linux/drivers/usb/host/fotg210-hcd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Faraday FOTG210 EHCI-like driver
   3 *
   4 * Copyright (c) 2013 Faraday Technology Corporation
   5 *
   6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
   7 *         Feng-Hsin Chiang <john453@faraday-tech.com>
   8 *         Po-Yu Chuang <ratbert.chuang@gmail.com>
   9 *
  10 * Most of code borrowed from the Linux-3.7 EHCI driver
  11 */
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/dmapool.h>
  15#include <linux/kernel.h>
  16#include <linux/delay.h>
  17#include <linux/ioport.h>
  18#include <linux/sched.h>
  19#include <linux/vmalloc.h>
  20#include <linux/errno.h>
  21#include <linux/init.h>
  22#include <linux/hrtimer.h>
  23#include <linux/list.h>
  24#include <linux/interrupt.h>
  25#include <linux/usb.h>
  26#include <linux/usb/hcd.h>
  27#include <linux/moduleparam.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/debugfs.h>
  30#include <linux/slab.h>
  31#include <linux/uaccess.h>
  32#include <linux/platform_device.h>
  33#include <linux/io.h>
  34
  35#include <asm/byteorder.h>
  36#include <asm/irq.h>
  37#include <asm/unaligned.h>
  38
  39#define DRIVER_AUTHOR "Yuan-Hsin Chen"
  40#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
  41static const char hcd_name[] = "fotg210_hcd";
  42
  43#undef FOTG210_URB_TRACE
  44#define FOTG210_STATS
  45
  46/* magic numbers that can affect system performance */
  47#define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
  48#define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
  49#define FOTG210_TUNE_RL_TT      0
  50#define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
  51#define FOTG210_TUNE_MULT_TT    1
  52
  53/* Some drivers think it's safe to schedule isochronous transfers more than 256
  54 * ms into the future (partly as a result of an old bug in the scheduling
  55 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
  56 * length of 512 frames instead of 256.
  57 */
  58#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
  59
  60/* Initial IRQ latency:  faster than hw default */
  61static int log2_irq_thresh; /* 0 to 6 */
  62module_param(log2_irq_thresh, int, S_IRUGO);
  63MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
  64
  65/* initial park setting:  slower than hw default */
  66static unsigned park;
  67module_param(park, uint, S_IRUGO);
  68MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
  69
  70/* for link power management(LPM) feature */
  71static unsigned int hird;
  72module_param(hird, int, S_IRUGO);
  73MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
  74
  75#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
  76
  77#include "fotg210.h"
  78
  79#define fotg210_dbg(fotg210, fmt, args...) \
  80        dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  81#define fotg210_err(fotg210, fmt, args...) \
  82        dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  83#define fotg210_info(fotg210, fmt, args...) \
  84        dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  85#define fotg210_warn(fotg210, fmt, args...) \
  86        dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  87
  88/* check the values in the HCSPARAMS register (host controller _Structural_
  89 * parameters) see EHCI spec, Table 2-4 for each value
  90 */
  91static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
  92{
  93        u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
  94
  95        fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
  96                        HCS_N_PORTS(params));
  97}
  98
  99/* check the values in the HCCPARAMS register (host controller _Capability_
 100 * parameters) see EHCI Spec, Table 2-5 for each value
 101 */
 102static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
 103{
 104        u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 105
 106        fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
 107                        params,
 108                        HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
 109                        HCC_CANPARK(params) ? " park" : "");
 110}
 111
 112static void __maybe_unused
 113dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
 114{
 115        fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
 116                        hc32_to_cpup(fotg210, &qtd->hw_next),
 117                        hc32_to_cpup(fotg210, &qtd->hw_alt_next),
 118                        hc32_to_cpup(fotg210, &qtd->hw_token),
 119                        hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
 120        if (qtd->hw_buf[1])
 121                fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
 122                                hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
 123                                hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
 124                                hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
 125                                hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
 126}
 127
 128static void __maybe_unused
 129dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
 130{
 131        struct fotg210_qh_hw *hw = qh->hw;
 132
 133        fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
 134                        hw->hw_next, hw->hw_info1, hw->hw_info2,
 135                        hw->hw_current);
 136
 137        dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
 138}
 139
 140static void __maybe_unused
 141dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
 142{
 143        fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
 144                        itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
 145                        itd->urb);
 146
 147        fotg210_dbg(fotg210,
 148                        "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
 149                        hc32_to_cpu(fotg210, itd->hw_transaction[0]),
 150                        hc32_to_cpu(fotg210, itd->hw_transaction[1]),
 151                        hc32_to_cpu(fotg210, itd->hw_transaction[2]),
 152                        hc32_to_cpu(fotg210, itd->hw_transaction[3]),
 153                        hc32_to_cpu(fotg210, itd->hw_transaction[4]),
 154                        hc32_to_cpu(fotg210, itd->hw_transaction[5]),
 155                        hc32_to_cpu(fotg210, itd->hw_transaction[6]),
 156                        hc32_to_cpu(fotg210, itd->hw_transaction[7]));
 157
 158        fotg210_dbg(fotg210,
 159                        "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
 160                        hc32_to_cpu(fotg210, itd->hw_bufp[0]),
 161                        hc32_to_cpu(fotg210, itd->hw_bufp[1]),
 162                        hc32_to_cpu(fotg210, itd->hw_bufp[2]),
 163                        hc32_to_cpu(fotg210, itd->hw_bufp[3]),
 164                        hc32_to_cpu(fotg210, itd->hw_bufp[4]),
 165                        hc32_to_cpu(fotg210, itd->hw_bufp[5]),
 166                        hc32_to_cpu(fotg210, itd->hw_bufp[6]));
 167
 168        fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
 169                        itd->index[0], itd->index[1], itd->index[2],
 170                        itd->index[3], itd->index[4], itd->index[5],
 171                        itd->index[6], itd->index[7]);
 172}
 173
 174static int __maybe_unused
 175dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 176{
 177        return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 178                        label, label[0] ? " " : "", status,
 179                        (status & STS_ASS) ? " Async" : "",
 180                        (status & STS_PSS) ? " Periodic" : "",
 181                        (status & STS_RECL) ? " Recl" : "",
 182                        (status & STS_HALT) ? " Halt" : "",
 183                        (status & STS_IAA) ? " IAA" : "",
 184                        (status & STS_FATAL) ? " FATAL" : "",
 185                        (status & STS_FLR) ? " FLR" : "",
 186                        (status & STS_PCD) ? " PCD" : "",
 187                        (status & STS_ERR) ? " ERR" : "",
 188                        (status & STS_INT) ? " INT" : "");
 189}
 190
 191static int __maybe_unused
 192dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 193{
 194        return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 195                        label, label[0] ? " " : "", enable,
 196                        (enable & STS_IAA) ? " IAA" : "",
 197                        (enable & STS_FATAL) ? " FATAL" : "",
 198                        (enable & STS_FLR) ? " FLR" : "",
 199                        (enable & STS_PCD) ? " PCD" : "",
 200                        (enable & STS_ERR) ? " ERR" : "",
 201                        (enable & STS_INT) ? " INT" : "");
 202}
 203
 204static const char *const fls_strings[] = { "1024", "512", "256", "??" };
 205
 206static int dbg_command_buf(char *buf, unsigned len, const char *label,
 207                u32 command)
 208{
 209        return scnprintf(buf, len,
 210                        "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
 211                        label, label[0] ? " " : "", command,
 212                        (command & CMD_PARK) ? " park" : "(park)",
 213                        CMD_PARK_CNT(command),
 214                        (command >> 16) & 0x3f,
 215                        (command & CMD_IAAD) ? " IAAD" : "",
 216                        (command & CMD_ASE) ? " Async" : "",
 217                        (command & CMD_PSE) ? " Periodic" : "",
 218                        fls_strings[(command >> 2) & 0x3],
 219                        (command & CMD_RESET) ? " Reset" : "",
 220                        (command & CMD_RUN) ? "RUN" : "HALT");
 221}
 222
 223static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
 224                u32 status)
 225{
 226        char *sig;
 227
 228        /* signaling state */
 229        switch (status & (3 << 10)) {
 230        case 0 << 10:
 231                sig = "se0";
 232                break;
 233        case 1 << 10:
 234                sig = "k";
 235                break; /* low speed */
 236        case 2 << 10:
 237                sig = "j";
 238                break;
 239        default:
 240                sig = "?";
 241                break;
 242        }
 243
 244        scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
 245                        label, label[0] ? " " : "", port, status,
 246                        status >> 25, /*device address */
 247                        sig,
 248                        (status & PORT_RESET) ? " RESET" : "",
 249                        (status & PORT_SUSPEND) ? " SUSPEND" : "",
 250                        (status & PORT_RESUME) ? " RESUME" : "",
 251                        (status & PORT_PEC) ? " PEC" : "",
 252                        (status & PORT_PE) ? " PE" : "",
 253                        (status & PORT_CSC) ? " CSC" : "",
 254                        (status & PORT_CONNECT) ? " CONNECT" : "");
 255
 256        return buf;
 257}
 258
 259/* functions have the "wrong" filename when they're output... */
 260#define dbg_status(fotg210, label, status) {                    \
 261        char _buf[80];                                          \
 262        dbg_status_buf(_buf, sizeof(_buf), label, status);      \
 263        fotg210_dbg(fotg210, "%s\n", _buf);                     \
 264}
 265
 266#define dbg_cmd(fotg210, label, command) {                      \
 267        char _buf[80];                                          \
 268        dbg_command_buf(_buf, sizeof(_buf), label, command);    \
 269        fotg210_dbg(fotg210, "%s\n", _buf);                     \
 270}
 271
 272#define dbg_port(fotg210, label, port, status) {                               \
 273        char _buf[80];                                                         \
 274        fotg210_dbg(fotg210, "%s\n",                                           \
 275                        dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
 276}
 277
 278/* troubleshooting help: expose state in debugfs */
 279static int debug_async_open(struct inode *, struct file *);
 280static int debug_periodic_open(struct inode *, struct file *);
 281static int debug_registers_open(struct inode *, struct file *);
 282static int debug_async_open(struct inode *, struct file *);
 283
 284static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
 285static int debug_close(struct inode *, struct file *);
 286
 287static const struct file_operations debug_async_fops = {
 288        .owner          = THIS_MODULE,
 289        .open           = debug_async_open,
 290        .read           = debug_output,
 291        .release        = debug_close,
 292        .llseek         = default_llseek,
 293};
 294static const struct file_operations debug_periodic_fops = {
 295        .owner          = THIS_MODULE,
 296        .open           = debug_periodic_open,
 297        .read           = debug_output,
 298        .release        = debug_close,
 299        .llseek         = default_llseek,
 300};
 301static const struct file_operations debug_registers_fops = {
 302        .owner          = THIS_MODULE,
 303        .open           = debug_registers_open,
 304        .read           = debug_output,
 305        .release        = debug_close,
 306        .llseek         = default_llseek,
 307};
 308
 309static struct dentry *fotg210_debug_root;
 310
 311struct debug_buffer {
 312        ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
 313        struct usb_bus *bus;
 314        struct mutex mutex;     /* protect filling of buffer */
 315        size_t count;           /* number of characters filled into buffer */
 316        char *output_buf;
 317        size_t alloc_size;
 318};
 319
 320static inline char speed_char(u32 scratch)
 321{
 322        switch (scratch & (3 << 12)) {
 323        case QH_FULL_SPEED:
 324                return 'f';
 325
 326        case QH_LOW_SPEED:
 327                return 'l';
 328
 329        case QH_HIGH_SPEED:
 330                return 'h';
 331
 332        default:
 333                return '?';
 334        }
 335}
 336
 337static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
 338{
 339        __u32 v = hc32_to_cpu(fotg210, token);
 340
 341        if (v & QTD_STS_ACTIVE)
 342                return '*';
 343        if (v & QTD_STS_HALT)
 344                return '-';
 345        if (!IS_SHORT_READ(v))
 346                return ' ';
 347        /* tries to advance through hw_alt_next */
 348        return '/';
 349}
 350
 351static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
 352                char **nextp, unsigned *sizep)
 353{
 354        u32 scratch;
 355        u32 hw_curr;
 356        struct fotg210_qtd *td;
 357        unsigned temp;
 358        unsigned size = *sizep;
 359        char *next = *nextp;
 360        char mark;
 361        __le32 list_end = FOTG210_LIST_END(fotg210);
 362        struct fotg210_qh_hw *hw = qh->hw;
 363
 364        if (hw->hw_qtd_next == list_end) /* NEC does this */
 365                mark = '@';
 366        else
 367                mark = token_mark(fotg210, hw->hw_token);
 368        if (mark == '/') { /* qh_alt_next controls qh advance? */
 369                if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
 370                    fotg210->async->hw->hw_alt_next)
 371                        mark = '#'; /* blocked */
 372                else if (hw->hw_alt_next == list_end)
 373                        mark = '.'; /* use hw_qtd_next */
 374                /* else alt_next points to some other qtd */
 375        }
 376        scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 377        hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
 378        temp = scnprintf(next, size,
 379                        "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
 380                        qh, scratch & 0x007f,
 381                        speed_char(scratch),
 382                        (scratch >> 8) & 0x000f,
 383                        scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
 384                        hc32_to_cpup(fotg210, &hw->hw_token), mark,
 385                        (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
 386                                ? "data1" : "data0",
 387                        (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
 388        size -= temp;
 389        next += temp;
 390
 391        /* hc may be modifying the list as we read it ... */
 392        list_for_each_entry(td, &qh->qtd_list, qtd_list) {
 393                scratch = hc32_to_cpup(fotg210, &td->hw_token);
 394                mark = ' ';
 395                if (hw_curr == td->qtd_dma)
 396                        mark = '*';
 397                else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
 398                        mark = '+';
 399                else if (QTD_LENGTH(scratch)) {
 400                        if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
 401                                mark = '#';
 402                        else if (td->hw_alt_next != list_end)
 403                                mark = '/';
 404                }
 405                temp = snprintf(next, size,
 406                                "\n\t%p%c%s len=%d %08x urb %p",
 407                                td, mark, ({ char *tmp;
 408                                 switch ((scratch>>8)&0x03) {
 409                                 case 0:
 410                                        tmp = "out";
 411                                        break;
 412                                 case 1:
 413                                        tmp = "in";
 414                                        break;
 415                                 case 2:
 416                                        tmp = "setup";
 417                                        break;
 418                                 default:
 419                                        tmp = "?";
 420                                        break;
 421                                 } tmp; }),
 422                                (scratch >> 16) & 0x7fff,
 423                                scratch,
 424                                td->urb);
 425                if (size < temp)
 426                        temp = size;
 427                size -= temp;
 428                next += temp;
 429                if (temp == size)
 430                        goto done;
 431        }
 432
 433        temp = snprintf(next, size, "\n");
 434        if (size < temp)
 435                temp = size;
 436
 437        size -= temp;
 438        next += temp;
 439
 440done:
 441        *sizep = size;
 442        *nextp = next;
 443}
 444
 445static ssize_t fill_async_buffer(struct debug_buffer *buf)
 446{
 447        struct usb_hcd *hcd;
 448        struct fotg210_hcd *fotg210;
 449        unsigned long flags;
 450        unsigned temp, size;
 451        char *next;
 452        struct fotg210_qh *qh;
 453
 454        hcd = bus_to_hcd(buf->bus);
 455        fotg210 = hcd_to_fotg210(hcd);
 456        next = buf->output_buf;
 457        size = buf->alloc_size;
 458
 459        *next = 0;
 460
 461        /* dumps a snapshot of the async schedule.
 462         * usually empty except for long-term bulk reads, or head.
 463         * one QH per line, and TDs we know about
 464         */
 465        spin_lock_irqsave(&fotg210->lock, flags);
 466        for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
 467                        qh = qh->qh_next.qh)
 468                qh_lines(fotg210, qh, &next, &size);
 469        if (fotg210->async_unlink && size > 0) {
 470                temp = scnprintf(next, size, "\nunlink =\n");
 471                size -= temp;
 472                next += temp;
 473
 474                for (qh = fotg210->async_unlink; size > 0 && qh;
 475                                qh = qh->unlink_next)
 476                        qh_lines(fotg210, qh, &next, &size);
 477        }
 478        spin_unlock_irqrestore(&fotg210->lock, flags);
 479
 480        return strlen(buf->output_buf);
 481}
 482
 483/* count tds, get ep direction */
 484static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
 485                struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
 486{
 487        u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 488        struct fotg210_qtd *qtd;
 489        char *type = "";
 490        unsigned temp = 0;
 491
 492        /* count tds, get ep direction */
 493        list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
 494                temp++;
 495                switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
 496                case 0:
 497                        type = "out";
 498                        continue;
 499                case 1:
 500                        type = "in";
 501                        continue;
 502                }
 503        }
 504
 505        return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
 506                        speed_char(scratch), scratch & 0x007f,
 507                        (scratch >> 8) & 0x000f, type, qh->usecs,
 508                        qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
 509}
 510
 511#define DBG_SCHED_LIMIT 64
 512static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
 513{
 514        struct usb_hcd *hcd;
 515        struct fotg210_hcd *fotg210;
 516        unsigned long flags;
 517        union fotg210_shadow p, *seen;
 518        unsigned temp, size, seen_count;
 519        char *next;
 520        unsigned i;
 521        __hc32 tag;
 522
 523        seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
 524        if (!seen)
 525                return 0;
 526
 527        seen_count = 0;
 528
 529        hcd = bus_to_hcd(buf->bus);
 530        fotg210 = hcd_to_fotg210(hcd);
 531        next = buf->output_buf;
 532        size = buf->alloc_size;
 533
 534        temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
 535        size -= temp;
 536        next += temp;
 537
 538        /* dump a snapshot of the periodic schedule.
 539         * iso changes, interrupt usually doesn't.
 540         */
 541        spin_lock_irqsave(&fotg210->lock, flags);
 542        for (i = 0; i < fotg210->periodic_size; i++) {
 543                p = fotg210->pshadow[i];
 544                if (likely(!p.ptr))
 545                        continue;
 546
 547                tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
 548
 549                temp = scnprintf(next, size, "%4d: ", i);
 550                size -= temp;
 551                next += temp;
 552
 553                do {
 554                        struct fotg210_qh_hw *hw;
 555
 556                        switch (hc32_to_cpu(fotg210, tag)) {
 557                        case Q_TYPE_QH:
 558                                hw = p.qh->hw;
 559                                temp = scnprintf(next, size, " qh%d-%04x/%p",
 560                                                p.qh->period,
 561                                                hc32_to_cpup(fotg210,
 562                                                        &hw->hw_info2)
 563                                                        /* uframe masks */
 564                                                        & (QH_CMASK | QH_SMASK),
 565                                                p.qh);
 566                                size -= temp;
 567                                next += temp;
 568                                /* don't repeat what follows this qh */
 569                                for (temp = 0; temp < seen_count; temp++) {
 570                                        if (seen[temp].ptr != p.ptr)
 571                                                continue;
 572                                        if (p.qh->qh_next.ptr) {
 573                                                temp = scnprintf(next, size,
 574                                                                " ...");
 575                                                size -= temp;
 576                                                next += temp;
 577                                        }
 578                                        break;
 579                                }
 580                                /* show more info the first time around */
 581                                if (temp == seen_count) {
 582                                        temp = output_buf_tds_dir(next,
 583                                                        fotg210, hw,
 584                                                        p.qh, size);
 585
 586                                        if (seen_count < DBG_SCHED_LIMIT)
 587                                                seen[seen_count++].qh = p.qh;
 588                                } else
 589                                        temp = 0;
 590                                tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
 591                                p = p.qh->qh_next;
 592                                break;
 593                        case Q_TYPE_FSTN:
 594                                temp = scnprintf(next, size,
 595                                                " fstn-%8x/%p",
 596                                                p.fstn->hw_prev, p.fstn);
 597                                tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
 598                                p = p.fstn->fstn_next;
 599                                break;
 600                        case Q_TYPE_ITD:
 601                                temp = scnprintf(next, size,
 602                                                " itd/%p", p.itd);
 603                                tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
 604                                p = p.itd->itd_next;
 605                                break;
 606                        }
 607                        size -= temp;
 608                        next += temp;
 609                } while (p.ptr);
 610
 611                temp = scnprintf(next, size, "\n");
 612                size -= temp;
 613                next += temp;
 614        }
 615        spin_unlock_irqrestore(&fotg210->lock, flags);
 616        kfree(seen);
 617
 618        return buf->alloc_size - size;
 619}
 620#undef DBG_SCHED_LIMIT
 621
 622static const char *rh_state_string(struct fotg210_hcd *fotg210)
 623{
 624        switch (fotg210->rh_state) {
 625        case FOTG210_RH_HALTED:
 626                return "halted";
 627        case FOTG210_RH_SUSPENDED:
 628                return "suspended";
 629        case FOTG210_RH_RUNNING:
 630                return "running";
 631        case FOTG210_RH_STOPPING:
 632                return "stopping";
 633        }
 634        return "?";
 635}
 636
 637static ssize_t fill_registers_buffer(struct debug_buffer *buf)
 638{
 639        struct usb_hcd *hcd;
 640        struct fotg210_hcd *fotg210;
 641        unsigned long flags;
 642        unsigned temp, size, i;
 643        char *next, scratch[80];
 644        static const char fmt[] = "%*s\n";
 645        static const char label[] = "";
 646
 647        hcd = bus_to_hcd(buf->bus);
 648        fotg210 = hcd_to_fotg210(hcd);
 649        next = buf->output_buf;
 650        size = buf->alloc_size;
 651
 652        spin_lock_irqsave(&fotg210->lock, flags);
 653
 654        if (!HCD_HW_ACCESSIBLE(hcd)) {
 655                size = scnprintf(next, size,
 656                                "bus %s, device %s\n"
 657                                "%s\n"
 658                                "SUSPENDED(no register access)\n",
 659                                hcd->self.controller->bus->name,
 660                                dev_name(hcd->self.controller),
 661                                hcd->product_desc);
 662                goto done;
 663        }
 664
 665        /* Capability Registers */
 666        i = HC_VERSION(fotg210, fotg210_readl(fotg210,
 667                        &fotg210->caps->hc_capbase));
 668        temp = scnprintf(next, size,
 669                        "bus %s, device %s\n"
 670                        "%s\n"
 671                        "EHCI %x.%02x, rh state %s\n",
 672                        hcd->self.controller->bus->name,
 673                        dev_name(hcd->self.controller),
 674                        hcd->product_desc,
 675                        i >> 8, i & 0x0ff, rh_state_string(fotg210));
 676        size -= temp;
 677        next += temp;
 678
 679        /* FIXME interpret both types of params */
 680        i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 681        temp = scnprintf(next, size, "structural params 0x%08x\n", i);
 682        size -= temp;
 683        next += temp;
 684
 685        i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 686        temp = scnprintf(next, size, "capability params 0x%08x\n", i);
 687        size -= temp;
 688        next += temp;
 689
 690        /* Operational Registers */
 691        temp = dbg_status_buf(scratch, sizeof(scratch), label,
 692                        fotg210_readl(fotg210, &fotg210->regs->status));
 693        temp = scnprintf(next, size, fmt, temp, scratch);
 694        size -= temp;
 695        next += temp;
 696
 697        temp = dbg_command_buf(scratch, sizeof(scratch), label,
 698                        fotg210_readl(fotg210, &fotg210->regs->command));
 699        temp = scnprintf(next, size, fmt, temp, scratch);
 700        size -= temp;
 701        next += temp;
 702
 703        temp = dbg_intr_buf(scratch, sizeof(scratch), label,
 704                        fotg210_readl(fotg210, &fotg210->regs->intr_enable));
 705        temp = scnprintf(next, size, fmt, temp, scratch);
 706        size -= temp;
 707        next += temp;
 708
 709        temp = scnprintf(next, size, "uframe %04x\n",
 710                        fotg210_read_frame_index(fotg210));
 711        size -= temp;
 712        next += temp;
 713
 714        if (fotg210->async_unlink) {
 715                temp = scnprintf(next, size, "async unlink qh %p\n",
 716                                fotg210->async_unlink);
 717                size -= temp;
 718                next += temp;
 719        }
 720
 721#ifdef FOTG210_STATS
 722        temp = scnprintf(next, size,
 723                        "irq normal %ld err %ld iaa %ld(lost %ld)\n",
 724                        fotg210->stats.normal, fotg210->stats.error,
 725                        fotg210->stats.iaa, fotg210->stats.lost_iaa);
 726        size -= temp;
 727        next += temp;
 728
 729        temp = scnprintf(next, size, "complete %ld unlink %ld\n",
 730                        fotg210->stats.complete, fotg210->stats.unlink);
 731        size -= temp;
 732        next += temp;
 733#endif
 734
 735done:
 736        spin_unlock_irqrestore(&fotg210->lock, flags);
 737
 738        return buf->alloc_size - size;
 739}
 740
 741static struct debug_buffer
 742*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
 743{
 744        struct debug_buffer *buf;
 745
 746        buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
 747
 748        if (buf) {
 749                buf->bus = bus;
 750                buf->fill_func = fill_func;
 751                mutex_init(&buf->mutex);
 752                buf->alloc_size = PAGE_SIZE;
 753        }
 754
 755        return buf;
 756}
 757
 758static int fill_buffer(struct debug_buffer *buf)
 759{
 760        int ret = 0;
 761
 762        if (!buf->output_buf)
 763                buf->output_buf = vmalloc(buf->alloc_size);
 764
 765        if (!buf->output_buf) {
 766                ret = -ENOMEM;
 767                goto out;
 768        }
 769
 770        ret = buf->fill_func(buf);
 771
 772        if (ret >= 0) {
 773                buf->count = ret;
 774                ret = 0;
 775        }
 776
 777out:
 778        return ret;
 779}
 780
 781static ssize_t debug_output(struct file *file, char __user *user_buf,
 782                size_t len, loff_t *offset)
 783{
 784        struct debug_buffer *buf = file->private_data;
 785        int ret = 0;
 786
 787        mutex_lock(&buf->mutex);
 788        if (buf->count == 0) {
 789                ret = fill_buffer(buf);
 790                if (ret != 0) {
 791                        mutex_unlock(&buf->mutex);
 792                        goto out;
 793                }
 794        }
 795        mutex_unlock(&buf->mutex);
 796
 797        ret = simple_read_from_buffer(user_buf, len, offset,
 798                        buf->output_buf, buf->count);
 799
 800out:
 801        return ret;
 802
 803}
 804
 805static int debug_close(struct inode *inode, struct file *file)
 806{
 807        struct debug_buffer *buf = file->private_data;
 808
 809        if (buf) {
 810                vfree(buf->output_buf);
 811                kfree(buf);
 812        }
 813
 814        return 0;
 815}
 816static int debug_async_open(struct inode *inode, struct file *file)
 817{
 818        file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
 819
 820        return file->private_data ? 0 : -ENOMEM;
 821}
 822
 823static int debug_periodic_open(struct inode *inode, struct file *file)
 824{
 825        struct debug_buffer *buf;
 826
 827        buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
 828        if (!buf)
 829                return -ENOMEM;
 830
 831        buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
 832        file->private_data = buf;
 833        return 0;
 834}
 835
 836static int debug_registers_open(struct inode *inode, struct file *file)
 837{
 838        file->private_data = alloc_buffer(inode->i_private,
 839                        fill_registers_buffer);
 840
 841        return file->private_data ? 0 : -ENOMEM;
 842}
 843
 844static inline void create_debug_files(struct fotg210_hcd *fotg210)
 845{
 846        struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
 847
 848        fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
 849                        fotg210_debug_root);
 850        if (!fotg210->debug_dir)
 851                return;
 852
 853        if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
 854                        &debug_async_fops))
 855                goto file_error;
 856
 857        if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
 858                        &debug_periodic_fops))
 859                goto file_error;
 860
 861        if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
 862                        &debug_registers_fops))
 863                goto file_error;
 864
 865        return;
 866
 867file_error:
 868        debugfs_remove_recursive(fotg210->debug_dir);
 869}
 870
 871static inline void remove_debug_files(struct fotg210_hcd *fotg210)
 872{
 873        debugfs_remove_recursive(fotg210->debug_dir);
 874}
 875
 876/* handshake - spin reading hc until handshake completes or fails
 877 * @ptr: address of hc register to be read
 878 * @mask: bits to look at in result of read
 879 * @done: value of those bits when handshake succeeds
 880 * @usec: timeout in microseconds
 881 *
 882 * Returns negative errno, or zero on success
 883 *
 884 * Success happens when the "mask" bits have the specified value (hardware
 885 * handshake done).  There are two failure modes:  "usec" have passed (major
 886 * hardware flakeout), or the register reads as all-ones (hardware removed).
