            char up_flag);
  82static k_handler_fn K_HANDLERS;
  83static k_handler_fn *k_handler[16] = { K_HANDLERS };
  84
  85#define FN_HANDLERS\
  86        fn_null,        fn_enter,       fn_show_ptregs, fn_show_mem,\
  87        fn_show_state,  fn_send_intr,   fn_lastcons,    fn_caps_toggle,\
  88        fn_num,         fn_hold,        fn_scroll_forw, fn_scroll_back,\
  89        fn_boot_it,     fn_caps_on,     fn_compose,     fn_SAK,\
  90        fn_dec_console, fn_inc_console, fn_spawn_con,   fn_bare_num
  91
  92typedef void (fn_handler_fn)(struct vc_data *vc);
  93static fn_handler_fn FN_HANDLERS;
  94static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  95
  96/*
  97 * Variables exported for vt_ioctl.c
  98 */
  99
 100struct vt_spawn_console vt_spawn_con = {
 101        .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 102        .pid  = NULL,
 103        .sig  = 0,
 104};
 105
 106
 107/*
 108 * Internal Data.
 109 */
 110
 111static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 112static struct kbd_struct *kbd = kbd_table;
 113
 114/* maximum values each key_handler can handle */
 115static const int max_vals[] = {
 116        255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 117        NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 118        255, NR_LOCK - 1, 255, NR_BRL - 1
 119};
 120
 121static const int NR_TYPES = ARRAY_SIZE(max_vals);
 122
 123static struct input_handler kbd_handler;
 124static DEFINE_SPINLOCK(kbd_event_lock);
 125static DEFINE_SPINLOCK(led_lock);
 126static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];  /* keyboard key bitmap */
 127static unsigned char shift_down[NR_SHIFT];              /* shift state counters.. */
 128static bool dead_key_next;
 129static int npadch = -1;                                 /* -1 or number assembled on pad */
 130static unsigned int diacr;
 131static char rep;                                        /* flag telling character repeat */
 132
 133static int shift_state = 0;
 134
 135static unsigned int ledstate = -1U;                     /* undefined */
 136static unsigned char ledioctl;
 137
 138/*
 139 * Notifier list for console keyboard events
 140 */
 141static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 142
 143int register_keyboard_notifier(struct notifier_block *nb)
 144{
 145        return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 146}
 147EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 148
 149int unregister_keyboard_notifier(struct notifier_block *nb)
 150{
 151        return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 152}
 153EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 154
 155/*
 156 * Translation of scancodes to keycodes. We set them on only the first
 157 * keyboard in the list that accepts the scancode and keycode.
 158 * Explanation for not choosing the first attached keyboard anymore:
 159 *  USB keyboards for example have two event devices: one for all "normal"
 160 *  keys and one for extra function keys (like "volume up", "make coffee",
 161 *  etc.). So this means that scancodes for the extra function keys won't
 162 *  be valid for the first event device, but will be for the second.
 163 */
 164
 165struct getset_keycode_data {
 166        struct input_keymap_entry ke;
 167        int error;
 168};
 169
 170static int getkeycode_helper(struct input_handle *handle, void *data)
 171{
 172        struct getset_keycode_data *d = data;
 173
 174        d->error = input_get_keycode(handle->dev, &d->ke);
 175
 176        return d->error == 0; /* stop as soon as we successfully get one */
 177}
 178
 179static int getkeycode(unsigned int scancode)
 180{
 181        struct getset_keycode_data d = {
 182                .ke     = {
 183                        .flags          = 0,
 184                        .len            = sizeof(scancode),
 185                        .keycode        = 0,
 186                },
 187                .error  = -ENODEV,
 188        };
 189
 190        memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 191
 192        input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 193
 194        return d.error ?: d.ke.keycode;
 195}
 196
 197static int setkeycode_helper(struct input_handle *handle, void *data)
 198{
 199        struct getset_keycode_data *d = data;
 200
 201        d->error = input_set_keycode(handle->dev, &d->ke);
 202
 203        return d->error == 0; /* stop as soon as we successfully set one */
 204}
 205
 206static int setkeycode(unsigned int scancode, unsigned int keycode)
 207{
 208        struct getset_keycode_data d = {
 209                .ke     = {
 210                        .flags          = 0,
 211                        .len            = sizeof(scancode),
 212                        .keycode        = keycode,
 213                },
 214                .error  = -ENODEV,
 215        };
 216
 217        memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 218
 219        input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 220
 221        return d.error;
 222}
 223
 224/*
 225 * Making beeps and bells. Note that we prefer beeps to bells, but when
 226 * shutting the sound off we do both.
 227 */
 228
 229static int kd_sound_helper(struct input_handle *handle, void *data)
 230{
 231        unsigned int *hz = data;
 232        struct input_dev *dev = handle->dev;
 233
 234        if (test_bit(EV_SND, dev->evbit)) {
 235                if (test_bit(SND_TONE, dev->sndbit)) {
 236                        input_inject_event(handle, EV_SND, SND_TONE, *hz);
 237                        if (*hz)
 238                                return 0;
 239                }
 240                if (test_bit(SND_BELL, dev->sndbit))
 241                        input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 242        }
 243
 244        return 0;
 245}
 246
 247static void kd_nosound(struct timer_list *unused)
 248{
 249        static unsigned int zero;
 250
 251        input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 252}
 253
 254static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 255
 256void kd_mksound(unsigned int hz, unsigned int ticks)
 257{
 258        del_timer_sync(&kd_mksound_timer);
 259
 260        input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 261
 262        if (hz && ticks)
 263                mod_timer(&kd_mksound_timer, jiffies + ticks);
 264}
 265EXPORT_SYMBOL(kd_mksound);
 266
 267/*
 268 * Setting the keyboard rate.
 269 */
 270
 271static int kbd_rate_helper(struct input_handle *handle, void *data)
 272{
 273        struct input_dev *dev = handle->dev;
 274        struct kbd_repeat *rpt = data;
 275
 276        if (test_bit(EV_REP, dev->evbit)) {
 277
 278                if (rpt[0].delay > 0)
 279                        input_inject_event(handle,
 280                                           EV_REP, REP_DELAY, rpt[0].delay);
 281                if (rpt[0].period > 0)
 282                        input_inject_event(handle,
 283                                           EV_REP, REP_PERIOD, rpt[0].period);
 284
 285                rpt[1].delay = dev->rep[REP_DELAY];
 286                rpt[1].period = dev->rep[REP_PERIOD];
 287        }
 288
 289        return 0;
 290}
 291
 292int kbd_rate(struct kbd_repeat *rpt)
 293{
 294        struct kbd_repeat data[2] = { *rpt };
 295
 296        input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 297        *rpt = data[1]; /* Copy currently used settings */
 298
 299        return 0;
 300}
 301
 302/*
 303 * Helper Functions.
 304 */
 305static void put_queue(struct vc_data *vc, int ch)
 306{
 307        tty_insert_flip_char(&vc->port, ch, 0);
 308        tty_schedule_flip(&vc->port);
 309}
 310
 311static void puts_queue(struct vc_data *vc, char *cp)
 312{
 313        while (*cp) {
 314                tty_insert_flip_char(&vc->port, *cp, 0);
 315                cp++;
 316        }
 317        tty_schedule_flip(&vc->port);
 318}
 319
 320static void applkey(struct vc_data *vc, int key, char mode)
 321{
 322        static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 323
 324        buf[1] = (mode ? 'O' : '[');
 325        buf[2] = key;
 326        puts_queue(vc, buf);
 327}
 328
 329/*
 330 * Many other routines do put_queue, but I think either
 331 * they produce ASCII, or they produce some user-assigned
 332 * string, and in both cases we might assume that it is
 333 * in utf-8 already.
