linux/drivers/usb/gadget/function/f_fs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/hid.h>
  21#include <linux/module.h>
  22#include <linux/sched/signal.h>
  23#include <linux/uio.h>
  24#include <asm/unaligned.h>
  25
  26#include <linux/usb/composite.h>
  27#include <linux/usb/functionfs.h>
  28
  29#include <linux/aio.h>
  30#include <linux/mmu_context.h>
  31#include <linux/poll.h>
  32#include <linux/eventfd.h>
  33
  34#include "u_fs.h"
  35#include "u_f.h"
  36#include "u_os_desc.h"
  37#include "configfs.h"
  38
  39#define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
  40
  41/* Reference counter handling */
  42static void ffs_data_get(struct ffs_data *ffs);
  43static void ffs_data_put(struct ffs_data *ffs);
  44/* Creates new ffs_data object. */
  45static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  46        __attribute__((malloc));
  47
  48/* Opened counter handling. */
  49static void ffs_data_opened(struct ffs_data *ffs);
  50static void ffs_data_closed(struct ffs_data *ffs);
  51
  52/* Called with ffs->mutex held; take over ownership of data. */
  53static int __must_check
  54__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  55static int __must_check
  56__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  57
  58
  59/* The function structure ***************************************************/
  60
  61struct ffs_ep;
  62
  63struct ffs_function {
  64        struct usb_configuration        *conf;
  65        struct usb_gadget               *gadget;
  66        struct ffs_data                 *ffs;
  67
  68        struct ffs_ep                   *eps;
  69        u8                              eps_revmap[16];
  70        short                           *interfaces_nums;
  71
  72        struct usb_function             function;
  73};
  74
  75
  76static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  77{
  78        return container_of(f, struct ffs_function, function);
  79}
  80
  81
  82static inline enum ffs_setup_state
  83ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  84{
  85        return (enum ffs_setup_state)
  86                cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  87}
  88
  89
  90static void ffs_func_eps_disable(struct ffs_function *func);
  91static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  92
  93static int ffs_func_bind(struct usb_configuration *,
  94                         struct usb_function *);
  95static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
  96static void ffs_func_disable(struct usb_function *);
  97static int ffs_func_setup(struct usb_function *,
  98                          const struct usb_ctrlrequest *);
  99static bool ffs_func_req_match(struct usb_function *,
 100                               const struct usb_ctrlrequest *,
 101                               bool config0);
 102static void ffs_func_suspend(struct usb_function *);
 103static void ffs_func_resume(struct usb_function *);
 104
 105
 106static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 107static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 108
 109
 110/* The endpoints structures *************************************************/
 111
 112struct ffs_ep {
 113        struct usb_ep                   *ep;    /* P: ffs->eps_lock */
 114        struct usb_request              *req;   /* P: epfile->mutex */
 115
 116        /* [0]: full speed, [1]: high speed, [2]: super speed */
 117        struct usb_endpoint_descriptor  *descs[3];
 118
 119        u8                              num;
 120
 121        int                             status; /* P: epfile->mutex */
 122};
 123
 124struct ffs_epfile {
 125        /* Protects ep->ep and ep->req. */
 126        struct mutex                    mutex;
 127
 128        struct ffs_data                 *ffs;
 129        struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
 130
 131        struct dentry                   *dentry;
 132
 133        /*
 134         * Buffer for holding data from partial reads which may happen since
 135         * we’re rounding user read requests to a multiple of a max packet size.
 136         *
 137         * The pointer is initialised with NULL value and may be set by
 138         * __ffs_epfile_read_data function to point to a temporary buffer.
 139         *
 140         * In normal operation, calls to __ffs_epfile_read_buffered will consume
 141         * data from said buffer and eventually free it.  Importantly, while the
 142         * function is using the buffer, it sets the pointer to NULL.  This is
 143         * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 144         * can never run concurrently (they are synchronised by epfile->mutex)
 145         * so the latter will not assign a new value to the pointer.
 146         *
 147         * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 148         * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 149         * value is crux of the synchronisation between ffs_func_eps_disable and
 150         * __ffs_epfile_read_data.
 151         *
 152         * Once __ffs_epfile_read_data is about to finish it will try to set the
 153         * pointer back to its old value (as described above), but seeing as the
 154         * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 155         * the buffer.
 156         *
 157         * == State transitions ==
 158         *
 159         * • ptr == NULL:  (initial state)
 160         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 161         *   ◦ __ffs_epfile_read_buffered:    nop
 162         *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 163         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 164         * • ptr == DROP:
 165         *   ◦ __ffs_epfile_read_buffer_free: nop
 166         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
 167         *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 168         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 169         * • ptr == buf:
 170         *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 171         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 172         *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 173         *                                    is always called first
 174         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 175         * • ptr == NULL and reading:
 176         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 177         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 178         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 179         *   ◦ reading finishes and …
 180         *     … all data read:               free buf, go to ptr == NULL
 181         *     … otherwise:                   go to ptr == buf and reading
 182         * • ptr == DROP and reading:
 183         *   ◦ __ffs_epfile_read_buffer_free: nop
 184         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 185         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 186         *   ◦ reading finishes:              free buf, go to ptr == DROP
 187         */
 188        struct ffs_buffer               *read_buffer;
 189#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 190
 191        char                            name[5];
 192
 193        unsigned char                   in;     /* P: ffs->eps_lock */
 194        unsigned char                   isoc;   /* P: ffs->eps_lock */
 195
 196        unsigned char                   _pad;
 197};
 198
 199struct ffs_buffer {
 200        size_t length;
 201        char *data;
 202        char storage[];
 203};
 204
 205/*  ffs_io_data structure ***************************************************/
 206
 207struct ffs_io_data {
 208        bool aio;
 209        bool read;
 210
 211        struct kiocb *kiocb;
 212        struct iov_iter data;
 213        const void *to_free;
 214        char *buf;
 215
 216        struct mm_struct *mm;
 217        struct work_struct work;
 218
 219        struct usb_ep *ep;
 220        struct usb_request *req;
 221
 222        struct ffs_data *ffs;
 223};
 224
 225struct ffs_desc_helper {
 226        struct ffs_data *ffs;
 227        unsigned interfaces_count;
 228        unsigned eps_count;
 229};
 230
 231static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 232static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 233
 234static struct dentry *
 235ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 236                   const struct file_operations *fops);
 237
 238/* Devices management *******************************************************/
 239
 240DEFINE_MUTEX(ffs_lock);
 241EXPORT_SYMBOL_GPL(ffs_lock);
 242
 243static struct ffs_dev *_ffs_find_dev(const char *name);
 244static struct ffs_dev *_ffs_alloc_dev(void);
 245static void _ffs_free_dev(struct ffs_dev *dev);
 246static void *ffs_acquire_dev(const char *dev_name);
 247static void ffs_release_dev(struct ffs_data *ffs_data);
 248static int ffs_ready(struct ffs_data *ffs);
 249static void ffs_closed(struct ffs_data *ffs);
 250
 251/* Misc helper functions ****************************************************/
 252
 253static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 254        __attribute__((warn_unused_result, nonnull));
 255static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 256        __attribute__((warn_unused_result, nonnull));
 257
 258
 259/* Control file aka ep0 *****************************************************/
 260
 261static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 262{
 263        struct ffs_data *ffs = req->context;
 264
 265        complete(&ffs->ep0req_completion);
 266}
 267
 268static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 269        __releases(&ffs->ev.waitq.lock)
 270{
 271        struct usb_request *req = ffs->ep0req;
 272        int ret;
 273
 274        req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 275
 276        spin_unlock_irq(&ffs->ev.waitq.lock);
 277
 278        req->buf      = data;
 279        req->length   = len;
 280
 281        /*
 282         * UDC layer requires to provide a buffer even for ZLP, but should
 283         * not use it at all. Let's provide some poisoned pointer to catch
 284         * possible bug in the driver.
 285         */
 286        if (req->buf == NULL)
 287                req->buf = (void *)0xDEADBABE;
 288
 289        reinit_completion(&ffs->ep0req_completion);
 290
 291        ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 292        if (unlikely(ret < 0))
 293                return ret;
 294
 295        ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 296        if (unlikely(ret)) {
 297                usb_ep_dequeue(ffs->gadget->ep0, req);
 298                return -EINTR;
 299        }
 300
 301        ffs->setup_state = FFS_NO_SETUP;
 302        return req->status ? req->status : req->actual;
 303}
 304
 305static int __ffs_ep0_stall(struct ffs_data *ffs)
 306{
 307        if (ffs->ev.can_stall) {
 308                pr_vdebug("ep0 stall\n");
 309                usb_ep_set_halt(ffs->gadget->ep0);
 310                ffs->setup_state = FFS_NO_SETUP;
 311                return -EL2HLT;
 312        } else {
 313                pr_debug("bogus ep0 stall!\n");
 314                return -ESRCH;
 315        }
 316}
 317
 318static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 319                             size_t len, loff_t *ptr)
 320{
 321        struct ffs_data *ffs = file->private_data;
 322        ssize_t ret;
 323        char *data;
 324
 325        ENTER();
 326
 327        /* Fast check if setup was canceled */
 328        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 329                return -EIDRM;
 330
 331        /* Acquire mutex */
 332        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 333        if (unlikely(ret < 0))
 334                return ret;
 335
 336        /* Check state */
 337        switch (ffs->state) {
 338        case FFS_READ_DESCRIPTORS:
 339        case FFS_READ_STRINGS:
 340                /* Copy data */
 341                if (unlikely(len < 16)) {
 342                        ret = -EINVAL;
 343                        break;
 344                }
 345
 346                data = ffs_prepare_buffer(buf, len);
 347                if (IS_ERR(data)) {
 348                        ret = PTR_ERR(data);
 349                        break;
 350                }
 351
 352                /* Handle data */
 353                if (ffs->state == FFS_READ_DESCRIPTORS) {
 354                        pr_info("read descriptors\n");
 355                        ret = __ffs_data_got_descs(ffs, data, len);
 356                        if (unlikely(ret < 0))
 357                                break;
 358
 359                        ffs->state = FFS_READ_STRINGS;
 360                        ret = len;
 361                } else {
 362                        pr_info("read strings\n");
 363                        ret = __ffs_data_got_strings(ffs, data, len);
 364                        if (unlikely(ret < 0))
 365                                break;
 366
 367                        ret = ffs_epfiles_create(ffs);
 368                        if (unlikely(ret)) {
 369                                ffs->state = FFS_CLOSING;
 370                                break;
 371                        }
 372
 373                        ffs->state = FFS_ACTIVE;
 374                        mutex_unlock(&ffs->mutex);
 375
 376                        ret = ffs_ready(ffs);
 377                        if (unlikely(ret < 0)) {
 378                                ffs->state = FFS_CLOSING;
 379                                return ret;
 380                        }
 381
 382                        return len;
 383                }
 384                break;
 385
 386        case FFS_ACTIVE:
 387                data = NULL;
 388                /*
 389                 * We're called from user space, we can use _irq
 390                 * rather then _irqsave
 391                 */
 392                spin_lock_irq(&ffs->ev.waitq.lock);
 393                switch (ffs_setup_state_clear_cancelled(ffs)) {
 394                case FFS_SETUP_CANCELLED:
 395                        ret = -EIDRM;
 396                        goto done_spin;
 397
 398                case FFS_NO_SETUP:
 399                        ret = -ESRCH;
 400                        goto done_spin;
 401
 402                case FFS_SETUP_PENDING:
 403                        break;
 404                }
 405
 406                /* FFS_SETUP_PENDING */
 407                if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 408                        spin_unlock_irq(&ffs->ev.waitq.lock);
 409                        ret = __ffs_ep0_stall(ffs);
 410                        break;
 411                }
 412
 413                /* FFS_SETUP_PENDING and not stall */
 414                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 415
 416                spin_unlock_irq(&ffs->ev.waitq.lock);
 417
 418                data = ffs_prepare_buffer(buf, len);
 419                if (IS_ERR(data)) {
 420                        ret = PTR_ERR(data);
 421                        break;
 422                }
 423
 424                spin_lock_irq(&ffs->ev.waitq.lock);
 425
 426                /*
 427                 * We are guaranteed to be still in FFS_ACTIVE state
 428                 * but the state of setup could have changed from
 429                 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 430                 * to check for that.  If that happened we copied data
 431                 * from user space in vain but it's unlikely.
 432                 *
 433                 * For sure we are not in FFS_NO_SETUP since this is
 434                 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 435                 * transition can be performed and it's protected by
 436                 * mutex.
 437                 */
 438                if (ffs_setup_state_clear_cancelled(ffs) ==
 439                    FFS_SETUP_CANCELLED) {
 440                        ret = -EIDRM;
 441done_spin:
 442                        spin_unlock_irq(&ffs->ev.waitq.lock);
 443                } else {
 444                        /* unlocks spinlock */
 445                        ret = __ffs_ep0_queue_wait(ffs, data, len);
 446                }
 447                kfree(data);
 448                break;
 449
 450        default:
 451                ret = -EBADFD;
 452                break;
 453        }
 454
 455        mutex_unlock(&ffs->mutex);
 456        return ret;
 457}
 458
 459/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 460static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 461                                     size_t n)
 462        __releases(&ffs->ev.waitq.lock)
 463{
 464        /*
 465         * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 466         * size of ffs->ev.types array (which is four) so that's how much space
 467         * we reserve.