 887 *
 888 * That last failure should_only happen in cases like physical cardbus eject
 889 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 890 * bridge shutdown:  shutting down the bridge before the devices using it.
 891 */
 892static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
 893                u32 mask, u32 done, int usec)
 894{
 895        u32 result;
 896
 897        do {
 898                result = fotg210_readl(fotg210, ptr);
 899                if (result == ~(u32)0)          /* card removed */
 900                        return -ENODEV;
 901                result &= mask;
 902                if (result == done)
 903                        return 0;
 904                udelay(1);
 905                usec--;
 906        } while (usec > 0);
 907        return -ETIMEDOUT;
 908}
 909
 910/* Force HC to halt state from unknown (EHCI spec section 2.3).
 911 * Must be called with interrupts enabled and the lock not held.
 912 */
 913static int fotg210_halt(struct fotg210_hcd *fotg210)
 914{
 915        u32 temp;
 916
 917        spin_lock_irq(&fotg210->lock);
 918
 919        /* disable any irqs left enabled by previous code */
 920        fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
 921
 922        /*
 923         * This routine gets called during probe before fotg210->command
 924         * has been initialized, so we can't rely on its value.
 925         */
 926        fotg210->command &= ~CMD_RUN;
 927        temp = fotg210_readl(fotg210, &fotg210->regs->command);
 928        temp &= ~(CMD_RUN | CMD_IAAD);
 929        fotg210_writel(fotg210, temp, &fotg210->regs->command);
 930
 931        spin_unlock_irq(&fotg210->lock);
 932        synchronize_irq(fotg210_to_hcd(fotg210)->irq);
 933
 934        return handshake(fotg210, &fotg210->regs->status,
 935                        STS_HALT, STS_HALT, 16 * 125);
 936}
 937
 938/* Reset a non-running (STS_HALT == 1) controller.
 939 * Must be called with interrupts enabled and the lock not held.
 940 */
 941static int fotg210_reset(struct fotg210_hcd *fotg210)
 942{
 943        int retval;
 944        u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
 945
 946        /* If the EHCI debug controller is active, special care must be
 947         * taken before and after a host controller reset
 948         */
 949        if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
 950                fotg210->debug = NULL;
 951
 952        command |= CMD_RESET;
 953        dbg_cmd(fotg210, "reset", command);
 954        fotg210_writel(fotg210, command, &fotg210->regs->command);
 955        fotg210->rh_state = FOTG210_RH_HALTED;
 956        fotg210->next_statechange = jiffies;
 957        retval = handshake(fotg210, &fotg210->regs->command,
 958                        CMD_RESET, 0, 250 * 1000);
 959
 960        if (retval)
 961                return retval;
 962
 963        if (fotg210->debug)
 964                dbgp_external_startup(fotg210_to_hcd(fotg210));
 965
 966        fotg210->port_c_suspend = fotg210->suspended_ports =
 967                        fotg210->resuming_ports = 0;
 968        return retval;
 969}
 970
 971/* Idle the controller (turn off the schedules).
 972 * Must be called with interrupts enabled and the lock not held.
 973 */
 974static void fotg210_quiesce(struct fotg210_hcd *fotg210)
 975{
 976        u32 temp;
 977
 978        if (fotg210->rh_state != FOTG210_RH_RUNNING)
 979                return;
 980
 981        /* wait for any schedule enables/disables to take effect */
 982        temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
 983        handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
 984                        16 * 125);
 985
 986        /* then disable anything that's still active */
 987        spin_lock_irq(&fotg210->lock);
 988        fotg210->command &= ~(CMD_ASE | CMD_PSE);
 989        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 990        spin_unlock_irq(&fotg210->lock);
 991
 992        /* hardware can take 16 microframes to turn off ... */
 993        handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
 994                        16 * 125);
 995}
 996
 997static void end_unlink_async(struct fotg210_hcd *fotg210);
 998static void unlink_empty_async(struct fotg210_hcd *fotg210);
 999static void fotg210_work(struct fotg210_hcd *fotg210);
1000static void start_unlink_intr(struct fotg210_hcd *fotg210,
1001                              struct fotg210_qh *qh);
1002static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1003
1004/* Set a bit in the USBCMD register */
1005static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1006{
1007        fotg210->command |= bit;
1008        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1009
1010        /* unblock posted write */
1011        fotg210_readl(fotg210, &fotg210->regs->command);
1012}
1013
1014/* Clear a bit in the USBCMD register */
1015static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1016{
1017        fotg210->command &= ~bit;
1018        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1019
1020        /* unblock posted write */
1021        fotg210_readl(fotg210, &fotg210->regs->command);
1022}
1023
1024/* EHCI timer support...  Now using hrtimers.
1025 *
1026 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1027 * the timer routine runs, it checks each possible event; events that are
1028 * currently enabled and whose expiration time has passed get handled.
1029 * The set of enabled events is stored as a collection of bitflags in
1030 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1031 * increasing delay values (ranging between 1 ms and 100 ms).
1032 *
1033 * Rather than implementing a sorted list or tree of all pending events,
1034 * we keep track only of the lowest-numbered pending event, in
1035 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1036 * expiration time is set to the timeout value for this event.
1037 *
1038 * As a result, events might not get handled right away; the actual delay
1039 * could be anywhere up to twice the requested delay.  This doesn't
1040 * matter, because none of the events are especially time-critical.  The
1041 * ones that matter most all have a delay of 1 ms, so they will be
1042 * handled after 2 ms at most, which is okay.  In addition to this, we
1043 * allow for an expiration range of 1 ms.
1044 */
1045
1046/* Delay lengths for the hrtimer event types.
1047 * Keep this list sorted by delay length, in the same order as
1048 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1049 */
1050static unsigned event_delays_ns[] = {
1051        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1052        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1053        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1054        1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1055        2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1056        6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1057        10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1058        10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1059        15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1060        100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1061};
1062
1063/* Enable a pending hrtimer event */
1064static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1065                bool resched)
1066{
1067        ktime_t *timeout = &fotg210->hr_timeouts[event];
1068
1069        if (resched)
1070                *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1071        fotg210->enabled_hrtimer_events |= (1 << event);
1072
1073        /* Track only the lowest-numbered pending event */
1074        if (event < fotg210->next_hrtimer_event) {
1075                fotg210->next_hrtimer_event = event;
1076                hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1077                                NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1078        }
1079}
1080
1081
1082/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1083static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1084{
1085        unsigned actual, want;
1086
1087        /* Don't enable anything if the controller isn't running (e.g., died) */
1088        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1089                return;
1090
1091        want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1092        actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1093
1094        if (want != actual) {
1095
1096                /* Poll again later, but give up after about 20 ms */
1097                if (fotg210->ASS_poll_count++ < 20) {
1098                        fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1099                                        true);
1100                        return;
1101                }
1102                fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1103                                want, actual);
1104        }
1105        fotg210->ASS_poll_count = 0;
1106
1107        /* The status is up-to-date; restart or stop the schedule as needed */
1108        if (want == 0) {        /* Stopped */
1109                if (fotg210->async_count > 0)
1110                        fotg210_set_command_bit(fotg210, CMD_ASE);
1111
1112        } else {                /* Running */
1113                if (fotg210->async_count == 0) {
1114
1115                        /* Turn off the schedule after a while */
1116                        fotg210_enable_event(fotg210,
1117                                        FOTG210_HRTIMER_DISABLE_ASYNC,
1118                                        true);
1119                }
1120        }
1121}
1122
1123/* Turn off the async schedule after a brief delay */
1124static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1125{
1126        fotg210_clear_command_bit(fotg210, CMD_ASE);
1127}
1128
1129
1130/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1131static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1132{
1133        unsigned actual, want;
1134
1135        /* Don't do anything if the controller isn't running (e.g., died) */
1136        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1137                return;
1138
1139        want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1140        actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1141
1142        if (want != actual) {
1143
1144                /* Poll again later, but give up after about 20 ms */
1145                if (fotg210->PSS_poll_count++ < 20) {
1146                        fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1147                                        true);
1148                        return;
1149                }
1150                fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1151                                want, actual);
1152        }
1153        fotg210->PSS_poll_count = 0;
1154
1155        /* The status is up-to-date; restart or stop the schedule as needed */
1156        if (want == 0) {        /* Stopped */
1157                if (fotg210->periodic_count > 0)
1158                        fotg210_set_command_bit(fotg210, CMD_PSE);
1159
1160        } else {                /* Running */
1161                if (fotg210->periodic_count == 0) {
1162
1163                        /* Turn off the schedule after a while */
1164                        fotg210_enable_event(fotg210,
1165                                        FOTG210_HRTIMER_DISABLE_PERIODIC,
1166                                        true);
1167                }
1168        }
1169}
1170
1171/* Turn off the periodic schedule after a brief delay */
1172static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1173{
1174        fotg210_clear_command_bit(fotg210, CMD_PSE);
1175}
1176
1177
1178/* Poll the STS_HALT status bit; see when a dead controller stops */
1179static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1180{
1181        if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1182
1183                /* Give up after a few milliseconds */
1184                if (fotg210->died_poll_count++ < 5) {
1185                        /* Try again later */
1186                        fotg210_enable_event(fotg210,
1187                                        FOTG210_HRTIMER_POLL_DEAD, true);
1188                        return;
1189                }
1190                fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1191        }
1192
1193        /* Clean up the mess */
1194        fotg210->rh_state = FOTG210_RH_HALTED;
1195        fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1196        fotg210_work(fotg210);
1197        end_unlink_async(fotg210);
1198
1199        /* Not in process context, so don't try to reset the controller */
1200}
1201
1202
1203/* Handle unlinked interrupt QHs once they are gone from the hardware */
1204static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1205{
1206        bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1207
1208        /*
1209         * Process all the QHs on the intr_unlink list that were added
1210         * before the current unlink cycle began.  The list is in
1211         * temporal order, so stop when we reach the first entry in the
1212         * current cycle.  But if the root hub isn't running then
1213         * process all the QHs on the list.
1214         */
1215        fotg210->intr_unlinking = true;
1216        while (fotg210->intr_unlink) {
1217                struct fotg210_qh *qh = fotg210->intr_unlink;
1218
1219                if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1220                        break;
1221                fotg210->intr_unlink = qh->unlink_next;
1222                qh->unlink_next = NULL;
1223                end_unlink_intr(fotg210, qh);
1224        }
1225
1226        /* Handle remaining entries later */
1227        if (fotg210->intr_unlink) {
1228                fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1229                                true);
1230                ++fotg210->intr_unlink_cycle;
1231        }
1232        fotg210->intr_unlinking = false;
1233}
1234
1235
1236/* Start another free-iTDs/siTDs cycle */
1237static void start_free_itds(struct fotg210_hcd *fotg210)
1238{
1239        if (!(fotg210->enabled_hrtimer_events &
1240                        BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1241                fotg210->last_itd_to_free = list_entry(
1242                                fotg210->cached_itd_list.prev,
1243                                struct fotg210_itd, itd_list);
1244                fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1245        }
1246}
1247
1248/* Wait for controller to stop using old iTDs and siTDs */
1249static void end_free_itds(struct fotg210_hcd *fotg210)
1250{
1251        struct fotg210_itd *itd, *n;
1252
1253        if (fotg210->rh_state < FOTG210_RH_RUNNING)
1254                fotg210->last_itd_to_free = NULL;
1255
1256        list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1257                list_del(&itd->itd_list);
1258                dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1259                if (itd == fotg210->last_itd_to_free)
1260                        break;
1261        }
1262
1263        if (!list_empty(&fotg210->cached_itd_list))
1264                start_free_itds(fotg210);
1265}
1266
1267
1268/* Handle lost (or very late) IAA interrupts */
1269static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1270{
1271        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1272                return;
1273
1274        /*
1275         * Lost IAA irqs wedge things badly; seen first with a vt8235.
1276         * So we need this watchdog, but must protect it against both
1277         * (a) SMP races against real IAA firing and retriggering, and
1278         * (b) clean HC shutdown, when IAA watchdog was pending.
1279         */
1280        if (fotg210->async_iaa) {
1281                u32 cmd, status;
1282
1283                /* If we get here, IAA is *REALLY* late.  It's barely
1284                 * conceivable that the system is so busy that CMD_IAAD
1285                 * is still legitimately set, so let's be sure it's
1286                 * clear before we read STS_IAA.  (The HC should clear
1287                 * CMD_IAAD when it sets STS_IAA.)
1288                 */
1289                cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1290
1291                /*
1292                 * If IAA is set here it either legitimately triggered
1293                 * after the watchdog timer expired (_way_ late, so we'll
1294                 * still count it as lost) ... or a silicon erratum:
1295                 * - VIA seems to set IAA without triggering the IRQ;
1296                 * - IAAD potentially cleared without setting IAA.
1297                 */
1298                status = fotg210_readl(fotg210, &fotg210->regs->status);
1299                if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1300                        COUNT(fotg210->stats.lost_iaa);
1301                        fotg210_writel(fotg210, STS_IAA,
1302                                        &fotg210->regs->status);
1303                }
1304
1305                fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1306                                status, cmd);
1307                end_unlink_async(fotg210);
1308        }
1309}
1310
1311
1312/* Enable the I/O watchdog, if appropriate */
1313static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1314{
1315        /* Not needed if the controller isn't running or it's already enabled */
1316        if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1317                        (fotg210->enabled_hrtimer_events &
1318                        BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1319                return;
1320
1321        /*
1322         * Isochronous transfers always need the watchdog.
1323         * For other sorts we use it only if the flag is set.
1324         */
1325        if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1326                        fotg210->async_count + fotg210->intr_count > 0))
1327                fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1328                                true);
1329}
1330
1331
1332/* Handler functions for the hrtimer event types.
1333 * Keep this array in the same order as the event types indexed by
1334 * enum fotg210_hrtimer_event in fotg210.h.
1335 */
1336static void (*event_handlers[])(struct fotg210_hcd *) = {
1337        fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1338        fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1339        fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1340        fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1341        end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1342        unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1343        fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1344        fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1345        fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1346        fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1347};
1348
1349static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1350{
1351        struct fotg210_hcd *fotg210 =
1352                        container_of(t, struct fotg210_hcd, hrtimer);
1353        ktime_t now;
1354        unsigned long events;
1355        unsigned long flags;
1356        unsigned e;
1357
1358        spin_lock_irqsave(&fotg210->lock, flags);
1359
1360        events = fotg210->enabled_hrtimer_events;
1361        fotg210->enabled_hrtimer_events = 0;
1362        fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1363
1364        /*
1365         * Check each pending event.  If its time has expired, handle
1366         * the event; otherwise re-enable it.
1367         */
1368        now = ktime_get();
1369        for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1370                if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1371                        event_handlers[e](fotg210);
1372                else
1373                        fotg210_enable_event(fotg210, e, false);
1374        }
1375
1376        spin_unlock_irqrestore(&fotg210->lock, flags);
1377        return HRTIMER_NORESTART;
1378}
1379
1380#define fotg210_bus_suspend NULL
1381#define fotg210_bus_resume NULL
1382
1383static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1384                u32 __iomem *status_reg, int port_status)
1385{
1386        if (!(port_status & PORT_CONNECT))
1387                return port_status;
1388
1389        /* if reset finished and it's still not enabled -- handoff */
1390        if (!(port_status & PORT_PE))
1391                /* with integrated TT, there's nobody to hand it to! */
1392                fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1393                                index + 1);
1394        else
1395                fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1396                                index + 1);
1397
1398        return port_status;
1399}
1400
1401
1402/* build "status change" packet (one or two bytes) from HC registers */
1403
1404static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1405{
1406        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1407        u32 temp, status;
1408        u32 mask;
1409        int retval = 1;
1410        unsigned long flags;
1411
1412        /* init status to no-changes */
1413        buf[0] = 0;
1414
1415        /* Inform the core about resumes-in-progress by returning
1416         * a non-zero value even if there are no status changes.
1417         */
1418        status = fotg210->resuming_ports;
1419
1420        mask = PORT_CSC | PORT_PEC;
1421        /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1422
1423        /* no hub change reports (bit 0) for now (power, ...) */
1424
1425        /* port N changes (bit N)? */
1426        spin_lock_irqsave(&fotg210->lock, flags);
1427
1428        temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1429
1430        /*
1431         * Return status information even for ports with OWNER set.
1432         * Otherwise hub_wq wouldn't see the disconnect event when a
1433         * high-speed device is switched over to the companion
1434         * controller by the user.
1435         */
1436
1437        if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1438                        (fotg210->reset_done[0] &&
1439                        time_after_eq(jiffies, fotg210->reset_done[0]))) {
1440                buf[0] |= 1 << 1;
1441                status = STS_PCD;
1442        }
1443        /* FIXME autosuspend idle root hubs */
1444        spin_unlock_irqrestore(&fotg210->lock, flags);
1445        return status ? retval : 0;
1446}
1447
1448static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1449                struct usb_hub_descriptor *desc)
1450{
1451        int ports = HCS_N_PORTS(fotg210->hcs_params);
1452        u16 temp;
1453
1454        desc->bDescriptorType = USB_DT_HUB;
1455        desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1456        desc->bHubContrCurrent = 0;
1457
1458        desc->bNbrPorts = ports;
1459        temp = 1 + (ports / 8);
1460        desc->bDescLength = 7 + 2 * temp;
1461
1462        /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1463        memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1464        memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1465
1466        temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1467        temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1468        desc->wHubCharacteristics = cpu_to_le16(temp);
1469}
1470
1471static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1472                u16 wIndex, char *buf, u16 wLength)
1473{
1474        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1475        int ports = HCS_N_PORTS(fotg210->hcs_params);
1476        u32 __iomem *status_reg = &fotg210->regs->port_status;
1477        u32 temp, temp1, status;
1478        unsigned long flags;
1479        int retval = 0;
1480        unsigned selector;
1481
1482        /*
1483         * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1484         * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1485         * (track current state ourselves) ... blink for diagnostics,
1486         * power, "this is the one", etc.  EHCI spec supports this.