 334 */
 335static void to_utf8(struct vc_data *vc, uint c)
 336{
 337        if (c < 0x80)
 338                /*  0******* */
 339                put_queue(vc, c);
 340        else if (c < 0x800) {
 341                /* 110***** 10****** */
 342                put_queue(vc, 0xc0 | (c >> 6));
 343                put_queue(vc, 0x80 | (c & 0x3f));
 344        } else if (c < 0x10000) {
 345                if (c >= 0xD800 && c < 0xE000)
 346                        return;
 347                if (c == 0xFFFF)
 348                        return;
 349                /* 1110**** 10****** 10****** */
 350                put_queue(vc, 0xe0 | (c >> 12));
 351                put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 352                put_queue(vc, 0x80 | (c & 0x3f));
 353        } else if (c < 0x110000) {
 354                /* 11110*** 10****** 10****** 10****** */
 355                put_queue(vc, 0xf0 | (c >> 18));
 356                put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 357                put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 358                put_queue(vc, 0x80 | (c & 0x3f));
 359        }
 360}
 361
 362/*
 363 * Called after returning from RAW mode or when changing consoles - recompute
 364 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 365 * undefined, so that shiftkey release is seen. The caller must hold the
 366 * kbd_event_lock.
 367 */
 368
 369static void do_compute_shiftstate(void)
 370{
 371        unsigned int k, sym, val;
 372
 373        shift_state = 0;
 374        memset(shift_down, 0, sizeof(shift_down));
 375
 376        for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 377                sym = U(key_maps[0][k]);
 378                if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 379                        continue;
 380
 381                val = KVAL(sym);
 382                if (val == KVAL(K_CAPSSHIFT))
 383                        val = KVAL(K_SHIFT);
 384
 385                shift_down[val]++;
 386                shift_state |= BIT(val);
 387        }
 388}
 389
 390/* We still have to export this method to vt.c */
 391void compute_shiftstate(void)
 392{
 393        unsigned long flags;
 394        spin_lock_irqsave(&kbd_event_lock, flags);
 395        do_compute_shiftstate();
 396        spin_unlock_irqrestore(&kbd_event_lock, flags);
 397}
 398
 399/*
 400 * We have a combining character DIACR here, followed by the character CH.
 401 * If the combination occurs in the table, return the corresponding value.
 402 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 403 * Otherwise, conclude that DIACR was not combining after all,
 404 * queue it and return CH.
 405 */
 406static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 407{
 408        unsigned int d = diacr;
 409        unsigned int i;
 410
 411        diacr = 0;
 412
 413        if ((d & ~0xff) == BRL_UC_ROW) {
 414                if ((ch & ~0xff) == BRL_UC_ROW)
 415                        return d | ch;
 416        } else {
 417                for (i = 0; i < accent_table_size; i++)
 418                        if (accent_table[i].diacr == d && accent_table[i].base == ch)
 419                                return accent_table[i].result;
 420        }
 421
 422        if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 423                return d;
 424
 425        if (kbd->kbdmode == VC_UNICODE)
 426                to_utf8(vc, d);
 427        else {
 428                int c = conv_uni_to_8bit(d);
 429                if (c != -1)
 430                        put_queue(vc, c);
 431        }
 432
 433        return ch;
 434}
 435
 436/*
 437 * Special function handlers
 438 */
 439static void fn_enter(struct vc_data *vc)
 440{
 441        if (diacr) {
 442                if (kbd->kbdmode == VC_UNICODE)
 443                        to_utf8(vc, diacr);
 444                else {
 445                        int c = conv_uni_to_8bit(diacr);
 446                        if (c != -1)
 447                                put_queue(vc, c);
 448                }
 449                diacr = 0;
 450        }
 451
 452        put_queue(vc, 13);
 453        if (vc_kbd_mode(kbd, VC_CRLF))
 454                put_queue(vc, 10);
 455}
 456
 457static void fn_caps_toggle(struct vc_data *vc)
 458{
 459        if (rep)
 460                return;
 461
 462        chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 463}
 464
 465static void fn_caps_on(struct vc_data *vc)
 466{
 467        if (rep)
 468                return;
 469
 470        set_vc_kbd_led(kbd, VC_CAPSLOCK);
 471}
 472
 473static void fn_show_ptregs(struct vc_data *vc)
 474{
 475        struct pt_regs *regs = get_irq_regs();
 476
 477        if (regs)
 478                show_regs(regs);
 479}
 480
 481static void fn_hold(struct vc_data *vc)
 482{
 483        struct tty_struct *tty = vc->port.tty;
 484
 485        if (rep || !tty)
 486                return;
 487
 488        /*
 489         * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 490         * these routines are also activated by ^S/^Q.
 491         * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 492         */
 493        if (tty->stopped)
 494                start_tty(tty);
 495        else
 496                stop_tty(tty);
 497}
 498
 499static void fn_num(struct vc_data *vc)
 500{
 501        if (vc_kbd_mode(kbd, VC_APPLIC))
 502                applkey(vc, 'P', 1);
 503        else
 504                fn_bare_num(vc);
 505}
 506
 507/*
 508 * Bind this to Shift-NumLock if you work in application keypad mode
 509 * but want to be able to change the NumLock flag.
 510 * Bind this to NumLock if you prefer that the NumLock key always
 511 * changes the NumLock flag.
 512 */
 513static void fn_bare_num(struct vc_data *vc)
 514{
 515        if (!rep)
 516                chg_vc_kbd_led(kbd, VC_NUMLOCK);
 517}
 518
 519static void fn_lastcons(struct vc_data *vc)
 520{
 521        /* switch to the last used console, ChN */
 522        set_console(last_console);
 523}
 524
 525static void fn_dec_console(struct vc_data *vc)
 526{
 527        int i, cur = fg_console;
 528
 529        /* Currently switching?  Queue this next switch relative to that. */
 530        if (want_console != -1)
 531                cur = want_console;
 532
 533        for (i = cur - 1; i != cur; i--) {
 534                if (i == -1)
 535                        i = MAX_NR_CONSOLES - 1;
 536                if (vc_cons_allocated(i))
 537                        break;
 538        }
 539        set_console(i);
 540}
 541
 542static void fn_inc_console(struct vc_data *vc)
 543{
 544        int i, cur = fg_console;
 545
 546        /* Currently switching?  Queue this next switch relative to that. */
 547        if (want_console != -1)
 548                cur = want_console;
 549
 550        for (i = cur+1; i != cur; i++) {
 551                if (i == MAX_NR_CONSOLES)
 552                        i = 0;
 553                if (vc_cons_allocated(i))
 554                        break;
 555        }
 556        set_console(i);
 557}
 558
 559static void fn_send_intr(struct vc_data *vc)
 560{
 561        tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 562        tty_schedule_flip(&vc->port);
 563}
 564
 565static void fn_scroll_forw(struct vc_data *vc)
 566{
 567        scrollfront(vc, 0);
 568}
 569
 570static void fn_scroll_back(struct vc_data *vc)
 571{
 572        scrollback(vc);
 573}
 574
 575static void fn_show_mem(struct vc_data *vc)
 576{
 577        show_mem(0, NULL);
 578}
 579
 580static void fn_show_state(struct vc_data *vc)
 581{
 582        show_state();
 583}
 584
 585static void fn_boot_it(struct vc_data *vc)
 586{
 587        ctrl_alt_del();
 588}
 589
 590static void fn_compose(struct vc_data *vc)
 591{
 592        dead_key_next = true;
 593}
 594
 595static void fn_spawn_con(struct vc_data *vc)
 596{
 597        spin_lock(&vt_spawn_con.lock);
 598        if (vt_spawn_con.pid)
 599                if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 600                        put_pid(vt_spawn_con.pid);
 601                        vt_spawn_con.pid = NULL;
 602                }
 603        spin_unlock(&vt_spawn_con.lock);
 604}
 605
 606static void fn_SAK(struct vc_data *vc)
 607{
 608        struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 609        schedule_work(SAK_work);
 610}
 611
 612static void fn_null(struct vc_data *vc)
 613{
 614        do_compute_shiftstate();
 615}
 616
 617/*
 618 * Special key handlers
 619 */
 620static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 621{
 622}
 623
 624static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 625{
 626        if (up_flag)
 627                return;
 628        if (value >= ARRAY_SIZE(fn_handler))
 629                return;
 630        if ((kbd->kbdmode == VC_RAW ||
 631             kbd->kbdmode == VC_MEDIUMRAW ||
 632             kbd->kbdmode == VC_OFF) &&
 633             value != KVAL(K_SAK))
 634                return;         /* SAK is allowed even in raw mode */
 635        fn_handler[value](vc);
 636}
 637
 638static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 639{
 640        pr_err("k_lowercase was called - impossible\n");
 641}
 642
 643static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 644{
 645        if (up_flag)
 646                return;         /* no action, if this is a key release */
 647
 648        if (diacr)
 649                value = handle_diacr(vc, value);
 650
 651        if (dead_key_next) {
 652                dead_key_next = false;
 653                diacr = value;
 654                return;
 655        }
 656        if (kbd->kbdmode == VC_UNICODE)
 657                to_utf8(vc, value);
 658        else {
 659                int c = conv_uni_to_8bit(value);
 660                if (c != -1)
 661                        put_queue(vc, c);
 662        }
 663}
 664
 665/*
 666 * Handle dead key. Note that we now may have several
 667 * dead keys modifying the same character. Very useful
 668 * for Vietnamese.