 468         */
 469        struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 470        const size_t size = n * sizeof *events;
 471        unsigned i = 0;
 472
 473        memset(events, 0, size);
 474
 475        do {
 476                events[i].type = ffs->ev.types[i];
 477                if (events[i].type == FUNCTIONFS_SETUP) {
 478                        events[i].u.setup = ffs->ev.setup;
 479                        ffs->setup_state = FFS_SETUP_PENDING;
 480                }
 481        } while (++i < n);
 482
 483        ffs->ev.count -= n;
 484        if (ffs->ev.count)
 485                memmove(ffs->ev.types, ffs->ev.types + n,
 486                        ffs->ev.count * sizeof *ffs->ev.types);
 487
 488        spin_unlock_irq(&ffs->ev.waitq.lock);
 489        mutex_unlock(&ffs->mutex);
 490
 491        return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 492}
 493
 494static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 495                            size_t len, loff_t *ptr)
 496{
 497        struct ffs_data *ffs = file->private_data;
 498        char *data = NULL;
 499        size_t n;
 500        int ret;
 501
 502        ENTER();
 503
 504        /* Fast check if setup was canceled */
 505        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 506                return -EIDRM;
 507
 508        /* Acquire mutex */
 509        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 510        if (unlikely(ret < 0))
 511                return ret;
 512
 513        /* Check state */
 514        if (ffs->state != FFS_ACTIVE) {
 515                ret = -EBADFD;
 516                goto done_mutex;
 517        }
 518
 519        /*
 520         * We're called from user space, we can use _irq rather then
 521         * _irqsave
 522         */
 523        spin_lock_irq(&ffs->ev.waitq.lock);
 524
 525        switch (ffs_setup_state_clear_cancelled(ffs)) {
 526        case FFS_SETUP_CANCELLED:
 527                ret = -EIDRM;
 528                break;
 529
 530        case FFS_NO_SETUP:
 531                n = len / sizeof(struct usb_functionfs_event);
 532                if (unlikely(!n)) {
 533                        ret = -EINVAL;
 534                        break;
 535                }
 536
 537                if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 538                        ret = -EAGAIN;
 539                        break;
 540                }
 541
 542                if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 543                                                        ffs->ev.count)) {
 544                        ret = -EINTR;
 545                        break;
 546                }
 547
 548                /* unlocks spinlock */
 549                return __ffs_ep0_read_events(ffs, buf,
 550                                             min(n, (size_t)ffs->ev.count));
 551
 552        case FFS_SETUP_PENDING:
 553                if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 554                        spin_unlock_irq(&ffs->ev.waitq.lock);
 555                        ret = __ffs_ep0_stall(ffs);
 556                        goto done_mutex;
 557                }
 558
 559                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 560
 561                spin_unlock_irq(&ffs->ev.waitq.lock);
 562
 563                if (likely(len)) {
 564                        data = kmalloc(len, GFP_KERNEL);
 565                        if (unlikely(!data)) {
 566                                ret = -ENOMEM;
 567                                goto done_mutex;
 568                        }
 569                }
 570
 571                spin_lock_irq(&ffs->ev.waitq.lock);
 572
 573                /* See ffs_ep0_write() */
 574                if (ffs_setup_state_clear_cancelled(ffs) ==
 575                    FFS_SETUP_CANCELLED) {
 576                        ret = -EIDRM;
 577                        break;
 578                }
 579
 580                /* unlocks spinlock */
 581                ret = __ffs_ep0_queue_wait(ffs, data, len);
 582                if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 583                        ret = -EFAULT;
 584                goto done_mutex;
 585
 586        default:
 587                ret = -EBADFD;
 588                break;
 589        }
 590
 591        spin_unlock_irq(&ffs->ev.waitq.lock);
 592done_mutex:
 593        mutex_unlock(&ffs->mutex);
 594        kfree(data);
 595        return ret;
 596}
 597
 598static int ffs_ep0_open(struct inode *inode, struct file *file)
 599{
 600        struct ffs_data *ffs = inode->i_private;
 601
 602        ENTER();
 603
 604        if (unlikely(ffs->state == FFS_CLOSING))
 605                return -EBUSY;
 606
 607        file->private_data = ffs;
 608        ffs_data_opened(ffs);
 609
 610        return 0;
 611}
 612
 613static int ffs_ep0_release(struct inode *inode, struct file *file)
 614{
 615        struct ffs_data *ffs = file->private_data;
 616
 617        ENTER();
 618
 619        ffs_data_closed(ffs);
 620
 621        return 0;
 622}
 623
 624static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 625{
 626        struct ffs_data *ffs = file->private_data;
 627        struct usb_gadget *gadget = ffs->gadget;
 628        long ret;
 629
 630        ENTER();
 631
 632        if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 633                struct ffs_function *func = ffs->func;
 634                ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 635        } else if (gadget && gadget->ops->ioctl) {
 636                ret = gadget->ops->ioctl(gadget, code, value);
 637        } else {
 638                ret = -ENOTTY;
 639        }
 640
 641        return ret;
 642}
 643
 644static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 645{
 646        struct ffs_data *ffs = file->private_data;
 647        __poll_t mask = EPOLLWRNORM;
 648        int ret;
 649
 650        poll_wait(file, &ffs->ev.waitq, wait);
 651
 652        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 653        if (unlikely(ret < 0))
 654                return mask;
 655
 656        switch (ffs->state) {
 657        case FFS_READ_DESCRIPTORS:
 658        case FFS_READ_STRINGS:
 659                mask |= EPOLLOUT;
 660                break;
 661
 662        case FFS_ACTIVE:
 663                switch (ffs->setup_state) {
 664                case FFS_NO_SETUP:
 665                        if (ffs->ev.count)
 666                                mask |= EPOLLIN;
 667                        break;
 668
 669                case FFS_SETUP_PENDING:
 670                case FFS_SETUP_CANCELLED:
 671                        mask |= (EPOLLIN | EPOLLOUT);
 672                        break;
 673                }
 674        case FFS_CLOSING:
 675                break;
 676        case FFS_DEACTIVATED:
 677                break;
 678        }
 679
 680        mutex_unlock(&ffs->mutex);
 681
 682        return mask;
 683}
 684
 685static const struct file_operations ffs_ep0_operations = {
 686        .llseek =       no_llseek,
 687
 688        .open =         ffs_ep0_open,
 689        .write =        ffs_ep0_write,
 690        .read =         ffs_ep0_read,
 691        .release =      ffs_ep0_release,
 692        .unlocked_ioctl =       ffs_ep0_ioctl,
 693        .poll =         ffs_ep0_poll,
 694};
 695
 696
 697/* "Normal" endpoints operations ********************************************/
 698
 699static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 700{
 701        ENTER();
 702        if (likely(req->context)) {
 703                struct ffs_ep *ep = _ep->driver_data;
 704                ep->status = req->status ? req->status : req->actual;
 705                complete(req->context);
 706        }
 707}
 708
 709static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 710{
 711        ssize_t ret = copy_to_iter(data, data_len, iter);
 712        if (likely(ret == data_len))
 713                return ret;
 714
 715        if (unlikely(iov_iter_count(iter)))
 716                return -EFAULT;
 717
 718        /*
 719         * Dear user space developer!
 720         *
 721         * TL;DR: To stop getting below error message in your kernel log, change
 722         * user space code using functionfs to align read buffers to a max
 723         * packet size.
 724         *
 725         * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 726         * packet size.  When unaligned buffer is passed to functionfs, it
 727         * internally uses a larger, aligned buffer so that such UDCs are happy.
 728         *
 729         * Unfortunately, this means that host may send more data than was
 730         * requested in read(2) system call.  f_fs doesn’t know what to do with
 731         * that excess data so it simply drops it.
 732         *
 733         * Was the buffer aligned in the first place, no such problem would
 734         * happen.
 735         *
 736         * Data may be dropped only in AIO reads.  Synchronous reads are handled
 737         * by splitting a request into multiple parts.  This splitting may still
 738         * be a problem though so it’s likely best to align the buffer
 739         * regardless of it being AIO or not..
 740         *
 741         * This only affects OUT endpoints, i.e. reading data with a read(2),
 742         * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 743         * affected.
 744         */
 745        pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 746               "Align read buffer size to max packet size to avoid the problem.\n",
 747               data_len, ret);
 748
 749        return ret;
 750}
 751
 752static void ffs_user_copy_worker(struct work_struct *work)
 753{
 754        struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 755                                                   work);
 756        int ret = io_data->req->status ? io_data->req->status :
 757                                         io_data->req->actual;
 758        bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 759
 760        if (io_data->read && ret > 0) {
 761                mm_segment_t oldfs = get_fs();
 762
 763                set_fs(USER_DS);
 764                use_mm(io_data->mm);
 765                ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 766                unuse_mm(io_data->mm);
 767                set_fs(oldfs);
 768        }
 769
 770        io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 771
 772        if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 773                eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 774
 775        usb_ep_free_request(io_data->ep, io_data->req);
 776
 777        if (io_data->read)
 778                kfree(io_data->to_free);
 779        kfree(io_data->buf);
 780        kfree(io_data);
 781}
 782
 783static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 784                                         struct usb_request *req)
 785{
 786        struct ffs_io_data *io_data = req->context;
 787        struct ffs_data *ffs = io_data->ffs;
 788
 789        ENTER();
 790
 791        INIT_WORK(&io_data->work, ffs_user_copy_worker);
 792        queue_work(ffs->io_completion_wq, &io_data->work);
 793}
 794
 795static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 796{
 797        /*
 798         * See comment in struct ffs_epfile for full read_buffer pointer
 799         * synchronisation story.
 800         */
 801        struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 802        if (buf && buf != READ_BUFFER_DROP)
 803                kfree(buf);
 804}
 805
 806/* Assumes epfile->mutex is held. */
 807static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 808                                          struct iov_iter *iter)
 809{
 810        /*
 811         * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 812         * the buffer while we are using it.  See comment in struct ffs_epfile
 813         * for full read_buffer pointer synchronisation story.
 814         */
 815        struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 816        ssize_t ret;
 817        if (!buf || buf == READ_BUFFER_DROP)
 818                return 0;
 819
 820        ret = copy_to_iter(buf->data, buf->length, iter);
 821        if (buf->length == ret) {
 822                kfree(buf);
 823                return ret;
 824        }
 825
 826        if (unlikely(iov_iter_count(iter))) {
 827                ret = -EFAULT;
 828        } else {
 829                buf->length -= ret;
 830                buf->data += ret;
 831        }
 832
 833        if (cmpxchg(&epfile->read_buffer, NULL, buf))
 834                kfree(buf);
 835
 836        return ret;
 837}
 838
 839/* Assumes epfile->mutex is held. */
 840static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 841                                      void *data, int data_len,
 842                                      struct iov_iter *iter)
 843{
 844        struct ffs_buffer *buf;
 845
 846        ssize_t ret = copy_to_iter(data, data_len, iter);
 847        if (likely(data_len == ret))
 848                return ret;
 849
 850        if (unlikely(iov_iter_count(iter)))
 851                return -EFAULT;
 852
 853        /* See ffs_copy_to_iter for more context. */
 854        pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 855                data_len, ret);
 856
 857        data_len -= ret;
 858        buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 859        if (!buf)
 860                return -ENOMEM;
 861        buf->length = data_len;
 862        buf->data = buf->storage;
 863        memcpy(buf->storage, data + ret, data_len);
 864
 865        /*
 866         * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 867         * ffs_func_eps_disable has been called in the meanwhile).  See comment
 868         * in struct ffs_epfile for full read_buffer pointer synchronisation
 869         * story.
 870         */
 871        if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
 872                kfree(buf);
 873
 874        return ret;
 875}
 876
 877static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 878{
 879        struct ffs_epfile *epfile = file->private_data;
 880        struct usb_request *req;
 881        struct ffs_ep *ep;
 882        char *data = NULL;
 883        ssize_t ret, data_len = -EINVAL;
 884        int halt;
 885
 886        /* Are we still active? */
 887        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 888                return -ENODEV;
 889
 890        /* Wait for endpoint to be enabled */
 891        ep = epfile->ep;
 892        if (!ep) {
 893                if (file->f_flags & O_NONBLOCK)
 894                        return -EAGAIN;
 895
 896                ret = wait_event_interruptible(
 897                                epfile->ffs->wait, (ep = epfile->ep));
 898                if (ret)
 899                        return -EINTR;
 900        }
 901
 902        /* Do we halt? */
 903        halt = (!io_data->read == !epfile->in);
 904        if (halt && epfile->isoc)
 905                return -EINVAL;
 906
 907        /* We will be using request and read_buffer */
 908        ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 909        if (unlikely(ret))
 910                goto error;
 911
 912        /* Allocate & copy */
 913        if (!halt) {
 914                struct usb_gadget *gadget;
 915
 916                /*
 917                 * Do we have buffered data from previous partial read?  Check
 918                 * that for synchronous case only because we do not have
 919                 * facility to ‘wake up’ a pending asynchronous read and push
 920                 * buffered data to it which we would need to make things behave
 921                 * consistently.
 922                 */
 923                if (!io_data->aio && io_data->read) {
 924                        ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 925                        if (ret)
 926                                goto error_mutex;
 927                }
 928
 929                /*
 930                 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 931                 * before the waiting completes, so do not assign to 'gadget'
 932                 * earlier
 933                 */
 934                gadget = epfile->ffs->gadget;
 935
 936                spin_lock_irq(&epfile->ffs->eps_lock);
 937                /* In the meantime, endpoint got disabled or changed. */
 938                if (epfile->ep != ep) {
 939                        ret = -ESHUTDOWN;
 940                        goto error_lock;
 941                }
 942                data_len = iov_iter_count(&io_data->data);
 943                /*
 944                 * Controller may require buffer size to be aligned to
 945                 * maxpacketsize of an out endpoint.
 946                 */
 947                if (io_data->read)
 948                        data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
 949                spin_unlock_irq(&epfile->ffs->eps_lock);
 950
 951                data = kmalloc(data_len, GFP_KERNEL);
 952                if (unlikely(!data)) {
 953                        ret = -ENOMEM;
 954                        goto error_mutex;
 955                }
 956                if (!io_data->read &&
 957                    !copy_from_iter_full(data, data_len, &io_data->data)) {
 958                        ret = -EFAULT;
 959                        goto error_mutex;
 960                }
 961        }
 962
 963        spin_lock_irq(&epfile->ffs->eps_lock);
 964
 965        if (epfile->ep != ep) {
 966                /* In the meantime, endpoint got disabled or changed. */
 967                ret = -ESHUTDOWN;
 968        } else if (halt) {
 969                ret = usb_ep_set_halt(ep->ep);
 970                if (!ret)
 971                        ret = -EBADMSG;
 972        } else if (unlikely(data_len == -EINVAL)) {
 973                /*
 974                 * Sanity Check: even though data_len can't be used
 975                 * uninitialized at the time I write this comment, some
 976                 * compilers complain about this situation.