1487         */
1488
1489        spin_lock_irqsave(&fotg210->lock, flags);
1490        switch (typeReq) {
1491        case ClearHubFeature:
1492                switch (wValue) {
1493                case C_HUB_LOCAL_POWER:
1494                case C_HUB_OVER_CURRENT:
1495                        /* no hub-wide feature/status flags */
1496                        break;
1497                default:
1498                        goto error;
1499                }
1500                break;
1501        case ClearPortFeature:
1502                if (!wIndex || wIndex > ports)
1503                        goto error;
1504                wIndex--;
1505                temp = fotg210_readl(fotg210, status_reg);
1506                temp &= ~PORT_RWC_BITS;
1507
1508                /*
1509                 * Even if OWNER is set, so the port is owned by the
1510                 * companion controller, hub_wq needs to be able to clear
1511                 * the port-change status bits (especially
1512                 * USB_PORT_STAT_C_CONNECTION).
1513                 */
1514
1515                switch (wValue) {
1516                case USB_PORT_FEAT_ENABLE:
1517                        fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1518                        break;
1519                case USB_PORT_FEAT_C_ENABLE:
1520                        fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1521                        break;
1522                case USB_PORT_FEAT_SUSPEND:
1523                        if (temp & PORT_RESET)
1524                                goto error;
1525                        if (!(temp & PORT_SUSPEND))
1526                                break;
1527                        if ((temp & PORT_PE) == 0)
1528                                goto error;
1529
1530                        /* resume signaling for 20 msec */
1531                        fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1532                        fotg210->reset_done[wIndex] = jiffies
1533                                        + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1534                        break;
1535                case USB_PORT_FEAT_C_SUSPEND:
1536                        clear_bit(wIndex, &fotg210->port_c_suspend);
1537                        break;
1538                case USB_PORT_FEAT_C_CONNECTION:
1539                        fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1540                        break;
1541                case USB_PORT_FEAT_C_OVER_CURRENT:
1542                        fotg210_writel(fotg210, temp | OTGISR_OVC,
1543                                        &fotg210->regs->otgisr);
1544                        break;
1545                case USB_PORT_FEAT_C_RESET:
1546                        /* GetPortStatus clears reset */
1547                        break;
1548                default:
1549                        goto error;
1550                }
1551                fotg210_readl(fotg210, &fotg210->regs->command);
1552                break;
1553        case GetHubDescriptor:
1554                fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1555                                buf);
1556                break;
1557        case GetHubStatus:
1558                /* no hub-wide feature/status flags */
1559                memset(buf, 0, 4);
1560                /*cpu_to_le32s ((u32 *) buf); */
1561                break;
1562        case GetPortStatus:
1563                if (!wIndex || wIndex > ports)
1564                        goto error;
1565                wIndex--;
1566                status = 0;
1567                temp = fotg210_readl(fotg210, status_reg);
1568
1569                /* wPortChange bits */
1570                if (temp & PORT_CSC)
1571                        status |= USB_PORT_STAT_C_CONNECTION << 16;
1572                if (temp & PORT_PEC)
1573                        status |= USB_PORT_STAT_C_ENABLE << 16;
1574
1575                temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1576                if (temp1 & OTGISR_OVC)
1577                        status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1578
1579                /* whoever resumes must GetPortStatus to complete it!! */
1580                if (temp & PORT_RESUME) {
1581
1582                        /* Remote Wakeup received? */
1583                        if (!fotg210->reset_done[wIndex]) {
1584                                /* resume signaling for 20 msec */
1585                                fotg210->reset_done[wIndex] = jiffies
1586                                                + msecs_to_jiffies(20);
1587                                /* check the port again */
1588                                mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1589                                                fotg210->reset_done[wIndex]);
1590                        }
1591
1592                        /* resume completed? */
1593                        else if (time_after_eq(jiffies,
1594                                        fotg210->reset_done[wIndex])) {
1595                                clear_bit(wIndex, &fotg210->suspended_ports);
1596                                set_bit(wIndex, &fotg210->port_c_suspend);
1597                                fotg210->reset_done[wIndex] = 0;
1598
1599                                /* stop resume signaling */
1600                                temp = fotg210_readl(fotg210, status_reg);
1601                                fotg210_writel(fotg210, temp &
1602                                                ~(PORT_RWC_BITS | PORT_RESUME),
1603                                                status_reg);
1604                                clear_bit(wIndex, &fotg210->resuming_ports);
1605                                retval = handshake(fotg210, status_reg,
1606                                                PORT_RESUME, 0, 2000);/* 2ms */
1607                                if (retval != 0) {
1608                                        fotg210_err(fotg210,
1609                                                        "port %d resume error %d\n",
1610                                                        wIndex + 1, retval);
1611                                        goto error;
1612                                }
1613                                temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1614                        }
1615                }
1616
1617                /* whoever resets must GetPortStatus to complete it!! */
1618                if ((temp & PORT_RESET) && time_after_eq(jiffies,
1619                                fotg210->reset_done[wIndex])) {
1620                        status |= USB_PORT_STAT_C_RESET << 16;
1621                        fotg210->reset_done[wIndex] = 0;
1622                        clear_bit(wIndex, &fotg210->resuming_ports);
1623
1624                        /* force reset to complete */
1625                        fotg210_writel(fotg210,
1626                                        temp & ~(PORT_RWC_BITS | PORT_RESET),
1627                                        status_reg);
1628                        /* REVISIT:  some hardware needs 550+ usec to clear
1629                         * this bit; seems too long to spin routinely...
1630                         */
1631                        retval = handshake(fotg210, status_reg,
1632                                        PORT_RESET, 0, 1000);
1633                        if (retval != 0) {
1634                                fotg210_err(fotg210, "port %d reset error %d\n",
1635                                                wIndex + 1, retval);
1636                                goto error;
1637                        }
1638
1639                        /* see what we found out */
1640                        temp = check_reset_complete(fotg210, wIndex, status_reg,
1641                                        fotg210_readl(fotg210, status_reg));
1642                }
1643
1644                if (!(temp & (PORT_RESUME|PORT_RESET))) {
1645                        fotg210->reset_done[wIndex] = 0;
1646                        clear_bit(wIndex, &fotg210->resuming_ports);
1647                }
1648
1649                /* transfer dedicated ports to the companion hc */
1650                if ((temp & PORT_CONNECT) &&
1651                                test_bit(wIndex, &fotg210->companion_ports)) {
1652                        temp &= ~PORT_RWC_BITS;
1653                        fotg210_writel(fotg210, temp, status_reg);
1654                        fotg210_dbg(fotg210, "port %d --> companion\n",
1655                                        wIndex + 1);
1656                        temp = fotg210_readl(fotg210, status_reg);
1657                }
1658
1659                /*
1660                 * Even if OWNER is set, there's no harm letting hub_wq
1661                 * see the wPortStatus values (they should all be 0 except
1662                 * for PORT_POWER anyway).
1663                 */
1664
1665                if (temp & PORT_CONNECT) {
1666                        status |= USB_PORT_STAT_CONNECTION;
1667                        status |= fotg210_port_speed(fotg210, temp);
1668                }
1669                if (temp & PORT_PE)
1670                        status |= USB_PORT_STAT_ENABLE;
1671
1672                /* maybe the port was unsuspended without our knowledge */
1673                if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1674                        status |= USB_PORT_STAT_SUSPEND;
1675                } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1676                        clear_bit(wIndex, &fotg210->suspended_ports);
1677                        clear_bit(wIndex, &fotg210->resuming_ports);
1678                        fotg210->reset_done[wIndex] = 0;
1679                        if (temp & PORT_PE)
1680                                set_bit(wIndex, &fotg210->port_c_suspend);
1681                }
1682
1683                temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1684                if (temp1 & OTGISR_OVC)
1685                        status |= USB_PORT_STAT_OVERCURRENT;
1686                if (temp & PORT_RESET)
1687                        status |= USB_PORT_STAT_RESET;
1688                if (test_bit(wIndex, &fotg210->port_c_suspend))
1689                        status |= USB_PORT_STAT_C_SUSPEND << 16;
1690
1691                if (status & ~0xffff)   /* only if wPortChange is interesting */
1692                        dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1693                put_unaligned_le32(status, buf);
1694                break;
1695        case SetHubFeature:
1696                switch (wValue) {
1697                case C_HUB_LOCAL_POWER:
1698                case C_HUB_OVER_CURRENT:
1699                        /* no hub-wide feature/status flags */
1700                        break;
1701                default:
1702                        goto error;
1703                }
1704                break;
1705        case SetPortFeature:
1706                selector = wIndex >> 8;
1707                wIndex &= 0xff;
1708
1709                if (!wIndex || wIndex > ports)
1710                        goto error;
1711                wIndex--;
1712                temp = fotg210_readl(fotg210, status_reg);
1713                temp &= ~PORT_RWC_BITS;
1714                switch (wValue) {
1715                case USB_PORT_FEAT_SUSPEND:
1716                        if ((temp & PORT_PE) == 0
1717                                        || (temp & PORT_RESET) != 0)
1718                                goto error;
1719
1720                        /* After above check the port must be connected.
1721                         * Set appropriate bit thus could put phy into low power
1722                         * mode if we have hostpc feature
1723                         */
1724                        fotg210_writel(fotg210, temp | PORT_SUSPEND,
1725                                        status_reg);
1726                        set_bit(wIndex, &fotg210->suspended_ports);
1727                        break;
1728                case USB_PORT_FEAT_RESET:
1729                        if (temp & PORT_RESUME)
1730                                goto error;
1731                        /* line status bits may report this as low speed,
1732                         * which can be fine if this root hub has a
1733                         * transaction translator built in.
1734                         */
1735                        fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1736                        temp |= PORT_RESET;
1737                        temp &= ~PORT_PE;
1738
1739                        /*
1740                         * caller must wait, then call GetPortStatus
1741                         * usb 2.0 spec says 50 ms resets on root
1742                         */
1743                        fotg210->reset_done[wIndex] = jiffies
1744                                        + msecs_to_jiffies(50);
1745                        fotg210_writel(fotg210, temp, status_reg);
1746                        break;
1747
1748                /* For downstream facing ports (these):  one hub port is put
1749                 * into test mode according to USB2 11.24.2.13, then the hub
1750                 * must be reset (which for root hub now means rmmod+modprobe,
1751                 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1752                 * about the EHCI-specific stuff.
1753                 */
1754                case USB_PORT_FEAT_TEST:
1755                        if (!selector || selector > 5)
1756                                goto error;
1757                        spin_unlock_irqrestore(&fotg210->lock, flags);
1758                        fotg210_quiesce(fotg210);
1759                        spin_lock_irqsave(&fotg210->lock, flags);
1760
1761                        /* Put all enabled ports into suspend */
1762                        temp = fotg210_readl(fotg210, status_reg) &
1763                                ~PORT_RWC_BITS;
1764                        if (temp & PORT_PE)
1765                                fotg210_writel(fotg210, temp | PORT_SUSPEND,
1766                                                status_reg);
1767
1768                        spin_unlock_irqrestore(&fotg210->lock, flags);
1769                        fotg210_halt(fotg210);
1770                        spin_lock_irqsave(&fotg210->lock, flags);
1771
1772                        temp = fotg210_readl(fotg210, status_reg);
1773                        temp |= selector << 16;
1774                        fotg210_writel(fotg210, temp, status_reg);
1775                        break;
1776
1777                default:
1778                        goto error;
1779                }
1780                fotg210_readl(fotg210, &fotg210->regs->command);
1781                break;
1782
1783        default:
1784error:
1785                /* "stall" on error */
1786                retval = -EPIPE;
1787        }
1788        spin_unlock_irqrestore(&fotg210->lock, flags);
1789        return retval;
1790}
1791
1792static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1793                int portnum)
1794{
1795        return;
1796}
1797
1798static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1799                int portnum)
1800{
1801        return 0;
1802}
1803
1804/* There's basically three types of memory:
1805 *      - data used only by the HCD ... kmalloc is fine
1806 *      - async and periodic schedules, shared by HC and HCD ... these
1807 *        need to use dma_pool or dma_alloc_coherent
1808 *      - driver buffers, read/written by HC ... single shot DMA mapped
1809 *
1810 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1811 * No memory seen by this driver is pageable.
1812 */
1813
1814/* Allocate the key transfer structures from the previously allocated pool */
1815static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1816                struct fotg210_qtd *qtd, dma_addr_t dma)
1817{
1818        memset(qtd, 0, sizeof(*qtd));
1819        qtd->qtd_dma = dma;
1820        qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1821        qtd->hw_next = FOTG210_LIST_END(fotg210);
1822        qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1823        INIT_LIST_HEAD(&qtd->qtd_list);
1824}
1825
1826static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1827                gfp_t flags)
1828{
1829        struct fotg210_qtd *qtd;
1830        dma_addr_t dma;
1831
1832        qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1833        if (qtd != NULL)
1834                fotg210_qtd_init(fotg210, qtd, dma);
1835
1836        return qtd;
1837}
1838
1839static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1840                struct fotg210_qtd *qtd)
1841{
1842        dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1843}
1844
1845
1846static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1847{
1848        /* clean qtds first, and know this is not linked */
1849        if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1850                fotg210_dbg(fotg210, "unused qh not empty!\n");
1851                BUG();
1852        }
1853        if (qh->dummy)
1854                fotg210_qtd_free(fotg210, qh->dummy);
1855        dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1856        kfree(qh);
1857}
1858
1859static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1860                gfp_t flags)
1861{
1862        struct fotg210_qh *qh;
1863        dma_addr_t dma;
1864
1865        qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1866        if (!qh)
1867                goto done;
1868        qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1869        if (!qh->hw)
1870                goto fail;
1871        qh->qh_dma = dma;
1872        INIT_LIST_HEAD(&qh->qtd_list);
1873
1874        /* dummy td enables safe urb queuing */
1875        qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1876        if (qh->dummy == NULL) {
1877                fotg210_dbg(fotg210, "no dummy td\n");
1878                goto fail1;
1879        }
1880done:
1881        return qh;
1882fail1:
1883        dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1884fail:
1885        kfree(qh);
1886        return NULL;
1887}
1888
1889/* The queue heads and transfer descriptors are managed from pools tied
1890 * to each of the "per device" structures.
1891 * This is the initialisation and cleanup code.
1892 */
1893
1894static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1895{
1896        if (fotg210->async)
1897                qh_destroy(fotg210, fotg210->async);
1898        fotg210->async = NULL;
1899
1900        if (fotg210->dummy)
1901                qh_destroy(fotg210, fotg210->dummy);
1902        fotg210->dummy = NULL;
1903
1904        /* DMA consistent memory and pools */
1905        dma_pool_destroy(fotg210->qtd_pool);
1906        fotg210->qtd_pool = NULL;
1907
1908        dma_pool_destroy(fotg210->qh_pool);
1909        fotg210->qh_pool = NULL;
1910
1911        dma_pool_destroy(fotg210->itd_pool);
1912        fotg210->itd_pool = NULL;
1913
1914        if (fotg210->periodic)
1915                dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1916                                fotg210->periodic_size * sizeof(u32),
1917                                fotg210->periodic, fotg210->periodic_dma);
1918        fotg210->periodic = NULL;
1919
1920        /* shadow periodic table */
1921        kfree(fotg210->pshadow);
1922        fotg210->pshadow = NULL;
1923}
1924
1925/* remember to add cleanup code (above) if you add anything here */
1926static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1927{
1928        int i;
1929
1930        /* QTDs for control/bulk/intr transfers */
1931        fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1932                        fotg210_to_hcd(fotg210)->self.controller,
1933                        sizeof(struct fotg210_qtd),
1934                        32 /* byte alignment (for hw parts) */,
1935                        4096 /* can't cross 4K */);
1936        if (!fotg210->qtd_pool)
1937                goto fail;
1938
1939        /* QHs for control/bulk/intr transfers */
1940        fotg210->qh_pool = dma_pool_create("fotg210_qh",
1941                        fotg210_to_hcd(fotg210)->self.controller,
1942                        sizeof(struct fotg210_qh_hw),
1943                        32 /* byte alignment (for hw parts) */,
1944                        4096 /* can't cross 4K */);
1945        if (!fotg210->qh_pool)
1946                goto fail;
1947
1948        fotg210->async = fotg210_qh_alloc(fotg210, flags);
1949        if (!fotg210->async)
1950                goto fail;
1951
1952        /* ITD for high speed ISO transfers */
1953        fotg210->itd_pool = dma_pool_create("fotg210_itd",
1954                        fotg210_to_hcd(fotg210)->self.controller,
1955                        sizeof(struct fotg210_itd),
1956                        64 /* byte alignment (for hw parts) */,
1957                        4096 /* can't cross 4K */);
1958        if (!fotg210->itd_pool)
1959                goto fail;
1960
1961        /* Hardware periodic table */
1962        fotg210->periodic = (__le32 *)
1963                dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1964                                fotg210->periodic_size * sizeof(__le32),
1965                                &fotg210->periodic_dma, 0);
1966        if (fotg210->periodic == NULL)
1967                goto fail;
1968
1969        for (i = 0; i < fotg210->periodic_size; i++)
1970                fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1971
1972        /* software shadow of hardware table */
1973        fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1974                        flags);
1975        if (fotg210->pshadow != NULL)
1976                return 0;
1977
1978fail:
1979        fotg210_dbg(fotg210, "couldn't init memory\n");
1980        fotg210_mem_cleanup(fotg210);
1981        return -ENOMEM;
1982}
1983/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1984 *
1985 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1986 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1987 * buffers needed for the larger number).  We use one QH per endpoint, queue
1988 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1989 *
1990 * ISO traffic uses "ISO TD" (itd) records, and (along with
1991 * interrupts) needs careful scheduling.  Performance improvements can be
1992 * an ongoing challenge.  That's in "ehci-sched.c".
1993 *
1994 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1995 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1996 * (b) special fields in qh entries or (c) split iso entries.  TTs will
1997 * buffer low/full speed data so the host collects it at high speed.
1998 */
1999
2000/* fill a qtd, returning how much of the buffer we were able to queue up */
2001static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2002                dma_addr_t buf, size_t len, int token, int maxpacket)
2003{
2004        int i, count;
2005        u64 addr = buf;
2006
2007        /* one buffer entry per 4K ... first might be short or unaligned */
2008        qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2009        qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2010        count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2011        if (likely(len < count))                /* ... iff needed */
2012                count = len;
2013        else {
2014                buf +=  0x1000;
2015                buf &= ~0x0fff;
2016
2017                /* per-qtd limit: from 16K to 20K (best alignment) */
2018                for (i = 1; count < len && i < 5; i++) {
2019                        addr = buf;
2020                        qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2021                        qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2022                                        (u32)(addr >> 32));
2023                        buf += 0x1000;
2024                        if ((count + 0x1000) < len)
2025                                count += 0x1000;
2026                        else
2027                                count = len;
2028                }
2029
2030                /* short packets may only terminate transfers */
2031                if (count != len)
2032                        count -= (count % maxpacket);
2033        }
2034        qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2035        qtd->length = count;
2036
2037        return count;
2038}
2039
2040static inline void qh_update(struct fotg210_hcd *fotg210,
2041                struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2042{
2043        struct fotg210_qh_hw *hw = qh->hw;
2044
2045        /* writes to an active overlay are unsafe */
2046        BUG_ON(qh->qh_state != QH_STATE_IDLE);
2047
2048        hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2049        hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2050
2051        /* Except for control endpoints, we make hardware maintain data
2052         * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2053         * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2054         * ever clear it.
2055         */
2056        if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2057                unsigned is_out, epnum;
2058
2059                is_out = qh->is_out;
2060                epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2061                if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2062                        hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2063                        usb_settoggle(qh->dev, epnum, is_out, 1);
2064                }
2065        }
2066
2067        hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2068}
2069
2070/* if it weren't for a common silicon quirk (writing the dummy into the qh
2071 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2072 * recovery (including urb dequeue) would need software changes to a QH...
2073 */
2074static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2075{
2076        struct fotg210_qtd *qtd;
2077
2078        if (list_empty(&qh->qtd_list))
2079                qtd = qh->dummy;
2080        else {
2081                qtd = list_entry(qh->qtd_list.next,
2082                                struct fotg210_qtd, qtd_list);
2083                /*
2084                 * first qtd may already be partially processed.
2085                 * If we come here during unlink, the QH overlay region
2086                 * might have reference to the just unlinked qtd. The
2087                 * qtd is updated in qh_completions(). Update the QH
2088                 * overlay here.
2089                 */
2090                if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2091                        qh->hw->hw_qtd_next = qtd->hw_next;
2092                        qtd = NULL;
2093                }
2094        }
2095
2096        if (qtd)
2097                qh_update(fotg210, qh, qtd);
2098}
2099
2100static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2101
2102static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2103                struct usb_host_endpoint *ep)
2104{
2105        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2106        struct fotg210_qh *qh = ep->hcpriv;
2107        unsigned long flags;
2108
2109        spin_lock_irqsave(&fotg210->lock, flags);
2110        qh->clearing_tt = 0;
2111        if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2112                        && fotg210->rh_state == FOTG210_RH_RUNNING)
2113                qh_link_async(fotg210, qh);
2114        spin_unlock_irqrestore(&fotg210->lock, flags);
2115}
2116
2117static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2118                struct fotg210_qh *qh, struct urb *urb, u32 token)
2119{
2120
2121        /* If an async split transaction gets an error or is unlinked,
2122         * the TT buffer may be left in an indeterminate state.  We
2123         * have to clear the TT buffer.
2124         *
2125         * Note: this routine is never called for Isochronous transfers.
2126         */
2127        if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2128                struct usb_device *tt = urb->dev->tt->hub;
2129
2130                dev_dbg(&tt->dev,
2131                                "clear tt buffer port %d, a%d ep%d t%08x\n",
2132                                urb->dev->ttport, urb->dev->devnum,
2133                                usb_pipeendpoint(urb->pipe), token);
2134
2135                if (urb->dev->tt->hub !=
2136                                fotg210_to_hcd(fotg210)->self.root_hub) {
2137                        if (usb_hub_clear_tt_buffer(urb) == 0)
2138                                qh->clearing_tt = 1;
2139                }
2140        }
2141}
2142
2143static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2144                size_t length, u32 token)
2145{
2146        int status = -EINPROGRESS;
2147
2148        /* count IN/OUT bytes, not SETUP (even short packets) */
2149        if (likely(QTD_PID(token) != 2))
2150                urb->actual_length += length - QTD_LENGTH(token);
2151
2152        /* don't modify error codes */
2153        if (unlikely(urb->unlinked))
2154                return status;
2155
2156        /* force cleanup after short read; not always an error */
2157        if (unlikely(IS_SHORT_READ(token)))
2158                status = -EREMOTEIO;
2159
2160        /* serious "can't proceed" faults reported by the hardware */
2161        if (token & QTD_STS_HALT) {
2162                if (token & QTD_STS_BABBLE) {
2163                        /* FIXME "must" disable babbling device's port too */
2164                        status = -EOVERFLOW;
2165                /* CERR nonzero + halt --> stall */
2166                } else if (QTD_CERR(token)) {
2167                        status = -EPIPE;
2168
2169                /* In theory, more than one of the following bits can be set
2170                 * since they are sticky and the transaction is retried.
2171                 * Which to test first is rather arbitrary.