 669 */
 670static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 671{
 672        if (up_flag)
 673                return;
 674
 675        diacr = (diacr ? handle_diacr(vc, value) : value);
 676}
 677
 678static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 679{
 680        k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 681}
 682
 683static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 684{
 685        k_deadunicode(vc, value, up_flag);
 686}
 687
 688/*
 689 * Obsolete - for backwards compatibility only
 690 */
 691static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 692{
 693        static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 694
 695        k_deadunicode(vc, ret_diacr[value], up_flag);
 696}
 697
 698static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 699{
 700        if (up_flag)
 701                return;
 702
 703        set_console(value);
 704}
 705
 706static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 707{
 708        if (up_flag)
 709                return;
 710
 711        if ((unsigned)value < ARRAY_SIZE(func_table)) {
 712                if (func_table[value])
 713                        puts_queue(vc, func_table[value]);
 714        } else
 715                pr_err("k_fn called with value=%d\n", value);
 716}
 717
 718static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 719{
 720        static const char cur_chars[] = "BDCA";
 721
 722        if (up_flag)
 723                return;
 724
 725        applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 726}
 727
 728static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 729{
 730        static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 731        static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 732
 733        if (up_flag)
 734                return;         /* no action, if this is a key release */
 735
 736        /* kludge... shift forces cursor/number keys */
 737        if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 738                applkey(vc, app_map[value], 1);
 739                return;
 740        }
 741
 742        if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 743
 744                switch (value) {
 745                case KVAL(K_PCOMMA):
 746                case KVAL(K_PDOT):
 747                        k_fn(vc, KVAL(K_REMOVE), 0);
 748                        return;
 749                case KVAL(K_P0):
 750                        k_fn(vc, KVAL(K_INSERT), 0);
 751                        return;
 752                case KVAL(K_P1):
 753                        k_fn(vc, KVAL(K_SELECT), 0);
 754                        return;
 755                case KVAL(K_P2):
 756                        k_cur(vc, KVAL(K_DOWN), 0);
 757                        return;
 758                case KVAL(K_P3):
 759                        k_fn(vc, KVAL(K_PGDN), 0);
 760                        return;
 761                case KVAL(K_P4):
 762                        k_cur(vc, KVAL(K_LEFT), 0);
 763                        return;
 764                case KVAL(K_P6):
 765                        k_cur(vc, KVAL(K_RIGHT), 0);
 766                        return;
 767                case KVAL(K_P7):
 768                        k_fn(vc, KVAL(K_FIND), 0);
 769                        return;
 770                case KVAL(K_P8):
 771                        k_cur(vc, KVAL(K_UP), 0);
 772                        return;
 773                case KVAL(K_P9):
 774                        k_fn(vc, KVAL(K_PGUP), 0);
 775                        return;
 776                case KVAL(K_P5):
 777                        applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 778                        return;
 779                }
 780        }
 781
 782        put_queue(vc, pad_chars[value]);
 783        if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 784                put_queue(vc, 10);
 785}
 786
 787static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 788{
 789        int old_state = shift_state;
 790
 791        if (rep)
 792                return;
 793        /*
 794         * Mimic typewriter:
 795         * a CapsShift key acts like Shift but undoes CapsLock
 796         */
 797        if (value == KVAL(K_CAPSSHIFT)) {
 798                value = KVAL(K_SHIFT);
 799                if (!up_flag)
 800                        clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 801        }
 802
 803        if (up_flag) {
 804                /*
 805                 * handle the case that two shift or control
 806                 * keys are depressed simultaneously
 807                 */
 808                if (shift_down[value])
 809                        shift_down[value]--;
 810        } else
 811                shift_down[value]++;
 812
 813        if (shift_down[value])
 814                shift_state |= (1 << value);
 815        else
 816                shift_state &= ~(1 << value);
 817
 818        /* kludge */
 819        if (up_flag && shift_state != old_state && npadch != -1) {
 820                if (kbd->kbdmode == VC_UNICODE)
 821                        to_utf8(vc, npadch);
 822                else
 823                        put_queue(vc, npadch & 0xff);
 824                npadch = -1;
 825        }
 826}
 827
 828static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 829{
 830        if (up_flag)
 831                return;
 832
 833        if (vc_kbd_mode(kbd, VC_META)) {
 834                put_queue(vc, '\033');
 835                put_queue(vc, value);
 836        } else
 837                put_queue(vc, value | 0x80);
 838}
 839
 840static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 841{
 842        int base;
 843
 844        if (up_flag)
 845                return;
 846
 847        if (value < 10) {
 848                /* decimal input of code, while Alt depressed */
 849                base = 10;
 850        } else {
 851                /* hexadecimal input of code, while AltGr depressed */
 852                value -= 10;
 853                base = 16;
 854        }
 855
 856        if (npadch == -1)
 857                npadch = value;
 858        else
 859                npadch = npadch * base + value;
 860}
 861
 862static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 863{
 864        if (up_flag || rep)
 865                return;
 866
 867        chg_vc_kbd_lock(kbd, value);
 868}
 869
 870static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 871{
 872        k_shift(vc, value, up_flag);
 873        if (up_flag || rep)
 874                return;
 875
 876        chg_vc_kbd_slock(kbd, value);
 877        /* try to make Alt, oops, AltGr and such work */
 878        if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 879                kbd->slockstate = 0;
 880                chg_vc_kbd_slock(kbd, value);
 881        }
 882}
 883
 884/* by default, 300ms interval for combination release */
 885static unsigned brl_timeout = 300;
 886MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 887module_param(brl_timeout, uint, 0644);
 888
 889static unsigned brl_nbchords = 1;
 890MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 891module_param(brl_nbchords, uint, 0644);
 892
 893static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 894{
 895        static unsigned long chords;
 896        static unsigned committed;
 897
 898        if (!brl_nbchords)
 899                k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 900        else {
 901                committed |= pattern;
 902                chords++;
 903                if (chords == brl_nbchords) {
 904                        k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 905                        chords = 0;
 906                        committed = 0;
 907                }
 908        }
 909}
 910
 911static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 912{
 913        static unsigned pressed, committing;
 914        static unsigned long releasestart;
 915
 916        if (kbd->kbdmode != VC_UNICODE) {
 917                if (!up_flag)
 918                        pr_warn("keyboard mode must be unicode for braille patterns\n");
 919                return;
 920        }
 921
 922        if (!value) {
 923                k_unicode(vc, BRL_UC_ROW, up_flag);
 924                return;
 925        }
 926
 927        if (value > 8)
 928                return;
 929
 930        if (!up_flag) {
 931                pressed |= 1 << (value - 1);
 932                if (!brl_timeout)
 933                        committing = pressed;
 934        } else if (brl_timeout) {
 935                if (!committing ||
 936                    time_after(jiffies,
 937                               releasestart + msecs_to_jiffies(brl_timeout))) {
 938                        committing = pressed;
 939                        releasestart = jiffies;
 940                }
 941                pressed &= ~(1 << (value - 1));
 942                if (!pressed && committing) {
 943                        k_brlcommit(vc, committing, 0);
 944                        committing = 0;
 945                }
 946        } else {
 947                if (committing) {
 948                        k_brlcommit(vc, committing, 0);
 949                        committing = 0;
 950                }
 951                pressed &= ~(1 << (value - 1));
 952        }
 953}
 954
 955#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
 956
 957struct kbd_led_trigger {
 958        struct led_trigger trigger;
 959        unsigned int mask;
 960};
 961
 962static void kbd_led_trigger_activate(struct led_classdev *cdev)
 963{
 964        struct kbd_led_trigger *trigger =
 965                container_of(cdev->trigger, struct kbd_led_trigger, trigger);
 966
 967        tasklet_disable(&keyboard_tasklet);
 968        if (ledstate != -1U)
 969                led_trigger_event(&trigger->trigger,
 970                                  ledstate & trigger->mask ?