 977                 * In order to keep the code clean from warnings, data_len is
 978                 * being initialized to -EINVAL during its declaration, which
 979                 * means we can't rely on compiler anymore to warn no future
 980                 * changes won't result in data_len being used uninitialized.
 981                 * For such reason, we're adding this redundant sanity check
 982                 * here.
 983                 */
 984                WARN(1, "%s: data_len == -EINVAL\n", __func__);
 985                ret = -EINVAL;
 986        } else if (!io_data->aio) {
 987                DECLARE_COMPLETION_ONSTACK(done);
 988                bool interrupted = false;
 989
 990                req = ep->req;
 991                req->buf      = data;
 992                req->length   = data_len;
 993
 994                req->context  = &done;
 995                req->complete = ffs_epfile_io_complete;
 996
 997                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 998                if (unlikely(ret < 0))
 999                        goto error_lock;
1000
1001                spin_unlock_irq(&epfile->ffs->eps_lock);
1002
1003                if (unlikely(wait_for_completion_interruptible(&done))) {
1004                        /*
1005                         * To avoid race condition with ffs_epfile_io_complete,
1006                         * dequeue the request first then check
1007                         * status. usb_ep_dequeue API should guarantee no race
1008                         * condition with req->complete callback.
1009                         */
1010                        usb_ep_dequeue(ep->ep, req);
1011                        interrupted = ep->status < 0;
1012                }
1013
1014                if (interrupted)
1015                        ret = -EINTR;
1016                else if (io_data->read && ep->status > 0)
1017                        ret = __ffs_epfile_read_data(epfile, data, ep->status,
1018                                                     &io_data->data);
1019                else
1020                        ret = ep->status;
1021                goto error_mutex;
1022        } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1023                ret = -ENOMEM;
1024        } else {
1025                req->buf      = data;
1026                req->length   = data_len;
1027
1028                io_data->buf = data;
1029                io_data->ep = ep->ep;
1030                io_data->req = req;
1031                io_data->ffs = epfile->ffs;
1032
1033                req->context  = io_data;
1034                req->complete = ffs_epfile_async_io_complete;
1035
1036                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1037                if (unlikely(ret)) {
1038                        usb_ep_free_request(ep->ep, req);
1039                        goto error_lock;
1040                }
1041
1042                ret = -EIOCBQUEUED;
1043                /*
1044                 * Do not kfree the buffer in this function.  It will be freed
1045                 * by ffs_user_copy_worker.
1046                 */
1047                data = NULL;
1048        }
1049
1050error_lock:
1051        spin_unlock_irq(&epfile->ffs->eps_lock);
1052error_mutex:
1053        mutex_unlock(&epfile->mutex);
1054error:
1055        kfree(data);
1056        return ret;
1057}
1058
1059static int
1060ffs_epfile_open(struct inode *inode, struct file *file)
1061{
1062        struct ffs_epfile *epfile = inode->i_private;
1063
1064        ENTER();
1065
1066        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1067                return -ENODEV;
1068
1069        file->private_data = epfile;
1070        ffs_data_opened(epfile->ffs);
1071
1072        return 0;
1073}
1074
1075static int ffs_aio_cancel(struct kiocb *kiocb)
1076{
1077        struct ffs_io_data *io_data = kiocb->private;
1078        struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1079        int value;
1080
1081        ENTER();
1082
1083        spin_lock_irq(&epfile->ffs->eps_lock);
1084
1085        if (likely(io_data && io_data->ep && io_data->req))
1086                value = usb_ep_dequeue(io_data->ep, io_data->req);
1087        else
1088                value = -EINVAL;
1089
1090        spin_unlock_irq(&epfile->ffs->eps_lock);
1091
1092        return value;
1093}
1094
1095static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1096{
1097        struct ffs_io_data io_data, *p = &io_data;
1098        ssize_t res;
1099
1100        ENTER();
1101
1102        if (!is_sync_kiocb(kiocb)) {
1103                p = kmalloc(sizeof(io_data), GFP_KERNEL);
1104                if (unlikely(!p))
1105                        return -ENOMEM;
1106                p->aio = true;
1107        } else {
1108                p->aio = false;
1109        }
1110
1111        p->read = false;
1112        p->kiocb = kiocb;
1113        p->data = *from;
1114        p->mm = current->mm;
1115
1116        kiocb->private = p;
1117
1118        if (p->aio)
1119                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1120
1121        res = ffs_epfile_io(kiocb->ki_filp, p);
1122        if (res == -EIOCBQUEUED)
1123                return res;
1124        if (p->aio)
1125                kfree(p);
1126        else
1127                *from = p->data;
1128        return res;
1129}
1130
1131static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1132{
1133        struct ffs_io_data io_data, *p = &io_data;
1134        ssize_t res;
1135
1136        ENTER();
1137
1138        if (!is_sync_kiocb(kiocb)) {
1139                p = kmalloc(sizeof(io_data), GFP_KERNEL);
1140                if (unlikely(!p))
1141                        return -ENOMEM;
1142                p->aio = true;
1143        } else {
1144                p->aio = false;
1145        }
1146
1147        p->read = true;
1148        p->kiocb = kiocb;
1149        if (p->aio) {
1150                p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1151                if (!p->to_free) {
1152                        kfree(p);
1153                        return -ENOMEM;
1154                }
1155        } else {
1156                p->data = *to;
1157                p->to_free = NULL;
1158        }
1159        p->mm = current->mm;
1160
1161        kiocb->private = p;
1162
1163        if (p->aio)
1164                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1165
1166        res = ffs_epfile_io(kiocb->ki_filp, p);
1167        if (res == -EIOCBQUEUED)
1168                return res;
1169
1170        if (p->aio) {
1171                kfree(p->to_free);
1172                kfree(p);
1173        } else {
1174                *to = p->data;
1175        }
1176        return res;
1177}
1178
1179static int
1180ffs_epfile_release(struct inode *inode, struct file *file)
1181{
1182        struct ffs_epfile *epfile = inode->i_private;
1183
1184        ENTER();
1185
1186        __ffs_epfile_read_buffer_free(epfile);
1187        ffs_data_closed(epfile->ffs);
1188
1189        return 0;
1190}
1191
1192static long ffs_epfile_ioctl(struct file *file, unsigned code,
1193                             unsigned long value)
1194{
1195        struct ffs_epfile *epfile = file->private_data;
1196        struct ffs_ep *ep;
1197        int ret;
1198
1199        ENTER();
1200
1201        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1202                return -ENODEV;
1203
1204        /* Wait for endpoint to be enabled */
1205        ep = epfile->ep;
1206        if (!ep) {
1207                if (file->f_flags & O_NONBLOCK)
1208                        return -EAGAIN;
1209
1210                ret = wait_event_interruptible(
1211                                epfile->ffs->wait, (ep = epfile->ep));
1212                if (ret)
1213                        return -EINTR;
1214        }
1215
1216        spin_lock_irq(&epfile->ffs->eps_lock);
1217
1218        /* In the meantime, endpoint got disabled or changed. */
1219        if (epfile->ep != ep) {
1220                spin_unlock_irq(&epfile->ffs->eps_lock);
1221                return -ESHUTDOWN;
1222        }
1223
1224        switch (code) {
1225        case FUNCTIONFS_FIFO_STATUS:
1226                ret = usb_ep_fifo_status(epfile->ep->ep);
1227                break;
1228        case FUNCTIONFS_FIFO_FLUSH:
1229                usb_ep_fifo_flush(epfile->ep->ep);
1230                ret = 0;
1231                break;
1232        case FUNCTIONFS_CLEAR_HALT:
1233                ret = usb_ep_clear_halt(epfile->ep->ep);
1234                break;
1235        case FUNCTIONFS_ENDPOINT_REVMAP:
1236                ret = epfile->ep->num;
1237                break;
1238        case FUNCTIONFS_ENDPOINT_DESC:
1239        {
1240                int desc_idx;
1241                struct usb_endpoint_descriptor *desc;
1242
1243                switch (epfile->ffs->gadget->speed) {
1244                case USB_SPEED_SUPER:
1245                        desc_idx = 2;
1246                        break;
1247                case USB_SPEED_HIGH:
1248                        desc_idx = 1;
1249                        break;
1250                default:
1251                        desc_idx = 0;
1252                }
1253                desc = epfile->ep->descs[desc_idx];
1254
1255                spin_unlock_irq(&epfile->ffs->eps_lock);
1256                ret = copy_to_user((void __user *)value, desc, desc->bLength);
1257                if (ret)
1258                        ret = -EFAULT;
1259                return ret;
1260        }
1261        default:
1262                ret = -ENOTTY;
1263        }
1264        spin_unlock_irq(&epfile->ffs->eps_lock);
1265
1266        return ret;
1267}
1268
1269static const struct file_operations ffs_epfile_operations = {
1270        .llseek =       no_llseek,
1271
1272        .open =         ffs_epfile_open,
1273        .write_iter =   ffs_epfile_write_iter,
1274        .read_iter =    ffs_epfile_read_iter,
1275        .release =      ffs_epfile_release,
1276        .unlocked_ioctl =       ffs_epfile_ioctl,
1277};
1278
1279
1280/* File system and super block operations ***********************************/
1281
1282/*
1283 * Mounting the file system creates a controller file, used first for
1284 * function configuration then later for event monitoring.
1285 */
1286
1287static struct inode *__must_check
1288ffs_sb_make_inode(struct super_block *sb, void *data,
1289                  const struct file_operations *fops,
1290                  const struct inode_operations *iops,
1291                  struct ffs_file_perms *perms)
1292{
1293        struct inode *inode;
1294
1295        ENTER();
1296
1297        inode = new_inode(sb);
1298
1299        if (likely(inode)) {
1300                struct timespec ts = current_time(inode);
1301
1302                inode->i_ino     = get_next_ino();
1303                inode->i_mode    = perms->mode;
1304                inode->i_uid     = perms->uid;
1305                inode->i_gid     = perms->gid;
1306                inode->i_atime   = ts;
1307                inode->i_mtime   = ts;
1308                inode->i_ctime   = ts;
1309                inode->i_private = data;
1310                if (fops)
1311                        inode->i_fop = fops;
1312                if (iops)
1313                        inode->i_op  = iops;
1314        }
1315
1316        return inode;
1317}
1318
1319/* Create "regular" file */
1320static struct dentry *ffs_sb_create_file(struct super_block *sb,
1321                                        const char *name, void *data,
1322                                        const struct file_operations *fops)
1323{
1324        struct ffs_data *ffs = sb->s_fs_info;
1325        struct dentry   *dentry;
1326        struct inode    *inode;
1327
1328        ENTER();
1329
1330        dentry = d_alloc_name(sb->s_root, name);
1331        if (unlikely(!dentry))
1332                return NULL;
1333
1334        inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1335        if (unlikely(!inode)) {
1336                dput(dentry);
1337                return NULL;
1338        }
1339
1340        d_add(dentry, inode);
1341        return dentry;
1342}
1343
1344/* Super block */
1345static const struct super_operations ffs_sb_operations = {
1346        .statfs =       simple_statfs,
1347        .drop_inode =   generic_delete_inode,
1348};
1349
1350struct ffs_sb_fill_data {
1351        struct ffs_file_perms perms;
1352        umode_t root_mode;
1353        const char *dev_name;
1354        bool no_disconnect;
1355        struct ffs_data *ffs_data;
1356};
1357
1358static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1359{
1360        struct ffs_sb_fill_data *data = _data;
1361        struct inode    *inode;
1362        struct ffs_data *ffs = data->ffs_data;
1363
1364        ENTER();
1365
1366        ffs->sb              = sb;
1367        data->ffs_data       = NULL;
1368        sb->s_fs_info        = ffs;
1369        sb->s_blocksize      = PAGE_SIZE;
1370        sb->s_blocksize_bits = PAGE_SHIFT;
1371        sb->s_magic          = FUNCTIONFS_MAGIC;
1372        sb->s_op             = &ffs_sb_operations;
1373        sb->s_time_gran      = 1;
1374
1375        /* Root inode */
1376        data->perms.mode = data->root_mode;
1377        inode = ffs_sb_make_inode(sb, NULL,
1378                                  &simple_dir_operations,
1379                                  &simple_dir_inode_operations,
1380                                  &data->perms);
1381        sb->s_root = d_make_root(inode);
1382        if (unlikely(!sb->s_root))
1383                return -ENOMEM;
1384
1385        /* EP0 file */
1386        if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1387                                         &ffs_ep0_operations)))
1388                return -ENOMEM;
1389
1390        return 0;
1391}
1392
1393static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1394{
1395        ENTER();
1396
1397        if (!opts || !*opts)
1398                return 0;
1399
1400        for (;;) {
1401                unsigned long value;
1402                char *eq, *comma;
1403
1404                /* Option limit */
1405                comma = strchr(opts, ',');
1406                if (comma)
1407                        *comma = 0;
1408
1409                /* Value limit */
1410                eq = strchr(opts, '=');
1411                if (unlikely(!eq)) {
1412                        pr_err("'=' missing in %s\n", opts);
1413                        return -EINVAL;
1414                }
1415                *eq = 0;
1416
1417                /* Parse value */
1418                if (kstrtoul(eq + 1, 0, &value)) {
1419                        pr_err("%s: invalid value: %s\n", opts, eq + 1);
1420                        return -EINVAL;
1421                }
1422
1423                /* Interpret option */
1424                switch (eq - opts) {
1425                case 13:
1426                        if (!memcmp(opts, "no_disconnect", 13))
1427                                data->no_disconnect = !!value;
1428                        else
1429                                goto invalid;
1430                        break;
1431                case 5:
1432                        if (!memcmp(opts, "rmode", 5))
1433                                data->root_mode  = (value & 0555) | S_IFDIR;
1434                        else if (!memcmp(opts, "fmode", 5))