2172                 */
2173                } else if (token & QTD_STS_MMF) {
2174                        /* fs/ls interrupt xfer missed the complete-split */
2175                        status = -EPROTO;
2176                } else if (token & QTD_STS_DBE) {
2177                        status = (QTD_PID(token) == 1) /* IN ? */
2178                                ? -ENOSR  /* hc couldn't read data */
2179                                : -ECOMM; /* hc couldn't write data */
2180                } else if (token & QTD_STS_XACT) {
2181                        /* timeout, bad CRC, wrong PID, etc */
2182                        fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2183                                        urb->dev->devpath,
2184                                        usb_pipeendpoint(urb->pipe),
2185                                        usb_pipein(urb->pipe) ? "in" : "out");
2186                        status = -EPROTO;
2187                } else {        /* unknown */
2188                        status = -EPROTO;
2189                }
2190
2191                fotg210_dbg(fotg210,
2192                                "dev%d ep%d%s qtd token %08x --> status %d\n",
2193                                usb_pipedevice(urb->pipe),
2194                                usb_pipeendpoint(urb->pipe),
2195                                usb_pipein(urb->pipe) ? "in" : "out",
2196                                token, status);
2197        }
2198
2199        return status;
2200}
2201
2202static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2203                int status)
2204__releases(fotg210->lock)
2205__acquires(fotg210->lock)
2206{
2207        if (likely(urb->hcpriv != NULL)) {
2208                struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2209
2210                /* S-mask in a QH means it's an interrupt urb */
2211                if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2212
2213                        /* ... update hc-wide periodic stats (for usbfs) */
2214                        fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2215                }
2216        }
2217
2218        if (unlikely(urb->unlinked)) {
2219                COUNT(fotg210->stats.unlink);
2220        } else {
2221                /* report non-error and short read status as zero */
2222                if (status == -EINPROGRESS || status == -EREMOTEIO)
2223                        status = 0;
2224                COUNT(fotg210->stats.complete);
2225        }
2226
2227#ifdef FOTG210_URB_TRACE
2228        fotg210_dbg(fotg210,
2229                        "%s %s urb %p ep%d%s status %d len %d/%d\n",
2230                        __func__, urb->dev->devpath, urb,
2231                        usb_pipeendpoint(urb->pipe),
2232                        usb_pipein(urb->pipe) ? "in" : "out",
2233                        status,
2234                        urb->actual_length, urb->transfer_buffer_length);
2235#endif
2236
2237        /* complete() can reenter this HCD */
2238        usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2239        spin_unlock(&fotg210->lock);
2240        usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2241        spin_lock(&fotg210->lock);
2242}
2243
2244static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2245
2246/* Process and free completed qtds for a qh, returning URBs to drivers.
2247 * Chases up to qh->hw_current.  Returns number of completions called,
2248 * indicating how much "real" work we did.
2249 */
2250static unsigned qh_completions(struct fotg210_hcd *fotg210,
2251                struct fotg210_qh *qh)
2252{
2253        struct fotg210_qtd *last, *end = qh->dummy;
2254        struct fotg210_qtd *qtd, *tmp;
2255        int last_status;
2256        int stopped;
2257        unsigned count = 0;
2258        u8 state;
2259        struct fotg210_qh_hw *hw = qh->hw;
2260
2261        if (unlikely(list_empty(&qh->qtd_list)))
2262                return count;
2263
2264        /* completions (or tasks on other cpus) must never clobber HALT
2265         * till we've gone through and cleaned everything up, even when
2266         * they add urbs to this qh's queue or mark them for unlinking.
2267         *
2268         * NOTE:  unlinking expects to be done in queue order.
2269         *
2270         * It's a bug for qh->qh_state to be anything other than
2271         * QH_STATE_IDLE, unless our caller is scan_async() or
2272         * scan_intr().
2273         */
2274        state = qh->qh_state;
2275        qh->qh_state = QH_STATE_COMPLETING;
2276        stopped = (state == QH_STATE_IDLE);
2277
2278rescan:
2279        last = NULL;
2280        last_status = -EINPROGRESS;
2281        qh->needs_rescan = 0;
2282
2283        /* remove de-activated QTDs from front of queue.
2284         * after faults (including short reads), cleanup this urb
2285         * then let the queue advance.
2286         * if queue is stopped, handles unlinks.
2287         */
2288        list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2289                struct urb *urb;
2290                u32 token = 0;
2291
2292                urb = qtd->urb;
2293
2294                /* clean up any state from previous QTD ...*/
2295                if (last) {
2296                        if (likely(last->urb != urb)) {
2297                                fotg210_urb_done(fotg210, last->urb,
2298                                                last_status);
2299                                count++;
2300                                last_status = -EINPROGRESS;
2301                        }
2302                        fotg210_qtd_free(fotg210, last);
2303                        last = NULL;
2304                }
2305
2306                /* ignore urbs submitted during completions we reported */
2307                if (qtd == end)
2308                        break;
2309
2310                /* hardware copies qtd out of qh overlay */
2311                rmb();
2312                token = hc32_to_cpu(fotg210, qtd->hw_token);
2313
2314                /* always clean up qtds the hc de-activated */
2315retry_xacterr:
2316                if ((token & QTD_STS_ACTIVE) == 0) {
2317
2318                        /* Report Data Buffer Error: non-fatal but useful */
2319                        if (token & QTD_STS_DBE)
2320                                fotg210_dbg(fotg210,
2321                                        "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2322                                        urb, usb_endpoint_num(&urb->ep->desc),
2323                                        usb_endpoint_dir_in(&urb->ep->desc)
2324                                                ? "in" : "out",
2325                                        urb->transfer_buffer_length, qtd, qh);
2326
2327                        /* on STALL, error, and short reads this urb must
2328                         * complete and all its qtds must be recycled.
2329                         */
2330                        if ((token & QTD_STS_HALT) != 0) {
2331
2332                                /* retry transaction errors until we
2333                                 * reach the software xacterr limit
2334                                 */
2335                                if ((token & QTD_STS_XACT) &&
2336                                                QTD_CERR(token) == 0 &&
2337                                                ++qh->xacterrs < QH_XACTERR_MAX &&
2338                                                !urb->unlinked) {
2339                                        fotg210_dbg(fotg210,
2340                                                "detected XactErr len %zu/%zu retry %d\n",
2341                                                qtd->length - QTD_LENGTH(token),
2342                                                qtd->length,
2343                                                qh->xacterrs);
2344
2345                                        /* reset the token in the qtd and the
2346                                         * qh overlay (which still contains
2347                                         * the qtd) so that we pick up from
2348                                         * where we left off
2349                                         */
2350                                        token &= ~QTD_STS_HALT;
2351                                        token |= QTD_STS_ACTIVE |
2352                                                 (FOTG210_TUNE_CERR << 10);
2353                                        qtd->hw_token = cpu_to_hc32(fotg210,
2354                                                        token);
2355                                        wmb();
2356                                        hw->hw_token = cpu_to_hc32(fotg210,
2357                                                        token);
2358                                        goto retry_xacterr;
2359                                }
2360                                stopped = 1;
2361
2362                        /* magic dummy for some short reads; qh won't advance.
2363                         * that silicon quirk can kick in with this dummy too.
2364                         *
2365                         * other short reads won't stop the queue, including
2366                         * control transfers (status stage handles that) or
2367                         * most other single-qtd reads ... the queue stops if
2368                         * URB_SHORT_NOT_OK was set so the driver submitting
2369                         * the urbs could clean it up.
2370                         */
2371                        } else if (IS_SHORT_READ(token) &&
2372                                        !(qtd->hw_alt_next &
2373                                        FOTG210_LIST_END(fotg210))) {
2374                                stopped = 1;
2375                        }
2376
2377                /* stop scanning when we reach qtds the hc is using */
2378                } else if (likely(!stopped
2379                                && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2380                        break;
2381
2382                /* scan the whole queue for unlinks whenever it stops */
2383                } else {
2384                        stopped = 1;
2385
2386                        /* cancel everything if we halt, suspend, etc */
2387                        if (fotg210->rh_state < FOTG210_RH_RUNNING)
2388                                last_status = -ESHUTDOWN;
2389
2390                        /* this qtd is active; skip it unless a previous qtd
2391                         * for its urb faulted, or its urb was canceled.
2392                         */
2393                        else if (last_status == -EINPROGRESS && !urb->unlinked)
2394                                continue;
2395
2396                        /* qh unlinked; token in overlay may be most current */
2397                        if (state == QH_STATE_IDLE &&
2398                                        cpu_to_hc32(fotg210, qtd->qtd_dma)
2399                                        == hw->hw_current) {
2400                                token = hc32_to_cpu(fotg210, hw->hw_token);
2401
2402                                /* An unlink may leave an incomplete
2403                                 * async transaction in the TT buffer.
2404                                 * We have to clear it.
2405                                 */
2406                                fotg210_clear_tt_buffer(fotg210, qh, urb,
2407                                                token);
2408                        }
2409                }
2410
2411                /* unless we already know the urb's status, collect qtd status
2412                 * and update count of bytes transferred.  in common short read
2413                 * cases with only one data qtd (including control transfers),
2414                 * queue processing won't halt.  but with two or more qtds (for
2415                 * example, with a 32 KB transfer), when the first qtd gets a
2416                 * short read the second must be removed by hand.
2417                 */
2418                if (last_status == -EINPROGRESS) {
2419                        last_status = qtd_copy_status(fotg210, urb,
2420                                        qtd->length, token);
2421                        if (last_status == -EREMOTEIO &&
2422                                        (qtd->hw_alt_next &
2423                                        FOTG210_LIST_END(fotg210)))
2424                                last_status = -EINPROGRESS;
2425
2426                        /* As part of low/full-speed endpoint-halt processing
2427                         * we must clear the TT buffer (11.17.5).
2428                         */
2429                        if (unlikely(last_status != -EINPROGRESS &&
2430                                        last_status != -EREMOTEIO)) {
2431                                /* The TT's in some hubs malfunction when they
2432                                 * receive this request following a STALL (they
2433                                 * stop sending isochronous packets).  Since a
2434                                 * STALL can't leave the TT buffer in a busy
2435                                 * state (if you believe Figures 11-48 - 11-51
2436                                 * in the USB 2.0 spec), we won't clear the TT
2437                                 * buffer in this case.  Strictly speaking this
2438                                 * is a violation of the spec.
2439                                 */
2440                                if (last_status != -EPIPE)
2441                                        fotg210_clear_tt_buffer(fotg210, qh,
2442                                                        urb, token);
2443                        }
2444                }
2445
2446                /* if we're removing something not at the queue head,
2447                 * patch the hardware queue pointer.
2448                 */
2449                if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2450                        last = list_entry(qtd->qtd_list.prev,
2451                                        struct fotg210_qtd, qtd_list);
2452                        last->hw_next = qtd->hw_next;
2453                }
2454
2455                /* remove qtd; it's recycled after possible urb completion */
2456                list_del(&qtd->qtd_list);
2457                last = qtd;
2458
2459                /* reinit the xacterr counter for the next qtd */
2460                qh->xacterrs = 0;
2461        }
2462
2463        /* last urb's completion might still need calling */
2464        if (likely(last != NULL)) {
2465                fotg210_urb_done(fotg210, last->urb, last_status);
2466                count++;
2467                fotg210_qtd_free(fotg210, last);
2468        }
2469
2470        /* Do we need to rescan for URBs dequeued during a giveback? */
2471        if (unlikely(qh->needs_rescan)) {
2472                /* If the QH is already unlinked, do the rescan now. */
2473                if (state == QH_STATE_IDLE)
2474                        goto rescan;
2475
2476                /* Otherwise we have to wait until the QH is fully unlinked.
2477                 * Our caller will start an unlink if qh->needs_rescan is
2478                 * set.  But if an unlink has already started, nothing needs
2479                 * to be done.
2480                 */
2481                if (state != QH_STATE_LINKED)
2482                        qh->needs_rescan = 0;
2483        }
2484
2485        /* restore original state; caller must unlink or relink */
2486        qh->qh_state = state;
2487
2488        /* be sure the hardware's done with the qh before refreshing
2489         * it after fault cleanup, or recovering from silicon wrongly
2490         * overlaying the dummy qtd (which reduces DMA chatter).
2491         */
2492        if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2493                switch (state) {
2494                case QH_STATE_IDLE:
2495                        qh_refresh(fotg210, qh);
2496                        break;
2497                case QH_STATE_LINKED:
2498                        /* We won't refresh a QH that's linked (after the HC
2499                         * stopped the queue).  That avoids a race:
2500                         *  - HC reads first part of QH;
2501                         *  - CPU updates that first part and the token;
2502                         *  - HC reads rest of that QH, including token
2503                         * Result:  HC gets an inconsistent image, and then
2504                         * DMAs to/from the wrong memory (corrupting it).
2505                         *
2506                         * That should be rare for interrupt transfers,
2507                         * except maybe high bandwidth ...
2508                         */
2509
2510                        /* Tell the caller to start an unlink */
2511                        qh->needs_rescan = 1;
2512                        break;
2513                /* otherwise, unlink already started */
2514                }
2515        }
2516
2517        return count;
2518}
2519
2520/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2521#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2522/* ... and packet size, for any kind of endpoint descriptor */
2523#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2524
2525/* reverse of qh_urb_transaction:  free a list of TDs.
2526 * used for cleanup after errors, before HC sees an URB's TDs.
2527 */
2528static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2529                struct list_head *head)
2530{
2531        struct fotg210_qtd *qtd, *temp;
2532
2533        list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2534                list_del(&qtd->qtd_list);
2535                fotg210_qtd_free(fotg210, qtd);
2536        }
2537}
2538
2539/* create a list of filled qtds for this URB; won't link into qh.
2540 */
2541static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2542                struct urb *urb, struct list_head *head, gfp_t flags)
2543{
2544        struct fotg210_qtd *qtd, *qtd_prev;
2545        dma_addr_t buf;
2546        int len, this_sg_len, maxpacket;
2547        int is_input;
2548        u32 token;
2549        int i;
2550        struct scatterlist *sg;
2551
2552        /*
2553         * URBs map to sequences of QTDs:  one logical transaction
2554         */
2555        qtd = fotg210_qtd_alloc(fotg210, flags);
2556        if (unlikely(!qtd))
2557                return NULL;
2558        list_add_tail(&qtd->qtd_list, head);
2559        qtd->urb = urb;
2560
2561        token = QTD_STS_ACTIVE;
2562        token |= (FOTG210_TUNE_CERR << 10);
2563        /* for split transactions, SplitXState initialized to zero */
2564
2565        len = urb->transfer_buffer_length;
2566        is_input = usb_pipein(urb->pipe);
2567        if (usb_pipecontrol(urb->pipe)) {
2568                /* SETUP pid */
2569                qtd_fill(fotg210, qtd, urb->setup_dma,
2570                                sizeof(struct usb_ctrlrequest),
2571                                token | (2 /* "setup" */ << 8), 8);
2572
2573                /* ... and always at least one more pid */
2574                token ^= QTD_TOGGLE;
2575                qtd_prev = qtd;
2576                qtd = fotg210_qtd_alloc(fotg210, flags);
2577                if (unlikely(!qtd))
2578                        goto cleanup;
2579                qtd->urb = urb;
2580                qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2581                list_add_tail(&qtd->qtd_list, head);
2582
2583                /* for zero length DATA stages, STATUS is always IN */
2584                if (len == 0)
2585                        token |= (1 /* "in" */ << 8);
2586        }
2587
2588        /*
2589         * data transfer stage:  buffer setup
2590         */
2591        i = urb->num_mapped_sgs;
2592        if (len > 0 && i > 0) {
2593                sg = urb->sg;
2594                buf = sg_dma_address(sg);
2595
2596                /* urb->transfer_buffer_length may be smaller than the
2597                 * size of the scatterlist (or vice versa)
2598                 */
2599                this_sg_len = min_t(int, sg_dma_len(sg), len);
2600        } else {
2601                sg = NULL;
2602                buf = urb->transfer_dma;
2603                this_sg_len = len;
2604        }
2605
2606        if (is_input)
2607                token |= (1 /* "in" */ << 8);
2608        /* else it's already initted to "out" pid (0 << 8) */
2609
2610        maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2611
2612        /*
2613         * buffer gets wrapped in one or more qtds;
2614         * last one may be "short" (including zero len)
2615         * and may serve as a control status ack
2616         */
2617        for (;;) {
2618                int this_qtd_len;
2619
2620                this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2621                                maxpacket);
2622                this_sg_len -= this_qtd_len;
2623                len -= this_qtd_len;
2624                buf += this_qtd_len;
2625
2626                /*
2627                 * short reads advance to a "magic" dummy instead of the next
2628                 * qtd ... that forces the queue to stop, for manual cleanup.
2629                 * (this will usually be overridden later.)
2630                 */
2631                if (is_input)
2632                        qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2633
2634                /* qh makes control packets use qtd toggle; maybe switch it */
2635                if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2636                        token ^= QTD_TOGGLE;
2637
2638                if (likely(this_sg_len <= 0)) {
2639                        if (--i <= 0 || len <= 0)
2640                                break;
2641                        sg = sg_next(sg);
2642                        buf = sg_dma_address(sg);
2643                        this_sg_len = min_t(int, sg_dma_len(sg), len);
2644                }
2645
2646                qtd_prev = qtd;
2647                qtd = fotg210_qtd_alloc(fotg210, flags);
2648                if (unlikely(!qtd))
2649                        goto cleanup;
2650                qtd->urb = urb;
2651                qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2652                list_add_tail(&qtd->qtd_list, head);
2653        }
2654
2655        /*
2656         * unless the caller requires manual cleanup after short reads,
2657         * have the alt_next mechanism keep the queue running after the
2658         * last data qtd (the only one, for control and most other cases).
2659         */
2660        if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2661                        usb_pipecontrol(urb->pipe)))
2662                qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2663
2664        /*
2665         * control requests may need a terminating data "status" ack;
2666         * other OUT ones may need a terminating short packet
2667         * (zero length).
2668         */
2669        if (likely(urb->transfer_buffer_length != 0)) {
2670                int one_more = 0;
2671
2672                if (usb_pipecontrol(urb->pipe)) {
2673                        one_more = 1;
2674                        token ^= 0x0100;        /* "in" <--> "out"  */
2675                        token |= QTD_TOGGLE;    /* force DATA1 */
2676                } else if (usb_pipeout(urb->pipe)
2677                                && (urb->transfer_flags & URB_ZERO_PACKET)
2678                                && !(urb->transfer_buffer_length % maxpacket)) {
2679                        one_more = 1;
2680                }
2681                if (one_more) {
2682                        qtd_prev = qtd;
2683                        qtd = fotg210_qtd_alloc(fotg210, flags);
2684                        if (unlikely(!qtd))
2685                                goto cleanup;
2686                        qtd->urb = urb;
2687                        qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2688                        list_add_tail(&qtd->qtd_list, head);
2689
2690                        /* never any data in such packets */
2691                        qtd_fill(fotg210, qtd, 0, 0, token, 0);
2692                }
2693        }
2694
2695        /* by default, enable interrupt on urb completion */
2696        if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2697                qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2698        return head;
2699
2700cleanup:
2701        qtd_list_free(fotg210, urb, head);
2702        return NULL;
2703}
2704
2705/* Would be best to create all qh's from config descriptors,
2706 * when each interface/altsetting is established.  Unlink
2707 * any previous qh and cancel its urbs first; endpoints are
2708 * implicitly reset then (data toggle too).
2709 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2710*/
2711
2712
2713/* Each QH holds a qtd list; a QH is used for everything except iso.
2714 *
2715 * For interrupt urbs, the scheduler must set the microframe scheduling
2716 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2717 * just one microframe in the s-mask.  For split interrupt transactions
2718 * there are additional complications: c-mask, maybe FSTNs.
2719 */
2720static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2721                gfp_t flags)
2722{
2723        struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2724        u32 info1 = 0, info2 = 0;
2725        int is_input, type;
2726        int maxp = 0;
2727        struct usb_tt *tt = urb->dev->tt;
2728        struct fotg210_qh_hw *hw;
2729
2730        if (!qh)
2731                return qh;
2732
2733        /*
2734         * init endpoint/device data for this QH
2735         */
2736        info1 |= usb_pipeendpoint(urb->pipe) << 8;
2737        info1 |= usb_pipedevice(urb->pipe) << 0;
2738
2739        is_input = usb_pipein(urb->pipe);
2740        type = usb_pipetype(urb->pipe);
2741        maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2742
2743        /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2744         * acts like up to 3KB, but is built from smaller packets.
2745         */
2746        if (max_packet(maxp) > 1024) {
2747                fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2748                                max_packet(maxp));
2749                goto done;
2750        }
2751
2752        /* Compute interrupt scheduling parameters just once, and save.
2753         * - allowing for high bandwidth, how many nsec/uframe are used?
2754         * - split transactions need a second CSPLIT uframe; same question
2755         * - splits also need a schedule gap (for full/low speed I/O)
2756         * - qh has a polling interval
2757         *
2758         * For control/bulk requests, the HC or TT handles these.
2759         */
2760        if (type == PIPE_INTERRUPT) {
2761                qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2762                                is_input, 0,
2763                                hb_mult(maxp) * max_packet(maxp)));
2764                qh->start = NO_FRAME;
2765
2766                if (urb->dev->speed == USB_SPEED_HIGH) {
2767                        qh->c_usecs = 0;
2768                        qh->gap_uf = 0;
2769
2770                        qh->period = urb->interval >> 3;
2771                        if (qh->period == 0 && urb->interval != 1) {
2772                                /* NOTE interval 2 or 4 uframes could work.
2773                                 * But interval 1 scheduling is simpler, and
2774                                 * includes high bandwidth.
2775                                 */
2776                                urb->interval = 1;
2777                        } else if (qh->period > fotg210->periodic_size) {
2778                                qh->period = fotg210->periodic_size;
2779                                urb->interval = qh->period << 3;
2780                        }
2781                } else {
2782                        int think_time;
2783
2784                        /* gap is f(FS/LS transfer times) */
2785                        qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2786                                        is_input, 0, maxp) / (125 * 1000);
2787
2788                        /* FIXME this just approximates SPLIT/CSPLIT times */
2789                        if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2790                                qh->c_usecs = qh->usecs + HS_USECS(0);
2791                                qh->usecs = HS_USECS(1);
2792                        } else {                /* SPLIT+DATA, gap, CSPLIT */
2793                                qh->usecs += HS_USECS(1);
2794                                qh->c_usecs = HS_USECS(0);
2795                        }
2796
2797                        think_time = tt ? tt->think_time : 0;
2798                        qh->tt_usecs = NS_TO_US(think_time +
2799                                        usb_calc_bus_time(urb->dev->speed,
2800                                        is_input, 0, max_packet(maxp)));
2801                        qh->period = urb->interval;
2802                        if (qh->period > fotg210->periodic_size) {
2803                                qh->period = fotg210->periodic_size;
2804                                urb->interval = qh->period;
2805                        }
2806                }
2807        }
2808
2809        /* support for tt scheduling, and access to toggles */
2810        qh->dev = urb->dev;
2811
2812        /* using TT? */
2813        switch (urb->dev->speed) {
2814        case USB_SPEED_LOW:
2815                info1 |= QH_LOW_SPEED;
2816                /* FALL THROUGH */
2817
2818        case USB_SPEED_FULL:
2819                /* EPS 0 means "full" */
2820                if (type != PIPE_INTERRUPT)
2821                        info1 |= (FOTG210_TUNE_RL_TT << 28);
2822                if (type == PIPE_CONTROL) {
2823                        info1 |= QH_CONTROL_EP;         /* for TT */
2824                        info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2825                }
2826                info1 |= maxp << 16;
2827
2828                info2 |= (FOTG210_TUNE_MULT_TT << 30);
2829
2830                /* Some Freescale processors have an erratum in which the
2831                 * port number in the queue head was 0..N-1 instead of 1..N.
2832                 */
2833                if (fotg210_has_fsl_portno_bug(fotg210))
2834                        info2 |= (urb->dev->ttport-1) << 23;
2835                else
2836                        info2 |= urb->dev->ttport << 23;
2837
2838                /* set the address of the TT; for TDI's integrated
2839                 * root hub tt, leave it zeroed.