 971                                        LED_FULL : LED_OFF);
 972        tasklet_enable(&keyboard_tasklet);
 973}
 974
 975#define KBD_LED_TRIGGER(_led_bit, _name) {                      \
 976                .trigger = {                                    \
 977                        .name = _name,                          \
 978                        .activate = kbd_led_trigger_activate,   \
 979                },                                              \
 980                .mask   = BIT(_led_bit),                        \
 981        }
 982
 983#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)          \
 984        KBD_LED_TRIGGER((_led_bit) + 8, _name)
 985
 986static struct kbd_led_trigger kbd_led_triggers[] = {
 987        KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
 988        KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
 989        KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
 990        KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
 991
 992        KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
 993        KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
 994        KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
 995        KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
 996        KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
 997        KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
 998        KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
 999        KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1000};
1001
1002static void kbd_propagate_led_state(unsigned int old_state,
1003                                    unsigned int new_state)
1004{
1005        struct kbd_led_trigger *trigger;
1006        unsigned int changed = old_state ^ new_state;
1007        int i;
1008
1009        for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1010                trigger = &kbd_led_triggers[i];
1011
1012                if (changed & trigger->mask)
1013                        led_trigger_event(&trigger->trigger,
1014                                          new_state & trigger->mask ?
1015                                                LED_FULL : LED_OFF);
1016        }
1017}
1018
1019static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1020{
1021        unsigned int led_state = *(unsigned int *)data;
1022
1023        if (test_bit(EV_LED, handle->dev->evbit))
1024                kbd_propagate_led_state(~led_state, led_state);
1025
1026        return 0;
1027}
1028
1029static void kbd_init_leds(void)
1030{
1031        int error;
1032        int i;
1033
1034        for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1035                error = led_trigger_register(&kbd_led_triggers[i].trigger);
1036                if (error)
1037                        pr_err("error %d while registering trigger %s\n",
1038                               error, kbd_led_triggers[i].trigger.name);
1039        }
1040}
1041
1042#else
1043
1044static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1045{
1046        unsigned int leds = *(unsigned int *)data;
1047
1048        if (test_bit(EV_LED, handle->dev->evbit)) {
1049                input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1050                input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1051                input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1052                input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1053        }
1054
1055        return 0;
1056}
1057
1058static void kbd_propagate_led_state(unsigned int old_state,
1059                                    unsigned int new_state)
1060{
1061        input_handler_for_each_handle(&kbd_handler, &new_state,
1062                                      kbd_update_leds_helper);
1063}
1064
1065static void kbd_init_leds(void)
1066{
1067}
1068
1069#endif
1070
1071/*
1072 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1073 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1074 * or (iii) specified bits of specified words in kernel memory.
1075 */
1076static unsigned char getledstate(void)
1077{
1078        return ledstate & 0xff;
1079}
1080
1081void setledstate(struct kbd_struct *kb, unsigned int led)
1082{
1083        unsigned long flags;
1084        spin_lock_irqsave(&led_lock, flags);
1085        if (!(led & ~7)) {
1086                ledioctl = led;
1087                kb->ledmode = LED_SHOW_IOCTL;
1088        } else
1089                kb->ledmode = LED_SHOW_FLAGS;
1090
1091        set_leds();
1092        spin_unlock_irqrestore(&led_lock, flags);
1093}
1094
1095static inline unsigned char getleds(void)
1096{
1097        struct kbd_struct *kb = kbd_table + fg_console;
1098
1099        if (kb->ledmode == LED_SHOW_IOCTL)
1100                return ledioctl;
1101
1102        return kb->ledflagstate;
1103}
1104
1105/**
1106 *      vt_get_leds     -       helper for braille console
1107 *      @console: console to read
1108 *      @flag: flag we want to check
1109 *
1110 *      Check the status of a keyboard led flag and report it back
1111 */
1112int vt_get_leds(int console, int flag)
1113{
1114        struct kbd_struct *kb = kbd_table + console;
1115        int ret;
1116        unsigned long flags;
1117
1118        spin_lock_irqsave(&led_lock, flags);
1119        ret = vc_kbd_led(kb, flag);
1120        spin_unlock_irqrestore(&led_lock, flags);
1121
1122        return ret;
1123}
1124EXPORT_SYMBOL_GPL(vt_get_leds);
1125
1126/**
1127 *      vt_set_led_state        -       set LED state of a console
1128 *      @console: console to set
1129 *      @leds: LED bits
1130 *
1131 *      Set the LEDs on a console. This is a wrapper for the VT layer
1132 *      so that we can keep kbd knowledge internal
1133 */
1134void vt_set_led_state(int console, int leds)
1135{
1136        struct kbd_struct *kb = kbd_table + console;
1137        setledstate(kb, leds);
1138}
1139
1140/**
1141 *      vt_kbd_con_start        -       Keyboard side of console start
1142 *      @console: console
1143 *
1144 *      Handle console start. This is a wrapper for the VT layer
1145 *      so that we can keep kbd knowledge internal
1146 *
1147 *      FIXME: We eventually need to hold the kbd lock here to protect
1148 *      the LED updating. We can't do it yet because fn_hold calls stop_tty
1149 *      and start_tty under the kbd_event_lock, while normal tty paths
1150 *      don't hold the lock. We probably need to split out an LED lock
1151 *      but not during an -rc release!
1152 */
1153void vt_kbd_con_start(int console)
1154{
1155        struct kbd_struct *kb = kbd_table + console;
1156        unsigned long flags;
1157        spin_lock_irqsave(&led_lock, flags);
1158        clr_vc_kbd_led(kb, VC_SCROLLOCK);
1159        set_leds();
1160        spin_unlock_irqrestore(&led_lock, flags);
1161}
1162
1163/**
1164 *      vt_kbd_con_stop         -       Keyboard side of console stop
1165 *      @console: console
1166 *
1167 *      Handle console stop. This is a wrapper for the VT layer
1168 *      so that we can keep kbd knowledge internal
1169 */
1170void vt_kbd_con_stop(int console)
1171{
1172        struct kbd_struct *kb = kbd_table + console;
1173        unsigned long flags;
1174        spin_lock_irqsave(&led_lock, flags);
1175        set_vc_kbd_led(kb, VC_SCROLLOCK);
1176        set_leds();
1177        spin_unlock_irqrestore(&led_lock, flags);
1178}
1179
1180/*
1181 * This is the tasklet that updates LED state of LEDs using standard
1182 * keyboard triggers. The reason we use tasklet is that we need to
1183 * handle the scenario when keyboard handler is not registered yet
1184 * but we already getting updates from the VT to update led state.