1435                                data->perms.mode = (value & 0666) | S_IFREG;
1436                        else
1437                                goto invalid;
1438                        break;
1439
1440                case 4:
1441                        if (!memcmp(opts, "mode", 4)) {
1442                                data->root_mode  = (value & 0555) | S_IFDIR;
1443                                data->perms.mode = (value & 0666) | S_IFREG;
1444                        } else {
1445                                goto invalid;
1446                        }
1447                        break;
1448
1449                case 3:
1450                        if (!memcmp(opts, "uid", 3)) {
1451                                data->perms.uid = make_kuid(current_user_ns(), value);
1452                                if (!uid_valid(data->perms.uid)) {
1453                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1454                                        return -EINVAL;
1455                                }
1456                        } else if (!memcmp(opts, "gid", 3)) {
1457                                data->perms.gid = make_kgid(current_user_ns(), value);
1458                                if (!gid_valid(data->perms.gid)) {
1459                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1460                                        return -EINVAL;
1461                                }
1462                        } else {
1463                                goto invalid;
1464                        }
1465                        break;
1466
1467                default:
1468invalid:
1469                        pr_err("%s: invalid option\n", opts);
1470                        return -EINVAL;
1471                }
1472
1473                /* Next iteration */
1474                if (!comma)
1475                        break;
1476                opts = comma + 1;
1477        }
1478
1479        return 0;
1480}
1481
1482/* "mount -t functionfs dev_name /dev/function" ends up here */
1483
1484static struct dentry *
1485ffs_fs_mount(struct file_system_type *t, int flags,
1486              const char *dev_name, void *opts)
1487{
1488        struct ffs_sb_fill_data data = {
1489                .perms = {
1490                        .mode = S_IFREG | 0600,
1491                        .uid = GLOBAL_ROOT_UID,
1492                        .gid = GLOBAL_ROOT_GID,
1493                },
1494                .root_mode = S_IFDIR | 0500,
1495                .no_disconnect = false,
1496        };
1497        struct dentry *rv;
1498        int ret;
1499        void *ffs_dev;
1500        struct ffs_data *ffs;
1501
1502        ENTER();
1503
1504        ret = ffs_fs_parse_opts(&data, opts);
1505        if (unlikely(ret < 0))
1506                return ERR_PTR(ret);
1507
1508        ffs = ffs_data_new(dev_name);
1509        if (unlikely(!ffs))
1510                return ERR_PTR(-ENOMEM);
1511        ffs->file_perms = data.perms;
1512        ffs->no_disconnect = data.no_disconnect;
1513
1514        ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1515        if (unlikely(!ffs->dev_name)) {
1516                ffs_data_put(ffs);
1517                return ERR_PTR(-ENOMEM);
1518        }
1519
1520        ffs_dev = ffs_acquire_dev(dev_name);
1521        if (IS_ERR(ffs_dev)) {
1522                ffs_data_put(ffs);
1523                return ERR_CAST(ffs_dev);
1524        }
1525        ffs->private_data = ffs_dev;
1526        data.ffs_data = ffs;
1527
1528        rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1529        if (IS_ERR(rv) && data.ffs_data) {
1530                ffs_release_dev(data.ffs_data);
1531                ffs_data_put(data.ffs_data);
1532        }
1533        return rv;
1534}
1535
1536static void
1537ffs_fs_kill_sb(struct super_block *sb)
1538{
1539        ENTER();
1540
1541        kill_litter_super(sb);
1542        if (sb->s_fs_info) {
1543                ffs_release_dev(sb->s_fs_info);
1544                ffs_data_closed(sb->s_fs_info);
1545        }
1546}
1547
1548static struct file_system_type ffs_fs_type = {
1549        .owner          = THIS_MODULE,
1550        .name           = "functionfs",
1551        .mount          = ffs_fs_mount,
1552        .kill_sb        = ffs_fs_kill_sb,
1553};
1554MODULE_ALIAS_FS("functionfs");
1555
1556
1557/* Driver's main init/cleanup functions *************************************/
1558
1559static int functionfs_init(void)
1560{
1561        int ret;
1562
1563        ENTER();
1564
1565        ret = register_filesystem(&ffs_fs_type);
1566        if (likely(!ret))
1567                pr_info("file system registered\n");
1568        else
1569                pr_err("failed registering file system (%d)\n", ret);
1570
1571        return ret;
1572}
1573
1574static void functionfs_cleanup(void)
1575{
1576        ENTER();
1577
1578        pr_info("unloading\n");
1579        unregister_filesystem(&ffs_fs_type);
1580}
1581
1582
1583/* ffs_data and ffs_function construction and destruction code **************/
1584
1585static void ffs_data_clear(struct ffs_data *ffs);
1586static void ffs_data_reset(struct ffs_data *ffs);
1587
1588static void ffs_data_get(struct ffs_data *ffs)
1589{
1590        ENTER();
1591
1592        refcount_inc(&ffs->ref);
1593}
1594
1595static void ffs_data_opened(struct ffs_data *ffs)
1596{
1597        ENTER();
1598
1599        refcount_inc(&ffs->ref);
1600        if (atomic_add_return(1, &ffs->opened) == 1 &&
1601                        ffs->state == FFS_DEACTIVATED) {
1602                ffs->state = FFS_CLOSING;
1603                ffs_data_reset(ffs);
1604        }
1605}
1606
1607static void ffs_data_put(struct ffs_data *ffs)
1608{
1609        ENTER();
1610
1611        if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1612                pr_info("%s(): freeing\n", __func__);
1613                ffs_data_clear(ffs);
1614                BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1615                       waitqueue_active(&ffs->ep0req_completion.wait) ||
1616                       waitqueue_active(&ffs->wait));
1617                destroy_workqueue(ffs->io_completion_wq);
1618                kfree(ffs->dev_name);
1619                kfree(ffs);
1620        }
1621}
1622
1623static void ffs_data_closed(struct ffs_data *ffs)
1624{
1625        ENTER();
1626
1627        if (atomic_dec_and_test(&ffs->opened)) {
1628                if (ffs->no_disconnect) {
1629                        ffs->state = FFS_DEACTIVATED;
1630                        if (ffs->epfiles) {
1631                                ffs_epfiles_destroy(ffs->epfiles,
1632                                                   ffs->eps_count);
1633                                ffs->epfiles = NULL;
1634                        }
1635                        if (ffs->setup_state == FFS_SETUP_PENDING)
1636                                __ffs_ep0_stall(ffs);
1637                } else {
1638                        ffs->state = FFS_CLOSING;
1639                        ffs_data_reset(ffs);
1640                }
1641        }
1642        if (atomic_read(&ffs->opened) < 0) {
1643                ffs->state = FFS_CLOSING;
1644                ffs_data_reset(ffs);
1645        }
1646
1647        ffs_data_put(ffs);
1648}
1649
1650static struct ffs_data *ffs_data_new(const char *dev_name)
1651{
1652        struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1653        if (unlikely(!ffs))
1654                return NULL;
1655
1656        ENTER();
1657
1658        ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1659        if (!ffs->io_completion_wq) {
1660                kfree(ffs);
1661                return NULL;
1662        }
1663
1664        refcount_set(&ffs->ref, 1);
1665        atomic_set(&ffs->opened, 0);
1666        ffs->state = FFS_READ_DESCRIPTORS;
1667        mutex_init(&ffs->mutex);
1668        spin_lock_init(&ffs->eps_lock);
1669        init_waitqueue_head(&ffs->ev.waitq);
1670        init_waitqueue_head(&ffs->wait);
1671        init_completion(&ffs->ep0req_completion);
1672
1673        /* XXX REVISIT need to update it in some places, or do we? */
1674        ffs->ev.can_stall = 1;
1675
1676        return ffs;
1677}
1678
1679static void ffs_data_clear(struct ffs_data *ffs)
1680{
1681        ENTER();
1682
1683        ffs_closed(ffs);
1684
1685        BUG_ON(ffs->gadget);
1686
1687        if (ffs->epfiles)
1688                ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1689
1690        if (ffs->ffs_eventfd)
1691                eventfd_ctx_put(ffs->ffs_eventfd);
1692
1693        kfree(ffs->raw_descs_data);
1694        kfree(ffs->raw_strings);
1695        kfree(ffs->stringtabs);
1696}
1697
1698static void ffs_data_reset(struct ffs_data *ffs)
1699{
1700        ENTER();
1701
1702        ffs_data_clear(ffs);
1703
1704        ffs->epfiles = NULL;
1705        ffs->raw_descs_data = NULL;
1706        ffs->raw_descs = NULL;
1707        ffs->raw_strings = NULL;
1708        ffs->stringtabs = NULL;
1709
1710        ffs->raw_descs_length = 0;
1711        ffs->fs_descs_count = 0;
1712        ffs->hs_descs_count = 0;
1713        ffs->ss_descs_count = 0;
1714
1715        ffs->strings_count = 0;
1716        ffs->interfaces_count = 0;
1717        ffs->eps_count = 0;
1718
1719        ffs->ev.count = 0;
1720
1721        ffs->state = FFS_READ_DESCRIPTORS;
1722        ffs->setup_state = FFS_NO_SETUP;
1723        ffs->flags = 0;
1724}
1725
1726
1727static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1728{
1729        struct usb_gadget_strings **lang;
1730        int first_id;
1731
1732        ENTER();
1733
1734        if (WARN_ON(ffs->state != FFS_ACTIVE
1735                 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1736                return -EBADFD;
1737
1738        first_id = usb_string_ids_n(cdev, ffs->strings_count);
1739        if (unlikely(first_id < 0))
1740                return first_id;
1741
1742        ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1743        if (unlikely(!ffs->ep0req))
1744                return -ENOMEM;
1745        ffs->ep0req->complete = ffs_ep0_complete;
1746        ffs->ep0req->context = ffs;
1747
1748        lang = ffs->stringtabs;
1749        if (lang) {
1750                for (; *lang; ++lang) {
1751                        struct usb_string *str = (*lang)->strings;
1752                        int id = first_id;
1753                        for (; str->s; ++id, ++str)
1754                                str->id = id;
1755                }
1756        }
1757
1758        ffs->gadget = cdev->gadget;
1759        ffs_data_get(ffs);
1760        return 0;
1761}
1762
1763static void functionfs_unbind(struct ffs_data *ffs)
1764{
1765        ENTER();
1766
1767        if (!WARN_ON(!ffs->gadget)) {
1768                usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1769                ffs->ep0req = NULL;
1770                ffs->gadget = NULL;
1771                clear_bit(FFS_FL_BOUND, &ffs->flags);
1772                ffs_data_put(ffs);
1773        }
1774}
1775
1776static int ffs_epfiles_create(struct ffs_data *ffs)
1777{
1778        struct ffs_epfile *epfile, *epfiles;
1779        unsigned i, count;
1780
1781        ENTER();
1782
1783        count = ffs->eps_count;
1784        epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1785        if (!epfiles)
1786                return -ENOMEM;
1787
1788        epfile = epfiles;
1789        for (i = 1; i <= count; ++i, ++epfile) {
1790                epfile->ffs = ffs;
1791                mutex_init(&epfile->mutex);
1792                if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1793                        sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1794                else
1795                        sprintf(epfile->name, "ep%u", i);
1796                epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1797                                                 epfile,
1798                                                 &ffs_epfile_operations);
1799                if (unlikely(!epfile->dentry)) {
1800                        ffs_epfiles_destroy(epfiles, i - 1);
1801                        return -ENOMEM;
1802                }
1803        }
1804
1805        ffs->epfiles = epfiles;
1806        return 0;
1807}
1808
1809static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1810{
1811        struct ffs_epfile *epfile = epfiles;
1812
1813        ENTER();
1814
1815        for (; count; --count, ++epfile) {
1816                BUG_ON(mutex_is_locked(&epfile->mutex));
1817                if (epfile->dentry) {
1818                        d_delete(epfile->dentry);
1819                        dput(epfile->dentry);
1820                        epfile->dentry = NULL;
1821                }
1822        }
1823
1824        kfree(epfiles);
1825}
1826
1827static void ffs_func_eps_disable(struct ffs_function *func)
1828{
1829        struct ffs_ep *ep         = func->eps;
1830        struct ffs_epfile *epfile = func->ffs->epfiles;
1831        unsigned count            = func->ffs->eps_count;
1832        unsigned long flags;
1833
1834        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1835        while (count--) {
1836                /* pending requests get nuked */
1837                if (likely(ep->ep))
1838                        usb_ep_disable(ep->ep);
1839                ++ep;
1840
1841                if (epfile) {
1842                        epfile->ep = NULL;
1843                        __ffs_epfile_read_buffer_free(epfile);
1844                        ++epfile;
1845                }
1846        }
1847        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1848}
1849
1850static int ffs_func_eps_enable(struct ffs_function *func)
1851{
1852        struct ffs_data *ffs      = func->ffs;
1853        struct ffs_ep *ep         = func->eps;
1854        struct ffs_epfile *epfile = ffs->epfiles;
1855        unsigned count            = ffs->eps_count;
1856        unsigned long flags;
1857        int ret = 0;
1858
1859        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1860        while(count--) {
1861                ep->ep->driver_data = ep;
1862
1863                ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1864                if (ret) {
1865                        pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1866                                        __func__, ep->ep->name, ret);
1867                        break;
1868                }
1869
1870                ret = usb_ep_enable(ep->ep);
1871                if (likely(!ret)) {
1872                        epfile->ep = ep;
1873                        epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1874                        epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1875                } else {
1876                        break;
1877                }
1878
1879                ++ep;
1880                ++epfile;
1881        }
1882
1883        wake_up_interruptible(&ffs->wait);
1884        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1885
1886        return ret;
1887}
1888
1889
1890/* Parsing and building descriptors and strings *****************************/
1891
1892/*
1893 * This validates if data pointed by data is a valid USB descriptor as
1894 * well as record how many interfaces, endpoints and strings are
1895 * required by given configuration.  Returns address after the
1896 * descriptor or NULL if data is invalid.