2840                 */
2841                if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2842                        info2 |= tt->hub->devnum << 16;
2843
2844                /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2845
2846                break;
2847
2848        case USB_SPEED_HIGH:            /* no TT involved */
2849                info1 |= QH_HIGH_SPEED;
2850                if (type == PIPE_CONTROL) {
2851                        info1 |= (FOTG210_TUNE_RL_HS << 28);
2852                        info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2853                        info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2854                        info2 |= (FOTG210_TUNE_MULT_HS << 30);
2855                } else if (type == PIPE_BULK) {
2856                        info1 |= (FOTG210_TUNE_RL_HS << 28);
2857                        /* The USB spec says that high speed bulk endpoints
2858                         * always use 512 byte maxpacket.  But some device
2859                         * vendors decided to ignore that, and MSFT is happy
2860                         * to help them do so.  So now people expect to use
2861                         * such nonconformant devices with Linux too; sigh.
2862                         */
2863                        info1 |= max_packet(maxp) << 16;
2864                        info2 |= (FOTG210_TUNE_MULT_HS << 30);
2865                } else {                /* PIPE_INTERRUPT */
2866                        info1 |= max_packet(maxp) << 16;
2867                        info2 |= hb_mult(maxp) << 30;
2868                }
2869                break;
2870        default:
2871                fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2872                                urb->dev->speed);
2873done:
2874                qh_destroy(fotg210, qh);
2875                return NULL;
2876        }
2877
2878        /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2879
2880        /* init as live, toggle clear, advance to dummy */
2881        qh->qh_state = QH_STATE_IDLE;
2882        hw = qh->hw;
2883        hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2884        hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2885        qh->is_out = !is_input;
2886        usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2887        qh_refresh(fotg210, qh);
2888        return qh;
2889}
2890
2891static void enable_async(struct fotg210_hcd *fotg210)
2892{
2893        if (fotg210->async_count++)
2894                return;
2895
2896        /* Stop waiting to turn off the async schedule */
2897        fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2898
2899        /* Don't start the schedule until ASS is 0 */
2900        fotg210_poll_ASS(fotg210);
2901        turn_on_io_watchdog(fotg210);
2902}
2903
2904static void disable_async(struct fotg210_hcd *fotg210)
2905{
2906        if (--fotg210->async_count)
2907                return;
2908
2909        /* The async schedule and async_unlink list are supposed to be empty */
2910        WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2911
2912        /* Don't turn off the schedule until ASS is 1 */
2913        fotg210_poll_ASS(fotg210);
2914}
2915
2916/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2917
2918static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2919{
2920        __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2921        struct fotg210_qh *head;
2922
2923        /* Don't link a QH if there's a Clear-TT-Buffer pending */
2924        if (unlikely(qh->clearing_tt))
2925                return;
2926
2927        WARN_ON(qh->qh_state != QH_STATE_IDLE);
2928
2929        /* clear halt and/or toggle; and maybe recover from silicon quirk */
2930        qh_refresh(fotg210, qh);
2931
2932        /* splice right after start */
2933        head = fotg210->async;
2934        qh->qh_next = head->qh_next;
2935        qh->hw->hw_next = head->hw->hw_next;
2936        wmb();
2937
2938        head->qh_next.qh = qh;
2939        head->hw->hw_next = dma;
2940
2941        qh->xacterrs = 0;
2942        qh->qh_state = QH_STATE_LINKED;
2943        /* qtd completions reported later by interrupt */
2944
2945        enable_async(fotg210);
2946}
2947
2948/* For control/bulk/interrupt, return QH with these TDs appended.
2949 * Allocates and initializes the QH if necessary.
2950 * Returns null if it can't allocate a QH it needs to.
2951 * If the QH has TDs (urbs) already, that's great.
2952 */
2953static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2954                struct urb *urb, struct list_head *qtd_list,
2955                int epnum, void **ptr)
2956{
2957        struct fotg210_qh *qh = NULL;
2958        __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2959
2960        qh = (struct fotg210_qh *) *ptr;
2961        if (unlikely(qh == NULL)) {
2962                /* can't sleep here, we have fotg210->lock... */
2963                qh = qh_make(fotg210, urb, GFP_ATOMIC);
2964                *ptr = qh;
2965        }
2966        if (likely(qh != NULL)) {
2967                struct fotg210_qtd *qtd;
2968
2969                if (unlikely(list_empty(qtd_list)))
2970                        qtd = NULL;
2971                else
2972                        qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2973                                        qtd_list);
2974
2975                /* control qh may need patching ... */
2976                if (unlikely(epnum == 0)) {
2977                        /* usb_reset_device() briefly reverts to address 0 */
2978                        if (usb_pipedevice(urb->pipe) == 0)
2979                                qh->hw->hw_info1 &= ~qh_addr_mask;
2980                }
2981
2982                /* just one way to queue requests: swap with the dummy qtd.
2983                 * only hc or qh_refresh() ever modify the overlay.
2984                 */
2985                if (likely(qtd != NULL)) {
2986                        struct fotg210_qtd *dummy;
2987                        dma_addr_t dma;
2988                        __hc32 token;
2989
2990                        /* to avoid racing the HC, use the dummy td instead of
2991                         * the first td of our list (becomes new dummy).  both
2992                         * tds stay deactivated until we're done, when the
2993                         * HC is allowed to fetch the old dummy (4.10.2).
2994                         */
2995                        token = qtd->hw_token;
2996                        qtd->hw_token = HALT_BIT(fotg210);
2997
2998                        dummy = qh->dummy;
2999
3000                        dma = dummy->qtd_dma;
3001                        *dummy = *qtd;
3002                        dummy->qtd_dma = dma;
3003
3004                        list_del(&qtd->qtd_list);
3005                        list_add(&dummy->qtd_list, qtd_list);
3006                        list_splice_tail(qtd_list, &qh->qtd_list);
3007
3008                        fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3009                        qh->dummy = qtd;
3010
3011                        /* hc must see the new dummy at list end */
3012                        dma = qtd->qtd_dma;
3013                        qtd = list_entry(qh->qtd_list.prev,
3014                                        struct fotg210_qtd, qtd_list);
3015                        qtd->hw_next = QTD_NEXT(fotg210, dma);
3016
3017                        /* let the hc process these next qtds */
3018                        wmb();
3019                        dummy->hw_token = token;
3020
3021                        urb->hcpriv = qh;
3022                }
3023        }
3024        return qh;
3025}
3026
3027static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3028                struct list_head *qtd_list, gfp_t mem_flags)
3029{
3030        int epnum;
3031        unsigned long flags;
3032        struct fotg210_qh *qh = NULL;
3033        int rc;
3034
3035        epnum = urb->ep->desc.bEndpointAddress;
3036
3037#ifdef FOTG210_URB_TRACE
3038        {
3039                struct fotg210_qtd *qtd;
3040
3041                qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3042                fotg210_dbg(fotg210,
3043                                "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3044                                __func__, urb->dev->devpath, urb,
3045                                epnum & 0x0f, (epnum & USB_DIR_IN)
3046                                        ? "in" : "out",
3047                                urb->transfer_buffer_length,
3048                                qtd, urb->ep->hcpriv);
3049        }
3050#endif
3051
3052        spin_lock_irqsave(&fotg210->lock, flags);
3053        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3054                rc = -ESHUTDOWN;
3055                goto done;
3056        }
3057        rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3058        if (unlikely(rc))
3059                goto done;
3060
3061        qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3062        if (unlikely(qh == NULL)) {
3063                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3064                rc = -ENOMEM;
3065                goto done;
3066        }
3067
3068        /* Control/bulk operations through TTs don't need scheduling,
3069         * the HC and TT handle it when the TT has a buffer ready.
3070         */
3071        if (likely(qh->qh_state == QH_STATE_IDLE))
3072                qh_link_async(fotg210, qh);
3073done:
3074        spin_unlock_irqrestore(&fotg210->lock, flags);
3075        if (unlikely(qh == NULL))
3076                qtd_list_free(fotg210, urb, qtd_list);
3077        return rc;
3078}
3079
3080static void single_unlink_async(struct fotg210_hcd *fotg210,
3081                struct fotg210_qh *qh)
3082{
3083        struct fotg210_qh *prev;
3084
3085        /* Add to the end of the list of QHs waiting for the next IAAD */
3086        qh->qh_state = QH_STATE_UNLINK;
3087        if (fotg210->async_unlink)
3088                fotg210->async_unlink_last->unlink_next = qh;
3089        else
3090                fotg210->async_unlink = qh;
3091        fotg210->async_unlink_last = qh;
3092
3093        /* Unlink it from the schedule */
3094        prev = fotg210->async;
3095        while (prev->qh_next.qh != qh)
3096                prev = prev->qh_next.qh;
3097
3098        prev->hw->hw_next = qh->hw->hw_next;
3099        prev->qh_next = qh->qh_next;
3100        if (fotg210->qh_scan_next == qh)
3101                fotg210->qh_scan_next = qh->qh_next.qh;
3102}
3103
3104static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3105{
3106        /*
3107         * Do nothing if an IAA cycle is already running or
3108         * if one will be started shortly.
3109         */
3110        if (fotg210->async_iaa || fotg210->async_unlinking)
3111                return;
3112
3113        /* Do all the waiting QHs at once */
3114        fotg210->async_iaa = fotg210->async_unlink;
3115        fotg210->async_unlink = NULL;
3116
3117        /* If the controller isn't running, we don't have to wait for it */
3118        if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3119                if (!nested)            /* Avoid recursion */
3120                        end_unlink_async(fotg210);
3121
3122        /* Otherwise start a new IAA cycle */
3123        } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3124                /* Make sure the unlinks are all visible to the hardware */
3125                wmb();
3126
3127                fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3128                                &fotg210->regs->command);
3129                fotg210_readl(fotg210, &fotg210->regs->command);
3130                fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3131                                true);
3132        }
3133}
3134
3135/* the async qh for the qtds being unlinked are now gone from the HC */
3136
3137static void end_unlink_async(struct fotg210_hcd *fotg210)
3138{
3139        struct fotg210_qh *qh;
3140
3141        /* Process the idle QHs */
3142restart:
3143        fotg210->async_unlinking = true;
3144        while (fotg210->async_iaa) {
3145                qh = fotg210->async_iaa;
3146                fotg210->async_iaa = qh->unlink_next;
3147                qh->unlink_next = NULL;
3148
3149                qh->qh_state = QH_STATE_IDLE;
3150                qh->qh_next.qh = NULL;
3151
3152                qh_completions(fotg210, qh);
3153                if (!list_empty(&qh->qtd_list) &&
3154                                fotg210->rh_state == FOTG210_RH_RUNNING)
3155                        qh_link_async(fotg210, qh);
3156                disable_async(fotg210);
3157        }
3158        fotg210->async_unlinking = false;
3159
3160        /* Start a new IAA cycle if any QHs are waiting for it */
3161        if (fotg210->async_unlink) {
3162                start_iaa_cycle(fotg210, true);
3163                if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3164                        goto restart;
3165        }
3166}
3167
3168static void unlink_empty_async(struct fotg210_hcd *fotg210)
3169{
3170        struct fotg210_qh *qh, *next;
3171        bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3172        bool check_unlinks_later = false;
3173
3174        /* Unlink all the async QHs that have been empty for a timer cycle */
3175        next = fotg210->async->qh_next.qh;
3176        while (next) {
3177                qh = next;
3178                next = qh->qh_next.qh;
3179
3180                if (list_empty(&qh->qtd_list) &&
3181                                qh->qh_state == QH_STATE_LINKED) {
3182                        if (!stopped && qh->unlink_cycle ==
3183                                        fotg210->async_unlink_cycle)
3184                                check_unlinks_later = true;
3185                        else
3186                                single_unlink_async(fotg210, qh);
3187                }
3188        }
3189
3190        /* Start a new IAA cycle if any QHs are waiting for it */
3191        if (fotg210->async_unlink)
3192                start_iaa_cycle(fotg210, false);
3193
3194        /* QHs that haven't been empty for long enough will be handled later */
3195        if (check_unlinks_later) {
3196                fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3197                                true);
3198                ++fotg210->async_unlink_cycle;
3199        }
3200}
3201
3202/* makes sure the async qh will become idle */
3203/* caller must own fotg210->lock */
3204
3205static void start_unlink_async(struct fotg210_hcd *fotg210,
3206                struct fotg210_qh *qh)
3207{
3208        /*
3209         * If the QH isn't linked then there's nothing we can do
3210         * unless we were called during a giveback, in which case
3211         * qh_completions() has to deal with it.
3212         */
3213        if (qh->qh_state != QH_STATE_LINKED) {
3214                if (qh->qh_state == QH_STATE_COMPLETING)
3215                        qh->needs_rescan = 1;
3216                return;
3217        }
3218
3219        single_unlink_async(fotg210, qh);
3220        start_iaa_cycle(fotg210, false);
3221}
3222
3223static void scan_async(struct fotg210_hcd *fotg210)
3224{
3225        struct fotg210_qh *qh;
3226        bool check_unlinks_later = false;
3227
3228        fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3229        while (fotg210->qh_scan_next) {
3230                qh = fotg210->qh_scan_next;
3231                fotg210->qh_scan_next = qh->qh_next.qh;
3232rescan:
3233                /* clean any finished work for this qh */
3234                if (!list_empty(&qh->qtd_list)) {
3235                        int temp;
3236
3237                        /*
3238                         * Unlinks could happen here; completion reporting
3239                         * drops the lock.  That's why fotg210->qh_scan_next
3240                         * always holds the next qh to scan; if the next qh
3241                         * gets unlinked then fotg210->qh_scan_next is adjusted
3242                         * in single_unlink_async().
3243                         */
3244                        temp = qh_completions(fotg210, qh);
3245                        if (qh->needs_rescan) {
3246                                start_unlink_async(fotg210, qh);
3247                        } else if (list_empty(&qh->qtd_list)
3248                                        && qh->qh_state == QH_STATE_LINKED) {
3249                                qh->unlink_cycle = fotg210->async_unlink_cycle;
3250                                check_unlinks_later = true;
3251                        } else if (temp != 0)
3252                                goto rescan;
3253                }
3254        }
3255
3256        /*
3257         * Unlink empty entries, reducing DMA usage as well
3258         * as HCD schedule-scanning costs.  Delay for any qh
3259         * we just scanned, there's a not-unusual case that it
3260         * doesn't stay idle for long.
3261         */
3262        if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3263                        !(fotg210->enabled_hrtimer_events &
3264                        BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3265                fotg210_enable_event(fotg210,
3266                                FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3267                ++fotg210->async_unlink_cycle;
3268        }
3269}
3270/* EHCI scheduled transaction support:  interrupt, iso, split iso
3271 * These are called "periodic" transactions in the EHCI spec.
3272 *
3273 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3274 * with the "asynchronous" transaction support (control/bulk transfers).
3275 * The only real difference is in how interrupt transfers are scheduled.
3276 *
3277 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3278 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3279 * pre-calculated schedule data to make appending to the queue be quick.
3280 */
3281static int fotg210_get_frame(struct usb_hcd *hcd);
3282
3283/* periodic_next_shadow - return "next" pointer on shadow list
3284 * @periodic: host pointer to qh/itd
3285 * @tag: hardware tag for type of this record
3286 */
3287static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3288                union fotg210_shadow *periodic, __hc32 tag)
3289{
3290        switch (hc32_to_cpu(fotg210, tag)) {
3291        case Q_TYPE_QH:
3292                return &periodic->qh->qh_next;
3293        case Q_TYPE_FSTN:
3294                return &periodic->fstn->fstn_next;
3295        default:
3296                return &periodic->itd->itd_next;
3297        }
3298}
3299
3300static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3301                union fotg210_shadow *periodic, __hc32 tag)
3302{
3303        switch (hc32_to_cpu(fotg210, tag)) {
3304        /* our fotg210_shadow.qh is actually software part */
3305        case Q_TYPE_QH:
3306                return &periodic->qh->hw->hw_next;
3307        /* others are hw parts */
3308        default:
3309                return periodic->hw_next;
3310        }
3311}
3312
3313/* caller must hold fotg210->lock */
3314static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3315                void *ptr)
3316{
3317        union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3318        __hc32 *hw_p = &fotg210->periodic[frame];
3319        union fotg210_shadow here = *prev_p;
3320
3321        /* find predecessor of "ptr"; hw and shadow lists are in sync */
3322        while (here.ptr && here.ptr != ptr) {
3323                prev_p = periodic_next_shadow(fotg210, prev_p,
3324                                Q_NEXT_TYPE(fotg210, *hw_p));
3325                hw_p = shadow_next_periodic(fotg210, &here,
3326                                Q_NEXT_TYPE(fotg210, *hw_p));
3327                here = *prev_p;
3328        }
3329        /* an interrupt entry (at list end) could have been shared */
3330        if (!here.ptr)
3331                return;
3332
3333        /* update shadow and hardware lists ... the old "next" pointers
3334         * from ptr may still be in use, the caller updates them.
3335         */
3336        *prev_p = *periodic_next_shadow(fotg210, &here,
3337                        Q_NEXT_TYPE(fotg210, *hw_p));
3338
3339        *hw_p = *shadow_next_periodic(fotg210, &here,
3340                        Q_NEXT_TYPE(fotg210, *hw_p));
3341}
3342
3343/* how many of the uframe's 125 usecs are allocated? */
3344static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3345                unsigned frame, unsigned uframe)
3346{
3347        __hc32 *hw_p = &fotg210->periodic[frame];
3348        union fotg210_shadow *q = &fotg210->pshadow[frame];
3349        unsigned usecs = 0;
3350        struct fotg210_qh_hw *hw;
3351
3352        while (q->ptr) {
3353                switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3354                case Q_TYPE_QH:
3355                        hw = q->qh->hw;
3356                        /* is it in the S-mask? */
3357                        if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3358                                usecs += q->qh->usecs;
3359                        /* ... or C-mask? */
3360                        if (hw->hw_info2 & cpu_to_hc32(fotg210,
3361                                        1 << (8 + uframe)))
3362                                usecs += q->qh->c_usecs;
3363                        hw_p = &hw->hw_next;
3364                        q = &q->qh->qh_next;
3365                        break;
3366                /* case Q_TYPE_FSTN: */
3367                default:
3368                        /* for "save place" FSTNs, count the relevant INTR
3369                         * bandwidth from the previous frame
3370                         */
3371                        if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3372                                fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3373
3374                        hw_p = &q->fstn->hw_next;
3375                        q = &q->fstn->fstn_next;
3376                        break;
3377                case Q_TYPE_ITD:
3378                        if (q->itd->hw_transaction[uframe])
3379                                usecs += q->itd->stream->usecs;
3380                        hw_p = &q->itd->hw_next;
3381                        q = &q->itd->itd_next;
3382                        break;
3383                }
3384        }
3385        if (usecs > fotg210->uframe_periodic_max)
3386                fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3387                                frame * 8 + uframe, usecs);
3388        return usecs;
3389}
3390
3391static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3392{
3393        if (!dev1->tt || !dev2->tt)
3394                return 0;
3395        if (dev1->tt != dev2->tt)
3396                return 0;
3397        if (dev1->tt->multi)
3398                return dev1->ttport == dev2->ttport;
3399        else
3400                return 1;
3401}
3402
3403/* return true iff the device's transaction translator is available
3404 * for a periodic transfer starting at the specified frame, using
3405 * all the uframes in the mask.
3406 */
3407static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3408                struct usb_device *dev, unsigned frame, u32 uf_mask)
3409{
3410        if (period == 0)        /* error */
3411                return 0;
3412
3413        /* note bandwidth wastage:  split never follows csplit
3414         * (different dev or endpoint) until the next uframe.
3415         * calling convention doesn't make that distinction.
3416         */
3417        for (; frame < fotg210->periodic_size; frame += period) {
3418                union fotg210_shadow here;
3419                __hc32 type;
3420                struct fotg210_qh_hw *hw;
3421
3422                here = fotg210->pshadow[frame];
3423                type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3424                while (here.ptr) {
3425                        switch (hc32_to_cpu(fotg210, type)) {
3426                        case Q_TYPE_ITD:
3427                                type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3428                                here = here.itd->itd_next;
3429                                continue;
3430                        case Q_TYPE_QH:
3431                                hw = here.qh->hw;
3432                                if (same_tt(dev, here.qh->dev)) {
3433                                        u32 mask;
3434
3435                                        mask = hc32_to_cpu(fotg210,
3436                                                        hw->hw_info2);
3437                                        /* "knows" no gap is needed */
3438                                        mask |= mask >> 8;
3439                                        if (mask & uf_mask)
3440                                                break;
3441                                }
3442                                type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3443                                here = here.qh->qh_next;
3444                                continue;
3445                        /* case Q_TYPE_FSTN: */
3446                        default:
3447                                fotg210_dbg(fotg210,
3448                                                "periodic frame %d bogus type %d\n",
3449                                                frame, type);
3450                        }
3451
3452                        /* collision or error */
3453                        return 0;
3454                }
3455        }
3456
3457        /* no collision */
3458        return 1;
3459}
3460
3461static void enable_periodic(struct fotg210_hcd *fotg210)
3462{
3463        if (fotg210->periodic_count++)
3464                return;
3465
3466        /* Stop waiting to turn off the periodic schedule */
3467        fotg210->enabled_hrtimer_events &=
3468                ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3469
3470        /* Don't start the schedule until PSS is 0 */
3471        fotg210_poll_PSS(fotg210);
3472        turn_on_io_watchdog(fotg210);
3473}
3474
3475static void disable_periodic(struct fotg210_hcd *fotg210)
3476{
3477        if (--fotg210->periodic_count)
3478                return;
3479
3480        /* Don't turn off the schedule until PSS is 1 */
3481        fotg210_poll_PSS(fotg210);
3482}
3483
3484/* periodic schedule slots have iso tds (normal or split) first, then a
3485 * sparse tree for active interrupt transfers.
3486 *
3487 * this just links in a qh; caller guarantees uframe masks are set right.
3488 * no FSTN support (yet; fotg210 0.96+)
3489 */
3490static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3491{
3492        unsigned i;
3493        unsigned period = qh->period;
3494
3495        dev_dbg(&qh->dev->dev,
3496                        "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3497                        hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3498                        (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3499                        qh->c_usecs);
3500
3501        /* high bandwidth, or otherwise every microframe */
3502        if (period == 0)
3503                period = 1;
3504
3505        for (i = qh->start; i < fotg210->periodic_size; i += period) {
3506                union fotg210_shadow *prev = &fotg210->pshadow[i];
3507                __hc32 *hw_p = &fotg210->periodic[i];
3508                union fotg210_shadow here = *prev;
3509                __hc32 type = 0;
3510
3511                /* skip the iso nodes at list head */
3512                while (here.ptr) {
3513                        type = Q_NEXT_TYPE(fotg210, *hw_p);
3514                        if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3515                                break;
3516                        prev = periodic_next_shadow(fotg210, prev, type);
3517                        hw_p = shadow_next_periodic(fotg210, &here, type);
3518                        here = *prev;
3519                }
3520
3521                /* sorting each branch by period (slow-->fast)
3522                 * enables sharing interior tree nodes
3523                 */
3524                while (here.ptr && qh != here.qh) {
3525                        if (qh->period > here.qh->period)
3526                                break;
3527                        prev = &here.qh->qh_next;
3528                        hw_p = &here.qh->hw->hw_next;
3529                        here = *prev;
3530                }
3531                /* link in this qh, unless some earlier pass did that */
3532                if (qh != here.qh) {
3533                        qh->qh_next = here;
3534                        if (here.qh)
3535                                qh->hw->hw_next = *hw_p;
3536                        wmb();
3537                        prev->qh = qh;
3538                        *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3539                }
3540        }
3541        qh->qh_state = QH_STATE_LINKED;
3542        qh->xacterrs = 0;
3543
3544        /* update per-qh bandwidth for usbfs */
3545        fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3546                ? ((qh->usecs + qh->c_usecs) / qh->period)
3547                : (qh->usecs * 8);
3548
3549        list_add(&qh->intr_node, &fotg210->intr_qh_list);
3550
3551        /* maybe enable periodic schedule processing */
3552        ++fotg210->intr_count;
3553        enable_periodic(fotg210);
3554}
3555
3556static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3557                struct fotg210_qh *qh)
3558{
3559        unsigned i;
3560        unsigned period;
3561
3562        /*
3563         * If qh is for a low/full-speed device, simply unlinking it
3564         * could interfere with an ongoing split transaction.  To unlink
3565         * it safely would require setting the QH_INACTIVATE bit and
3566         * waiting at least one frame, as described in EHCI 4.12.2.5.