1185 */
1186static void kbd_bh(unsigned long dummy)
1187{
1188        unsigned int leds;
1189        unsigned long flags;
1190
1191        spin_lock_irqsave(&led_lock, flags);
1192        leds = getleds();
1193        leds |= (unsigned int)kbd->lockstate << 8;
1194        spin_unlock_irqrestore(&led_lock, flags);
1195
1196        if (leds != ledstate) {
1197                kbd_propagate_led_state(ledstate, leds);
1198                ledstate = leds;
1199        }
1200}
1201
1202DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1203
1204#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1205    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1206    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1207    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1208
1209#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1210                        ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1211
1212static const unsigned short x86_keycodes[256] =
1213        { 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1214         16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1215         32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1216         48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1217         64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1218         80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1219        284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1220        367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1221        360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1222        103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1223        291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1224        264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1225        377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1226        308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1227        332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1228
1229#ifdef CONFIG_SPARC
1230static int sparc_l1_a_state;
1231extern void sun_do_break(void);
1232#endif
1233
1234static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1235                       unsigned char up_flag)
1236{
1237        int code;
1238
1239        switch (keycode) {
1240
1241        case KEY_PAUSE:
1242                put_queue(vc, 0xe1);
1243                put_queue(vc, 0x1d | up_flag);
1244                put_queue(vc, 0x45 | up_flag);
1245                break;
1246
1247        case KEY_HANGEUL:
1248                if (!up_flag)
1249                        put_queue(vc, 0xf2);
1250                break;
1251
1252        case KEY_HANJA:
1253                if (!up_flag)
1254                        put_queue(vc, 0xf1);
1255                break;
1256
1257        case KEY_SYSRQ:
1258                /*
1259                 * Real AT keyboards (that's what we're trying
1260                 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1261                 * pressing PrtSc/SysRq alone, but simply 0x54
1262                 * when pressing Alt+PrtSc/SysRq.
1263                 */
1264                if (test_bit(KEY_LEFTALT, key_down) ||
1265                    test_bit(KEY_RIGHTALT, key_down)) {
1266                        put_queue(vc, 0x54 | up_flag);
1267                } else {
1268                        put_queue(vc, 0xe0);
1269                        put_queue(vc, 0x2a | up_flag);
1270                        put_queue(vc, 0xe0);
1271                        put_queue(vc, 0x37 | up_flag);
1272                }
1273                break;
1274
1275        default:
1276                if (keycode > 255)
1277                        return -1;
1278
1279                code = x86_keycodes[keycode];
1280                if (!code)
1281                        return -1;
1282
1283                if (code & 0x100)
1284                        put_queue(vc, 0xe0);
1285                put_queue(vc, (code & 0x7f) | up_flag);
1286
1287                break;
1288        }
1289
1290        return 0;
1291}
1292
1293#else
1294
1295#define HW_RAW(dev)     0
1296
1297static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1298{
1299        if (keycode > 127)
1300                return -1;
1301
1302        put_queue(vc, keycode | up_flag);
1303        return 0;
1304}
1305#endif
1306
1307static void kbd_rawcode(unsigned char data)
1308{
1309        struct vc_data *vc = vc_cons[fg_console].d;
1310
1311        kbd = kbd_table + vc->vc_num;
1312        if (kbd->kbdmode == VC_RAW)
1313                put_queue(vc, data);
1314}
1315
1316static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1317{
1318        struct vc_data *vc = vc_cons[fg_console].d;
1319        unsigned short keysym, *key_map;
1320        unsigned char type;
1321        bool raw_mode;
1322        struct tty_struct *tty;
1323        int shift_final;
1324        struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1325        int rc;
1326
1327        tty = vc->port.tty;
1328
1329        if (tty && (!tty->driver_data)) {
1330                /* No driver data? Strange. Okay we fix it then. */
1331                tty->driver_data = vc;
1332        }
1333
1334        kbd = kbd_table + vc->vc_num;
1335
1336#ifdef CONFIG_SPARC
1337        if (keycode == KEY_STOP)
1338                sparc_l1_a_state = down;
1339#endif
1340
1341        rep = (down == 2);
1342
1343        raw_mode = (kbd->kbdmode == VC_RAW);
1344        if (raw_mode && !hw_raw)
1345                if (emulate_raw(vc, keycode, !down << 7))
1346                        if (keycode < BTN_MISC && printk_ratelimit())
1347                                pr_warn("can't emulate rawmode for keycode %d\n",
1348                                        keycode);
1349
1350#ifdef CONFIG_SPARC
1351        if (keycode == KEY_A && sparc_l1_a_state) {
1352                sparc_l1_a_state = false;
1353                sun_do_break();
1354        }
1355#endif
1356
1357        if (kbd->kbdmode == VC_MEDIUMRAW) {
1358                /*
1359                 * This is extended medium raw mode, with keys above 127
1360                 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1361                 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1362                 * interfere with anything else. The two bytes after 0 will
1363                 * always have the up flag set not to interfere with older
1364                 * applications. This allows for 16384 different keycodes,
1365                 * which should be enough.
1366                 */
1367                if (keycode < 128) {
1368                        put_queue(vc, keycode | (!down << 7));
1369                } else {
1370                        put_queue(vc, !down << 7);
1371                        put_queue(vc, (keycode >> 7) | 0x80);
1372                        put_queue(vc, keycode | 0x80);
1373                }
1374                raw_mode = true;
1375        }
1376
1377        if (down)
1378                set_bit(keycode, key_down);
1379        else
1380                clear_bit(keycode, key_down);
1381
1382        if (rep &&
1383            (!vc_kbd_mode(kbd, VC_REPEAT) ||
1384             (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1385                /*
1386                 * Don't repeat a key if the input buffers are not empty and the
1387                 * characters get aren't echoed locally. This makes key repeat
1388                 * usable with slow applications and under heavy loads.
1389                 */
1390                return;
1391        }
1392
1393        param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1394        param.ledstate = kbd->ledflagstate;
1395        key_map = key_maps[shift_final];
1396
1397        rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1398                                        KBD_KEYCODE, &param);
1399        if (rc == NOTIFY_STOP || !key_map) {
1400                atomic_notifier_call_chain(&keyboard_notifier_list,
1401                                           KBD_UNBOUND_KEYCODE, &param);
1402                do_compute_shiftstate();
1403                kbd->slockstate = 0;
1404                return;
1405        }
1406
1407        if (keycode < NR_KEYS)
1408                keysym = key_map[keycode];
1409        else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1410                keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1411        else
1412                return;
1413
1414        type = KTYP(keysym);
1415
1416        if (type < 0xf0) {
1417                param.value = keysym;
1418                rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1419                                                KBD_UNICODE, &param);
1420                if (rc != NOTIFY_STOP)
1421                        if (down && !raw_mode)
1422                                to_utf8(vc, keysym);
1423                return;
1424        }
1425
1426        type -= 0xf0;
1427
1428        if (type == KT_LETTER) {
1429                type = KT_LATIN;
1430                if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1431                        key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1432                        if (key_map)
1433                                keysym = key_map[keycode];
1434                }
1435        }
1436
1437        param.value = keysym;
1438        rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1439                                        KBD_KEYSYM, &param);
1440        if (rc == NOTIFY_STOP)
1441                return;
1442
1443        if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1444                return;
1445
1446        (*k_handler[type])(vc, keysym & 0xff, !down);
1447
1448        param.ledstate = kbd->ledflagstate;
1449        atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1450
1451        if (type != KT_SLOCK)
1452                kbd->slockstate = 0;
1453}
1454
1455static void kbd_event(struct input_handle *handle, unsigned int event_type,
1456                      unsigned int event_code, int value)
1457{
1458        /* We are called with interrupts disabled, just take the lock */
1459        spin_lock(&kbd_event_lock);
1460
1461        if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1462                kbd_rawcode(value);
1463        if (event_type == EV_KEY)
1464                kbd_keycode(event_code, value, HW_RAW(handle->dev));
1465
1466        spin_unlock(&kbd_event_lock);
1467
1468        tasklet_schedule(&keyboard_tasklet);
1469        do_poke_blanked_console = 1;
1470        schedule_console_callback();
1471}
1472
1473static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1474{
1475        int i;
1476
1477        if (test_bit(EV_SND, dev->evbit))
1478                return true;
1479
1480        if (test_bit(EV_KEY, dev->evbit)) {
1481                for (i = KEY_RESERVED; i < BTN_MISC; i++)
1482                        if (test_bit(i, dev->keybit))
1483                                return true;
1484                for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1485                        if (test_bit(i, dev->keybit))
1486                                return true;
1487        }
1488
1489        return false;
1490}
1491
1492/*
1493 * When a keyboard (or other input device) is found, the kbd_connect
1494 * function is called. The function then looks at the device, and if it
1495 * likes it, it can open it and get events from it. In this (kbd_connect)
1496 * function, we should decide which VT to bind that keyboard to initially.