1897 */
1898
1899enum ffs_entity_type {
1900        FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1901};
1902
1903enum ffs_os_desc_type {
1904        FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1905};
1906
1907typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1908                                   u8 *valuep,
1909                                   struct usb_descriptor_header *desc,
1910                                   void *priv);
1911
1912typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1913                                    struct usb_os_desc_header *h, void *data,
1914                                    unsigned len, void *priv);
1915
1916static int __must_check ffs_do_single_desc(char *data, unsigned len,
1917                                           ffs_entity_callback entity,
1918                                           void *priv)
1919{
1920        struct usb_descriptor_header *_ds = (void *)data;
1921        u8 length;
1922        int ret;
1923
1924        ENTER();
1925
1926        /* At least two bytes are required: length and type */
1927        if (len < 2) {
1928                pr_vdebug("descriptor too short\n");
1929                return -EINVAL;
1930        }
1931
1932        /* If we have at least as many bytes as the descriptor takes? */
1933        length = _ds->bLength;
1934        if (len < length) {
1935                pr_vdebug("descriptor longer then available data\n");
1936                return -EINVAL;
1937        }
1938
1939#define __entity_check_INTERFACE(val)  1
1940#define __entity_check_STRING(val)     (val)
1941#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1942#define __entity(type, val) do {                                        \
1943                pr_vdebug("entity " #type "(%02x)\n", (val));           \
1944                if (unlikely(!__entity_check_ ##type(val))) {           \
1945                        pr_vdebug("invalid entity's value\n");          \
1946                        return -EINVAL;                                 \
1947                }                                                       \
1948                ret = entity(FFS_ ##type, &val, _ds, priv);             \
1949                if (unlikely(ret < 0)) {                                \
1950                        pr_debug("entity " #type "(%02x); ret = %d\n",  \
1951                                 (val), ret);                           \
1952                        return ret;                                     \
1953                }                                                       \
1954        } while (0)
1955
1956        /* Parse descriptor depending on type. */
1957        switch (_ds->bDescriptorType) {
1958        case USB_DT_DEVICE:
1959        case USB_DT_CONFIG:
1960        case USB_DT_STRING:
1961        case USB_DT_DEVICE_QUALIFIER:
1962                /* function can't have any of those */
1963                pr_vdebug("descriptor reserved for gadget: %d\n",
1964                      _ds->bDescriptorType);
1965                return -EINVAL;
1966
1967        case USB_DT_INTERFACE: {
1968                struct usb_interface_descriptor *ds = (void *)_ds;
1969                pr_vdebug("interface descriptor\n");
1970                if (length != sizeof *ds)
1971                        goto inv_length;
1972
1973                __entity(INTERFACE, ds->bInterfaceNumber);
1974                if (ds->iInterface)
1975                        __entity(STRING, ds->iInterface);
1976        }
1977                break;
1978
1979        case USB_DT_ENDPOINT: {
1980                struct usb_endpoint_descriptor *ds = (void *)_ds;
1981                pr_vdebug("endpoint descriptor\n");
1982                if (length != USB_DT_ENDPOINT_SIZE &&
1983                    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1984                        goto inv_length;
1985                __entity(ENDPOINT, ds->bEndpointAddress);
1986        }
1987                break;
1988
1989        case HID_DT_HID:
1990                pr_vdebug("hid descriptor\n");
1991                if (length != sizeof(struct hid_descriptor))
1992                        goto inv_length;
1993                break;
1994
1995        case USB_DT_OTG:
1996                if (length != sizeof(struct usb_otg_descriptor))
1997                        goto inv_length;
1998                break;
1999
2000        case USB_DT_INTERFACE_ASSOCIATION: {
2001                struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2002                pr_vdebug("interface association descriptor\n");
2003                if (length != sizeof *ds)
2004                        goto inv_length;
2005                if (ds->iFunction)
2006                        __entity(STRING, ds->iFunction);
2007        }
2008                break;
2009
2010        case USB_DT_SS_ENDPOINT_COMP:
2011                pr_vdebug("EP SS companion descriptor\n");
2012                if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2013                        goto inv_length;
2014                break;
2015
2016        case USB_DT_OTHER_SPEED_CONFIG:
2017        case USB_DT_INTERFACE_POWER:
2018        case USB_DT_DEBUG:
2019        case USB_DT_SECURITY:
2020        case USB_DT_CS_RADIO_CONTROL:
2021                /* TODO */
2022                pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2023                return -EINVAL;
2024
2025        default:
2026                /* We should never be here */
2027                pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2028                return -EINVAL;
2029
2030inv_length:
2031                pr_vdebug("invalid length: %d (descriptor %d)\n",
2032                          _ds->bLength, _ds->bDescriptorType);
2033                return -EINVAL;
2034        }
2035
2036#undef __entity
2037#undef __entity_check_DESCRIPTOR
2038#undef __entity_check_INTERFACE
2039#undef __entity_check_STRING
2040#undef __entity_check_ENDPOINT
2041
2042        return length;
2043}
2044
2045static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2046                                     ffs_entity_callback entity, void *priv)
2047{
2048        const unsigned _len = len;
2049        unsigned long num = 0;
2050
2051        ENTER();
2052
2053        for (;;) {
2054                int ret;
2055
2056                if (num == count)
2057                        data = NULL;
2058
2059                /* Record "descriptor" entity */
2060                ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2061                if (unlikely(ret < 0)) {
2062                        pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2063                                 num, ret);
2064                        return ret;
2065                }
2066
2067                if (!data)
2068                        return _len - len;
2069
2070                ret = ffs_do_single_desc(data, len, entity, priv);
2071                if (unlikely(ret < 0)) {
2072                        pr_debug("%s returns %d\n", __func__, ret);
2073                        return ret;
2074                }
2075
2076                len -= ret;
2077                data += ret;
2078                ++num;
2079        }
2080}
2081
2082static int __ffs_data_do_entity(enum ffs_entity_type type,
2083                                u8 *valuep, struct usb_descriptor_header *desc,
2084                                void *priv)
2085{
2086        struct ffs_desc_helper *helper = priv;
2087        struct usb_endpoint_descriptor *d;
2088
2089        ENTER();
2090
2091        switch (type) {
2092        case FFS_DESCRIPTOR:
2093                break;
2094
2095        case FFS_INTERFACE:
2096                /*
2097                 * Interfaces are indexed from zero so if we
2098                 * encountered interface "n" then there are at least
2099                 * "n+1" interfaces.
2100                 */
2101                if (*valuep >= helper->interfaces_count)
2102                        helper->interfaces_count = *valuep + 1;
2103                break;
2104
2105        case FFS_STRING:
2106                /*
2107                 * Strings are indexed from 1 (0 is reserved
2108                 * for languages list)
2109                 */
2110                if (*valuep > helper->ffs->strings_count)
2111                        helper->ffs->strings_count = *valuep;
2112                break;
2113
2114        case FFS_ENDPOINT:
2115                d = (void *)desc;
2116                helper->eps_count++;
2117                if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2118                        return -EINVAL;
2119                /* Check if descriptors for any speed were already parsed */
2120                if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2121                        helper->ffs->eps_addrmap[helper->eps_count] =
2122                                d->bEndpointAddress;
2123                else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2124                                d->bEndpointAddress)
2125                        return -EINVAL;
2126                break;
2127        }
2128
2129        return 0;
2130}
2131
2132static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2133                                   struct usb_os_desc_header *desc)
2134{
2135        u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2136        u16 w_index = le16_to_cpu(desc->wIndex);
2137
2138        if (bcd_version != 1) {
2139                pr_vdebug("unsupported os descriptors version: %d",
2140                          bcd_version);
2141                return -EINVAL;
2142        }
2143        switch (w_index) {
2144        case 0x4:
2145                *next_type = FFS_OS_DESC_EXT_COMPAT;
2146                break;
2147        case 0x5:
2148                *next_type = FFS_OS_DESC_EXT_PROP;
2149                break;
2150        default:
2151                pr_vdebug("unsupported os descriptor type: %d", w_index);
2152                return -EINVAL;
2153        }
2154
2155        return sizeof(*desc);
2156}
2157
2158/*
2159 * Process all extended compatibility/extended property descriptors
2160 * of a feature descriptor
2161 */
2162static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2163                                              enum ffs_os_desc_type type,
2164                                              u16 feature_count,
2165                                              ffs_os_desc_callback entity,
2166                                              void *priv,
2167                                              struct usb_os_desc_header *h)
2168{
2169        int ret;
2170        const unsigned _len = len;
2171
2172        ENTER();
2173
2174        /* loop over all ext compat/ext prop descriptors */
2175        while (feature_count--) {
2176                ret = entity(type, h, data, len, priv);
2177                if (unlikely(ret < 0)) {
2178                        pr_debug("bad OS descriptor, type: %d\n", type);
2179                        return ret;
2180                }
2181                data += ret;
2182                len -= ret;
2183        }
2184        return _len - len;
2185}
2186
2187/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2188static int __must_check ffs_do_os_descs(unsigned count,
2189                                        char *data, unsigned len,
2190                                        ffs_os_desc_callback entity, void *priv)
2191{
2192        const unsigned _len = len;
2193        unsigned long num = 0;
2194
2195        ENTER();
2196
2197        for (num = 0; num < count; ++num) {
2198                int ret;
2199                enum ffs_os_desc_type type;
2200                u16 feature_count;
2201                struct usb_os_desc_header *desc = (void *)data;
2202
2203                if (len < sizeof(*desc))
2204                        return -EINVAL;
2205
2206                /*
2207                 * Record "descriptor" entity.
2208                 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2209                 * Move the data pointer to the beginning of extended
2210                 * compatibilities proper or extended properties proper
2211                 * portions of the data
2212                 */
2213                if (le32_to_cpu(desc->dwLength) > len)
2214                        return -EINVAL;
2215
2216                ret = __ffs_do_os_desc_header(&type, desc);
2217                if (unlikely(ret < 0)) {
2218                        pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2219                                 num, ret);
2220                        return ret;
2221                }
2222                /*
2223                 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2224                 */
2225                feature_count = le16_to_cpu(desc->wCount);
2226                if (type == FFS_OS_DESC_EXT_COMPAT &&
2227                    (feature_count > 255 || desc->Reserved))
2228                                return -EINVAL;
2229                len -= ret;
2230                data += ret;
2231
2232                /*
2233                 * Process all function/property descriptors
2234                 * of this Feature Descriptor
2235                 */
2236                ret = ffs_do_single_os_desc(data, len, type,
2237                                            feature_count, entity, priv, desc);
2238                if (unlikely(ret < 0)) {
2239                        pr_debug("%s returns %d\n", __func__, ret);
2240                        return ret;
2241                }
2242
2243                len -= ret;
2244                data += ret;
2245        }
2246        return _len - len;
2247}
2248
2249/**
2250 * Validate contents of the buffer from userspace related to OS descriptors.
2251 */
2252static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2253                                 struct usb_os_desc_header *h, void *data,
2254                                 unsigned len, void *priv)
2255{
2256        struct ffs_data *ffs = priv;
2257        u8 length;
2258
2259        ENTER();
2260
2261        switch (type) {
2262        case FFS_OS_DESC_EXT_COMPAT: {
2263                struct usb_ext_compat_desc *d = data;
2264                int i;
2265
2266                if (len < sizeof(*d) ||
2267                    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2268                        return -EINVAL;
2269                if (d->Reserved1 != 1) {
2270                        /*
2271                         * According to the spec, Reserved1 must be set to 1
2272                         * but older kernels incorrectly rejected non-zero
2273                         * values.  We fix it here to avoid returning EINVAL
2274                         * in response to values we used to accept.