3567         *
3568         * We won't bother with any of this.  Instead, we assume that the
3569         * only reason for unlinking an interrupt QH while the current URB
3570         * is still active is to dequeue all the URBs (flush the whole
3571         * endpoint queue).
3572         *
3573         * If rebalancing the periodic schedule is ever implemented, this
3574         * approach will no longer be valid.
3575         */
3576
3577        /* high bandwidth, or otherwise part of every microframe */
3578        period = qh->period;
3579        if (!period)
3580                period = 1;
3581
3582        for (i = qh->start; i < fotg210->periodic_size; i += period)
3583                periodic_unlink(fotg210, i, qh);
3584
3585        /* update per-qh bandwidth for usbfs */
3586        fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3587                ? ((qh->usecs + qh->c_usecs) / qh->period)
3588                : (qh->usecs * 8);
3589
3590        dev_dbg(&qh->dev->dev,
3591                        "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3592                        qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3593                        (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3594                        qh->c_usecs);
3595
3596        /* qh->qh_next still "live" to HC */
3597        qh->qh_state = QH_STATE_UNLINK;
3598        qh->qh_next.ptr = NULL;
3599
3600        if (fotg210->qh_scan_next == qh)
3601                fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3602                                struct fotg210_qh, intr_node);
3603        list_del(&qh->intr_node);
3604}
3605
3606static void start_unlink_intr(struct fotg210_hcd *fotg210,
3607                struct fotg210_qh *qh)
3608{
3609        /* If the QH isn't linked then there's nothing we can do
3610         * unless we were called during a giveback, in which case
3611         * qh_completions() has to deal with it.
3612         */
3613        if (qh->qh_state != QH_STATE_LINKED) {
3614                if (qh->qh_state == QH_STATE_COMPLETING)
3615                        qh->needs_rescan = 1;
3616                return;
3617        }
3618
3619        qh_unlink_periodic(fotg210, qh);
3620
3621        /* Make sure the unlinks are visible before starting the timer */
3622        wmb();
3623
3624        /*
3625         * The EHCI spec doesn't say how long it takes the controller to
3626         * stop accessing an unlinked interrupt QH.  The timer delay is
3627         * 9 uframes; presumably that will be long enough.
3628         */
3629        qh->unlink_cycle = fotg210->intr_unlink_cycle;
3630
3631        /* New entries go at the end of the intr_unlink list */
3632        if (fotg210->intr_unlink)
3633                fotg210->intr_unlink_last->unlink_next = qh;
3634        else
3635                fotg210->intr_unlink = qh;
3636        fotg210->intr_unlink_last = qh;
3637
3638        if (fotg210->intr_unlinking)
3639                ;       /* Avoid recursive calls */
3640        else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3641                fotg210_handle_intr_unlinks(fotg210);
3642        else if (fotg210->intr_unlink == qh) {
3643                fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3644                                true);
3645                ++fotg210->intr_unlink_cycle;
3646        }
3647}
3648
3649static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3650{
3651        struct fotg210_qh_hw *hw = qh->hw;
3652        int rc;
3653
3654        qh->qh_state = QH_STATE_IDLE;
3655        hw->hw_next = FOTG210_LIST_END(fotg210);
3656
3657        qh_completions(fotg210, qh);
3658
3659        /* reschedule QH iff another request is queued */
3660        if (!list_empty(&qh->qtd_list) &&
3661                        fotg210->rh_state == FOTG210_RH_RUNNING) {
3662                rc = qh_schedule(fotg210, qh);
3663
3664                /* An error here likely indicates handshake failure
3665                 * or no space left in the schedule.  Neither fault
3666                 * should happen often ...
3667                 *
3668                 * FIXME kill the now-dysfunctional queued urbs
3669                 */
3670                if (rc != 0)
3671                        fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3672                                        qh, rc);
3673        }
3674
3675        /* maybe turn off periodic schedule */
3676        --fotg210->intr_count;
3677        disable_periodic(fotg210);
3678}
3679
3680static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3681                unsigned uframe, unsigned period, unsigned usecs)
3682{
3683        int claimed;
3684
3685        /* complete split running into next frame?
3686         * given FSTN support, we could sometimes check...
3687         */
3688        if (uframe >= 8)
3689                return 0;
3690
3691        /* convert "usecs we need" to "max already claimed" */
3692        usecs = fotg210->uframe_periodic_max - usecs;
3693
3694        /* we "know" 2 and 4 uframe intervals were rejected; so
3695         * for period 0, check _every_ microframe in the schedule.
3696         */
3697        if (unlikely(period == 0)) {
3698                do {
3699                        for (uframe = 0; uframe < 7; uframe++) {
3700                                claimed = periodic_usecs(fotg210, frame,
3701                                                uframe);
3702                                if (claimed > usecs)
3703                                        return 0;
3704                        }
3705                } while ((frame += 1) < fotg210->periodic_size);
3706
3707        /* just check the specified uframe, at that period */
3708        } else {
3709                do {
3710                        claimed = periodic_usecs(fotg210, frame, uframe);
3711                        if (claimed > usecs)
3712                                return 0;
3713                } while ((frame += period) < fotg210->periodic_size);
3714        }
3715
3716        /* success! */
3717        return 1;
3718}
3719
3720static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3721                unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3722{
3723        int retval = -ENOSPC;
3724        u8 mask = 0;
3725
3726        if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3727                goto done;
3728
3729        if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3730                goto done;
3731        if (!qh->c_usecs) {
3732                retval = 0;
3733                *c_maskp = 0;
3734                goto done;
3735        }
3736
3737        /* Make sure this tt's buffer is also available for CSPLITs.
3738         * We pessimize a bit; probably the typical full speed case
3739         * doesn't need the second CSPLIT.
3740         *
3741         * NOTE:  both SPLIT and CSPLIT could be checked in just
3742         * one smart pass...
3743         */
3744        mask = 0x03 << (uframe + qh->gap_uf);
3745        *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3746
3747        mask |= 1 << uframe;
3748        if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3749                if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3750                                qh->period, qh->c_usecs))
3751                        goto done;
3752                if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3753                                qh->period, qh->c_usecs))
3754                        goto done;
3755                retval = 0;
3756        }
3757done:
3758        return retval;
3759}
3760
3761/* "first fit" scheduling policy used the first time through,
3762 * or when the previous schedule slot can't be re-used.
3763 */
3764static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3765{
3766        int status;
3767        unsigned uframe;
3768        __hc32 c_mask;
3769        unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3770        struct fotg210_qh_hw *hw = qh->hw;
3771
3772        qh_refresh(fotg210, qh);
3773        hw->hw_next = FOTG210_LIST_END(fotg210);
3774        frame = qh->start;
3775
3776        /* reuse the previous schedule slots, if we can */
3777        if (frame < qh->period) {
3778                uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3779                status = check_intr_schedule(fotg210, frame, --uframe,
3780                                qh, &c_mask);
3781        } else {
3782                uframe = 0;
3783                c_mask = 0;
3784                status = -ENOSPC;
3785        }
3786
3787        /* else scan the schedule to find a group of slots such that all
3788         * uframes have enough periodic bandwidth available.
3789         */
3790        if (status) {
3791                /* "normal" case, uframing flexible except with splits */
3792                if (qh->period) {
3793                        int i;
3794
3795                        for (i = qh->period; status && i > 0; --i) {
3796                                frame = ++fotg210->random_frame % qh->period;
3797                                for (uframe = 0; uframe < 8; uframe++) {
3798                                        status = check_intr_schedule(fotg210,
3799                                                        frame, uframe, qh,
3800                                                        &c_mask);
3801                                        if (status == 0)
3802                                                break;
3803                                }
3804                        }
3805
3806                /* qh->period == 0 means every uframe */
3807                } else {
3808                        frame = 0;
3809                        status = check_intr_schedule(fotg210, 0, 0, qh,
3810                                        &c_mask);
3811                }
3812                if (status)
3813                        goto done;
3814                qh->start = frame;
3815
3816                /* reset S-frame and (maybe) C-frame masks */
3817                hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3818                hw->hw_info2 |= qh->period
3819                        ? cpu_to_hc32(fotg210, 1 << uframe)
3820                        : cpu_to_hc32(fotg210, QH_SMASK);
3821                hw->hw_info2 |= c_mask;
3822        } else
3823                fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3824
3825        /* stuff into the periodic schedule */
3826        qh_link_periodic(fotg210, qh);
3827done:
3828        return status;
3829}
3830
3831static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3832                struct list_head *qtd_list, gfp_t mem_flags)
3833{
3834        unsigned epnum;
3835        unsigned long flags;
3836        struct fotg210_qh *qh;
3837        int status;
3838        struct list_head empty;
3839
3840        /* get endpoint and transfer/schedule data */
3841        epnum = urb->ep->desc.bEndpointAddress;
3842
3843        spin_lock_irqsave(&fotg210->lock, flags);
3844
3845        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3846                status = -ESHUTDOWN;
3847                goto done_not_linked;
3848        }
3849        status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3850        if (unlikely(status))
3851                goto done_not_linked;
3852
3853        /* get qh and force any scheduling errors */
3854        INIT_LIST_HEAD(&empty);
3855        qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3856        if (qh == NULL) {
3857                status = -ENOMEM;
3858                goto done;
3859        }
3860        if (qh->qh_state == QH_STATE_IDLE) {
3861                status = qh_schedule(fotg210, qh);
3862                if (status)
3863                        goto done;
3864        }
3865
3866        /* then queue the urb's tds to the qh */
3867        qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3868        BUG_ON(qh == NULL);
3869
3870        /* ... update usbfs periodic stats */
3871        fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3872
3873done:
3874        if (unlikely(status))
3875                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3876done_not_linked:
3877        spin_unlock_irqrestore(&fotg210->lock, flags);
3878        if (status)
3879                qtd_list_free(fotg210, urb, qtd_list);
3880
3881        return status;
3882}
3883
3884static void scan_intr(struct fotg210_hcd *fotg210)
3885{
3886        struct fotg210_qh *qh;
3887
3888        list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3889                        &fotg210->intr_qh_list, intr_node) {
3890rescan:
3891                /* clean any finished work for this qh */
3892                if (!list_empty(&qh->qtd_list)) {
3893                        int temp;
3894
3895                        /*
3896                         * Unlinks could happen here; completion reporting
3897                         * drops the lock.  That's why fotg210->qh_scan_next
3898                         * always holds the next qh to scan; if the next qh
3899                         * gets unlinked then fotg210->qh_scan_next is adjusted
3900                         * in qh_unlink_periodic().
3901                         */
3902                        temp = qh_completions(fotg210, qh);
3903                        if (unlikely(qh->needs_rescan ||
3904                                        (list_empty(&qh->qtd_list) &&
3905                                        qh->qh_state == QH_STATE_LINKED)))
3906                                start_unlink_intr(fotg210, qh);
3907                        else if (temp != 0)
3908                                goto rescan;
3909                }
3910        }
3911}
3912
3913/* fotg210_iso_stream ops work with both ITD and SITD */
3914
3915static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3916{
3917        struct fotg210_iso_stream *stream;
3918
3919        stream = kzalloc(sizeof(*stream), mem_flags);
3920        if (likely(stream != NULL)) {
3921                INIT_LIST_HEAD(&stream->td_list);
3922                INIT_LIST_HEAD(&stream->free_list);
3923                stream->next_uframe = -1;
3924        }
3925        return stream;
3926}
3927
3928static void iso_stream_init(struct fotg210_hcd *fotg210,
3929                struct fotg210_iso_stream *stream, struct usb_device *dev,
3930                int pipe, unsigned interval)
3931{
3932        u32 buf1;
3933        unsigned epnum, maxp;
3934        int is_input;
3935        long bandwidth;
3936        unsigned multi;
3937
3938        /*
3939         * this might be a "high bandwidth" highspeed endpoint,
3940         * as encoded in the ep descriptor's wMaxPacket field
3941         */
3942        epnum = usb_pipeendpoint(pipe);
3943        is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3944        maxp = usb_maxpacket(dev, pipe, !is_input);
3945        if (is_input)
3946                buf1 = (1 << 11);
3947        else
3948                buf1 = 0;
3949
3950        maxp = max_packet(maxp);
3951        multi = hb_mult(maxp);
3952        buf1 |= maxp;
3953        maxp *= multi;
3954
3955        stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3956        stream->buf1 = cpu_to_hc32(fotg210, buf1);
3957        stream->buf2 = cpu_to_hc32(fotg210, multi);
3958
3959        /* usbfs wants to report the average usecs per frame tied up
3960         * when transfers on this endpoint are scheduled ...
3961         */
3962        if (dev->speed == USB_SPEED_FULL) {
3963                interval <<= 3;
3964                stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3965                                is_input, 1, maxp));
3966                stream->usecs /= 8;
3967        } else {
3968                stream->highspeed = 1;
3969                stream->usecs = HS_USECS_ISO(maxp);
3970        }
3971        bandwidth = stream->usecs * 8;
3972        bandwidth /= interval;
3973
3974        stream->bandwidth = bandwidth;
3975        stream->udev = dev;
3976        stream->bEndpointAddress = is_input | epnum;
3977        stream->interval = interval;
3978        stream->maxp = maxp;
3979}
3980
3981static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3982                struct urb *urb)
3983{
3984        unsigned epnum;
3985        struct fotg210_iso_stream *stream;
3986        struct usb_host_endpoint *ep;
3987        unsigned long flags;
3988
3989        epnum = usb_pipeendpoint(urb->pipe);
3990        if (usb_pipein(urb->pipe))
3991                ep = urb->dev->ep_in[epnum];
3992        else
3993                ep = urb->dev->ep_out[epnum];
3994
3995        spin_lock_irqsave(&fotg210->lock, flags);
3996        stream = ep->hcpriv;
3997
3998        if (unlikely(stream == NULL)) {
3999                stream = iso_stream_alloc(GFP_ATOMIC);
4000                if (likely(stream != NULL)) {
4001                        ep->hcpriv = stream;
4002                        stream->ep = ep;
4003                        iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4004                                        urb->interval);
4005                }
4006
4007        /* if dev->ep[epnum] is a QH, hw is set */
4008        } else if (unlikely(stream->hw != NULL)) {
4009                fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4010                                urb->dev->devpath, epnum,
4011                                usb_pipein(urb->pipe) ? "in" : "out");
4012                stream = NULL;
4013        }
4014
4015        spin_unlock_irqrestore(&fotg210->lock, flags);
4016        return stream;
4017}
4018
4019/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4020
4021static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4022                gfp_t mem_flags)
4023{
4024        struct fotg210_iso_sched *iso_sched;
4025        int size = sizeof(*iso_sched);
4026
4027        size += packets * sizeof(struct fotg210_iso_packet);
4028        iso_sched = kzalloc(size, mem_flags);
4029        if (likely(iso_sched != NULL))
4030                INIT_LIST_HEAD(&iso_sched->td_list);
4031
4032        return iso_sched;
4033}
4034
4035static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4036                struct fotg210_iso_sched *iso_sched,
4037                struct fotg210_iso_stream *stream, struct urb *urb)
4038{
4039        unsigned i;
4040        dma_addr_t dma = urb->transfer_dma;
4041
4042        /* how many uframes are needed for these transfers */
4043        iso_sched->span = urb->number_of_packets * stream->interval;
4044
4045        /* figure out per-uframe itd fields that we'll need later
4046         * when we fit new itds into the schedule.
4047         */
4048        for (i = 0; i < urb->number_of_packets; i++) {
4049                struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4050                unsigned length;
4051                dma_addr_t buf;
4052                u32 trans;
4053
4054                length = urb->iso_frame_desc[i].length;
4055                buf = dma + urb->iso_frame_desc[i].offset;
4056
4057                trans = FOTG210_ISOC_ACTIVE;
4058                trans |= buf & 0x0fff;
4059                if (unlikely(((i + 1) == urb->number_of_packets))
4060                                && !(urb->transfer_flags & URB_NO_INTERRUPT))
4061                        trans |= FOTG210_ITD_IOC;
4062                trans |= length << 16;
4063                uframe->transaction = cpu_to_hc32(fotg210, trans);
4064
4065                /* might need to cross a buffer page within a uframe */
4066                uframe->bufp = (buf & ~(u64)0x0fff);
4067                buf += length;
4068                if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4069                        uframe->cross = 1;
4070        }
4071}
4072
4073static void iso_sched_free(struct fotg210_iso_stream *stream,
4074                struct fotg210_iso_sched *iso_sched)
4075{
4076        if (!iso_sched)
4077                return;
4078        /* caller must hold fotg210->lock!*/
4079        list_splice(&iso_sched->td_list, &stream->free_list);
4080        kfree(iso_sched);
4081}
4082
4083static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4084                struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4085{
4086        struct fotg210_itd *itd;
4087        dma_addr_t itd_dma;
4088        int i;
4089        unsigned num_itds;
4090        struct fotg210_iso_sched *sched;
4091        unsigned long flags;
4092
4093        sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4094        if (unlikely(sched == NULL))
4095                return -ENOMEM;
4096
4097        itd_sched_init(fotg210, sched, stream, urb);
4098
4099        if (urb->interval < 8)
4100                num_itds = 1 + (sched->span + 7) / 8;
4101        else
4102                num_itds = urb->number_of_packets;
4103
4104        /* allocate/init ITDs */
4105        spin_lock_irqsave(&fotg210->lock, flags);
4106        for (i = 0; i < num_itds; i++) {
4107
4108                /*
4109                 * Use iTDs from the free list, but not iTDs that may
4110                 * still be in use by the hardware.
4111                 */
4112                if (likely(!list_empty(&stream->free_list))) {
4113                        itd = list_first_entry(&stream->free_list,
4114                                        struct fotg210_itd, itd_list);
4115                        if (itd->frame == fotg210->now_frame)
4116                                goto alloc_itd;
4117                        list_del(&itd->itd_list);
4118                        itd_dma = itd->itd_dma;
4119                } else {
4120alloc_itd:
4121                        spin_unlock_irqrestore(&fotg210->lock, flags);
4122                        itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4123                                        &itd_dma);
4124                        spin_lock_irqsave(&fotg210->lock, flags);
4125                        if (!itd) {
4126                                iso_sched_free(stream, sched);
4127                                spin_unlock_irqrestore(&fotg210->lock, flags);
4128                                return -ENOMEM;
4129                        }
4130                }
4131
4132                itd->itd_dma = itd_dma;
4133                list_add(&itd->itd_list, &sched->td_list);
4134        }
4135        spin_unlock_irqrestore(&fotg210->lock, flags);
4136
4137        /* temporarily store schedule info in hcpriv */
4138        urb->hcpriv = sched;
4139        urb->error_count = 0;
4140        return 0;
4141}
4142
4143static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4144                u8 usecs, u32 period)
4145{
4146        uframe %= period;
4147        do {
4148                /* can't commit more than uframe_periodic_max usec */
4149                if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4150                                > (fotg210->uframe_periodic_max - usecs))
4151                        return 0;
4152
4153                /* we know urb->interval is 2^N uframes */
4154                uframe += period;
4155        } while (uframe < mod);
4156        return 1;
4157}
4158
4159/* This scheduler plans almost as far into the future as it has actual
4160 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4161 * "as small as possible" to be cache-friendlier.)  That limits the size
4162 * transfers you can stream reliably; avoid more than 64 msec per urb.
4163 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4164 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4165 * and other factors); or more than about 230 msec total (for portability,
4166 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4167 */
4168
4169#define SCHEDULE_SLOP 80 /* microframes */
4170
4171static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4172                struct fotg210_iso_stream *stream)
4173{
4174        u32 now, next, start, period, span;
4175        int status;
4176        unsigned mod = fotg210->periodic_size << 3;
4177        struct fotg210_iso_sched *sched = urb->hcpriv;
4178
4179        period = urb->interval;
4180        span = sched->span;
4181
4182        if (span > mod - SCHEDULE_SLOP) {
4183                fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4184                status = -EFBIG;
4185                goto fail;
4186        }
4187
4188        now = fotg210_read_frame_index(fotg210) & (mod - 1);
4189
4190        /* Typical case: reuse current schedule, stream is still active.
4191         * Hopefully there are no gaps from the host falling behind
4192         * (irq delays etc), but if there are we'll take the next
4193         * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4194         */
4195        if (likely(!list_empty(&stream->td_list))) {
4196                u32 excess;
4197
4198                /* For high speed devices, allow scheduling within the
4199                 * isochronous scheduling threshold.  For full speed devices
4200                 * and Intel PCI-based controllers, don't (work around for
4201                 * Intel ICH9 bug).
4202                 */
4203                if (!stream->highspeed && fotg210->fs_i_thresh)
4204                        next = now + fotg210->i_thresh;
4205                else
4206                        next = now;
4207
4208                /* Fell behind (by up to twice the slop amount)?
4209                 * We decide based on the time of the last currently-scheduled
4210                 * slot, not the time of the next available slot.
4211                 */
4212                excess = (stream->next_uframe - period - next) & (mod - 1);
4213                if (excess >= mod - 2 * SCHEDULE_SLOP)
4214                        start = next + excess - mod + period *
4215                                        DIV_ROUND_UP(mod - excess, period);
4216                else
4217                        start = next + excess + period;
4218                if (start - now >= mod) {
4219                        fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4220                                        urb, start - now - period, period,
4221                                        mod);
4222                        status = -EFBIG;
4223                        goto fail;
4224                }
4225        }
4226
4227        /* need to schedule; when's the next (u)frame we could start?
4228         * this is bigger than fotg210->i_thresh allows; scheduling itself
4229         * isn't free, the slop should handle reasonably slow cpus.  it
4230         * can also help high bandwidth if the dma and irq loads don't
4231         * jump until after the queue is primed.
4232         */
4233        else {
4234                int done = 0;
4235
4236                start = SCHEDULE_SLOP + (now & ~0x07);
4237
4238                /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4239
4240                /* find a uframe slot with enough bandwidth.
4241                 * Early uframes are more precious because full-speed
4242                 * iso IN transfers can't use late uframes,
4243                 * and therefore they should be allocated last.