1497 */
1498static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1499                        const struct input_device_id *id)
1500{
1501        struct input_handle *handle;
1502        int error;
1503
1504        handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1505        if (!handle)
1506                return -ENOMEM;
1507
1508        handle->dev = dev;
1509        handle->handler = handler;
1510        handle->name = "kbd";
1511
1512        error = input_register_handle(handle);
1513        if (error)
1514                goto err_free_handle;
1515
1516        error = input_open_device(handle);
1517        if (error)
1518                goto err_unregister_handle;
1519
1520        return 0;
1521
1522 err_unregister_handle:
1523        input_unregister_handle(handle);
1524 err_free_handle:
1525        kfree(handle);
1526        return error;
1527}
1528
1529static void kbd_disconnect(struct input_handle *handle)
1530{
1531        input_close_device(handle);
1532        input_unregister_handle(handle);
1533        kfree(handle);
1534}
1535
1536/*
1537 * Start keyboard handler on the new keyboard by refreshing LED state to
1538 * match the rest of the system.
1539 */
1540static void kbd_start(struct input_handle *handle)
1541{
1542        tasklet_disable(&keyboard_tasklet);
1543
1544        if (ledstate != -1U)
1545                kbd_update_leds_helper(handle, &ledstate);
1546
1547        tasklet_enable(&keyboard_tasklet);
1548}
1549
1550static const struct input_device_id kbd_ids[] = {
1551        {
1552                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1553                .evbit = { BIT_MASK(EV_KEY) },
1554        },
1555
1556        {
1557                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1558                .evbit = { BIT_MASK(EV_SND) },
1559        },
1560
1561        { },    /* Terminating entry */
1562};
1563
1564MODULE_DEVICE_TABLE(input, kbd_ids);
1565
1566static struct input_handler kbd_handler = {
1567        .event          = kbd_event,
1568        .match          = kbd_match,
1569        .connect        = kbd_connect,
1570        .disconnect     = kbd_disconnect,
1571        .start          = kbd_start,
1572        .name           = "kbd",
1573        .id_table       = kbd_ids,
1574};
1575
1576int __init kbd_init(void)
1577{
1578        int i;
1579        int error;
1580
1581        for (i = 0; i < MAX_NR_CONSOLES; i++) {
1582                kbd_table[i].ledflagstate = kbd_defleds();
1583                kbd_table[i].default_ledflagstate = kbd_defleds();
1584                kbd_table[i].ledmode = LED_SHOW_FLAGS;
1585                kbd_table[i].lockstate = KBD_DEFLOCK;
1586                kbd_table[i].slockstate = 0;
1587                kbd_table[i].modeflags = KBD_DEFMODE;
1588                kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1589        }
1590
1591        kbd_init_leds();
1592
1593        error = input_register_handler(&kbd_handler);
1594        if (error)
1595                return error;
1596
1597        tasklet_enable(&keyboard_tasklet);
1598        tasklet_schedule(&keyboard_tasklet);
1599
1600        return 0;
1601}
1602
1603/* Ioctl support code */
1604
1605/**
1606 *      vt_do_diacrit           -       diacritical table updates
1607 *      @cmd: ioctl request
1608 *      @udp: pointer to user data for ioctl
1609 *      @perm: permissions check computed by caller
1610 *
1611 *      Update the diacritical tables atomically and safely. Lock them
1612 *      against simultaneous keypresses
1613 */
1614int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1615{
1616        unsigned long flags;
1617        int asize;
1618        int ret = 0;
1619
1620        switch (cmd) {
1621        case KDGKBDIACR:
1622        {
1623                struct kbdiacrs __user *a = udp;
1624                struct kbdiacr *dia;
1625                int i;
1626
1627                dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1628                                                                GFP_KERNEL);
1629                if (!dia)
1630                        return -ENOMEM;
1631
1632                /* Lock the diacriticals table, make a copy and then
1633                   copy it after we unlock */
1634                spin_lock_irqsave(&kbd_event_lock, flags);
1635
1636                asize = accent_table_size;
1637                for (i = 0; i < asize; i++) {
1638                        dia[i].diacr = conv_uni_to_8bit(
1639                                                accent_table[i].diacr);
1640                        dia[i].base = conv_uni_to_8bit(
1641                                                accent_table[i].base);
1642                        dia[i].result = conv_uni_to_8bit(
1643                                                accent_table[i].result);
1644                }
1645                spin_unlock_irqrestore(&kbd_event_lock, flags);
1646
1647                if (put_user(asize, &a->kb_cnt))
1648                        ret = -EFAULT;
1649                else  if (copy_to_user(a->kbdiacr, dia,
1650                                asize * sizeof(struct kbdiacr)))
1651                        ret = -EFAULT;
1652                kfree(dia);
1653                return ret;
1654        }
1655        case KDGKBDIACRUC:
1656        {
1657                struct kbdiacrsuc __user *a = udp;
1658                void *buf;
1659
1660                buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1661                                                                GFP_KERNEL);
1662                if (buf == NULL)
1663                        return -ENOMEM;
1664
1665                /* Lock the diacriticals table, make a copy and then
1666                   copy it after we unlock */
1667                spin_lock_irqsave(&kbd_event_lock, flags);
1668
1669                asize = accent_table_size;
1670                memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1671
1672                spin_unlock_irqrestore(&kbd_event_lock, flags);
1673
1674                if (put_user(asize, &a->kb_cnt))
1675                        ret = -EFAULT;
1676                else if (copy_to_user(a->kbdiacruc, buf,
1677                                asize*sizeof(struct kbdiacruc)))
1678                        ret = -EFAULT;
1679                kfree(buf);
1680                return ret;
1681        }
1682
1683        case KDSKBDIACR:
1684        {
1685                struct kbdiacrs __user *a = udp;
1686                struct kbdiacr *dia = NULL;
1687                unsigned int ct;
1688                int i;
1689
1690                if (!perm)
1691                        return -EPERM;
1692                if (get_user(ct, &a->kb_cnt))
1693                        return -EFAULT;
1694                if (ct >= MAX_DIACR)
1695                        return -EINVAL;
1696
1697                if (ct) {
1698
1699                        dia = memdup_user(a->kbdiacr,
1700                                        sizeof(struct kbdiacr) * ct);
1701                        if (IS_ERR(dia))
1702                                return PTR_ERR(dia);
1703
1704                }
1705
1706                spin_lock_irqsave(&kbd_event_lock, flags);
1707                accent_table_size = ct;
1708                for (i = 0; i < ct; i++) {
1709                        accent_table[i].diacr =
1710                                        conv_8bit_to_uni(dia[i].diacr);
1711                        accent_table[i].base =
1712                                        conv_8bit_to_uni(dia[i].base);
1713                        accent_table[i].result =
1714                                        conv_8bit_to_uni(dia[i].result);
1715                }
1716                spin_unlock_irqrestore(&kbd_event_lock, flags);
1717                kfree(dia);
1718                return 0;
1719        }
1720
1721        case KDSKBDIACRUC:
1722        {
1723                struct kbdiacrsuc __user *a = udp;
1724                unsigned int ct;
1725                void *buf = NULL;
1726
1727                if (!perm)
1728                        return -EPERM;
1729
1730                if (get_user(ct, &a->kb_cnt))
1731                        return -EFAULT;
1732
1733                if (ct >= MAX_DIACR)
1734                        return -EINVAL;
1735
1736                if (ct) {
1737                        buf = memdup_user(a->kbdiacruc,
1738                                          ct * sizeof(struct kbdiacruc));
1739                        if (IS_ERR(buf))
1740                                return PTR_ERR(buf);
1741                } 
1742                spin_lock_irqsave(&kbd_event_lock, flags);
1743                if (ct)
1744                        memcpy(accent_table, buf,
1745                                        ct * sizeof(struct kbdiacruc));
1746                accent_table_size = ct;
1747                spin_unlock_irqrestore(&kbd_event_lock, flags);
1748                kfree(buf);
1749                return 0;
1750        }
1751        }
1752        return ret;
1753}
1754
1755/**
1756 *      vt_do_kdskbmode         -       set keyboard mode ioctl
1757 *      @console: the console to use
1758 *      @arg: the requested mode
1759 *
1760 *      Update the keyboard mode bits while holding the correct locks.