2275                         */
2276                        pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2277                        d->Reserved1 = 1;
2278                }
2279                for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2280                        if (d->Reserved2[i])
2281                                return -EINVAL;
2282
2283                length = sizeof(struct usb_ext_compat_desc);
2284        }
2285                break;
2286        case FFS_OS_DESC_EXT_PROP: {
2287                struct usb_ext_prop_desc *d = data;
2288                u32 type, pdl;
2289                u16 pnl;
2290
2291                if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2292                        return -EINVAL;
2293                length = le32_to_cpu(d->dwSize);
2294                if (len < length)
2295                        return -EINVAL;
2296                type = le32_to_cpu(d->dwPropertyDataType);
2297                if (type < USB_EXT_PROP_UNICODE ||
2298                    type > USB_EXT_PROP_UNICODE_MULTI) {
2299                        pr_vdebug("unsupported os descriptor property type: %d",
2300                                  type);
2301                        return -EINVAL;
2302                }
2303                pnl = le16_to_cpu(d->wPropertyNameLength);
2304                if (length < 14 + pnl) {
2305                        pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2306                                  length, pnl, type);
2307                        return -EINVAL;
2308                }
2309                pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2310                if (length != 14 + pnl + pdl) {
2311                        pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2312                                  length, pnl, pdl, type);
2313                        return -EINVAL;
2314                }
2315                ++ffs->ms_os_descs_ext_prop_count;
2316                /* property name reported to the host as "WCHAR"s */
2317                ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2318                ffs->ms_os_descs_ext_prop_data_len += pdl;
2319        }
2320                break;
2321        default:
2322                pr_vdebug("unknown descriptor: %d\n", type);
2323                return -EINVAL;
2324        }
2325        return length;
2326}
2327
2328static int __ffs_data_got_descs(struct ffs_data *ffs,
2329                                char *const _data, size_t len)
2330{
2331        char *data = _data, *raw_descs;
2332        unsigned os_descs_count = 0, counts[3], flags;
2333        int ret = -EINVAL, i;
2334        struct ffs_desc_helper helper;
2335
2336        ENTER();
2337
2338        if (get_unaligned_le32(data + 4) != len)
2339                goto error;
2340
2341        switch (get_unaligned_le32(data)) {
2342        case FUNCTIONFS_DESCRIPTORS_MAGIC:
2343                flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2344                data += 8;
2345                len  -= 8;
2346                break;
2347        case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2348                flags = get_unaligned_le32(data + 8);
2349                ffs->user_flags = flags;
2350                if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2351                              FUNCTIONFS_HAS_HS_DESC |
2352                              FUNCTIONFS_HAS_SS_DESC |
2353                              FUNCTIONFS_HAS_MS_OS_DESC |
2354                              FUNCTIONFS_VIRTUAL_ADDR |
2355                              FUNCTIONFS_EVENTFD |
2356                              FUNCTIONFS_ALL_CTRL_RECIP |
2357                              FUNCTIONFS_CONFIG0_SETUP)) {
2358                        ret = -ENOSYS;
2359                        goto error;
2360                }
2361                data += 12;
2362                len  -= 12;
2363                break;
2364        default:
2365                goto error;
2366        }
2367
2368        if (flags & FUNCTIONFS_EVENTFD) {
2369                if (len < 4)
2370                        goto error;
2371                ffs->ffs_eventfd =
2372                        eventfd_ctx_fdget((int)get_unaligned_le32(data));
2373                if (IS_ERR(ffs->ffs_eventfd)) {
2374                        ret = PTR_ERR(ffs->ffs_eventfd);
2375                        ffs->ffs_eventfd = NULL;
2376                        goto error;
2377                }
2378                data += 4;
2379                len  -= 4;
2380        }
2381
2382        /* Read fs_count, hs_count and ss_count (if present) */
2383        for (i = 0; i < 3; ++i) {
2384                if (!(flags & (1 << i))) {
2385                        counts[i] = 0;
2386                } else if (len < 4) {
2387                        goto error;
2388                } else {
2389                        counts[i] = get_unaligned_le32(data);
2390                        data += 4;
2391                        len  -= 4;
2392                }
2393        }
2394        if (flags & (1 << i)) {
2395                if (len < 4) {
2396                        goto error;
2397                }
2398                os_descs_count = get_unaligned_le32(data);
2399                data += 4;
2400                len -= 4;
2401        };
2402
2403        /* Read descriptors */
2404        raw_descs = data;
2405        helper.ffs = ffs;
2406        for (i = 0; i < 3; ++i) {
2407                if (!counts[i])
2408                        continue;
2409                helper.interfaces_count = 0;
2410                helper.eps_count = 0;
2411                ret = ffs_do_descs(counts[i], data, len,
2412                                   __ffs_data_do_entity, &helper);
2413                if (ret < 0)
2414                        goto error;
2415                if (!ffs->eps_count && !ffs->interfaces_count) {
2416                        ffs->eps_count = helper.eps_count;
2417                        ffs->interfaces_count = helper.interfaces_count;
2418                } else {
2419                        if (ffs->eps_count != helper.eps_count) {
2420                                ret = -EINVAL;
2421                                goto error;
2422                        }
2423                        if (ffs->interfaces_count != helper.interfaces_count) {
2424                                ret = -EINVAL;
2425                                goto error;
2426                        }
2427                }
2428                data += ret;
2429                len  -= ret;
2430        }
2431        if (os_descs_count) {
2432                ret = ffs_do_os_descs(os_descs_count, data, len,
2433                                      __ffs_data_do_os_desc, ffs);
2434                if (ret < 0)
2435                        goto error;
2436                data += ret;
2437                len -= ret;
2438        }
2439
2440        if (raw_descs == data || len) {
2441                ret = -EINVAL;
2442                goto error;
2443        }
2444
2445        ffs->raw_descs_data     = _data;
2446        ffs->raw_descs          = raw_descs;
2447        ffs->raw_descs_length   = data - raw_descs;
2448        ffs->fs_descs_count     = counts[0];
2449        ffs->hs_descs_count     = counts[1];
2450        ffs->ss_descs_count     = counts[2];
2451        ffs->ms_os_descs_count  = os_descs_count;
2452
2453        return 0;
2454
2455error:
2456        kfree(_data);
2457        return ret;
2458}
2459
2460static int __ffs_data_got_strings(struct ffs_data *ffs,
2461                                  char *const _data, size_t len)
2462{
2463        u32 str_count, needed_count, lang_count;
2464        struct usb_gadget_strings **stringtabs, *t;
2465        const char *data = _data;
2466        struct usb_string *s;
2467
2468        ENTER();
2469
2470        if (unlikely(len < 16 ||
2471                     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2472                     get_unaligned_le32(data + 4) != len))
2473                goto error;
2474        str_count  = get_unaligned_le32(data + 8);
2475        lang_count = get_unaligned_le32(data + 12);
2476
2477        /* if one is zero the other must be zero */
2478        if (unlikely(!str_count != !lang_count))
2479                goto error;
2480
2481        /* Do we have at least as many strings as descriptors need? */
2482        needed_count = ffs->strings_count;
2483        if (unlikely(str_count < needed_count))
2484                goto error;
2485
2486        /*
2487         * If we don't need any strings just return and free all
2488         * memory.
2489         */
2490        if (!needed_count) {
2491                kfree(_data);
2492                return 0;
2493        }
2494
2495        /* Allocate everything in one chunk so there's less maintenance. */
2496        {
2497                unsigned i = 0;
2498                vla_group(d);
2499                vla_item(d, struct usb_gadget_strings *, stringtabs,
2500                        lang_count + 1);
2501                vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2502                vla_item(d, struct usb_string, strings,
2503                        lang_count*(needed_count+1));
2504
2505                char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2506
2507                if (unlikely(!vlabuf)) {
2508                        kfree(_data);
2509                        return -ENOMEM;
2510                }
2511
2512                /* Initialize the VLA pointers */
2513                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2514                t = vla_ptr(vlabuf, d, stringtab);
2515                i = lang_count;
2516                do {
2517                        *stringtabs++ = t++;
2518                } while (--i);
2519                *stringtabs = NULL;
2520
2521                /* stringtabs = vlabuf = d_stringtabs for later kfree */
2522                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2523                t = vla_ptr(vlabuf, d, stringtab);
2524                s = vla_ptr(vlabuf, d, strings);
2525        }
2526
2527        /* For each language */
2528        data += 16;
2529        len -= 16;
2530
2531        do { /* lang_count > 0 so we can use do-while */
2532                unsigned needed = needed_count;
2533
2534                if (unlikely(len < 3))
2535                        goto error_free;
2536                t->language = get_unaligned_le16(data);
2537                t->strings  = s;
2538                ++t;
2539
2540                data += 2;
2541                len -= 2;
2542
2543                /* For each string */
2544                do { /* str_count > 0 so we can use do-while */
2545                        size_t length = strnlen(data, len);
2546
2547                        if (unlikely(length == len))
2548                                goto error_free;
2549
2550                        /*
2551                         * User may provide more strings then we need,
2552                         * if that's the case we simply ignore the
2553                         * rest
2554                         */
2555                        if (likely(needed)) {
2556                                /*
2557                                 * s->id will be set while adding
2558                                 * function to configuration so for
2559                                 * now just leave garbage here.
2560                                 */
2561                                s->s = data;
2562                                --needed;
2563                                ++s;
2564                        }
2565
2566                        data += length + 1;
2567                        len -= length + 1;
2568                } while (--str_count);
2569
2570                s->id = 0;   /* terminator */
2571                s->s = NULL;
2572                ++s;
2573
2574        } while (--lang_count);
2575
2576        /* Some garbage left? */
2577        if (unlikely(len))
2578                goto error_free;
2579
2580        /* Done! */
2581        ffs->stringtabs = stringtabs;
2582        ffs->raw_strings = _data;
2583
2584        return 0;
2585
2586error_free:
2587        kfree(stringtabs);
2588error:
2589        kfree(_data);
2590        return -EINVAL;
2591}
2592
2593
2594/* Events handling and management *******************************************/
2595
2596static void __ffs_event_add(struct ffs_data *ffs,
2597                            enum usb_functionfs_event_type type)
2598{
2599        enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2600        int neg = 0;
2601
2602        /*
2603         * Abort any unhandled setup
2604         *
2605         * We do not need to worry about some cmpxchg() changing value
2606         * of ffs->setup_state without holding the lock because when
2607         * state is FFS_SETUP_PENDING cmpxchg() in several places in
2608         * the source does nothing.
2609         */
2610        if (ffs->setup_state == FFS_SETUP_PENDING)
2611                ffs->setup_state = FFS_SETUP_CANCELLED;
2612
2613        /*
2614         * Logic of this function guarantees that there are at most four pending
2615         * evens on ffs->ev.types queue.  This is important because the queue
2616         * has space for four elements only and __ffs_ep0_read_events function
2617         * depends on that limit as well.  If more event types are added, those
2618         * limits have to be revisited or guaranteed to still hold.
2619         */
2620        switch (type) {
2621        case FUNCTIONFS_RESUME:
2622                rem_type2 = FUNCTIONFS_SUSPEND;
2623                /* FALL THROUGH */
2624        case FUNCTIONFS_SUSPEND:
2625        case FUNCTIONFS_SETUP:
2626                rem_type1 = type;
2627                /* Discard all similar events */
2628                break;
2629
2630        case FUNCTIONFS_BIND:
2631        case FUNCTIONFS_UNBIND:
2632        case FUNCTIONFS_DISABLE:
2633        case FUNCTIONFS_ENABLE:
2634                /* Discard everything other then power management. */
2635                rem_type1 = FUNCTIONFS_SUSPEND;
2636                rem_type2 = FUNCTIONFS_RESUME;
2637                neg = 1;
2638                break;
2639
2640        default:
2641                WARN(1, "%d: unknown event, this should not happen\n", type);
2642                return;
2643        }
2644
2645        {
2646                u8 *ev  = ffs->ev.types, *out = ev;
2647                unsigned n = ffs->ev.count;
2648                for (; n; --n, ++ev)
2649                        if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2650                                *out++ = *ev;
2651                        else
2652                                pr_vdebug("purging event %d\n", *ev);
2653                ffs->ev.count = out - ffs->ev.types;
2654        }
2655
2656        pr_vdebug("adding event %d\n", type);
2657        ffs->ev.types[ffs->ev.count++] = type;
2658        wake_up_locked(&ffs->ev.waitq);
2659        if (ffs->ffs_eventfd)
2660                eventfd_signal(ffs->ffs_eventfd, 1);
2661}
2662
2663static void ffs_event_add(struct ffs_data *ffs,
2664                          enum usb_functionfs_event_type type)
2665{
2666        unsigned long flags;
2667        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2668        __ffs_event_add(ffs, type);
2669        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2670}
2671
2672/* Bind/unbind USB function hooks *******************************************/
2673
2674static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2675{
2676        int i;
2677
2678        for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2679                if (ffs->eps_addrmap[i] == endpoint_address)
2680                        return i;
2681        return -ENOENT;
2682}
2683
2684static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2685                                    struct usb_descriptor_header *desc,
2686                                    void *priv)
2687{
2688        struct usb_endpoint_descriptor *ds = (void *)desc;
2689        struct ffs_function *func = priv;
2690        struct ffs_ep *ffs_ep;
2691        unsigned ep_desc_id;
2692        int idx;
2693        static const char *speed_names[] = { "full", "high", "super" };
2694
2695        if (type != FFS_DESCRIPTOR)
2696                return 0;
2697
2698        /*
2699         * If ss_descriptors is not NULL, we are reading super speed
2700         * descriptors; if hs_descriptors is not NULL, we are reading high
2701         * speed descriptors; otherwise, we are reading full speed
2702         * descriptors.
2703         */
2704        if (func->function.ss_descriptors) {
2705                ep_desc_id = 2;
2706                func->function.ss_descriptors[(long)valuep] = desc;
2707        } else if (func->function.hs_descriptors) {
2708                ep_desc_id = 1;
2709                func->function.hs_descriptors[(long)valuep] = desc;
2710        } else {
2711                ep_desc_id = 0;
2712                func->function.fs_descriptors[(long)valuep]    = desc;
2713        }
2714
2715        if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2716                return 0;
2717
2718        idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2719        if (idx < 0)
2720                return idx;
2721
2722        ffs_ep = func->eps + idx;
2723
2724        if (unlikely(ffs_ep->descs[ep_desc_id])) {
2725                pr_err("two %sspeed descriptors for EP %d\n",
2726                          speed_names[ep_desc_id],
2727                          ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2728                return -EINVAL;
2729        }
2730        ffs_ep->descs[ep_desc_id] = ds;
2731
2732        ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2733        if (ffs_ep->ep) {
2734                ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2735                if (!ds->wMaxPacketSize)
2736                        ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2737        } else {
2738                struct usb_request *req;
2739                struct usb_ep *ep;
2740                u8 bEndpointAddress;
2741
2742                /*
2743                 * We back up bEndpointAddress because autoconfig overwrites
2744                 * it with physical endpoint address.
2745                 */
2746                bEndpointAddress = ds->bEndpointAddress;
2747                pr_vdebug("autoconfig\n");
2748                ep = usb_ep_autoconfig(func->gadget, ds);
2749                if (unlikely(!ep))
2750                        return -ENOTSUPP;
2751                ep->driver_data = func->eps + idx;
2752
2753                req = usb_ep_alloc_request(ep, GFP_KERNEL);
2754                if (unlikely(!req))
2755                        return -ENOMEM;
2756
2757                ffs_ep->ep  = ep;
2758                ffs_ep->req = req;
2759                func->eps_revmap[ds->bEndpointAddress &
2760                                 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2761                /*
2762                 * If we use virtual address mapping, we restore
2763                 * original bEndpointAddress value.
2764                 */
2765                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2766                        ds->bEndpointAddress = bEndpointAddress;
2767        }
2768        ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2769
2770        return 0;
2771}
2772
2773static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2774                                   struct usb_descriptor_header *desc,
2775                                   void *priv)
2776{
2777        struct ffs_function *func = priv;
2778        unsigned idx;
2779        u8 newValue;
2780
2781        switch (type) {
2782        default:
2783        case FFS_DESCRIPTOR:
2784                /* Handled in previous pass by __ffs_func_bind_do_descs() */
2785                return 0;
2786
2787        case FFS_INTERFACE:
2788                idx = *valuep;
2789                if (func->interfaces_nums[idx] < 0) {
2790                        int id = usb_interface_id(func->conf, &func->function);
2791                        if (unlikely(id < 0))
2792                                return id;
2793                        func->interfaces_nums[idx] = id;
2794                }
2795                newValue = func->interfaces_nums[idx];
2796                break;
2797
2798        case FFS_STRING:
2799                /* String' IDs are allocated when fsf_data is bound to cdev */
2800                newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2801                break;
2802
2803        case FFS_ENDPOINT:
2804                /*
2805                 * USB_DT_ENDPOINT are handled in
2806                 * __ffs_func_bind_do_descs().