4244                 */
4245                next = start;
4246                start += period;
4247                do {
4248                        start--;
4249                        /* check schedule: enough space? */
4250                        if (itd_slot_ok(fotg210, mod, start,
4251                                        stream->usecs, period))
4252                                done = 1;
4253                } while (start > next && !done);
4254
4255                /* no room in the schedule */
4256                if (!done) {
4257                        fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4258                                        urb, now, now + mod);
4259                        status = -ENOSPC;
4260                        goto fail;
4261                }
4262        }
4263
4264        /* Tried to schedule too far into the future? */
4265        if (unlikely(start - now + span - period >=
4266                        mod - 2 * SCHEDULE_SLOP)) {
4267                fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4268                                urb, start - now, span - period,
4269                                mod - 2 * SCHEDULE_SLOP);
4270                status = -EFBIG;
4271                goto fail;
4272        }
4273
4274        stream->next_uframe = start & (mod - 1);
4275
4276        /* report high speed start in uframes; full speed, in frames */
4277        urb->start_frame = stream->next_uframe;
4278        if (!stream->highspeed)
4279                urb->start_frame >>= 3;
4280
4281        /* Make sure scan_isoc() sees these */
4282        if (fotg210->isoc_count == 0)
4283                fotg210->next_frame = now >> 3;
4284        return 0;
4285
4286fail:
4287        iso_sched_free(stream, sched);
4288        urb->hcpriv = NULL;
4289        return status;
4290}
4291
4292static inline void itd_init(struct fotg210_hcd *fotg210,
4293                struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4294{
4295        int i;
4296
4297        /* it's been recently zeroed */
4298        itd->hw_next = FOTG210_LIST_END(fotg210);
4299        itd->hw_bufp[0] = stream->buf0;
4300        itd->hw_bufp[1] = stream->buf1;
4301        itd->hw_bufp[2] = stream->buf2;
4302
4303        for (i = 0; i < 8; i++)
4304                itd->index[i] = -1;
4305
4306        /* All other fields are filled when scheduling */
4307}
4308
4309static inline void itd_patch(struct fotg210_hcd *fotg210,
4310                struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4311                unsigned index, u16 uframe)
4312{
4313        struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4314        unsigned pg = itd->pg;
4315
4316        uframe &= 0x07;
4317        itd->index[uframe] = index;
4318
4319        itd->hw_transaction[uframe] = uf->transaction;
4320        itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4321        itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4322        itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4323
4324        /* iso_frame_desc[].offset must be strictly increasing */
4325        if (unlikely(uf->cross)) {
4326                u64 bufp = uf->bufp + 4096;
4327
4328                itd->pg = ++pg;
4329                itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4330                itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4331        }
4332}
4333
4334static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4335                struct fotg210_itd *itd)
4336{
4337        union fotg210_shadow *prev = &fotg210->pshadow[frame];
4338        __hc32 *hw_p = &fotg210->periodic[frame];
4339        union fotg210_shadow here = *prev;
4340        __hc32 type = 0;
4341
4342        /* skip any iso nodes which might belong to previous microframes */
4343        while (here.ptr) {
4344                type = Q_NEXT_TYPE(fotg210, *hw_p);
4345                if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4346                        break;
4347                prev = periodic_next_shadow(fotg210, prev, type);
4348                hw_p = shadow_next_periodic(fotg210, &here, type);
4349                here = *prev;
4350        }
4351
4352        itd->itd_next = here;
4353        itd->hw_next = *hw_p;
4354        prev->itd = itd;
4355        itd->frame = frame;
4356        wmb();
4357        *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4358}
4359
4360/* fit urb's itds into the selected schedule slot; activate as needed */
4361static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4362                unsigned mod, struct fotg210_iso_stream *stream)
4363{
4364        int packet;
4365        unsigned next_uframe, uframe, frame;
4366        struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4367        struct fotg210_itd *itd;
4368
4369        next_uframe = stream->next_uframe & (mod - 1);
4370
4371        if (unlikely(list_empty(&stream->td_list))) {
4372                fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4373                                += stream->bandwidth;
4374                fotg210_dbg(fotg210,
4375                        "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4376                        urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4377                        (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4378                        urb->interval,
4379                        next_uframe >> 3, next_uframe & 0x7);
4380        }
4381
4382        /* fill iTDs uframe by uframe */
4383        for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4384                if (itd == NULL) {
4385                        /* ASSERT:  we have all necessary itds */
4386
4387                        /* ASSERT:  no itds for this endpoint in this uframe */
4388
4389                        itd = list_entry(iso_sched->td_list.next,
4390                                        struct fotg210_itd, itd_list);
4391                        list_move_tail(&itd->itd_list, &stream->td_list);
4392                        itd->stream = stream;
4393                        itd->urb = urb;
4394                        itd_init(fotg210, stream, itd);
4395                }
4396
4397                uframe = next_uframe & 0x07;
4398                frame = next_uframe >> 3;
4399
4400                itd_patch(fotg210, itd, iso_sched, packet, uframe);
4401
4402                next_uframe += stream->interval;
4403                next_uframe &= mod - 1;
4404                packet++;
4405
4406                /* link completed itds into the schedule */
4407                if (((next_uframe >> 3) != frame)
4408                                || packet == urb->number_of_packets) {
4409                        itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4410                                        itd);
4411                        itd = NULL;
4412                }
4413        }
4414        stream->next_uframe = next_uframe;
4415
4416        /* don't need that schedule data any more */
4417        iso_sched_free(stream, iso_sched);
4418        urb->hcpriv = NULL;
4419
4420        ++fotg210->isoc_count;
4421        enable_periodic(fotg210);
4422}
4423
4424#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4425                FOTG210_ISOC_XACTERR)
4426
4427/* Process and recycle a completed ITD.  Return true iff its urb completed,
4428 * and hence its completion callback probably added things to the hardware
4429 * schedule.
4430 *
4431 * Note that we carefully avoid recycling this descriptor until after any
4432 * completion callback runs, so that it won't be reused quickly.  That is,
4433 * assuming (a) no more than two urbs per frame on this endpoint, and also
4434 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4435 * corrupts things if you reuse completed descriptors very quickly...
4436 */
4437static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4438{
4439        struct urb *urb = itd->urb;
4440        struct usb_iso_packet_descriptor *desc;
4441        u32 t;
4442        unsigned uframe;
4443        int urb_index = -1;
4444        struct fotg210_iso_stream *stream = itd->stream;
4445        struct usb_device *dev;
4446        bool retval = false;
4447
4448        /* for each uframe with a packet */
4449        for (uframe = 0; uframe < 8; uframe++) {
4450                if (likely(itd->index[uframe] == -1))
4451                        continue;
4452                urb_index = itd->index[uframe];
4453                desc = &urb->iso_frame_desc[urb_index];
4454
4455                t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4456                itd->hw_transaction[uframe] = 0;
4457
4458                /* report transfer status */
4459                if (unlikely(t & ISO_ERRS)) {
4460                        urb->error_count++;
4461                        if (t & FOTG210_ISOC_BUF_ERR)
4462                                desc->status = usb_pipein(urb->pipe)
4463                                        ? -ENOSR  /* hc couldn't read */
4464                                        : -ECOMM; /* hc couldn't write */
4465                        else if (t & FOTG210_ISOC_BABBLE)
4466                                desc->status = -EOVERFLOW;
4467                        else /* (t & FOTG210_ISOC_XACTERR) */
4468                                desc->status = -EPROTO;
4469
4470                        /* HC need not update length with this error */
4471                        if (!(t & FOTG210_ISOC_BABBLE)) {
4472                                desc->actual_length =
4473                                        fotg210_itdlen(urb, desc, t);
4474                                urb->actual_length += desc->actual_length;
4475                        }
4476                } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4477                        desc->status = 0;
4478                        desc->actual_length = fotg210_itdlen(urb, desc, t);
4479                        urb->actual_length += desc->actual_length;
4480                } else {
4481                        /* URB was too late */
4482                        desc->status = -EXDEV;
4483                }
4484        }
4485
4486        /* handle completion now? */
4487        if (likely((urb_index + 1) != urb->number_of_packets))
4488                goto done;
4489
4490        /* ASSERT: it's really the last itd for this urb
4491         * list_for_each_entry (itd, &stream->td_list, itd_list)
4492         *      BUG_ON (itd->urb == urb);
4493         */
4494
4495        /* give urb back to the driver; completion often (re)submits */
4496        dev = urb->dev;
4497        fotg210_urb_done(fotg210, urb, 0);
4498        retval = true;
4499        urb = NULL;
4500
4501        --fotg210->isoc_count;
4502        disable_periodic(fotg210);
4503
4504        if (unlikely(list_is_singular(&stream->td_list))) {
4505                fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4506                                -= stream->bandwidth;
4507                fotg210_dbg(fotg210,
4508                        "deschedule devp %s ep%d%s-iso\n",
4509                        dev->devpath, stream->bEndpointAddress & 0x0f,
4510                        (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4511        }
4512
4513done:
4514        itd->urb = NULL;
4515
4516        /* Add to the end of the free list for later reuse */
4517        list_move_tail(&itd->itd_list, &stream->free_list);
4518
4519        /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4520        if (list_empty(&stream->td_list)) {
4521                list_splice_tail_init(&stream->free_list,
4522                                &fotg210->cached_itd_list);
4523                start_free_itds(fotg210);
4524        }
4525
4526        return retval;
4527}
4528
4529static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4530                gfp_t mem_flags)
4531{
4532        int status = -EINVAL;
4533        unsigned long flags;
4534        struct fotg210_iso_stream *stream;
4535
4536        /* Get iso_stream head */
4537        stream = iso_stream_find(fotg210, urb);
4538        if (unlikely(stream == NULL)) {
4539                fotg210_dbg(fotg210, "can't get iso stream\n");
4540                return -ENOMEM;
4541        }
4542        if (unlikely(urb->interval != stream->interval &&
4543                        fotg210_port_speed(fotg210, 0) ==
4544                        USB_PORT_STAT_HIGH_SPEED)) {
4545                fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4546                                stream->interval, urb->interval);
4547                goto done;
4548        }
4549
4550#ifdef FOTG210_URB_TRACE
4551        fotg210_dbg(fotg210,
4552                        "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4553                        __func__, urb->dev->devpath, urb,
4554                        usb_pipeendpoint(urb->pipe),
4555                        usb_pipein(urb->pipe) ? "in" : "out",
4556                        urb->transfer_buffer_length,
4557                        urb->number_of_packets, urb->interval,
4558                        stream);
4559#endif
4560
4561        /* allocate ITDs w/o locking anything */
4562        status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4563        if (unlikely(status < 0)) {
4564                fotg210_dbg(fotg210, "can't init itds\n");
4565                goto done;
4566        }
4567
4568        /* schedule ... need to lock */
4569        spin_lock_irqsave(&fotg210->lock, flags);
4570        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4571                status = -ESHUTDOWN;
4572                goto done_not_linked;
4573        }
4574        status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4575        if (unlikely(status))
4576                goto done_not_linked;
4577        status = iso_stream_schedule(fotg210, urb, stream);
4578        if (likely(status == 0))
4579                itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4580        else
4581                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4582done_not_linked:
4583        spin_unlock_irqrestore(&fotg210->lock, flags);
4584done:
4585        return status;
4586}
4587
4588static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4589                unsigned now_frame, bool live)
4590{
4591        unsigned uf;
4592        bool modified;
4593        union fotg210_shadow q, *q_p;
4594        __hc32 type, *hw_p;
4595
4596        /* scan each element in frame's queue for completions */
4597        q_p = &fotg210->pshadow[frame];
4598        hw_p = &fotg210->periodic[frame];
4599        q.ptr = q_p->ptr;
4600        type = Q_NEXT_TYPE(fotg210, *hw_p);
4601        modified = false;
4602
4603        while (q.ptr) {
4604                switch (hc32_to_cpu(fotg210, type)) {
4605                case Q_TYPE_ITD:
4606                        /* If this ITD is still active, leave it for
4607                         * later processing ... check the next entry.
4608                         * No need to check for activity unless the
4609                         * frame is current.
4610                         */
4611                        if (frame == now_frame && live) {
4612                                rmb();
4613                                for (uf = 0; uf < 8; uf++) {
4614                                        if (q.itd->hw_transaction[uf] &
4615                                                        ITD_ACTIVE(fotg210))
4616                                                break;
4617                                }
4618                                if (uf < 8) {
4619                                        q_p = &q.itd->itd_next;
4620                                        hw_p = &q.itd->hw_next;
4621                                        type = Q_NEXT_TYPE(fotg210,
4622                                                        q.itd->hw_next);
4623                                        q = *q_p;
4624                                        break;
4625                                }
4626                        }
4627
4628                        /* Take finished ITDs out of the schedule
4629                         * and process them:  recycle, maybe report
4630                         * URB completion.  HC won't cache the
4631                         * pointer for much longer, if at all.
4632                         */
4633                        *q_p = q.itd->itd_next;
4634                        *hw_p = q.itd->hw_next;
4635                        type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4636                        wmb();
4637                        modified = itd_complete(fotg210, q.itd);
4638                        q = *q_p;
4639                        break;
4640                default:
4641                        fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4642                                        type, frame, q.ptr);
4643                        /* FALL THROUGH */
4644                case Q_TYPE_QH:
4645                case Q_TYPE_FSTN:
4646                        /* End of the iTDs and siTDs */
4647                        q.ptr = NULL;
4648                        break;
4649                }
4650
4651                /* assume completion callbacks modify the queue */
4652                if (unlikely(modified && fotg210->isoc_count > 0))
4653                        return -EINVAL;
4654        }
4655        return 0;
4656}
4657
4658static void scan_isoc(struct fotg210_hcd *fotg210)
4659{
4660        unsigned uf, now_frame, frame, ret;
4661        unsigned fmask = fotg210->periodic_size - 1;
4662        bool live;
4663
4664        /*
4665         * When running, scan from last scan point up to "now"
4666         * else clean up by scanning everything that's left.
4667         * Touches as few pages as possible:  cache-friendly.
4668         */
4669        if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4670                uf = fotg210_read_frame_index(fotg210);
4671                now_frame = (uf >> 3) & fmask;
4672                live = true;
4673        } else  {
4674                now_frame = (fotg210->next_frame - 1) & fmask;
4675                live = false;
4676        }
4677        fotg210->now_frame = now_frame;
4678
4679        frame = fotg210->next_frame;
4680        for (;;) {
4681                ret = 1;
4682                while (ret != 0)
4683                        ret = scan_frame_queue(fotg210, frame,
4684                                        now_frame, live);
4685
4686                /* Stop when we have reached the current frame */
4687                if (frame == now_frame)
4688                        break;
4689                frame = (frame + 1) & fmask;
4690        }
4691        fotg210->next_frame = now_frame;
4692}
4693
4694/* Display / Set uframe_periodic_max
4695 */
4696static ssize_t uframe_periodic_max_show(struct device *dev,
4697                struct device_attribute *attr, char *buf)
4698{
4699        struct fotg210_hcd *fotg210;
4700        int n;
4701
4702        fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4703        n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4704        return n;
4705}
4706
4707
4708static ssize_t uframe_periodic_max_store(struct device *dev,
4709                struct device_attribute *attr, const char *buf, size_t count)
4710{
4711        struct fotg210_hcd *fotg210;
4712        unsigned uframe_periodic_max;
4713        unsigned frame, uframe;
4714        unsigned short allocated_max;
4715        unsigned long flags;
4716        ssize_t ret;
4717
4718        fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4719        if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4720                return -EINVAL;
4721
4722        if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4723                fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4724                                uframe_periodic_max);
4725                return -EINVAL;
4726        }
4727
4728        ret = -EINVAL;
4729
4730        /*
4731         * lock, so that our checking does not race with possible periodic
4732         * bandwidth allocation through submitting new urbs.
4733         */
4734        spin_lock_irqsave(&fotg210->lock, flags);
4735
4736        /*
4737         * for request to decrease max periodic bandwidth, we have to check
4738         * every microframe in the schedule to see whether the decrease is
4739         * possible.
4740         */
4741        if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4742                allocated_max = 0;
4743
4744                for (frame = 0; frame < fotg210->periodic_size; ++frame)
4745                        for (uframe = 0; uframe < 7; ++uframe)
4746                                allocated_max = max(allocated_max,
4747                                                periodic_usecs(fotg210, frame,
4748                                                uframe));
4749
4750                if (allocated_max > uframe_periodic_max) {
4751                        fotg210_info(fotg210,
4752                                        "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4753                                        allocated_max, uframe_periodic_max);
4754                        goto out_unlock;
4755                }
4756        }
4757
4758        /* increasing is always ok */
4759
4760        fotg210_info(fotg210,
4761                        "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4762                        100 * uframe_periodic_max/125, uframe_periodic_max);
4763
4764        if (uframe_periodic_max != 100)
4765                fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4766
4767        fotg210->uframe_periodic_max = uframe_periodic_max;
4768        ret = count;
4769
4770out_unlock:
4771        spin_unlock_irqrestore(&fotg210->lock, flags);
4772        return ret;
4773}
4774
4775static DEVICE_ATTR_RW(uframe_periodic_max);
4776
4777static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4778{
4779        struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4780
4781        return device_create_file(controller, &dev_attr_uframe_periodic_max);
4782}
4783
4784static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4785{
4786        struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4787
4788        device_remove_file(controller, &dev_attr_uframe_periodic_max);
4789}
4790/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4791 * The firmware seems to think that powering off is a wakeup event!
4792 * This routine turns off remote wakeup and everything else, on all ports.
4793 */
4794static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4795{
4796        u32 __iomem *status_reg = &fotg210->regs->port_status;
4797
4798        fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4799}
4800
4801/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4802 * Must be called with interrupts enabled and the lock not held.
4803 */
4804static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4805{
4806        fotg210_halt(fotg210);
4807
4808        spin_lock_irq(&fotg210->lock);
4809        fotg210->rh_state = FOTG210_RH_HALTED;
4810        fotg210_turn_off_all_ports(fotg210);
4811        spin_unlock_irq(&fotg210->lock);
4812}
4813
4814/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4815 * This forcibly disables dma and IRQs, helping kexec and other cases
4816 * where the next system software may expect clean state.
4817 */
4818static void fotg210_shutdown(struct usb_hcd *hcd)
4819{
4820        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4821
4822        spin_lock_irq(&fotg210->lock);
4823        fotg210->shutdown = true;
4824        fotg210->rh_state = FOTG210_RH_STOPPING;
4825        fotg210->enabled_hrtimer_events = 0;
4826        spin_unlock_irq(&fotg210->lock);
4827
4828        fotg210_silence_controller(fotg210);
4829
4830        hrtimer_cancel(&fotg210->hrtimer);
4831}
4832
4833/* fotg210_work is called from some interrupts, timers, and so on.
4834 * it calls driver completion functions, after dropping fotg210->lock.
4835 */
4836static void fotg210_work(struct fotg210_hcd *fotg210)
4837{
4838        /* another CPU may drop fotg210->lock during a schedule scan while
4839         * it reports urb completions.  this flag guards against bogus
4840         * attempts at re-entrant schedule scanning.
4841         */
4842        if (fotg210->scanning) {
4843                fotg210->need_rescan = true;
4844                return;
4845        }
4846        fotg210->scanning = true;
4847
4848rescan:
4849        fotg210->need_rescan = false;
4850        if (fotg210->async_count)
4851                scan_async(fotg210);
4852        if (fotg210->intr_count > 0)
4853                scan_intr(fotg210);
4854        if (fotg210->isoc_count > 0)
4855                scan_isoc(fotg210);
4856        if (fotg210->need_rescan)
4857                goto rescan;
4858        fotg210->scanning = false;
4859
4860        /* the IO watchdog guards against hardware or driver bugs that
4861         * misplace IRQs, and should let us run completely without IRQs.
4862         * such lossage has been observed on both VT6202 and VT8235.
4863         */
4864        turn_on_io_watchdog(fotg210);
4865}
4866
4867/* Called when the fotg210_hcd module is removed.
4868 */
4869static void fotg210_stop(struct usb_hcd *hcd)
4870{
4871        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4872
4873        fotg210_dbg(fotg210, "stop\n");
4874
4875        /* no more interrupts ... */
4876
4877        spin_lock_irq(&fotg210->lock);
4878        fotg210->enabled_hrtimer_events = 0;
4879        spin_unlock_irq(&fotg210->lock);
4880
4881        fotg210_quiesce(fotg210);
4882        fotg210_silence_controller(fotg210);
4883        fotg210_reset(fotg210);
4884
4885        hrtimer_cancel(&fotg210->hrtimer);
4886        remove_sysfs_files(fotg210);
4887        remove_debug_files(fotg210);
4888
4889        /* root hub is shut down separately (first, when possible) */
4890        spin_lock_irq(&fotg210->lock);
4891        end_free_itds(fotg210);
4892        spin_unlock_irq(&fotg210->lock);
4893        fotg210_mem_cleanup(fotg210);
4894
4895#ifdef FOTG210_STATS
4896        fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4897                        fotg210->stats.normal, fotg210->stats.error,
4898                        fotg210->stats.iaa, fotg210->stats.lost_iaa);
4899        fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4900                        fotg210->stats.complete, fotg210->stats.unlink);
4901#endif
4902
4903        dbg_status(fotg210, "fotg210_stop completed",
4904                        fotg210_readl(fotg210, &fotg210->regs->status));
4905}
4906
4907/* one-time init, only for memory state */
4908static int hcd_fotg210_init(struct usb_hcd *hcd)
4909{
4910        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4911        u32 temp;
4912        int retval;
4913        u32 hcc_params;
4914        struct fotg210_qh_hw *hw;
4915
4916        spin_lock_init(&fotg210->lock);
4917
4918        /*
4919         * keep io watchdog by default, those good HCDs could turn off it later
4920         */
4921        fotg210->need_io_watchdog = 1;
4922
4923        hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4924        fotg210->hrtimer.function = fotg210_hrtimer_func;
4925        fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4926
4927        hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4928
4929        /*
4930         * by default set standard 80% (== 100 usec/uframe) max periodic
4931         * bandwidth as required by USB 2.0
4932         */
4933        fotg210->uframe_periodic_max = 100;
4934
4935        /*
4936         * hw default: 1K periodic list heads, one per frame.
4937         * periodic_size can shrink by USBCMD update if hcc_params allows.
4938         */
4939        fotg210->periodic_size = DEFAULT_I_TDPS;
4940        INIT_LIST_HEAD(&fotg210->intr_qh_list);
4941        INIT_LIST_HEAD(&fotg210->cached_itd_list);
4942
4943        if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4944                /* periodic schedule size can be smaller than default */
4945                switch (FOTG210_TUNE_FLS) {
4946                case 0:
4947                        fotg210->periodic_size = 1024;
4948                        break;
4949                case 1:
4950                        fotg210->periodic_size = 512;
4951                        break;
4952                case 2:
4953                        fotg210->periodic_size = 256;
4954                        break;
4955                default:
4956                        BUG();
4957                }
4958        }
4959        retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4960        if (retval < 0)
4961                return retval;
4962
4963        /* controllers may cache some of the periodic schedule ... */
4964        fotg210->i_thresh = 2;
4965
4966        /*
4967         * dedicate a qh for the async ring head, since we couldn't unlink
4968         * a 'real' qh without stopping the async schedule [4.8].  use it
4969         * as the 'reclamation list head' too.
4970         * its dummy is used in hw_alt_next of many tds, to prevent the qh
4971         * from automatically advancing to the next td after short reads.
4972         */
4973        fotg210->async->qh_next.qh = NULL;
4974        hw = fotg210->async->hw;
4975        hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4976        hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4977        hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4978        hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4979        fotg210->async->qh_state = QH_STATE_LINKED;
4980        hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4981
4982        /* clear interrupt enables, set irq latency */
4983        if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4984                log2_irq_thresh = 0;
4985        temp = 1 << (16 + log2_irq_thresh);
4986        if (HCC_CANPARK(hcc_params)) {
4987                /* HW default park == 3, on hardware that supports it (like
4988                 * NVidia and ALI silicon), maximizes throughput on the async
4989                 * schedule by avoiding QH fetches between transfers.