1761 *      Return 0 for success or an error code.
1762 */
1763int vt_do_kdskbmode(int console, unsigned int arg)
1764{
1765        struct kbd_struct *kb = kbd_table + console;
1766        int ret = 0;
1767        unsigned long flags;
1768
1769        spin_lock_irqsave(&kbd_event_lock, flags);
1770        switch(arg) {
1771        case K_RAW:
1772                kb->kbdmode = VC_RAW;
1773                break;
1774        case K_MEDIUMRAW:
1775                kb->kbdmode = VC_MEDIUMRAW;
1776                break;
1777        case K_XLATE:
1778                kb->kbdmode = VC_XLATE;
1779                do_compute_shiftstate();
1780                break;
1781        case K_UNICODE:
1782                kb->kbdmode = VC_UNICODE;
1783                do_compute_shiftstate();
1784                break;
1785        case K_OFF:
1786                kb->kbdmode = VC_OFF;
1787                break;
1788        default:
1789                ret = -EINVAL;
1790        }
1791        spin_unlock_irqrestore(&kbd_event_lock, flags);
1792        return ret;
1793}
1794
1795/**
1796 *      vt_do_kdskbmeta         -       set keyboard meta state
1797 *      @console: the console to use
1798 *      @arg: the requested meta state
1799 *
1800 *      Update the keyboard meta bits while holding the correct locks.
1801 *      Return 0 for success or an error code.
1802 */
1803int vt_do_kdskbmeta(int console, unsigned int arg)
1804{
1805        struct kbd_struct *kb = kbd_table + console;
1806        int ret = 0;
1807        unsigned long flags;
1808
1809        spin_lock_irqsave(&kbd_event_lock, flags);
1810        switch(arg) {
1811        case K_METABIT:
1812                clr_vc_kbd_mode(kb, VC_META);
1813                break;
1814        case K_ESCPREFIX:
1815                set_vc_kbd_mode(kb, VC_META);
1816                break;
1817        default:
1818                ret = -EINVAL;
1819        }
1820        spin_unlock_irqrestore(&kbd_event_lock, flags);
1821        return ret;
1822}
1823
1824int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1825                                                                int perm)
1826{
1827        struct kbkeycode tmp;
1828        int kc = 0;
1829
1830        if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1831                return -EFAULT;
1832        switch (cmd) {
1833        case KDGETKEYCODE:
1834                kc = getkeycode(tmp.scancode);
1835                if (kc >= 0)
1836                        kc = put_user(kc, &user_kbkc->keycode);
1837                break;
1838        case KDSETKEYCODE:
1839                if (!perm)
1840                        return -EPERM;
1841                kc = setkeycode(tmp.scancode, tmp.keycode);
1842                break;
1843        }
1844        return kc;
1845}
1846
1847#define i (tmp.kb_index)
1848#define s (tmp.kb_table)
1849#define v (tmp.kb_value)
1850
1851int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1852                                                int console)
1853{
1854        struct kbd_struct *kb = kbd_table + console;
1855        struct kbentry tmp;
1856        ushort *key_map, *new_map, val, ov;
1857        unsigned long flags;
1858
1859        if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1860                return -EFAULT;
1861
1862        if (!capable(CAP_SYS_TTY_CONFIG))
1863                perm = 0;
1864
1865        switch (cmd) {
1866        case KDGKBENT:
1867                /* Ensure another thread doesn't free it under us */
1868                spin_lock_irqsave(&kbd_event_lock, flags);
1869                key_map = key_maps[s];
1870                if (key_map) {
1871                    val = U(key_map[i]);
1872                    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1873                        val = K_HOLE;
1874                } else
1875                    val = (i ? K_HOLE : K_NOSUCHMAP);
1876                spin_unlock_irqrestore(&kbd_event_lock, flags);
1877                return put_user(val, &user_kbe->kb_value);
1878        case KDSKBENT:
1879                if (!perm)
1880                        return -EPERM;
1881                if (!i && v == K_NOSUCHMAP) {
1882                        spin_lock_irqsave(&kbd_event_lock, flags);
1883                        /* deallocate map */
1884                        key_map = key_maps[s];
1885                        if (s && key_map) {
1886                            key_maps[s] = NULL;
1887                            if (key_map[0] == U(K_ALLOCATED)) {
1888                                        kfree(key_map);
1889                                        keymap_count--;
1890                            }
1891                        }
1892                        spin_unlock_irqrestore(&kbd_event_lock, flags);
1893                        break;
1894                }
1895
1896                if (KTYP(v) < NR_TYPES) {
1897                    if (KVAL(v) > max_vals[KTYP(v)])
1898                                return -EINVAL;
1899                } else
1900                    if (kb->kbdmode != VC_UNICODE)
1901                                return -EINVAL;
1902
1903                /* ++Geert: non-PC keyboards may generate keycode zero */
1904#if !defined(__mc68000__) && !defined(__powerpc__)
1905                /* assignment to entry 0 only tests validity of args */
1906                if (!i)
1907                        break;
1908#endif
1909
1910                new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1911                if (!new_map)
1912                        return -ENOMEM;
1913                spin_lock_irqsave(&kbd_event_lock, flags);
1914                key_map = key_maps[s];
1915                if (key_map == NULL) {
1916                        int j;
1917
1918                        if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1919                            !capable(CAP_SYS_RESOURCE)) {
1920                                spin_unlock_irqrestore(&kbd_event_lock, flags);
1921                                kfree(new_map);
1922                                return -EPERM;
1923                        }
1924                        key_maps[s] = new_map;
1925                        key_map = new_map;
1926                        key_map[0] = U(K_ALLOCATED);
1927                        for (j = 1; j < NR_KEYS; j++)
1928                                key_map[j] = U(K_HOLE);
1929                        keymap_count++;
1930                } else
1931                        kfree(new_map);
1932
1933                ov = U(key_map[i]);
1934                if (v == ov)
1935                        goto out;
1936                /*
1937                 * Attention Key.