2807                 */
2808                if (desc->bDescriptorType == USB_DT_ENDPOINT)
2809                        return 0;
2810
2811                idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2812                if (unlikely(!func->eps[idx].ep))
2813                        return -EINVAL;
2814
2815                {
2816                        struct usb_endpoint_descriptor **descs;
2817                        descs = func->eps[idx].descs;
2818                        newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2819                }
2820                break;
2821        }
2822
2823        pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2824        *valuep = newValue;
2825        return 0;
2826}
2827
2828static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2829                                      struct usb_os_desc_header *h, void *data,
2830                                      unsigned len, void *priv)
2831{
2832        struct ffs_function *func = priv;
2833        u8 length = 0;
2834
2835        switch (type) {
2836        case FFS_OS_DESC_EXT_COMPAT: {
2837                struct usb_ext_compat_desc *desc = data;
2838                struct usb_os_desc_table *t;
2839
2840                t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2841                t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2842                memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2843                       ARRAY_SIZE(desc->CompatibleID) +
2844                       ARRAY_SIZE(desc->SubCompatibleID));
2845                length = sizeof(*desc);
2846        }
2847                break;
2848        case FFS_OS_DESC_EXT_PROP: {
2849                struct usb_ext_prop_desc *desc = data;
2850                struct usb_os_desc_table *t;
2851                struct usb_os_desc_ext_prop *ext_prop;
2852                char *ext_prop_name;
2853                char *ext_prop_data;
2854
2855                t = &func->function.os_desc_table[h->interface];
2856                t->if_id = func->interfaces_nums[h->interface];
2857
2858                ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2859                func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2860
2861                ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2862                ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2863                ext_prop->data_len = le32_to_cpu(*(__le32 *)
2864                        usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2865                length = ext_prop->name_len + ext_prop->data_len + 14;
2866
2867                ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2868                func->ffs->ms_os_descs_ext_prop_name_avail +=
2869                        ext_prop->name_len;
2870
2871                ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2872                func->ffs->ms_os_descs_ext_prop_data_avail +=
2873                        ext_prop->data_len;
2874                memcpy(ext_prop_data,
2875                       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2876                       ext_prop->data_len);
2877                /* unicode data reported to the host as "WCHAR"s */
2878                switch (ext_prop->type) {
2879                case USB_EXT_PROP_UNICODE:
2880                case USB_EXT_PROP_UNICODE_ENV:
2881                case USB_EXT_PROP_UNICODE_LINK:
2882                case USB_EXT_PROP_UNICODE_MULTI:
2883                        ext_prop->data_len *= 2;
2884                        break;
2885                }
2886                ext_prop->data = ext_prop_data;
2887
2888                memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2889                       ext_prop->name_len);
2890                /* property name reported to the host as "WCHAR"s */
2891                ext_prop->name_len *= 2;
2892                ext_prop->name = ext_prop_name;
2893
2894                t->os_desc->ext_prop_len +=
2895                        ext_prop->name_len + ext_prop->data_len + 14;
2896                ++t->os_desc->ext_prop_count;
2897                list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2898        }
2899                break;
2900        default:
2901                pr_vdebug("unknown descriptor: %d\n", type);
2902        }
2903
2904        return length;
2905}
2906
2907static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2908                                                struct usb_configuration *c)
2909{
2910        struct ffs_function *func = ffs_func_from_usb(f);
2911        struct f_fs_opts *ffs_opts =
2912                container_of(f->fi, struct f_fs_opts, func_inst);
2913        int ret;
2914
2915        ENTER();
2916
2917        /*
2918         * Legacy gadget triggers binding in functionfs_ready_callback,
2919         * which already uses locking; taking the same lock here would
2920         * cause a deadlock.
2921         *
2922         * Configfs-enabled gadgets however do need ffs_dev_lock.
2923         */
2924        if (!ffs_opts->no_configfs)
2925                ffs_dev_lock();
2926        ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2927        func->ffs = ffs_opts->dev->ffs_data;
2928        if (!ffs_opts->no_configfs)
2929                ffs_dev_unlock();
2930        if (ret)
2931                return ERR_PTR(ret);
2932
2933        func->conf = c;
2934        func->gadget = c->cdev->gadget;
2935
2936        /*
2937         * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2938         * configurations are bound in sequence with list_for_each_entry,
2939         * in each configuration its functions are bound in sequence
2940         * with list_for_each_entry, so we assume no race condition
2941         * with regard to ffs_opts->bound access
2942         */
2943        if (!ffs_opts->refcnt) {
2944                ret = functionfs_bind(func->ffs, c->cdev);
2945                if (ret)
2946                        return ERR_PTR(ret);
2947        }
2948        ffs_opts->refcnt++;
2949        func->function.strings = func->ffs->stringtabs;
2950
2951        return ffs_opts;
2952}
2953
2954static int _ffs_func_bind(struct usb_configuration *c,
2955                          struct usb_function *f)
2956{
2957        struct ffs_function *func = ffs_func_from_usb(f);
2958        struct ffs_data *ffs = func->ffs;
2959
2960        const int full = !!func->ffs->fs_descs_count;
2961        const int high = !!func->ffs->hs_descs_count;
2962        const int super = !!func->ffs->ss_descs_count;
2963
2964        int fs_len, hs_len, ss_len, ret, i;
2965        struct ffs_ep *eps_ptr;
2966
2967        /* Make it a single chunk, less management later on */
2968        vla_group(d);
2969        vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2970        vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2971                full ? ffs->fs_descs_count + 1 : 0);
2972        vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2973                high ? ffs->hs_descs_count + 1 : 0);
2974        vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2975                super ? ffs->ss_descs_count + 1 : 0);
2976        vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2977        vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2978                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2979        vla_item_with_sz(d, char[16], ext_compat,
2980                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2981        vla_item_with_sz(d, struct usb_os_desc, os_desc,
2982                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2983        vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2984                         ffs->ms_os_descs_ext_prop_count);
2985        vla_item_with_sz(d, char, ext_prop_name,
2986                         ffs->ms_os_descs_ext_prop_name_len);
2987        vla_item_with_sz(d, char, ext_prop_data,
2988                         ffs->ms_os_descs_ext_prop_data_len);
2989        vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2990        char *vlabuf;
2991
2992        ENTER();
2993
2994        /* Has descriptors only for speeds gadget does not support */
2995        if (unlikely(!(full | high | super)))
2996                return -ENOTSUPP;
2997
2998        /* Allocate a single chunk, less management later on */
2999        vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3000        if (unlikely(!vlabuf))
3001                return -ENOMEM;
3002
3003        ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3004        ffs->ms_os_descs_ext_prop_name_avail =
3005                vla_ptr(vlabuf, d, ext_prop_name);
3006        ffs->ms_os_descs_ext_prop_data_avail =
3007                vla_ptr(vlabuf, d, ext_prop_data);
3008
3009        /* Copy descriptors  */
3010        memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3011               ffs->raw_descs_length);
3012
3013        memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3014        eps_ptr = vla_ptr(vlabuf, d, eps);
3015        for (i = 0; i < ffs->eps_count; i++)
3016                eps_ptr[i].num = -1;
3017
3018        /* Save pointers
3019         * d_eps == vlabuf, func->eps used to kfree vlabuf later
3020        */
3021        func->eps             = vla_ptr(vlabuf, d, eps);
3022        func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3023
3024        /*
3025         * Go through all the endpoint descriptors and allocate
3026         * endpoints first, so that later we can rewrite the endpoint
3027         * numbers without worrying that it may be described later on.
3028         */
3029        if (likely(full)) {
3030                func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3031                fs_len = ffs_do_descs(ffs->fs_descs_count,
3032                                      vla_ptr(vlabuf, d, raw_descs),
3033                                      d_raw_descs__sz,
3034                                      __ffs_func_bind_do_descs, func);
3035                if (unlikely(fs_len < 0)) {
3036                        ret = fs_len;
3037                        goto error;
3038                }
3039        } else {
3040                fs_len = 0;
3041        }
3042
3043        if (likely(high)) {
3044                func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3045                hs_len = ffs_do_descs(ffs->hs_descs_count,
3046                                      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3047                                      d_raw_descs__sz - fs_len,
3048                                      __ffs_func_bind_do_descs, func);
3049                if (unlikely(hs_len < 0)) {
3050                        ret = hs_len;
3051                        goto error;
3052                }
3053        } else {
3054                hs_len = 0;
3055        }
3056
3057        if (likely(super)) {
3058                func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3059                ss_len = ffs_do_descs(ffs->ss_descs_count,
3060                                vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3061                                d_raw_descs__sz - fs_len - hs_len,
3062                                __ffs_func_bind_do_descs, func);
3063                if (unlikely(ss_len < 0)) {
3064                        ret = ss_len;
3065                        goto error;
3066                }
3067        } else {
3068                ss_len = 0;
3069        }
3070
3071        /*
3072         * Now handle interface numbers allocation and interface and
3073         * endpoint numbers rewriting.  We can do that in one go
3074         * now.
3075         */
3076        ret = ffs_do_descs(ffs->fs_descs_count +
3077                           (high ? ffs->hs_descs_count : 0) +
3078                           (super ? ffs->ss_descs_count : 0),
3079                           vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3080                           __ffs_func_bind_do_nums, func);
3081        if (unlikely(ret < 0))
3082                goto error;
3083
3084        func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3085        if (c->cdev->use_os_string) {
3086                for (i = 0; i < ffs->interfaces_count; ++i) {
3087                        struct usb_os_desc *desc;
3088
3089                        desc = func->function.os_desc_table[i].os_desc =
3090                                vla_ptr(vlabuf, d, os_desc) +
3091                                i * sizeof(struct usb_os_desc);
3092                        desc->ext_compat_id =
3093                                vla_ptr(vlabuf, d, ext_compat) + i * 16;
3094                        INIT_LIST_HEAD(&desc->ext_prop);
3095                }
3096                ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3097                                      vla_ptr(vlabuf, d, raw_descs) +
3098                                      fs_len + hs_len + ss_len,
3099                                      d_raw_descs__sz - fs_len - hs_len -
3100                                      ss_len,
3101                                      __ffs_func_bind_do_os_desc, func);
3102                if (unlikely(ret < 0))
3103                        goto error;
3104        }
3105        func->function.os_desc_n =
3106                c->cdev->use_os_string ? ffs->interfaces_count : 0;
3107
3108        /* And we're done */
3109        ffs_event_add(ffs, FUNCTIONFS_BIND);
3110        return 0;
3111
3112error:
3113        /* XXX Do we need to release all claimed endpoints here? */
3114        return ret;
3115}
3116
3117static int ffs_func_bind(struct usb_configuration *c,
3118                         struct usb_function *f)
3119{
3120        struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3121        struct ffs_function *func = ffs_func_from_usb(f);
3122        int ret;
3123
3124        if (IS_ERR(ffs_opts))
3125                return PTR_ERR(ffs_opts);
3126
3127        ret = _ffs_func_bind(c, f);
3128        if (ret && !--ffs_opts->refcnt)
3129                functionfs_unbind(func->ffs);
3130
3131        return ret;
3132}
3133
3134
3135/* Other USB function hooks *************************************************/
3136
3137static void ffs_reset_work(struct work_struct *work)
3138{
3139        struct ffs_data *ffs = container_of(work,
3140                struct ffs_data, reset_work);
3141        ffs_data_reset(ffs);
3142}
3143
3144static int ffs_func_set_alt(struct usb_function *f,
3145                            unsigned interface, unsigned alt)
3146{
3147        struct ffs_function *func = ffs_func_from_usb(f);
3148        struct ffs_data *ffs = func->ffs;
3149        int ret = 0, intf;
3150
3151        if (alt != (unsigned)-1) {
3152                intf = ffs_func_revmap_intf(func, interface);
3153                if (unlikely(intf < 0))
3154                        return intf;
3155        }
3156
3157        if (ffs->func)
3158                ffs_func_eps_disable(ffs->func);
3159
3160        if (ffs->state == FFS_DEACTIVATED) {
3161                ffs->state = FFS_CLOSING;
3162                INIT_WORK(&ffs->reset_work, ffs_reset_work);
3163                schedule_work(&ffs->reset_work);
3164                return -ENODEV;
3165        }
3166
3167        if (ffs->state != FFS_ACTIVE)
3168                return -ENODEV;
3169
3170        if (alt == (unsigned)-1) {
3171                ffs->func = NULL;
3172                ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3173                return 0;
3174        }
3175
3176        ffs->func = func;
3177        ret = ffs_func_eps_enable(func);
3178        if (likely(ret >= 0))
3179                ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3180        return ret;
3181}
3182
3183static void ffs_func_disable(struct usb_function *f)
3184{
3185        ffs_func_set_alt(f, 0, (unsigned)-1);
3186}
3187
3188static int ffs_func_setup(struct usb_function *f,
3189                          const struct usb_ctrlrequest *creq)
3190{
3191        struct ffs_function *func = ffs_func_from_usb(f);
3192        struct ffs_data *ffs = func->ffs;
3193        unsigned long flags;
3194        int ret;
3195
3196        ENTER();
3197
3198        pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3199        pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3200        pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3201        pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3202        pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3203
3204        /*
3205         * Most requests directed to interface go through here
3206         * (notable exceptions are set/get interface) so we need to
3207         * handle them.  All other either handled by composite or
3208         * passed to usb_configuration->setup() (if one is set).  No
3209         * matter, we will handle requests directed to endpoint here
3210         * as well (as it's straightforward).  Other request recipient
3211         * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3212         * is being used.