4990                 *
4991                 * With fast usb storage devices and NForce2, "park" seems to
4992                 * make problems:  throughput reduction (!), data errors...
4993                 */
4994                if (park) {
4995                        park = min_t(unsigned, park, 3);
4996                        temp |= CMD_PARK;
4997                        temp |= park << 8;
4998                }
4999                fotg210_dbg(fotg210, "park %d\n", park);
5000        }
5001        if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5002                /* periodic schedule size can be smaller than default */
5003                temp &= ~(3 << 2);
5004                temp |= (FOTG210_TUNE_FLS << 2);
5005        }
5006        fotg210->command = temp;
5007
5008        /* Accept arbitrarily long scatter-gather lists */
5009        if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5010                hcd->self.sg_tablesize = ~0;
5011        return 0;
5012}
5013
5014/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5015static int fotg210_run(struct usb_hcd *hcd)
5016{
5017        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5018        u32 temp;
5019        u32 hcc_params;
5020
5021        hcd->uses_new_polling = 1;
5022
5023        /* EHCI spec section 4.1 */
5024
5025        fotg210_writel(fotg210, fotg210->periodic_dma,
5026                        &fotg210->regs->frame_list);
5027        fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5028                        &fotg210->regs->async_next);
5029
5030        /*
5031         * hcc_params controls whether fotg210->regs->segment must (!!!)
5032         * be used; it constrains QH/ITD/SITD and QTD locations.
5033         * dma_pool consistent memory always uses segment zero.
5034         * streaming mappings for I/O buffers, like pci_map_single(),
5035         * can return segments above 4GB, if the device allows.
5036         *
5037         * NOTE:  the dma mask is visible through dev->dma_mask, so
5038         * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5039         * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5040         * host side drivers though.
5041         */
5042        hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5043
5044        /*
5045         * Philips, Intel, and maybe others need CMD_RUN before the
5046         * root hub will detect new devices (why?); NEC doesn't
5047         */
5048        fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5049        fotg210->command |= CMD_RUN;
5050        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5051        dbg_cmd(fotg210, "init", fotg210->command);
5052
5053        /*
5054         * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5055         * are explicitly handed to companion controller(s), so no TT is
5056         * involved with the root hub.  (Except where one is integrated,
5057         * and there's no companion controller unless maybe for USB OTG.)
5058         *
5059         * Turning on the CF flag will transfer ownership of all ports
5060         * from the companions to the EHCI controller.  If any of the
5061         * companions are in the middle of a port reset at the time, it
5062         * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5063         * guarantees that no resets are in progress.  After we set CF,
5064         * a short delay lets the hardware catch up; new resets shouldn't
5065         * be started before the port switching actions could complete.
5066         */
5067        down_write(&ehci_cf_port_reset_rwsem);
5068        fotg210->rh_state = FOTG210_RH_RUNNING;
5069        /* unblock posted writes */
5070        fotg210_readl(fotg210, &fotg210->regs->command);
5071        usleep_range(5000, 10000);
5072        up_write(&ehci_cf_port_reset_rwsem);
5073        fotg210->last_periodic_enable = ktime_get_real();
5074
5075        temp = HC_VERSION(fotg210,
5076                        fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5077        fotg210_info(fotg210,
5078                        "USB %x.%x started, EHCI %x.%02x\n",
5079                        ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5080                        temp >> 8, temp & 0xff);
5081
5082        fotg210_writel(fotg210, INTR_MASK,
5083                        &fotg210->regs->intr_enable); /* Turn On Interrupts */
5084
5085        /* GRR this is run-once init(), being done every time the HC starts.
5086         * So long as they're part of class devices, we can't do it init()
5087         * since the class device isn't created that early.
5088         */
5089        create_debug_files(fotg210);
5090        create_sysfs_files(fotg210);
5091
5092        return 0;
5093}
5094
5095static int fotg210_setup(struct usb_hcd *hcd)
5096{
5097        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5098        int retval;
5099
5100        fotg210->regs = (void __iomem *)fotg210->caps +
5101                        HC_LENGTH(fotg210,
5102                        fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5103        dbg_hcs_params(fotg210, "reset");
5104        dbg_hcc_params(fotg210, "reset");
5105
5106        /* cache this readonly data; minimize chip reads */
5107        fotg210->hcs_params = fotg210_readl(fotg210,
5108                        &fotg210->caps->hcs_params);
5109
5110        fotg210->sbrn = HCD_USB2;
5111
5112        /* data structure init */
5113        retval = hcd_fotg210_init(hcd);
5114        if (retval)
5115                return retval;
5116
5117        retval = fotg210_halt(fotg210);
5118        if (retval)
5119                return retval;
5120
5121        fotg210_reset(fotg210);
5122
5123        return 0;
5124}
5125
5126static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5127{
5128        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5129        u32 status, masked_status, pcd_status = 0, cmd;
5130        int bh;
5131
5132        spin_lock(&fotg210->lock);
5133
5134        status = fotg210_readl(fotg210, &fotg210->regs->status);
5135
5136        /* e.g. cardbus physical eject */
5137        if (status == ~(u32) 0) {
5138                fotg210_dbg(fotg210, "device removed\n");
5139                goto dead;
5140        }
5141
5142        /*
5143         * We don't use STS_FLR, but some controllers don't like it to
5144         * remain on, so mask it out along with the other status bits.
5145         */
5146        masked_status = status & (INTR_MASK | STS_FLR);
5147
5148        /* Shared IRQ? */
5149        if (!masked_status ||
5150                        unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5151                spin_unlock(&fotg210->lock);
5152                return IRQ_NONE;
5153        }
5154
5155        /* clear (just) interrupts */
5156        fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5157        cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5158        bh = 0;
5159
5160        /* unrequested/ignored: Frame List Rollover */
5161        dbg_status(fotg210, "irq", status);
5162
5163        /* INT, ERR, and IAA interrupt rates can be throttled */
5164
5165        /* normal [4.15.1.2] or error [4.15.1.1] completion */
5166        if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5167                if (likely((status & STS_ERR) == 0))
5168                        COUNT(fotg210->stats.normal);
5169                else
5170                        COUNT(fotg210->stats.error);
5171                bh = 1;
5172        }
5173
5174        /* complete the unlinking of some qh [4.15.2.3] */
5175        if (status & STS_IAA) {
5176
5177                /* Turn off the IAA watchdog */
5178                fotg210->enabled_hrtimer_events &=
5179                        ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5180
5181                /*
5182                 * Mild optimization: Allow another IAAD to reset the
5183                 * hrtimer, if one occurs before the next expiration.
5184                 * In theory we could always cancel the hrtimer, but
5185                 * tests show that about half the time it will be reset
5186                 * for some other event anyway.
5187                 */
5188                if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5189                        ++fotg210->next_hrtimer_event;
5190
5191                /* guard against (alleged) silicon errata */
5192                if (cmd & CMD_IAAD)
5193                        fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5194                if (fotg210->async_iaa) {
5195                        COUNT(fotg210->stats.iaa);
5196                        end_unlink_async(fotg210);
5197                } else
5198                        fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5199        }
5200
5201        /* remote wakeup [4.3.1] */
5202        if (status & STS_PCD) {
5203                int pstatus;
5204                u32 __iomem *status_reg = &fotg210->regs->port_status;
5205
5206                /* kick root hub later */
5207                pcd_status = status;
5208
5209                /* resume root hub? */
5210                if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5211                        usb_hcd_resume_root_hub(hcd);
5212
5213                pstatus = fotg210_readl(fotg210, status_reg);
5214
5215                if (test_bit(0, &fotg210->suspended_ports) &&
5216                                ((pstatus & PORT_RESUME) ||
5217                                !(pstatus & PORT_SUSPEND)) &&
5218                                (pstatus & PORT_PE) &&
5219                                fotg210->reset_done[0] == 0) {
5220
5221                        /* start 20 msec resume signaling from this port,
5222                         * and make hub_wq collect PORT_STAT_C_SUSPEND to
5223                         * stop that signaling.  Use 5 ms extra for safety,
5224                         * like usb_port_resume() does.
5225                         */
5226                        fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5227                        set_bit(0, &fotg210->resuming_ports);
5228                        fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5229                        mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5230                }
5231        }
5232
5233        /* PCI errors [4.15.2.4] */
5234        if (unlikely((status & STS_FATAL) != 0)) {
5235                fotg210_err(fotg210, "fatal error\n");
5236                dbg_cmd(fotg210, "fatal", cmd);
5237                dbg_status(fotg210, "fatal", status);
5238dead:
5239                usb_hc_died(hcd);
5240
5241                /* Don't let the controller do anything more */
5242                fotg210->shutdown = true;
5243                fotg210->rh_state = FOTG210_RH_STOPPING;
5244                fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5245                fotg210_writel(fotg210, fotg210->command,
5246                                &fotg210->regs->command);
5247                fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5248                fotg210_handle_controller_death(fotg210);
5249
5250                /* Handle completions when the controller stops */
5251                bh = 0;
5252        }
5253
5254        if (bh)
5255                fotg210_work(fotg210);
5256        spin_unlock(&fotg210->lock);
5257        if (pcd_status)
5258                usb_hcd_poll_rh_status(hcd);
5259        return IRQ_HANDLED;
5260}
5261
5262/* non-error returns are a promise to giveback() the urb later
5263 * we drop ownership so next owner (or urb unlink) can get it
5264 *
5265 * urb + dev is in hcd.self.controller.urb_list
5266 * we're queueing TDs onto software and hardware lists
5267 *
5268 * hcd-specific init for hcpriv hasn't been done yet
5269 *
5270 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5271 * to a (possibly active) QH, and the same QH scanning code.
5272 */
5273static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5274                gfp_t mem_flags)
5275{
5276        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5277        struct list_head qtd_list;
5278
5279        INIT_LIST_HEAD(&qtd_list);
5280
5281        switch (usb_pipetype(urb->pipe)) {
5282        case PIPE_CONTROL:
5283                /* qh_completions() code doesn't handle all the fault cases
5284                 * in multi-TD control transfers.  Even 1KB is rare anyway.
5285                 */
5286                if (urb->transfer_buffer_length > (16 * 1024))
5287                        return -EMSGSIZE;
5288                /* FALLTHROUGH */
5289        /* case PIPE_BULK: */
5290        default:
5291                if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5292                        return -ENOMEM;
5293                return submit_async(fotg210, urb, &qtd_list, mem_flags);
5294
5295        case PIPE_INTERRUPT:
5296                if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5297                        return -ENOMEM;
5298                return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5299
5300        case PIPE_ISOCHRONOUS:
5301                return itd_submit(fotg210, urb, mem_flags);
5302        }
5303}
5304
5305/* remove from hardware lists
5306 * completions normally happen asynchronously
5307 */
5308
5309static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5310{
5311        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5312        struct fotg210_qh *qh;
5313        unsigned long flags;
5314        int rc;
5315
5316        spin_lock_irqsave(&fotg210->lock, flags);
5317        rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5318        if (rc)
5319                goto done;
5320
5321        switch (usb_pipetype(urb->pipe)) {
5322        /* case PIPE_CONTROL: */
5323        /* case PIPE_BULK:*/
5324        default:
5325                qh = (struct fotg210_qh *) urb->hcpriv;
5326                if (!qh)
5327                        break;
5328                switch (qh->qh_state) {
5329                case QH_STATE_LINKED:
5330                case QH_STATE_COMPLETING:
5331                        start_unlink_async(fotg210, qh);
5332                        break;
5333                case QH_STATE_UNLINK:
5334                case QH_STATE_UNLINK_WAIT:
5335                        /* already started */
5336                        break;
5337                case QH_STATE_IDLE:
5338                        /* QH might be waiting for a Clear-TT-Buffer */
5339                        qh_completions(fotg210, qh);
5340                        break;
5341                }
5342                break;
5343
5344        case PIPE_INTERRUPT:
5345                qh = (struct fotg210_qh *) urb->hcpriv;
5346                if (!qh)
5347                        break;
5348                switch (qh->qh_state) {
5349                case QH_STATE_LINKED:
5350                case QH_STATE_COMPLETING:
5351                        start_unlink_intr(fotg210, qh);
5352                        break;
5353                case QH_STATE_IDLE:
5354                        qh_completions(fotg210, qh);
5355                        break;
5356                default:
5357                        fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5358                                        qh, qh->qh_state);
5359                        goto done;
5360                }
5361                break;
5362
5363        case PIPE_ISOCHRONOUS:
5364                /* itd... */
5365
5366                /* wait till next completion, do it then. */
5367                /* completion irqs can wait up to 1024 msec, */
5368                break;
5369        }
5370done:
5371        spin_unlock_irqrestore(&fotg210->lock, flags);
5372        return rc;
5373}
5374
5375/* bulk qh holds the data toggle */
5376
5377static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5378                struct usb_host_endpoint *ep)
5379{
5380        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5381        unsigned long flags;
5382        struct fotg210_qh *qh, *tmp;
5383
5384        /* ASSERT:  any requests/urbs are being unlinked */
5385        /* ASSERT:  nobody can be submitting urbs for this any more */
5386
5387rescan:
5388        spin_lock_irqsave(&fotg210->lock, flags);
5389        qh = ep->hcpriv;
5390        if (!qh)
5391                goto done;
5392
5393        /* endpoints can be iso streams.  for now, we don't
5394         * accelerate iso completions ... so spin a while.
5395         */
5396        if (qh->hw == NULL) {
5397                struct fotg210_iso_stream *stream = ep->hcpriv;
5398
5399                if (!list_empty(&stream->td_list))
5400                        goto idle_timeout;
5401
5402                /* BUG_ON(!list_empty(&stream->free_list)); */
5403                kfree(stream);
5404                goto done;
5405        }
5406
5407        if (fotg210->rh_state < FOTG210_RH_RUNNING)
5408                qh->qh_state = QH_STATE_IDLE;
5409        switch (qh->qh_state) {
5410        case QH_STATE_LINKED:
5411        case QH_STATE_COMPLETING:
5412                for (tmp = fotg210->async->qh_next.qh;
5413                                tmp && tmp != qh;
5414                                tmp = tmp->qh_next.qh)
5415                        continue;
5416                /* periodic qh self-unlinks on empty, and a COMPLETING qh
5417                 * may already be unlinked.
5418                 */
5419                if (tmp)
5420                        start_unlink_async(fotg210, qh);
5421                /* FALL THROUGH */
5422        case QH_STATE_UNLINK:           /* wait for hw to finish? */
5423        case QH_STATE_UNLINK_WAIT:
5424idle_timeout:
5425                spin_unlock_irqrestore(&fotg210->lock, flags);
5426                schedule_timeout_uninterruptible(1);
5427                goto rescan;
5428        case QH_STATE_IDLE:             /* fully unlinked */
5429                if (qh->clearing_tt)
5430                        goto idle_timeout;
5431                if (list_empty(&qh->qtd_list)) {
5432                        qh_destroy(fotg210, qh);
5433                        break;
5434                }
5435                /* fall through */
5436        default:
5437                /* caller was supposed to have unlinked any requests;
5438                 * that's not our job.  just leak this memory.
5439                 */
5440                fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5441                                qh, ep->desc.bEndpointAddress, qh->qh_state,
5442                                list_empty(&qh->qtd_list) ? "" : "(has tds)");
5443                break;
5444        }
5445done:
5446        ep->hcpriv = NULL;
5447        spin_unlock_irqrestore(&fotg210->lock, flags);
5448}
5449
5450static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5451                struct usb_host_endpoint *ep)
5452{
5453        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5454        struct fotg210_qh *qh;
5455        int eptype = usb_endpoint_type(&ep->desc);
5456        int epnum = usb_endpoint_num(&ep->desc);
5457        int is_out = usb_endpoint_dir_out(&ep->desc);
5458        unsigned long flags;
5459
5460        if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5461                return;
5462
5463        spin_lock_irqsave(&fotg210->lock, flags);
5464        qh = ep->hcpriv;
5465
5466        /* For Bulk and Interrupt endpoints we maintain the toggle state
5467         * in the hardware; the toggle bits in udev aren't used at all.
5468         * When an endpoint is reset by usb_clear_halt() we must reset
5469         * the toggle bit in the QH.
5470         */
5471        if (qh) {
5472                usb_settoggle(qh->dev, epnum, is_out, 0);
5473                if (!list_empty(&qh->qtd_list)) {
5474                        WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5475                } else if (qh->qh_state == QH_STATE_LINKED ||
5476                                qh->qh_state == QH_STATE_COMPLETING) {
5477
5478                        /* The toggle value in the QH can't be updated
5479                         * while the QH is active.  Unlink it now;
5480                         * re-linking will call qh_refresh().
5481                         */
5482                        if (eptype == USB_ENDPOINT_XFER_BULK)
5483                                start_unlink_async(fotg210, qh);
5484                        else
5485                                start_unlink_intr(fotg210, qh);
5486                }
5487        }
5488        spin_unlock_irqrestore(&fotg210->lock, flags);
5489}
5490
5491static int fotg210_get_frame(struct usb_hcd *hcd)
5492{
5493        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5494
5495        return (fotg210_read_frame_index(fotg210) >> 3) %
5496                fotg210->periodic_size;
5497}
5498
5499/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5500 * because its registers (and irq) are shared between host/gadget/otg
5501 * functions  and in order to facilitate role switching we cannot
5502 * give the fotg210 driver exclusive access to those.
5503 */
5504MODULE_DESCRIPTION(DRIVER_DESC);
5505MODULE_AUTHOR(DRIVER_AUTHOR);
5506MODULE_LICENSE("GPL");
5507
5508static const struct hc_driver fotg210_fotg210_hc_driver = {
5509        .description            = hcd_name,
5510        .product_desc           = "Faraday USB2.0 Host Controller",
5511        .hcd_priv_size          = sizeof(struct fotg210_hcd),
5512
5513        /*
5514         * generic hardware linkage
5515         */
5516        .irq                    = fotg210_irq,
5517        .flags                  = HCD_MEMORY | HCD_USB2,
5518
5519        /*
5520         * basic lifecycle operations
5521         */
5522        .reset                  = hcd_fotg210_init,
5523        .start                  = fotg210_run,
5524        .stop                   = fotg210_stop,
5525        .shutdown               = fotg210_shutdown,
5526
5527        /*
5528         * managing i/o requests and associated device resources
5529         */
5530        .urb_enqueue            = fotg210_urb_enqueue,
5531        .urb_dequeue            = fotg210_urb_dequeue,
5532        .endpoint_disable       = fotg210_endpoint_disable,
5533        .endpoint_reset         = fotg210_endpoint_reset,
5534
5535        /*
5536         * scheduling support
5537         */
5538        .get_frame_number       = fotg210_get_frame,
5539
5540        /*
5541         * root hub support
5542         */
5543        .hub_status_data        = fotg210_hub_status_data,
5544        .hub_control            = fotg210_hub_control,
5545        .bus_suspend            = fotg210_bus_suspend,
5546        .bus_resume             = fotg210_bus_resume,
5547
5548        .relinquish_port        = fotg210_relinquish_port,
5549        .port_handed_over       = fotg210_port_handed_over,
5550
5551        .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5552};
5553
5554static void fotg210_init(struct fotg210_hcd *fotg210)
5555{
5556        u32 value;
5557
5558        iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5559                        &fotg210->regs->gmir);
5560
5561        value = ioread32(&fotg210->regs->otgcsr);
5562        value &= ~OTGCSR_A_BUS_DROP;
5563        value |= OTGCSR_A_BUS_REQ;
5564        iowrite32(value, &fotg210->regs->otgcsr);
5565}
5566
5567/**
5568 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5569 *
5570 * Allocates basic resources for this USB host controller, and
5571 * then invokes the start() method for the HCD associated with it
5572 * through the hotplug entry's driver_data.
5573 */
5574static int fotg210_hcd_probe(struct platform_device *pdev)
5575{
5576        struct device *dev = &pdev->dev;
5577        struct usb_hcd *hcd;
5578        struct resource *res;
5579        int irq;
5580        int retval = -ENODEV;
5581        struct fotg210_hcd *fotg210;
5582
5583        if (usb_disabled())
5584                return -ENODEV;
5585
5586        pdev->dev.power.power_state = PMSG_ON;
5587
5588        res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5589        if (!res) {
5590                dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5591                                dev_name(dev));
5592                return -ENODEV;
5593        }
5594
5595        irq = res->start;
5596
5597        hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5598                        dev_name(dev));
5599        if (!hcd) {
5600                dev_err(dev, "failed to create hcd with err %d\n", retval);
5601                retval = -ENOMEM;
5602                goto fail_create_hcd;
5603        }
5604
5605        hcd->has_tt = 1;
5606
5607        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5608        hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5609        if (IS_ERR(hcd->regs)) {
5610                retval = PTR_ERR(hcd->regs);
5611                goto failed;
5612        }
5613
5614        hcd->rsrc_start = res->start;
5615        hcd->rsrc_len = resource_size(res);
5616
5617        fotg210 = hcd_to_fotg210(hcd);
5618
5619        fotg210->caps = hcd->regs;
5620
5621        retval = fotg210_setup(hcd);
5622        if (retval)
5623                goto failed;
5624
5625        fotg210_init(fotg210);
5626
5627        retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5628        if (retval) {
5629                dev_err(dev, "failed to add hcd with err %d\n", retval);
5630                goto failed;
5631        }
5632        device_wakeup_enable(hcd->self.controller);
5633
5634        return retval;
5635
5636failed:
5637        usb_put_hcd(hcd);
5638fail_create_hcd:
5639        dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5640        return retval;
5641}
5642
5643/**
5644 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5645 * @dev: USB Host Controller being removed
5646 *
5647 */
5648static int fotg210_hcd_remove(struct platform_device *pdev)
5649{
5650        struct device *dev = &pdev->dev;
5651        struct usb_hcd *hcd = dev_get_drvdata(dev);
5652
5653        if (!hcd)
5654                return 0;
5655
5656        usb_remove_hcd(hcd);
5657        usb_put_hcd(hcd);
5658
5659        return 0;
5660}
5661
5662static struct platform_driver fotg210_hcd_driver = {
5663        .driver = {
5664                .name   = "fotg210-hcd",
5665        },
5666        .probe  = fotg210_hcd_probe,
5667        .remove = fotg210_hcd_remove,
5668};
5669
5670static int __init fotg210_hcd_init(void)
5671{
5672        int retval = 0;
5673
5674        if (usb_disabled())
5675                return -ENODEV;
5676
5677        pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5678        set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5679        if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5680                        test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5681                pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5682
5683        pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5684                        hcd_name, sizeof(struct fotg210_qh),
5685                        sizeof(struct fotg210_qtd),
5686                        sizeof(struct fotg210_itd));
5687
5688        fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5689        if (!fotg210_debug_root) {
5690                retval = -ENOENT;
5691                goto err_debug;
5692        }
5693
5694        retval = platform_driver_register(&fotg210_hcd_driver);
5695        if (retval < 0)
5696                goto clean;
5697        return retval;
5698
5699clean:
5700        debugfs_remove(fotg210_debug_root);
5701        fotg210_debug_root = NULL;
5702err_debug:
5703        clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5704        return retval;
5705}
5706module_init(fotg210_hcd_init);
5707
5708static void __exit fotg210_hcd_cleanup(void)
5709{
5710        platform_driver_unregister(&fotg210_hcd_driver);
5711        debugfs_remove(fotg210_debug_root);
5712        clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5713}
5714module_exit(fotg210_hcd_cleanup);
5715