1938                 */
1939                if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1940                        spin_unlock_irqrestore(&kbd_event_lock, flags);
1941                        return -EPERM;
1942                }
1943                key_map[i] = U(v);
1944                if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1945                        do_compute_shiftstate();
1946out:
1947                spin_unlock_irqrestore(&kbd_event_lock, flags);
1948                break;
1949        }
1950        return 0;
1951}
1952#undef i
1953#undef s
1954#undef v
1955
1956/* FIXME: This one needs untangling and locking */
1957int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1958{
1959        struct kbsentry *kbs;
1960        char *p;
1961        u_char *q;
1962        u_char __user *up;
1963        int sz;
1964        int delta;
1965        char *first_free, *fj, *fnw;
1966        int i, j, k;
1967        int ret;
1968
1969        if (!capable(CAP_SYS_TTY_CONFIG))
1970                perm = 0;
1971
1972        kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1973        if (!kbs) {
1974                ret = -ENOMEM;
1975                goto reterr;
1976        }
1977
1978        /* we mostly copy too much here (512bytes), but who cares ;) */
1979        if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1980                ret = -EFAULT;
1981                goto reterr;
1982        }
1983        kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1984        i = kbs->kb_func;
1985
1986        switch (cmd) {
1987        case KDGKBSENT:
1988                sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1989                                                  a struct member */
1990                up = user_kdgkb->kb_string;
1991                p = func_table[i];
1992                if(p)
1993                        for ( ; *p && sz; p++, sz--)
1994                                if (put_user(*p, up++)) {
1995                                        ret = -EFAULT;
1996                                        goto reterr;
1997                                }
1998                if (put_user('\0', up)) {
1999                        ret = -EFAULT;
2000                        goto reterr;
2001                }
2002                kfree(kbs);
2003                return ((p && *p) ? -EOVERFLOW : 0);
2004        case KDSKBSENT:
2005                if (!perm) {
2006                        ret = -EPERM;
2007                        goto reterr;
2008                }
2009
2010                q = func_table[i];
2011                first_free = funcbufptr + (funcbufsize - funcbufleft);
2012                for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2013                        ;
2014                if (j < MAX_NR_FUNC)
2015                        fj = func_table[j];
2016                else
2017                        fj = first_free;
2018
2019                delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2020                if (delta <= funcbufleft) {     /* it fits in current buf */
2021                    if (j < MAX_NR_FUNC) {
2022                        memmove(fj + delta, fj, first_free - fj);
2023                        for (k = j; k < MAX_NR_FUNC; k++)
2024                            if (func_table[k])
2025                                func_table[k] += delta;
2026                    }
2027                    if (!q)
2028                      func_table[i] = fj;
2029                    funcbufleft -= delta;
2030                } else {                        /* allocate a larger buffer */
2031                    sz = 256;
2032                    while (sz < funcbufsize - funcbufleft + delta)
2033                      sz <<= 1;
2034                    fnw = kmalloc(sz, GFP_KERNEL);
2035                    if(!fnw) {
2036                      ret = -ENOMEM;
2037                      goto reterr;
2038                    }
2039
2040                    if (!q)
2041                      func_table[i] = fj;
2042                    if (fj > funcbufptr)
2043                        memmove(fnw, funcbufptr, fj - funcbufptr);
2044                    for (k = 0; k < j; k++)
2045                      if (func_table[k])
2046                        func_table[k] = fnw + (func_table[k] - funcbufptr);
2047
2048                    if (first_free > fj) {
2049                        memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2050                        for (k = j; k < MAX_NR_FUNC; k++)
2051                          if (func_table[k])
2052                            func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2053                    }
2054                    if (funcbufptr != func_buf)
2055                      kfree(funcbufptr);
2056                    funcbufptr = fnw;
2057                    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2058                    funcbufsize = sz;
2059                }
2060                strcpy(func_table[i], kbs->kb_string);
2061                break;
2062        }
2063        ret = 0;
2064reterr:
2065        kfree(kbs);
2066        return ret;
2067}
2068
2069int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2070{
2071        struct kbd_struct *kb = kbd_table + console;
2072        unsigned long flags;
2073        unsigned char ucval;
2074
2075        switch(cmd) {
2076        /* the ioctls below read/set the flags usually shown in the leds */
2077        /* don't use them - they will go away without warning */
2078        case KDGKBLED:
2079                spin_lock_irqsave(&kbd_event_lock, flags);
2080                ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2081                spin_unlock_irqrestore(&kbd_event_lock, flags);
2082                return put_user(ucval, (char __user *)arg);
2083
2084        case KDSKBLED:
2085                if (!perm)
2086                        return -EPERM;
2087                if (arg & ~0x77)
2088                        return -EINVAL;
2089                spin_lock_irqsave(&led_lock, flags);
2090                kb->ledflagstate = (arg & 7);
2091                kb->default_ledflagstate = ((arg >> 4) & 7);
2092                set_leds();
2093                spin_unlock_irqrestore(&led_lock, flags);
2094                return 0;
2095
2096        /* the ioctls below only set the lights, not the functions */
2097        /* for those, see KDGKBLED and KDSKBLED above */
2098        case KDGETLED:
2099                ucval = getledstate();
2100                return put_user(ucval, (char __user *)arg);
2101
2102        case KDSETLED:
2103                if (!perm)
2104                        return -EPERM;
2105                setledstate(kb, arg);
2106                return 0;
2107        }
2108        return -ENOIOCTLCMD;
2109}
2110
2111int vt_do_kdgkbmode(int console)
2112{
2113        struct kbd_struct *kb = kbd_table + console;
2114        /* This is a spot read so needs no locking */
2115        switch (kb->kbdmode) {
2116        case VC_RAW:
2117                return K_RAW;
2118        case VC_MEDIUMRAW:
2119                return K_MEDIUMRAW;
2120        case VC_UNICODE:
2121                return K_UNICODE;
2122        case VC_OFF:
2123                return K_OFF;
2124        default:
2125                return K_XLATE;
2126        }
2127}
2128
2129/**
2130 *      vt_do_kdgkbmeta         -       report meta status
2131 *      @console: console to report
2132 *
2133 *      Report the meta flag status of this console
2134 */
2135int vt_do_kdgkbmeta(int console)
2136{
2137        struct kbd_struct *kb = kbd_table + console;
2138        /* Again a spot read so no locking */
2139        return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2140}
2141
2142/**
2143 *      vt_reset_unicode        -       reset the unicode status
2144 *      @console: console being reset
2145 *
2146 *      Restore the unicode console state to its default
2147 */
2148void vt_reset_unicode(int console)
2149{
2150        unsigned long flags;
2151
2152        spin_lock_irqsave(&kbd_event_lock, flags);
2153        kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2154        spin_unlock_irqrestore(&kbd_event_lock, flags);
2155}
2156
2157/**
2158 *      vt_get_shiftstate       -       shift bit state
2159 *
2160 *      Report the shift bits from the keyboard state. We have to export
2161 *      this to support some oddities in the vt layer.
2162 */
2163int vt_get_shift_state(void)
2164{
2165        /* Don't lock as this is a transient report */
2166        return shift_state;
2167}
2168
2169/**
2170 *      vt_reset_keyboard       -       reset keyboard state
2171 *      @console: console to reset
2172 *
2173 *      Reset the keyboard bits for a console as part of a general console
2174 *      reset event
2175 */
2176void vt_reset_keyboard(int console)
2177{
2178        struct kbd_struct *kb = kbd_table + console;
2179        unsigned long flags;
2180
2181        spin_lock_irqsave(&kbd_event_lock, flags);
2182        set_vc_kbd_mode(kb, VC_REPEAT);
2183        clr_vc_kbd_mode(kb, VC_CKMODE);
2184        clr_vc_kbd_mode(kb, VC_APPLIC);
2185        clr_vc_kbd_mode(kb, VC_CRLF);
2186        kb->lockstate = 0;
2187        kb->slockstate = 0;
2188        spin_lock(&led_lock);
2189        kb->ledmode = LED_SHOW_FLAGS;
2190        kb->ledflagstate = kb->default_ledflagstate;
2191        spin_unlock(&led_lock);
2192        /* do not do set_leds here because this causes an endless tasklet loop
2193           when the keyboard hasn't been initialized yet */
2194        spin_unlock_irqrestore(&kbd_event_lock, flags);
2195}
2196
2197/**
2198 *      vt_get_kbd_mode_bit     -       read keyboard status bits
2199 *      @console: console to read from
2200 *      @bit: mode bit to read
2201 *
2202 *      Report back a vt mode bit. We do this without locking so the
2203 *      caller must be sure that there are no synchronization needs
2204 */
2205
2206int vt_get_kbd_mode_bit(int console, int bit)
2207{
2208        struct kbd_struct *kb = kbd_table + console;
2209        return vc_kbd_mode(kb, bit);
2210}
2211
2212/**
2213 *      vt_set_kbd_mode_bit     -       read keyboard status bits
2214 *      @console: console to read from
2215 *      @bit: mode bit to read
2216 *
2217 *      Set a vt mode bit. We do this without locking so the
2218 *      caller must be sure that there are no synchronization needs
2219 */
2220
2221void vt_set_kbd_mode_bit(int console, int bit)
2222{
2223        struct kbd_struct *kb = kbd_table + console;
2224        unsigned long flags;
2225
2226        spin_lock_irqsave(&kbd_event_lock, flags);
2227        set_vc_kbd_mode(kb, bit);
2228        spin_unlock_irqrestore(&kbd_event_lock, flags);
2229}
2230
2231/**
2232 *      vt_clr_kbd_mode_bit     -       read keyboard status bits
2233 *      @console: console to read from
2234 *      @bit: mode bit to read
2235 *
2236 *      Report back a vt mode bit. We do this without locking so the
2237 *      caller must be sure that there are no synchronization needs
2238 */
2239
2240void vt_clr_kbd_mode_bit(int console, int bit)
2241{
2242        struct kbd_struct *kb = kbd_table + console;
2243        unsigned long flags;
2244
2245        spin_lock_irqsave(&kbd_event_lock, flags);
2246        clr_vc_kbd_mode(kb, bit);
2247        spin_unlock_irqrestore(&kbd_event_lock, flags);
2248}
2249