3213         */
3214        if (ffs->state != FFS_ACTIVE)
3215                return -ENODEV;
3216
3217        switch (creq->bRequestType & USB_RECIP_MASK) {
3218        case USB_RECIP_INTERFACE:
3219                ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3220                if (unlikely(ret < 0))
3221                        return ret;
3222                break;
3223
3224        case USB_RECIP_ENDPOINT:
3225                ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3226                if (unlikely(ret < 0))
3227                        return ret;
3228                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3229                        ret = func->ffs->eps_addrmap[ret];
3230                break;
3231
3232        default:
3233                if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3234                        ret = le16_to_cpu(creq->wIndex);
3235                else
3236                        return -EOPNOTSUPP;
3237        }
3238
3239        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3240        ffs->ev.setup = *creq;
3241        ffs->ev.setup.wIndex = cpu_to_le16(ret);
3242        __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3243        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3244
3245        return USB_GADGET_DELAYED_STATUS;
3246}
3247
3248static bool ffs_func_req_match(struct usb_function *f,
3249                               const struct usb_ctrlrequest *creq,
3250                               bool config0)
3251{
3252        struct ffs_function *func = ffs_func_from_usb(f);
3253
3254        if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3255                return false;
3256
3257        switch (creq->bRequestType & USB_RECIP_MASK) {
3258        case USB_RECIP_INTERFACE:
3259                return (ffs_func_revmap_intf(func,
3260                                             le16_to_cpu(creq->wIndex)) >= 0);
3261        case USB_RECIP_ENDPOINT:
3262                return (ffs_func_revmap_ep(func,
3263                                           le16_to_cpu(creq->wIndex)) >= 0);
3264        default:
3265                return (bool) (func->ffs->user_flags &
3266                               FUNCTIONFS_ALL_CTRL_RECIP);
3267        }
3268}
3269
3270static void ffs_func_suspend(struct usb_function *f)
3271{
3272        ENTER();
3273        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3274}
3275
3276static void ffs_func_resume(struct usb_function *f)
3277{
3278        ENTER();
3279        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3280}
3281
3282
3283/* Endpoint and interface numbers reverse mapping ***************************/
3284
3285static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3286{
3287        num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3288        return num ? num : -EDOM;
3289}
3290
3291static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3292{
3293        short *nums = func->interfaces_nums;
3294        unsigned count = func->ffs->interfaces_count;
3295
3296        for (; count; --count, ++nums) {
3297                if (*nums >= 0 && *nums == intf)
3298                        return nums - func->interfaces_nums;
3299        }
3300
3301        return -EDOM;
3302}
3303
3304
3305/* Devices management *******************************************************/
3306
3307static LIST_HEAD(ffs_devices);
3308
3309static struct ffs_dev *_ffs_do_find_dev(const char *name)
3310{
3311        struct ffs_dev *dev;
3312
3313        if (!name)
3314                return NULL;
3315
3316        list_for_each_entry(dev, &ffs_devices, entry) {
3317                if (strcmp(dev->name, name) == 0)
3318                        return dev;
3319        }
3320
3321        return NULL;
3322}
3323
3324/*
3325 * ffs_lock must be taken by the caller of this function
3326 */
3327static struct ffs_dev *_ffs_get_single_dev(void)
3328{
3329        struct ffs_dev *dev;
3330
3331        if (list_is_singular(&ffs_devices)) {
3332                dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3333                if (dev->single)
3334                        return dev;
3335        }
3336
3337        return NULL;
3338}
3339
3340/*
3341 * ffs_lock must be taken by the caller of this function
3342 */
3343static struct ffs_dev *_ffs_find_dev(const char *name)
3344{
3345        struct ffs_dev *dev;
3346
3347        dev = _ffs_get_single_dev();
3348        if (dev)
3349                return dev;
3350
3351        return _ffs_do_find_dev(name);
3352}
3353
3354/* Configfs support *********************************************************/
3355
3356static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3357{
3358        return container_of(to_config_group(item), struct f_fs_opts,
3359                            func_inst.group);
3360}
3361
3362static void ffs_attr_release(struct config_item *item)
3363{
3364        struct f_fs_opts *opts = to_ffs_opts(item);
3365
3366        usb_put_function_instance(&opts->func_inst);
3367}
3368
3369static struct configfs_item_operations ffs_item_ops = {
3370        .release        = ffs_attr_release,
3371};
3372
3373static const struct config_item_type ffs_func_type = {
3374        .ct_item_ops    = &ffs_item_ops,
3375        .ct_owner       = THIS_MODULE,
3376};
3377
3378
3379/* Function registration interface ******************************************/
3380
3381static void ffs_free_inst(struct usb_function_instance *f)
3382{
3383        struct f_fs_opts *opts;
3384
3385        opts = to_f_fs_opts(f);
3386        ffs_dev_lock();
3387        _ffs_free_dev(opts->dev);
3388        ffs_dev_unlock();
3389        kfree(opts);
3390}
3391
3392static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3393{
3394        if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3395                return -ENAMETOOLONG;
3396        return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3397}
3398
3399static struct usb_function_instance *ffs_alloc_inst(void)
3400{
3401        struct f_fs_opts *opts;
3402        struct ffs_dev *dev;
3403
3404        opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3405        if (!opts)
3406                return ERR_PTR(-ENOMEM);
3407
3408        opts->func_inst.set_inst_name = ffs_set_inst_name;
3409        opts->func_inst.free_func_inst = ffs_free_inst;
3410        ffs_dev_lock();
3411        dev = _ffs_alloc_dev();
3412        ffs_dev_unlock();
3413        if (IS_ERR(dev)) {
3414                kfree(opts);
3415                return ERR_CAST(dev);
3416        }
3417        opts->dev = dev;
3418        dev->opts = opts;
3419
3420        config_group_init_type_name(&opts->func_inst.group, "",
3421                                    &ffs_func_type);
3422        return &opts->func_inst;
3423}
3424
3425static void ffs_free(struct usb_function *f)
3426{
3427        kfree(ffs_func_from_usb(f));
3428}
3429
3430static void ffs_func_unbind(struct usb_configuration *c,
3431                            struct usb_function *f)
3432{
3433        struct ffs_function *func = ffs_func_from_usb(f);
3434        struct ffs_data *ffs = func->ffs;
3435        struct f_fs_opts *opts =
3436                container_of(f->fi, struct f_fs_opts, func_inst);
3437        struct ffs_ep *ep = func->eps;
3438        unsigned count = ffs->eps_count;
3439        unsigned long flags;
3440
3441        ENTER();
3442        if (ffs->func == func) {
3443                ffs_func_eps_disable(func);
3444                ffs->func = NULL;
3445        }
3446
3447        if (!--opts->refcnt)
3448                functionfs_unbind(ffs);
3449
3450        /* cleanup after autoconfig */
3451        spin_lock_irqsave(&func->ffs->eps_lock, flags);
3452        while (count--) {
3453                if (ep->ep && ep->req)
3454                        usb_ep_free_request(ep->ep, ep->req);
3455                ep->req = NULL;
3456                ++ep;
3457        }
3458        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3459        kfree(func->eps);
3460        func->eps = NULL;
3461        /*
3462         * eps, descriptors and interfaces_nums are allocated in the
3463         * same chunk so only one free is required.
3464         */
3465        func->function.fs_descriptors = NULL;
3466        func->function.hs_descriptors = NULL;
3467        func->function.ss_descriptors = NULL;
3468        func->interfaces_nums = NULL;
3469
3470        ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3471}
3472
3473static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3474{
3475        struct ffs_function *func;
3476
3477        ENTER();
3478
3479        func = kzalloc(sizeof(*func), GFP_KERNEL);
3480        if (unlikely(!func))
3481                return ERR_PTR(-ENOMEM);
3482
3483        func->function.name    = "Function FS Gadget";
3484
3485        func->function.bind    = ffs_func_bind;
3486        func->function.unbind  = ffs_func_unbind;
3487        func->function.set_alt = ffs_func_set_alt;
3488        func->function.disable = ffs_func_disable;
3489        func->function.setup   = ffs_func_setup;
3490        func->function.req_match = ffs_func_req_match;
3491        func->function.suspend = ffs_func_suspend;
3492        func->function.resume  = ffs_func_resume;
3493        func->function.free_func = ffs_free;
3494
3495        return &func->function;
3496}
3497
3498/*
3499 * ffs_lock must be taken by the caller of this function
3500 */
3501static struct ffs_dev *_ffs_alloc_dev(void)
3502{
3503        struct ffs_dev *dev;
3504        int ret;
3505
3506        if (_ffs_get_single_dev())
3507                        return ERR_PTR(-EBUSY);
3508
3509        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3510        if (!dev)
3511                return ERR_PTR(-ENOMEM);
3512
3513        if (list_empty(&ffs_devices)) {
3514                ret = functionfs_init();
3515                if (ret) {
3516                        kfree(dev);
3517                        return ERR_PTR(ret);
3518                }
3519        }
3520
3521        list_add(&dev->entry, &ffs_devices);
3522
3523        return dev;
3524}
3525
3526int ffs_name_dev(struct ffs_dev *dev, const char *name)
3527{
3528        struct ffs_dev *existing;
3529        int ret = 0;
3530
3531        ffs_dev_lock();
3532
3533        existing = _ffs_do_find_dev(name);
3534        if (!existing)
3535                strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3536        else if (existing != dev)
3537                ret = -EBUSY;
3538
3539        ffs_dev_unlock();
3540
3541        return ret;
3542}
3543EXPORT_SYMBOL_GPL(ffs_name_dev);
3544
3545int ffs_single_dev(struct ffs_dev *dev)
3546{
3547        int ret;
3548
3549        ret = 0;
3550        ffs_dev_lock();
3551
3552        if (!list_is_singular(&ffs_devices))
3553                ret = -EBUSY;
3554        else
3555                dev->single = true;
3556
3557        ffs_dev_unlock();
3558        return ret;
3559}
3560EXPORT_SYMBOL_GPL(ffs_single_dev);
3561
3562/*
3563 * ffs_lock must be taken by the caller of this function
3564 */
3565static void _ffs_free_dev(struct ffs_dev *dev)
3566{
3567        list_del(&dev->entry);
3568
3569        /* Clear the private_data pointer to stop incorrect dev access */
3570        if (dev->ffs_data)
3571                dev->ffs_data->private_data = NULL;
3572
3573        kfree(dev);
3574        if (list_empty(&ffs_devices))
3575                functionfs_cleanup();
3576}
3577
3578static void *ffs_acquire_dev(const char *dev_name)
3579{
3580        struct ffs_dev *ffs_dev;
3581
3582        ENTER();
3583        ffs_dev_lock();
3584
3585        ffs_dev = _ffs_find_dev(dev_name);
3586        if (!ffs_dev)
3587                ffs_dev = ERR_PTR(-ENOENT);
3588        else if (ffs_dev->mounted)
3589                ffs_dev = ERR_PTR(-EBUSY);
3590        else if (ffs_dev->ffs_acquire_dev_callback &&
3591            ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3592                ffs_dev = ERR_PTR(-ENOENT);
3593        else
3594                ffs_dev->mounted = true;
3595
3596        ffs_dev_unlock();
3597        return ffs_dev;
3598}
3599
3600static void ffs_release_dev(struct ffs_data *ffs_data)
3601{
3602        struct ffs_dev *ffs_dev;
3603
3604        ENTER();
3605        ffs_dev_lock();
3606
3607        ffs_dev = ffs_data->private_data;
3608        if (ffs_dev) {
3609                ffs_dev->mounted = false;
3610
3611                if (ffs_dev->ffs_release_dev_callback)
3612                        ffs_dev->ffs_release_dev_callback(ffs_dev);
3613        }
3614
3615        ffs_dev_unlock();
3616}
3617
3618static int ffs_ready(struct ffs_data *ffs)
3619{
3620        struct ffs_dev *ffs_obj;
3621        int ret = 0;
3622
3623        ENTER();
3624        ffs_dev_lock();
3625
3626        ffs_obj = ffs->private_data;
3627        if (!ffs_obj) {
3628                ret = -EINVAL;
3629                goto done;
3630        }
3631        if (WARN_ON(ffs_obj->desc_ready)) {
3632                ret = -EBUSY;
3633                goto done;
3634        }
3635
3636        ffs_obj->desc_ready = true;
3637        ffs_obj->ffs_data = ffs;
3638
3639        if (ffs_obj->ffs_ready_callback) {
3640                ret = ffs_obj->ffs_ready_callback(ffs);
3641                if (ret)
3642                        goto done;
3643        }
3644
3645        set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3646done:
3647        ffs_dev_unlock();
3648        return ret;
3649}
3650
3651static void ffs_closed(struct ffs_data *ffs)
3652{
3653        struct ffs_dev *ffs_obj;
3654        struct f_fs_opts *opts;
3655        struct config_item *ci;
3656
3657        ENTER();
3658        ffs_dev_lock();
3659
3660        ffs_obj = ffs->private_data;
3661        if (!ffs_obj)
3662                goto done;
3663
3664        ffs_obj->desc_ready = false;
3665        ffs_obj->ffs_data = NULL;
3666
3667        if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3668            ffs_obj->ffs_closed_callback)
3669                ffs_obj->ffs_closed_callback(ffs);
3670
3671        if (ffs_obj->opts)
3672                opts = ffs_obj->opts;
3673        else
3674                goto done;
3675
3676        if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3677            || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3678                goto done;
3679
3680        ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3681        ffs_dev_unlock();
3682
3683        if (test_bit(FFS_FL_BOUND, &ffs->flags))
3684                unregister_gadget_item(ci);
3685        return;
3686done:
3687        ffs_dev_unlock();
3688}
3689
3690/* Misc helper functions ****************************************************/
3691
3692static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3693{
3694        return nonblock
3695                ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3696                : mutex_lock_interruptible(mutex);
3697}
3698
3699static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3700{
3701        char *data;
3702
3703        if (unlikely(!len))
3704                return NULL;
3705
3706        data = kmalloc(len, GFP_KERNEL);
3707        if (unlikely(!data))
3708                return ERR_PTR(-ENOMEM);
3709
3710        if (unlikely(copy_from_user(data, buf, len))) {
3711                kfree(data);
3712                return ERR_PTR(-EFAULT);
3713        }
3714
3715        pr_vdebug("Buffer from user space:\n");
3716        ffs_dump_mem("", data, len);
3717
3718        return data;
3719}
3720
3721DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3722MODULE_LICENSE("GPL");
3723MODULE_AUTHOR("Michal Nazarewicz");
3724